1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * linux/fs/jbd2/journal.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem journal-writing code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages journals: areas of disk reserved for logging 13 * transactional updates. This includes the kernel journaling thread 14 * which is responsible for scheduling updates to the log. 15 * 16 * We do not actually manage the physical storage of the journal in this 17 * file: that is left to a per-journal policy function, which allows us 18 * to store the journal within a filesystem-specified area for ext2 19 * journaling (ext2 can use a reserved inode for storing the log). 20 */ 21 22 #include <linux/module.h> 23 #include <linux/time.h> 24 #include <linux/fs.h> 25 #include <linux/jbd2.h> 26 #include <linux/errno.h> 27 #include <linux/slab.h> 28 #include <linux/init.h> 29 #include <linux/mm.h> 30 #include <linux/freezer.h> 31 #include <linux/pagemap.h> 32 #include <linux/kthread.h> 33 #include <linux/poison.h> 34 #include <linux/proc_fs.h> 35 #include <linux/seq_file.h> 36 #include <linux/math64.h> 37 #include <linux/hash.h> 38 #include <linux/log2.h> 39 #include <linux/vmalloc.h> 40 #include <linux/backing-dev.h> 41 #include <linux/bitops.h> 42 #include <linux/ratelimit.h> 43 #include <linux/sched/mm.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/jbd2.h> 47 48 #include <linux/uaccess.h> 49 #include <asm/page.h> 50 51 #ifdef CONFIG_JBD2_DEBUG 52 static ushort jbd2_journal_enable_debug __read_mostly; 53 54 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644); 55 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2"); 56 #endif 57 58 EXPORT_SYMBOL(jbd2_journal_extend); 59 EXPORT_SYMBOL(jbd2_journal_stop); 60 EXPORT_SYMBOL(jbd2_journal_lock_updates); 61 EXPORT_SYMBOL(jbd2_journal_unlock_updates); 62 EXPORT_SYMBOL(jbd2_journal_get_write_access); 63 EXPORT_SYMBOL(jbd2_journal_get_create_access); 64 EXPORT_SYMBOL(jbd2_journal_get_undo_access); 65 EXPORT_SYMBOL(jbd2_journal_set_triggers); 66 EXPORT_SYMBOL(jbd2_journal_dirty_metadata); 67 EXPORT_SYMBOL(jbd2_journal_forget); 68 EXPORT_SYMBOL(jbd2_journal_flush); 69 EXPORT_SYMBOL(jbd2_journal_revoke); 70 71 EXPORT_SYMBOL(jbd2_journal_init_dev); 72 EXPORT_SYMBOL(jbd2_journal_init_inode); 73 EXPORT_SYMBOL(jbd2_journal_check_used_features); 74 EXPORT_SYMBOL(jbd2_journal_check_available_features); 75 EXPORT_SYMBOL(jbd2_journal_set_features); 76 EXPORT_SYMBOL(jbd2_journal_load); 77 EXPORT_SYMBOL(jbd2_journal_destroy); 78 EXPORT_SYMBOL(jbd2_journal_abort); 79 EXPORT_SYMBOL(jbd2_journal_errno); 80 EXPORT_SYMBOL(jbd2_journal_ack_err); 81 EXPORT_SYMBOL(jbd2_journal_clear_err); 82 EXPORT_SYMBOL(jbd2_log_wait_commit); 83 EXPORT_SYMBOL(jbd2_journal_start_commit); 84 EXPORT_SYMBOL(jbd2_journal_force_commit_nested); 85 EXPORT_SYMBOL(jbd2_journal_wipe); 86 EXPORT_SYMBOL(jbd2_journal_blocks_per_page); 87 EXPORT_SYMBOL(jbd2_journal_invalidate_folio); 88 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers); 89 EXPORT_SYMBOL(jbd2_journal_force_commit); 90 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write); 91 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait); 92 EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers); 93 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode); 94 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode); 95 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate); 96 EXPORT_SYMBOL(jbd2_inode_cache); 97 98 static int jbd2_journal_create_slab(size_t slab_size); 99 100 #ifdef CONFIG_JBD2_DEBUG 101 void __jbd2_debug(int level, const char *file, const char *func, 102 unsigned int line, const char *fmt, ...) 103 { 104 struct va_format vaf; 105 va_list args; 106 107 if (level > jbd2_journal_enable_debug) 108 return; 109 va_start(args, fmt); 110 vaf.fmt = fmt; 111 vaf.va = &args; 112 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf); 113 va_end(args); 114 } 115 #endif 116 117 /* Checksumming functions */ 118 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb) 119 { 120 __u32 csum; 121 __be32 old_csum; 122 123 old_csum = sb->s_checksum; 124 sb->s_checksum = 0; 125 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t)); 126 sb->s_checksum = old_csum; 127 128 return cpu_to_be32(csum); 129 } 130 131 /* 132 * Helper function used to manage commit timeouts 133 */ 134 135 static void commit_timeout(struct timer_list *t) 136 { 137 journal_t *journal = from_timer(journal, t, j_commit_timer); 138 139 wake_up_process(journal->j_task); 140 } 141 142 /* 143 * kjournald2: The main thread function used to manage a logging device 144 * journal. 145 * 146 * This kernel thread is responsible for two things: 147 * 148 * 1) COMMIT: Every so often we need to commit the current state of the 149 * filesystem to disk. The journal thread is responsible for writing 150 * all of the metadata buffers to disk. If a fast commit is ongoing 151 * journal thread waits until it's done and then continues from 152 * there on. 153 * 154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 155 * of the data in that part of the log has been rewritten elsewhere on 156 * the disk. Flushing these old buffers to reclaim space in the log is 157 * known as checkpointing, and this thread is responsible for that job. 158 */ 159 160 static int kjournald2(void *arg) 161 { 162 journal_t *journal = arg; 163 transaction_t *transaction; 164 165 /* 166 * Set up an interval timer which can be used to trigger a commit wakeup 167 * after the commit interval expires 168 */ 169 timer_setup(&journal->j_commit_timer, commit_timeout, 0); 170 171 set_freezable(); 172 173 /* Record that the journal thread is running */ 174 journal->j_task = current; 175 wake_up(&journal->j_wait_done_commit); 176 177 /* 178 * Make sure that no allocations from this kernel thread will ever 179 * recurse to the fs layer because we are responsible for the 180 * transaction commit and any fs involvement might get stuck waiting for 181 * the trasn. commit. 182 */ 183 memalloc_nofs_save(); 184 185 /* 186 * And now, wait forever for commit wakeup events. 187 */ 188 write_lock(&journal->j_state_lock); 189 190 loop: 191 if (journal->j_flags & JBD2_UNMOUNT) 192 goto end_loop; 193 194 jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n", 195 journal->j_commit_sequence, journal->j_commit_request); 196 197 if (journal->j_commit_sequence != journal->j_commit_request) { 198 jbd2_debug(1, "OK, requests differ\n"); 199 write_unlock(&journal->j_state_lock); 200 del_timer_sync(&journal->j_commit_timer); 201 jbd2_journal_commit_transaction(journal); 202 write_lock(&journal->j_state_lock); 203 goto loop; 204 } 205 206 wake_up(&journal->j_wait_done_commit); 207 if (freezing(current)) { 208 /* 209 * The simpler the better. Flushing journal isn't a 210 * good idea, because that depends on threads that may 211 * be already stopped. 212 */ 213 jbd2_debug(1, "Now suspending kjournald2\n"); 214 write_unlock(&journal->j_state_lock); 215 try_to_freeze(); 216 write_lock(&journal->j_state_lock); 217 } else { 218 /* 219 * We assume on resume that commits are already there, 220 * so we don't sleep 221 */ 222 DEFINE_WAIT(wait); 223 224 prepare_to_wait(&journal->j_wait_commit, &wait, 225 TASK_INTERRUPTIBLE); 226 transaction = journal->j_running_transaction; 227 if (transaction == NULL || 228 time_before(jiffies, transaction->t_expires)) { 229 write_unlock(&journal->j_state_lock); 230 schedule(); 231 write_lock(&journal->j_state_lock); 232 } 233 finish_wait(&journal->j_wait_commit, &wait); 234 } 235 236 jbd2_debug(1, "kjournald2 wakes\n"); 237 238 /* 239 * Were we woken up by a commit wakeup event? 240 */ 241 transaction = journal->j_running_transaction; 242 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 243 journal->j_commit_request = transaction->t_tid; 244 jbd2_debug(1, "woke because of timeout\n"); 245 } 246 goto loop; 247 248 end_loop: 249 del_timer_sync(&journal->j_commit_timer); 250 journal->j_task = NULL; 251 wake_up(&journal->j_wait_done_commit); 252 jbd2_debug(1, "Journal thread exiting.\n"); 253 write_unlock(&journal->j_state_lock); 254 return 0; 255 } 256 257 static int jbd2_journal_start_thread(journal_t *journal) 258 { 259 struct task_struct *t; 260 261 t = kthread_run(kjournald2, journal, "jbd2/%s", 262 journal->j_devname); 263 if (IS_ERR(t)) 264 return PTR_ERR(t); 265 266 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 267 return 0; 268 } 269 270 static void journal_kill_thread(journal_t *journal) 271 { 272 write_lock(&journal->j_state_lock); 273 journal->j_flags |= JBD2_UNMOUNT; 274 275 while (journal->j_task) { 276 write_unlock(&journal->j_state_lock); 277 wake_up(&journal->j_wait_commit); 278 wait_event(journal->j_wait_done_commit, journal->j_task == NULL); 279 write_lock(&journal->j_state_lock); 280 } 281 write_unlock(&journal->j_state_lock); 282 } 283 284 /* 285 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal. 286 * 287 * Writes a metadata buffer to a given disk block. The actual IO is not 288 * performed but a new buffer_head is constructed which labels the data 289 * to be written with the correct destination disk block. 290 * 291 * Any magic-number escaping which needs to be done will cause a 292 * copy-out here. If the buffer happens to start with the 293 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the 294 * magic number is only written to the log for descripter blocks. In 295 * this case, we copy the data and replace the first word with 0, and we 296 * return a result code which indicates that this buffer needs to be 297 * marked as an escaped buffer in the corresponding log descriptor 298 * block. The missing word can then be restored when the block is read 299 * during recovery. 300 * 301 * If the source buffer has already been modified by a new transaction 302 * since we took the last commit snapshot, we use the frozen copy of 303 * that data for IO. If we end up using the existing buffer_head's data 304 * for the write, then we have to make sure nobody modifies it while the 305 * IO is in progress. do_get_write_access() handles this. 306 * 307 * The function returns a pointer to the buffer_head to be used for IO. 308 * 309 * 310 * Return value: 311 * <0: Error 312 * =0: Finished OK without escape 313 * =1: Finished OK with escape 314 */ 315 316 int jbd2_journal_write_metadata_buffer(transaction_t *transaction, 317 struct journal_head *jh_in, 318 struct buffer_head **bh_out, 319 sector_t blocknr) 320 { 321 int done_copy_out = 0; 322 int do_escape = 0; 323 char *mapped_data; 324 struct buffer_head *new_bh; 325 struct folio *new_folio; 326 unsigned int new_offset; 327 struct buffer_head *bh_in = jh2bh(jh_in); 328 journal_t *journal = transaction->t_journal; 329 330 /* 331 * The buffer really shouldn't be locked: only the current committing 332 * transaction is allowed to write it, so nobody else is allowed 333 * to do any IO. 334 * 335 * akpm: except if we're journalling data, and write() output is 336 * also part of a shared mapping, and another thread has 337 * decided to launch a writepage() against this buffer. 338 */ 339 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 340 341 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 342 343 /* keep subsequent assertions sane */ 344 atomic_set(&new_bh->b_count, 1); 345 346 spin_lock(&jh_in->b_state_lock); 347 /* 348 * If a new transaction has already done a buffer copy-out, then 349 * we use that version of the data for the commit. 350 */ 351 if (jh_in->b_frozen_data) { 352 done_copy_out = 1; 353 new_folio = virt_to_folio(jh_in->b_frozen_data); 354 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data); 355 } else { 356 new_folio = bh_in->b_folio; 357 new_offset = offset_in_folio(new_folio, bh_in->b_data); 358 } 359 360 mapped_data = kmap_local_folio(new_folio, new_offset); 361 /* 362 * Fire data frozen trigger if data already wasn't frozen. Do this 363 * before checking for escaping, as the trigger may modify the magic 364 * offset. If a copy-out happens afterwards, it will have the correct 365 * data in the buffer. 366 */ 367 if (!done_copy_out) 368 jbd2_buffer_frozen_trigger(jh_in, mapped_data, 369 jh_in->b_triggers); 370 371 /* 372 * Check for escaping 373 */ 374 if (*((__be32 *)mapped_data) == cpu_to_be32(JBD2_MAGIC_NUMBER)) 375 do_escape = 1; 376 kunmap_local(mapped_data); 377 378 /* 379 * Do we need to do a data copy? 380 */ 381 if (do_escape && !done_copy_out) { 382 char *tmp; 383 384 spin_unlock(&jh_in->b_state_lock); 385 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS); 386 if (!tmp) { 387 brelse(new_bh); 388 free_buffer_head(new_bh); 389 return -ENOMEM; 390 } 391 spin_lock(&jh_in->b_state_lock); 392 if (jh_in->b_frozen_data) { 393 jbd2_free(tmp, bh_in->b_size); 394 goto copy_done; 395 } 396 397 jh_in->b_frozen_data = tmp; 398 memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size); 399 /* 400 * This isn't strictly necessary, as we're using frozen 401 * data for the escaping, but it keeps consistency with 402 * b_frozen_data usage. 403 */ 404 jh_in->b_frozen_triggers = jh_in->b_triggers; 405 406 copy_done: 407 new_folio = virt_to_folio(jh_in->b_frozen_data); 408 new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data); 409 done_copy_out = 1; 410 } 411 412 /* 413 * Did we need to do an escaping? Now we've done all the 414 * copying, we can finally do so. 415 * b_frozen_data is from jbd2_alloc() which always provides an 416 * address from the direct kernels mapping. 417 */ 418 if (do_escape) 419 *((unsigned int *)jh_in->b_frozen_data) = 0; 420 421 folio_set_bh(new_bh, new_folio, new_offset); 422 new_bh->b_size = bh_in->b_size; 423 new_bh->b_bdev = journal->j_dev; 424 new_bh->b_blocknr = blocknr; 425 new_bh->b_private = bh_in; 426 set_buffer_mapped(new_bh); 427 set_buffer_dirty(new_bh); 428 429 *bh_out = new_bh; 430 431 /* 432 * The to-be-written buffer needs to get moved to the io queue, 433 * and the original buffer whose contents we are shadowing or 434 * copying is moved to the transaction's shadow queue. 435 */ 436 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 437 spin_lock(&journal->j_list_lock); 438 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow); 439 spin_unlock(&journal->j_list_lock); 440 set_buffer_shadow(bh_in); 441 spin_unlock(&jh_in->b_state_lock); 442 443 return do_escape; 444 } 445 446 /* 447 * Allocation code for the journal file. Manage the space left in the 448 * journal, so that we can begin checkpointing when appropriate. 449 */ 450 451 /* 452 * Called with j_state_lock locked for writing. 453 * Returns true if a transaction commit was started. 454 */ 455 static int __jbd2_log_start_commit(journal_t *journal, tid_t target) 456 { 457 /* Return if the txn has already requested to be committed */ 458 if (journal->j_commit_request == target) 459 return 0; 460 461 /* 462 * The only transaction we can possibly wait upon is the 463 * currently running transaction (if it exists). Otherwise, 464 * the target tid must be an old one. 465 */ 466 if (journal->j_running_transaction && 467 journal->j_running_transaction->t_tid == target) { 468 /* 469 * We want a new commit: OK, mark the request and wakeup the 470 * commit thread. We do _not_ do the commit ourselves. 471 */ 472 473 journal->j_commit_request = target; 474 jbd2_debug(1, "JBD2: requesting commit %u/%u\n", 475 journal->j_commit_request, 476 journal->j_commit_sequence); 477 journal->j_running_transaction->t_requested = jiffies; 478 wake_up(&journal->j_wait_commit); 479 return 1; 480 } else if (!tid_geq(journal->j_commit_request, target)) 481 /* This should never happen, but if it does, preserve 482 the evidence before kjournald goes into a loop and 483 increments j_commit_sequence beyond all recognition. */ 484 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n", 485 journal->j_commit_request, 486 journal->j_commit_sequence, 487 target, journal->j_running_transaction ? 488 journal->j_running_transaction->t_tid : 0); 489 return 0; 490 } 491 492 int jbd2_log_start_commit(journal_t *journal, tid_t tid) 493 { 494 int ret; 495 496 write_lock(&journal->j_state_lock); 497 ret = __jbd2_log_start_commit(journal, tid); 498 write_unlock(&journal->j_state_lock); 499 return ret; 500 } 501 502 /* 503 * Force and wait any uncommitted transactions. We can only force the running 504 * transaction if we don't have an active handle, otherwise, we will deadlock. 505 * Returns: <0 in case of error, 506 * 0 if nothing to commit, 507 * 1 if transaction was successfully committed. 508 */ 509 static int __jbd2_journal_force_commit(journal_t *journal) 510 { 511 transaction_t *transaction = NULL; 512 tid_t tid; 513 int need_to_start = 0, ret = 0; 514 515 read_lock(&journal->j_state_lock); 516 if (journal->j_running_transaction && !current->journal_info) { 517 transaction = journal->j_running_transaction; 518 if (!tid_geq(journal->j_commit_request, transaction->t_tid)) 519 need_to_start = 1; 520 } else if (journal->j_committing_transaction) 521 transaction = journal->j_committing_transaction; 522 523 if (!transaction) { 524 /* Nothing to commit */ 525 read_unlock(&journal->j_state_lock); 526 return 0; 527 } 528 tid = transaction->t_tid; 529 read_unlock(&journal->j_state_lock); 530 if (need_to_start) 531 jbd2_log_start_commit(journal, tid); 532 ret = jbd2_log_wait_commit(journal, tid); 533 if (!ret) 534 ret = 1; 535 536 return ret; 537 } 538 539 /** 540 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the 541 * calling process is not within transaction. 542 * 543 * @journal: journal to force 544 * Returns true if progress was made. 545 * 546 * This is used for forcing out undo-protected data which contains 547 * bitmaps, when the fs is running out of space. 548 */ 549 int jbd2_journal_force_commit_nested(journal_t *journal) 550 { 551 int ret; 552 553 ret = __jbd2_journal_force_commit(journal); 554 return ret > 0; 555 } 556 557 /** 558 * jbd2_journal_force_commit() - force any uncommitted transactions 559 * @journal: journal to force 560 * 561 * Caller want unconditional commit. We can only force the running transaction 562 * if we don't have an active handle, otherwise, we will deadlock. 563 */ 564 int jbd2_journal_force_commit(journal_t *journal) 565 { 566 int ret; 567 568 J_ASSERT(!current->journal_info); 569 ret = __jbd2_journal_force_commit(journal); 570 if (ret > 0) 571 ret = 0; 572 return ret; 573 } 574 575 /* 576 * Start a commit of the current running transaction (if any). Returns true 577 * if a transaction is going to be committed (or is currently already 578 * committing), and fills its tid in at *ptid 579 */ 580 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid) 581 { 582 int ret = 0; 583 584 write_lock(&journal->j_state_lock); 585 if (journal->j_running_transaction) { 586 tid_t tid = journal->j_running_transaction->t_tid; 587 588 __jbd2_log_start_commit(journal, tid); 589 /* There's a running transaction and we've just made sure 590 * it's commit has been scheduled. */ 591 if (ptid) 592 *ptid = tid; 593 ret = 1; 594 } else if (journal->j_committing_transaction) { 595 /* 596 * If commit has been started, then we have to wait for 597 * completion of that transaction. 598 */ 599 if (ptid) 600 *ptid = journal->j_committing_transaction->t_tid; 601 ret = 1; 602 } 603 write_unlock(&journal->j_state_lock); 604 return ret; 605 } 606 607 /* 608 * Return 1 if a given transaction has not yet sent barrier request 609 * connected with a transaction commit. If 0 is returned, transaction 610 * may or may not have sent the barrier. Used to avoid sending barrier 611 * twice in common cases. 612 */ 613 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 614 { 615 int ret = 0; 616 transaction_t *commit_trans; 617 618 if (!(journal->j_flags & JBD2_BARRIER)) 619 return 0; 620 read_lock(&journal->j_state_lock); 621 /* Transaction already committed? */ 622 if (tid_geq(journal->j_commit_sequence, tid)) 623 goto out; 624 commit_trans = journal->j_committing_transaction; 625 if (!commit_trans || commit_trans->t_tid != tid) { 626 ret = 1; 627 goto out; 628 } 629 /* 630 * Transaction is being committed and we already proceeded to 631 * submitting a flush to fs partition? 632 */ 633 if (journal->j_fs_dev != journal->j_dev) { 634 if (!commit_trans->t_need_data_flush || 635 commit_trans->t_state >= T_COMMIT_DFLUSH) 636 goto out; 637 } else { 638 if (commit_trans->t_state >= T_COMMIT_JFLUSH) 639 goto out; 640 } 641 ret = 1; 642 out: 643 read_unlock(&journal->j_state_lock); 644 return ret; 645 } 646 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier); 647 648 /* 649 * Wait for a specified commit to complete. 650 * The caller may not hold the journal lock. 651 */ 652 int jbd2_log_wait_commit(journal_t *journal, tid_t tid) 653 { 654 int err = 0; 655 656 read_lock(&journal->j_state_lock); 657 #ifdef CONFIG_PROVE_LOCKING 658 /* 659 * Some callers make sure transaction is already committing and in that 660 * case we cannot block on open handles anymore. So don't warn in that 661 * case. 662 */ 663 if (tid_gt(tid, journal->j_commit_sequence) && 664 (!journal->j_committing_transaction || 665 journal->j_committing_transaction->t_tid != tid)) { 666 read_unlock(&journal->j_state_lock); 667 jbd2_might_wait_for_commit(journal); 668 read_lock(&journal->j_state_lock); 669 } 670 #endif 671 #ifdef CONFIG_JBD2_DEBUG 672 if (!tid_geq(journal->j_commit_request, tid)) { 673 printk(KERN_ERR 674 "%s: error: j_commit_request=%u, tid=%u\n", 675 __func__, journal->j_commit_request, tid); 676 } 677 #endif 678 while (tid_gt(tid, journal->j_commit_sequence)) { 679 jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n", 680 tid, journal->j_commit_sequence); 681 read_unlock(&journal->j_state_lock); 682 wake_up(&journal->j_wait_commit); 683 wait_event(journal->j_wait_done_commit, 684 !tid_gt(tid, journal->j_commit_sequence)); 685 read_lock(&journal->j_state_lock); 686 } 687 read_unlock(&journal->j_state_lock); 688 689 if (unlikely(is_journal_aborted(journal))) 690 err = -EIO; 691 return err; 692 } 693 694 /* 695 * Start a fast commit. If there's an ongoing fast or full commit wait for 696 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY 697 * if a fast commit is not needed, either because there's an already a commit 698 * going on or this tid has already been committed. Returns -EINVAL if no jbd2 699 * commit has yet been performed. 700 */ 701 int jbd2_fc_begin_commit(journal_t *journal, tid_t tid) 702 { 703 if (unlikely(is_journal_aborted(journal))) 704 return -EIO; 705 /* 706 * Fast commits only allowed if at least one full commit has 707 * been processed. 708 */ 709 if (!journal->j_stats.ts_tid) 710 return -EINVAL; 711 712 write_lock(&journal->j_state_lock); 713 if (tid_geq(journal->j_commit_sequence, tid)) { 714 write_unlock(&journal->j_state_lock); 715 return -EALREADY; 716 } 717 718 if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING || 719 (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) { 720 DEFINE_WAIT(wait); 721 722 prepare_to_wait(&journal->j_fc_wait, &wait, 723 TASK_UNINTERRUPTIBLE); 724 write_unlock(&journal->j_state_lock); 725 schedule(); 726 finish_wait(&journal->j_fc_wait, &wait); 727 return -EALREADY; 728 } 729 journal->j_flags |= JBD2_FAST_COMMIT_ONGOING; 730 write_unlock(&journal->j_state_lock); 731 jbd2_journal_lock_updates(journal); 732 733 return 0; 734 } 735 EXPORT_SYMBOL(jbd2_fc_begin_commit); 736 737 /* 738 * Stop a fast commit. If fallback is set, this function starts commit of 739 * TID tid before any other fast commit can start. 740 */ 741 static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback) 742 { 743 if (journal->j_fc_cleanup_callback) 744 journal->j_fc_cleanup_callback(journal, 0, tid); 745 jbd2_journal_unlock_updates(journal); 746 write_lock(&journal->j_state_lock); 747 journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING; 748 if (fallback) 749 journal->j_flags |= JBD2_FULL_COMMIT_ONGOING; 750 write_unlock(&journal->j_state_lock); 751 wake_up(&journal->j_fc_wait); 752 if (fallback) 753 return jbd2_complete_transaction(journal, tid); 754 return 0; 755 } 756 757 int jbd2_fc_end_commit(journal_t *journal) 758 { 759 return __jbd2_fc_end_commit(journal, 0, false); 760 } 761 EXPORT_SYMBOL(jbd2_fc_end_commit); 762 763 int jbd2_fc_end_commit_fallback(journal_t *journal) 764 { 765 tid_t tid; 766 767 read_lock(&journal->j_state_lock); 768 tid = journal->j_running_transaction ? 769 journal->j_running_transaction->t_tid : 0; 770 read_unlock(&journal->j_state_lock); 771 return __jbd2_fc_end_commit(journal, tid, true); 772 } 773 EXPORT_SYMBOL(jbd2_fc_end_commit_fallback); 774 775 /* Return 1 when transaction with given tid has already committed. */ 776 int jbd2_transaction_committed(journal_t *journal, tid_t tid) 777 { 778 return tid_geq(READ_ONCE(journal->j_commit_sequence), tid); 779 } 780 EXPORT_SYMBOL(jbd2_transaction_committed); 781 782 /* 783 * When this function returns the transaction corresponding to tid 784 * will be completed. If the transaction has currently running, start 785 * committing that transaction before waiting for it to complete. If 786 * the transaction id is stale, it is by definition already completed, 787 * so just return SUCCESS. 788 */ 789 int jbd2_complete_transaction(journal_t *journal, tid_t tid) 790 { 791 int need_to_wait = 1; 792 793 read_lock(&journal->j_state_lock); 794 if (journal->j_running_transaction && 795 journal->j_running_transaction->t_tid == tid) { 796 if (journal->j_commit_request != tid) { 797 /* transaction not yet started, so request it */ 798 read_unlock(&journal->j_state_lock); 799 jbd2_log_start_commit(journal, tid); 800 goto wait_commit; 801 } 802 } else if (!(journal->j_committing_transaction && 803 journal->j_committing_transaction->t_tid == tid)) 804 need_to_wait = 0; 805 read_unlock(&journal->j_state_lock); 806 if (!need_to_wait) 807 return 0; 808 wait_commit: 809 return jbd2_log_wait_commit(journal, tid); 810 } 811 EXPORT_SYMBOL(jbd2_complete_transaction); 812 813 /* 814 * Log buffer allocation routines: 815 */ 816 817 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp) 818 { 819 unsigned long blocknr; 820 821 write_lock(&journal->j_state_lock); 822 J_ASSERT(journal->j_free > 1); 823 824 blocknr = journal->j_head; 825 journal->j_head++; 826 journal->j_free--; 827 if (journal->j_head == journal->j_last) 828 journal->j_head = journal->j_first; 829 write_unlock(&journal->j_state_lock); 830 return jbd2_journal_bmap(journal, blocknr, retp); 831 } 832 833 /* Map one fast commit buffer for use by the file system */ 834 int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out) 835 { 836 unsigned long long pblock; 837 unsigned long blocknr; 838 int ret = 0; 839 struct buffer_head *bh; 840 int fc_off; 841 842 *bh_out = NULL; 843 844 if (journal->j_fc_off + journal->j_fc_first < journal->j_fc_last) { 845 fc_off = journal->j_fc_off; 846 blocknr = journal->j_fc_first + fc_off; 847 journal->j_fc_off++; 848 } else { 849 ret = -EINVAL; 850 } 851 852 if (ret) 853 return ret; 854 855 ret = jbd2_journal_bmap(journal, blocknr, &pblock); 856 if (ret) 857 return ret; 858 859 bh = __getblk(journal->j_dev, pblock, journal->j_blocksize); 860 if (!bh) 861 return -ENOMEM; 862 863 864 journal->j_fc_wbuf[fc_off] = bh; 865 866 *bh_out = bh; 867 868 return 0; 869 } 870 EXPORT_SYMBOL(jbd2_fc_get_buf); 871 872 /* 873 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf 874 * for completion. 875 */ 876 int jbd2_fc_wait_bufs(journal_t *journal, int num_blks) 877 { 878 struct buffer_head *bh; 879 int i, j_fc_off; 880 881 j_fc_off = journal->j_fc_off; 882 883 /* 884 * Wait in reverse order to minimize chances of us being woken up before 885 * all IOs have completed 886 */ 887 for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) { 888 bh = journal->j_fc_wbuf[i]; 889 wait_on_buffer(bh); 890 /* 891 * Update j_fc_off so jbd2_fc_release_bufs can release remain 892 * buffer head. 893 */ 894 if (unlikely(!buffer_uptodate(bh))) { 895 journal->j_fc_off = i + 1; 896 return -EIO; 897 } 898 put_bh(bh); 899 journal->j_fc_wbuf[i] = NULL; 900 } 901 902 return 0; 903 } 904 EXPORT_SYMBOL(jbd2_fc_wait_bufs); 905 906 int jbd2_fc_release_bufs(journal_t *journal) 907 { 908 struct buffer_head *bh; 909 int i, j_fc_off; 910 911 j_fc_off = journal->j_fc_off; 912 913 for (i = j_fc_off - 1; i >= 0; i--) { 914 bh = journal->j_fc_wbuf[i]; 915 if (!bh) 916 break; 917 put_bh(bh); 918 journal->j_fc_wbuf[i] = NULL; 919 } 920 921 return 0; 922 } 923 EXPORT_SYMBOL(jbd2_fc_release_bufs); 924 925 /* 926 * Conversion of logical to physical block numbers for the journal 927 * 928 * On external journals the journal blocks are identity-mapped, so 929 * this is a no-op. If needed, we can use j_blk_offset - everything is 930 * ready. 931 */ 932 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr, 933 unsigned long long *retp) 934 { 935 int err = 0; 936 unsigned long long ret; 937 sector_t block = blocknr; 938 939 if (journal->j_bmap) { 940 err = journal->j_bmap(journal, &block); 941 if (err == 0) 942 *retp = block; 943 } else if (journal->j_inode) { 944 ret = bmap(journal->j_inode, &block); 945 946 if (ret || !block) { 947 printk(KERN_ALERT "%s: journal block not found " 948 "at offset %lu on %s\n", 949 __func__, blocknr, journal->j_devname); 950 err = -EIO; 951 jbd2_journal_abort(journal, err); 952 } else { 953 *retp = block; 954 } 955 956 } else { 957 *retp = blocknr; /* +journal->j_blk_offset */ 958 } 959 return err; 960 } 961 962 /* 963 * We play buffer_head aliasing tricks to write data/metadata blocks to 964 * the journal without copying their contents, but for journal 965 * descriptor blocks we do need to generate bona fide buffers. 966 * 967 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying 968 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 969 * But we don't bother doing that, so there will be coherency problems with 970 * mmaps of blockdevs which hold live JBD-controlled filesystems. 971 */ 972 struct buffer_head * 973 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type) 974 { 975 journal_t *journal = transaction->t_journal; 976 struct buffer_head *bh; 977 unsigned long long blocknr; 978 journal_header_t *header; 979 int err; 980 981 err = jbd2_journal_next_log_block(journal, &blocknr); 982 983 if (err) 984 return NULL; 985 986 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 987 if (!bh) 988 return NULL; 989 atomic_dec(&transaction->t_outstanding_credits); 990 lock_buffer(bh); 991 memset(bh->b_data, 0, journal->j_blocksize); 992 header = (journal_header_t *)bh->b_data; 993 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER); 994 header->h_blocktype = cpu_to_be32(type); 995 header->h_sequence = cpu_to_be32(transaction->t_tid); 996 set_buffer_uptodate(bh); 997 unlock_buffer(bh); 998 BUFFER_TRACE(bh, "return this buffer"); 999 return bh; 1000 } 1001 1002 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh) 1003 { 1004 struct jbd2_journal_block_tail *tail; 1005 __u32 csum; 1006 1007 if (!jbd2_journal_has_csum_v2or3(j)) 1008 return; 1009 1010 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize - 1011 sizeof(struct jbd2_journal_block_tail)); 1012 tail->t_checksum = 0; 1013 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize); 1014 tail->t_checksum = cpu_to_be32(csum); 1015 } 1016 1017 /* 1018 * Return tid of the oldest transaction in the journal and block in the journal 1019 * where the transaction starts. 1020 * 1021 * If the journal is now empty, return which will be the next transaction ID 1022 * we will write and where will that transaction start. 1023 * 1024 * The return value is 0 if journal tail cannot be pushed any further, 1 if 1025 * it can. 1026 */ 1027 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid, 1028 unsigned long *block) 1029 { 1030 transaction_t *transaction; 1031 int ret; 1032 1033 read_lock(&journal->j_state_lock); 1034 spin_lock(&journal->j_list_lock); 1035 transaction = journal->j_checkpoint_transactions; 1036 if (transaction) { 1037 *tid = transaction->t_tid; 1038 *block = transaction->t_log_start; 1039 } else if ((transaction = journal->j_committing_transaction) != NULL) { 1040 *tid = transaction->t_tid; 1041 *block = transaction->t_log_start; 1042 } else if ((transaction = journal->j_running_transaction) != NULL) { 1043 *tid = transaction->t_tid; 1044 *block = journal->j_head; 1045 } else { 1046 *tid = journal->j_transaction_sequence; 1047 *block = journal->j_head; 1048 } 1049 ret = tid_gt(*tid, journal->j_tail_sequence); 1050 spin_unlock(&journal->j_list_lock); 1051 read_unlock(&journal->j_state_lock); 1052 1053 return ret; 1054 } 1055 1056 /* 1057 * Update information in journal structure and in on disk journal superblock 1058 * about log tail. This function does not check whether information passed in 1059 * really pushes log tail further. It's responsibility of the caller to make 1060 * sure provided log tail information is valid (e.g. by holding 1061 * j_checkpoint_mutex all the time between computing log tail and calling this 1062 * function as is the case with jbd2_cleanup_journal_tail()). 1063 * 1064 * Requires j_checkpoint_mutex 1065 */ 1066 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1067 { 1068 unsigned long freed; 1069 int ret; 1070 1071 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1072 1073 /* 1074 * We cannot afford for write to remain in drive's caches since as 1075 * soon as we update j_tail, next transaction can start reusing journal 1076 * space and if we lose sb update during power failure we'd replay 1077 * old transaction with possibly newly overwritten data. 1078 */ 1079 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA); 1080 if (ret) 1081 goto out; 1082 1083 write_lock(&journal->j_state_lock); 1084 freed = block - journal->j_tail; 1085 if (block < journal->j_tail) 1086 freed += journal->j_last - journal->j_first; 1087 1088 trace_jbd2_update_log_tail(journal, tid, block, freed); 1089 jbd2_debug(1, 1090 "Cleaning journal tail from %u to %u (offset %lu), " 1091 "freeing %lu\n", 1092 journal->j_tail_sequence, tid, block, freed); 1093 1094 journal->j_free += freed; 1095 journal->j_tail_sequence = tid; 1096 journal->j_tail = block; 1097 write_unlock(&journal->j_state_lock); 1098 1099 out: 1100 return ret; 1101 } 1102 1103 /* 1104 * This is a variation of __jbd2_update_log_tail which checks for validity of 1105 * provided log tail and locks j_checkpoint_mutex. So it is safe against races 1106 * with other threads updating log tail. 1107 */ 1108 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block) 1109 { 1110 mutex_lock_io(&journal->j_checkpoint_mutex); 1111 if (tid_gt(tid, journal->j_tail_sequence)) 1112 __jbd2_update_log_tail(journal, tid, block); 1113 mutex_unlock(&journal->j_checkpoint_mutex); 1114 } 1115 1116 struct jbd2_stats_proc_session { 1117 journal_t *journal; 1118 struct transaction_stats_s *stats; 1119 int start; 1120 int max; 1121 }; 1122 1123 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos) 1124 { 1125 return *pos ? NULL : SEQ_START_TOKEN; 1126 } 1127 1128 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos) 1129 { 1130 (*pos)++; 1131 return NULL; 1132 } 1133 1134 static int jbd2_seq_info_show(struct seq_file *seq, void *v) 1135 { 1136 struct jbd2_stats_proc_session *s = seq->private; 1137 1138 if (v != SEQ_START_TOKEN) 1139 return 0; 1140 seq_printf(seq, "%lu transactions (%lu requested), " 1141 "each up to %u blocks\n", 1142 s->stats->ts_tid, s->stats->ts_requested, 1143 s->journal->j_max_transaction_buffers); 1144 if (s->stats->ts_tid == 0) 1145 return 0; 1146 seq_printf(seq, "average: \n %ums waiting for transaction\n", 1147 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid)); 1148 seq_printf(seq, " %ums request delay\n", 1149 (s->stats->ts_requested == 0) ? 0 : 1150 jiffies_to_msecs(s->stats->run.rs_request_delay / 1151 s->stats->ts_requested)); 1152 seq_printf(seq, " %ums running transaction\n", 1153 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid)); 1154 seq_printf(seq, " %ums transaction was being locked\n", 1155 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid)); 1156 seq_printf(seq, " %ums flushing data (in ordered mode)\n", 1157 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid)); 1158 seq_printf(seq, " %ums logging transaction\n", 1159 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid)); 1160 seq_printf(seq, " %lluus average transaction commit time\n", 1161 div_u64(s->journal->j_average_commit_time, 1000)); 1162 seq_printf(seq, " %lu handles per transaction\n", 1163 s->stats->run.rs_handle_count / s->stats->ts_tid); 1164 seq_printf(seq, " %lu blocks per transaction\n", 1165 s->stats->run.rs_blocks / s->stats->ts_tid); 1166 seq_printf(seq, " %lu logged blocks per transaction\n", 1167 s->stats->run.rs_blocks_logged / s->stats->ts_tid); 1168 return 0; 1169 } 1170 1171 static void jbd2_seq_info_stop(struct seq_file *seq, void *v) 1172 { 1173 } 1174 1175 static const struct seq_operations jbd2_seq_info_ops = { 1176 .start = jbd2_seq_info_start, 1177 .next = jbd2_seq_info_next, 1178 .stop = jbd2_seq_info_stop, 1179 .show = jbd2_seq_info_show, 1180 }; 1181 1182 static int jbd2_seq_info_open(struct inode *inode, struct file *file) 1183 { 1184 journal_t *journal = pde_data(inode); 1185 struct jbd2_stats_proc_session *s; 1186 int rc, size; 1187 1188 s = kmalloc(sizeof(*s), GFP_KERNEL); 1189 if (s == NULL) 1190 return -ENOMEM; 1191 size = sizeof(struct transaction_stats_s); 1192 s->stats = kmalloc(size, GFP_KERNEL); 1193 if (s->stats == NULL) { 1194 kfree(s); 1195 return -ENOMEM; 1196 } 1197 spin_lock(&journal->j_history_lock); 1198 memcpy(s->stats, &journal->j_stats, size); 1199 s->journal = journal; 1200 spin_unlock(&journal->j_history_lock); 1201 1202 rc = seq_open(file, &jbd2_seq_info_ops); 1203 if (rc == 0) { 1204 struct seq_file *m = file->private_data; 1205 m->private = s; 1206 } else { 1207 kfree(s->stats); 1208 kfree(s); 1209 } 1210 return rc; 1211 1212 } 1213 1214 static int jbd2_seq_info_release(struct inode *inode, struct file *file) 1215 { 1216 struct seq_file *seq = file->private_data; 1217 struct jbd2_stats_proc_session *s = seq->private; 1218 kfree(s->stats); 1219 kfree(s); 1220 return seq_release(inode, file); 1221 } 1222 1223 static const struct proc_ops jbd2_info_proc_ops = { 1224 .proc_open = jbd2_seq_info_open, 1225 .proc_read = seq_read, 1226 .proc_lseek = seq_lseek, 1227 .proc_release = jbd2_seq_info_release, 1228 }; 1229 1230 static struct proc_dir_entry *proc_jbd2_stats; 1231 1232 static void jbd2_stats_proc_init(journal_t *journal) 1233 { 1234 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats); 1235 if (journal->j_proc_entry) { 1236 proc_create_data("info", S_IRUGO, journal->j_proc_entry, 1237 &jbd2_info_proc_ops, journal); 1238 } 1239 } 1240 1241 static void jbd2_stats_proc_exit(journal_t *journal) 1242 { 1243 remove_proc_entry("info", journal->j_proc_entry); 1244 remove_proc_entry(journal->j_devname, proc_jbd2_stats); 1245 } 1246 1247 /* Minimum size of descriptor tag */ 1248 static int jbd2_min_tag_size(void) 1249 { 1250 /* 1251 * Tag with 32-bit block numbers does not use last four bytes of the 1252 * structure 1253 */ 1254 return sizeof(journal_block_tag_t) - 4; 1255 } 1256 1257 /** 1258 * jbd2_journal_shrink_scan() 1259 * @shrink: shrinker to work on 1260 * @sc: reclaim request to process 1261 * 1262 * Scan the checkpointed buffer on the checkpoint list and release the 1263 * journal_head. 1264 */ 1265 static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink, 1266 struct shrink_control *sc) 1267 { 1268 journal_t *journal = shrink->private_data; 1269 unsigned long nr_to_scan = sc->nr_to_scan; 1270 unsigned long nr_shrunk; 1271 unsigned long count; 1272 1273 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1274 trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count); 1275 1276 nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan); 1277 1278 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1279 trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count); 1280 1281 return nr_shrunk; 1282 } 1283 1284 /** 1285 * jbd2_journal_shrink_count() 1286 * @shrink: shrinker to work on 1287 * @sc: reclaim request to process 1288 * 1289 * Count the number of checkpoint buffers on the checkpoint list. 1290 */ 1291 static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink, 1292 struct shrink_control *sc) 1293 { 1294 journal_t *journal = shrink->private_data; 1295 unsigned long count; 1296 1297 count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count); 1298 trace_jbd2_shrink_count(journal, sc->nr_to_scan, count); 1299 1300 return count; 1301 } 1302 1303 /* 1304 * If the journal init or create aborts, we need to mark the journal 1305 * superblock as being NULL to prevent the journal destroy from writing 1306 * back a bogus superblock. 1307 */ 1308 static void journal_fail_superblock(journal_t *journal) 1309 { 1310 struct buffer_head *bh = journal->j_sb_buffer; 1311 brelse(bh); 1312 journal->j_sb_buffer = NULL; 1313 } 1314 1315 /* 1316 * Check the superblock for a given journal, performing initial 1317 * validation of the format. 1318 */ 1319 static int journal_check_superblock(journal_t *journal) 1320 { 1321 journal_superblock_t *sb = journal->j_superblock; 1322 int num_fc_blks; 1323 int err = -EINVAL; 1324 1325 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) || 1326 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1327 printk(KERN_WARNING "JBD2: no valid journal superblock found\n"); 1328 return err; 1329 } 1330 1331 if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 && 1332 be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) { 1333 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n"); 1334 return err; 1335 } 1336 1337 if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) { 1338 printk(KERN_WARNING "JBD2: journal file too short\n"); 1339 return err; 1340 } 1341 1342 if (be32_to_cpu(sb->s_first) == 0 || 1343 be32_to_cpu(sb->s_first) >= journal->j_total_len) { 1344 printk(KERN_WARNING 1345 "JBD2: Invalid start block of journal: %u\n", 1346 be32_to_cpu(sb->s_first)); 1347 return err; 1348 } 1349 1350 /* 1351 * If this is a V2 superblock, then we have to check the 1352 * features flags on it. 1353 */ 1354 if (!jbd2_format_support_feature(journal)) 1355 return 0; 1356 1357 if ((sb->s_feature_ro_compat & 1358 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) || 1359 (sb->s_feature_incompat & 1360 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) { 1361 printk(KERN_WARNING "JBD2: Unrecognised features on journal\n"); 1362 return err; 1363 } 1364 1365 num_fc_blks = jbd2_has_feature_fast_commit(journal) ? 1366 jbd2_journal_get_num_fc_blks(sb) : 0; 1367 if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS || 1368 be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) { 1369 printk(KERN_ERR "JBD2: journal file too short %u,%d\n", 1370 be32_to_cpu(sb->s_maxlen), num_fc_blks); 1371 return err; 1372 } 1373 1374 if (jbd2_has_feature_csum2(journal) && 1375 jbd2_has_feature_csum3(journal)) { 1376 /* Can't have checksum v2 and v3 at the same time! */ 1377 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 " 1378 "at the same time!\n"); 1379 return err; 1380 } 1381 1382 if (jbd2_journal_has_csum_v2or3_feature(journal) && 1383 jbd2_has_feature_checksum(journal)) { 1384 /* Can't have checksum v1 and v2 on at the same time! */ 1385 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 " 1386 "at the same time!\n"); 1387 return err; 1388 } 1389 1390 /* Load the checksum driver */ 1391 if (jbd2_journal_has_csum_v2or3_feature(journal)) { 1392 if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) { 1393 printk(KERN_ERR "JBD2: Unknown checksum type\n"); 1394 return err; 1395 } 1396 1397 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 1398 if (IS_ERR(journal->j_chksum_driver)) { 1399 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 1400 err = PTR_ERR(journal->j_chksum_driver); 1401 journal->j_chksum_driver = NULL; 1402 return err; 1403 } 1404 /* Check superblock checksum */ 1405 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) { 1406 printk(KERN_ERR "JBD2: journal checksum error\n"); 1407 err = -EFSBADCRC; 1408 return err; 1409 } 1410 } 1411 1412 return 0; 1413 } 1414 1415 static int journal_revoke_records_per_block(journal_t *journal) 1416 { 1417 int record_size; 1418 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t); 1419 1420 if (jbd2_has_feature_64bit(journal)) 1421 record_size = 8; 1422 else 1423 record_size = 4; 1424 1425 if (jbd2_journal_has_csum_v2or3(journal)) 1426 space -= sizeof(struct jbd2_journal_block_tail); 1427 return space / record_size; 1428 } 1429 1430 static int jbd2_journal_get_max_txn_bufs(journal_t *journal) 1431 { 1432 return (journal->j_total_len - journal->j_fc_wbufsize) / 3; 1433 } 1434 1435 /* 1436 * Base amount of descriptor blocks we reserve for each transaction. 1437 */ 1438 static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 1439 { 1440 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 1441 int tags_per_block; 1442 1443 /* Subtract UUID */ 1444 tag_space -= 16; 1445 if (jbd2_journal_has_csum_v2or3(journal)) 1446 tag_space -= sizeof(struct jbd2_journal_block_tail); 1447 /* Commit code leaves a slack space of 16 bytes at the end of block */ 1448 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 1449 /* 1450 * Revoke descriptors are accounted separately so we need to reserve 1451 * space for commit block and normal transaction descriptor blocks. 1452 */ 1453 return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal), 1454 tags_per_block); 1455 } 1456 1457 /* 1458 * Initialize number of blocks each transaction reserves for its bookkeeping 1459 * and maximum number of blocks a transaction can use. This needs to be called 1460 * after the journal size and the fastcommit area size are initialized. 1461 */ 1462 static void jbd2_journal_init_transaction_limits(journal_t *journal) 1463 { 1464 journal->j_revoke_records_per_block = 1465 journal_revoke_records_per_block(journal); 1466 journal->j_transaction_overhead_buffers = 1467 jbd2_descriptor_blocks_per_trans(journal); 1468 journal->j_max_transaction_buffers = 1469 jbd2_journal_get_max_txn_bufs(journal); 1470 } 1471 1472 /* 1473 * Load the on-disk journal superblock and read the key fields into the 1474 * journal_t. 1475 */ 1476 static int journal_load_superblock(journal_t *journal) 1477 { 1478 int err; 1479 struct buffer_head *bh; 1480 journal_superblock_t *sb; 1481 1482 bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset, 1483 journal->j_blocksize); 1484 if (bh) 1485 err = bh_read(bh, 0); 1486 if (!bh || err < 0) { 1487 pr_err("%s: Cannot read journal superblock\n", __func__); 1488 brelse(bh); 1489 return -EIO; 1490 } 1491 1492 journal->j_sb_buffer = bh; 1493 sb = (journal_superblock_t *)bh->b_data; 1494 journal->j_superblock = sb; 1495 err = journal_check_superblock(journal); 1496 if (err) { 1497 journal_fail_superblock(journal); 1498 return err; 1499 } 1500 1501 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1502 journal->j_tail = be32_to_cpu(sb->s_start); 1503 journal->j_first = be32_to_cpu(sb->s_first); 1504 journal->j_errno = be32_to_cpu(sb->s_errno); 1505 journal->j_last = be32_to_cpu(sb->s_maxlen); 1506 1507 if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len) 1508 journal->j_total_len = be32_to_cpu(sb->s_maxlen); 1509 /* Precompute checksum seed for all metadata */ 1510 if (jbd2_journal_has_csum_v2or3(journal)) 1511 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 1512 sizeof(sb->s_uuid)); 1513 /* After journal features are set, we can compute transaction limits */ 1514 jbd2_journal_init_transaction_limits(journal); 1515 1516 if (jbd2_has_feature_fast_commit(journal)) { 1517 journal->j_fc_last = be32_to_cpu(sb->s_maxlen); 1518 journal->j_last = journal->j_fc_last - 1519 jbd2_journal_get_num_fc_blks(sb); 1520 journal->j_fc_first = journal->j_last + 1; 1521 journal->j_fc_off = 0; 1522 } 1523 1524 return 0; 1525 } 1526 1527 1528 /* 1529 * Management for journal control blocks: functions to create and 1530 * destroy journal_t structures, and to initialise and read existing 1531 * journal blocks from disk. */ 1532 1533 /* First: create and setup a journal_t object in memory. We initialise 1534 * very few fields yet: that has to wait until we have created the 1535 * journal structures from from scratch, or loaded them from disk. */ 1536 1537 static journal_t *journal_init_common(struct block_device *bdev, 1538 struct block_device *fs_dev, 1539 unsigned long long start, int len, int blocksize) 1540 { 1541 static struct lock_class_key jbd2_trans_commit_key; 1542 journal_t *journal; 1543 int err; 1544 int n; 1545 1546 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 1547 if (!journal) 1548 return ERR_PTR(-ENOMEM); 1549 1550 journal->j_blocksize = blocksize; 1551 journal->j_dev = bdev; 1552 journal->j_fs_dev = fs_dev; 1553 journal->j_blk_offset = start; 1554 journal->j_total_len = len; 1555 jbd2_init_fs_dev_write_error(journal); 1556 1557 err = journal_load_superblock(journal); 1558 if (err) 1559 goto err_cleanup; 1560 1561 init_waitqueue_head(&journal->j_wait_transaction_locked); 1562 init_waitqueue_head(&journal->j_wait_done_commit); 1563 init_waitqueue_head(&journal->j_wait_commit); 1564 init_waitqueue_head(&journal->j_wait_updates); 1565 init_waitqueue_head(&journal->j_wait_reserved); 1566 init_waitqueue_head(&journal->j_fc_wait); 1567 mutex_init(&journal->j_abort_mutex); 1568 mutex_init(&journal->j_barrier); 1569 mutex_init(&journal->j_checkpoint_mutex); 1570 spin_lock_init(&journal->j_revoke_lock); 1571 spin_lock_init(&journal->j_list_lock); 1572 spin_lock_init(&journal->j_history_lock); 1573 rwlock_init(&journal->j_state_lock); 1574 1575 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE); 1576 journal->j_min_batch_time = 0; 1577 journal->j_max_batch_time = 15000; /* 15ms */ 1578 atomic_set(&journal->j_reserved_credits, 0); 1579 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle", 1580 &jbd2_trans_commit_key, 0); 1581 1582 /* The journal is marked for error until we succeed with recovery! */ 1583 journal->j_flags = JBD2_ABORT; 1584 1585 /* Set up a default-sized revoke table for the new mount. */ 1586 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 1587 if (err) 1588 goto err_cleanup; 1589 1590 /* 1591 * journal descriptor can store up to n blocks, we need enough 1592 * buffers to write out full descriptor block. 1593 */ 1594 err = -ENOMEM; 1595 n = journal->j_blocksize / jbd2_min_tag_size(); 1596 journal->j_wbufsize = n; 1597 journal->j_fc_wbuf = NULL; 1598 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *), 1599 GFP_KERNEL); 1600 if (!journal->j_wbuf) 1601 goto err_cleanup; 1602 1603 err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0, 1604 GFP_KERNEL); 1605 if (err) 1606 goto err_cleanup; 1607 1608 journal->j_shrink_transaction = NULL; 1609 1610 journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)", 1611 MAJOR(bdev->bd_dev), 1612 MINOR(bdev->bd_dev)); 1613 if (!journal->j_shrinker) { 1614 err = -ENOMEM; 1615 goto err_cleanup; 1616 } 1617 1618 journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan; 1619 journal->j_shrinker->count_objects = jbd2_journal_shrink_count; 1620 journal->j_shrinker->private_data = journal; 1621 1622 shrinker_register(journal->j_shrinker); 1623 1624 return journal; 1625 1626 err_cleanup: 1627 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 1628 if (journal->j_chksum_driver) 1629 crypto_free_shash(journal->j_chksum_driver); 1630 kfree(journal->j_wbuf); 1631 jbd2_journal_destroy_revoke(journal); 1632 journal_fail_superblock(journal); 1633 kfree(journal); 1634 return ERR_PTR(err); 1635 } 1636 1637 /* jbd2_journal_init_dev and jbd2_journal_init_inode: 1638 * 1639 * Create a journal structure assigned some fixed set of disk blocks to 1640 * the journal. We don't actually touch those disk blocks yet, but we 1641 * need to set up all of the mapping information to tell the journaling 1642 * system where the journal blocks are. 1643 * 1644 */ 1645 1646 /** 1647 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure 1648 * @bdev: Block device on which to create the journal 1649 * @fs_dev: Device which hold journalled filesystem for this journal. 1650 * @start: Block nr Start of journal. 1651 * @len: Length of the journal in blocks. 1652 * @blocksize: blocksize of journalling device 1653 * 1654 * Returns: a newly created journal_t * 1655 * 1656 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous 1657 * range of blocks on an arbitrary block device. 1658 * 1659 */ 1660 journal_t *jbd2_journal_init_dev(struct block_device *bdev, 1661 struct block_device *fs_dev, 1662 unsigned long long start, int len, int blocksize) 1663 { 1664 journal_t *journal; 1665 1666 journal = journal_init_common(bdev, fs_dev, start, len, blocksize); 1667 if (IS_ERR(journal)) 1668 return ERR_CAST(journal); 1669 1670 snprintf(journal->j_devname, sizeof(journal->j_devname), 1671 "%pg", journal->j_dev); 1672 strreplace(journal->j_devname, '/', '!'); 1673 jbd2_stats_proc_init(journal); 1674 1675 return journal; 1676 } 1677 1678 /** 1679 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode. 1680 * @inode: An inode to create the journal in 1681 * 1682 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as 1683 * the journal. The inode must exist already, must support bmap() and 1684 * must have all data blocks preallocated. 1685 */ 1686 journal_t *jbd2_journal_init_inode(struct inode *inode) 1687 { 1688 journal_t *journal; 1689 sector_t blocknr; 1690 int err = 0; 1691 1692 blocknr = 0; 1693 err = bmap(inode, &blocknr); 1694 if (err || !blocknr) { 1695 pr_err("%s: Cannot locate journal superblock\n", __func__); 1696 return err ? ERR_PTR(err) : ERR_PTR(-EINVAL); 1697 } 1698 1699 jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n", 1700 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size, 1701 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 1702 1703 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev, 1704 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits, 1705 inode->i_sb->s_blocksize); 1706 if (IS_ERR(journal)) 1707 return ERR_CAST(journal); 1708 1709 journal->j_inode = inode; 1710 snprintf(journal->j_devname, sizeof(journal->j_devname), 1711 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino); 1712 strreplace(journal->j_devname, '/', '!'); 1713 jbd2_stats_proc_init(journal); 1714 1715 return journal; 1716 } 1717 1718 /* 1719 * Given a journal_t structure, initialise the various fields for 1720 * startup of a new journaling session. We use this both when creating 1721 * a journal, and after recovering an old journal to reset it for 1722 * subsequent use. 1723 */ 1724 1725 static int journal_reset(journal_t *journal) 1726 { 1727 journal_superblock_t *sb = journal->j_superblock; 1728 unsigned long long first, last; 1729 1730 first = be32_to_cpu(sb->s_first); 1731 last = be32_to_cpu(sb->s_maxlen); 1732 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) { 1733 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n", 1734 first, last); 1735 journal_fail_superblock(journal); 1736 return -EINVAL; 1737 } 1738 1739 journal->j_first = first; 1740 journal->j_last = last; 1741 1742 if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) { 1743 /* 1744 * Disable the cycled recording mode if the journal head block 1745 * number is not correct. 1746 */ 1747 if (journal->j_head < first || journal->j_head >= last) { 1748 printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, " 1749 "disable journal_cycle_record\n", 1750 journal->j_head); 1751 journal->j_head = journal->j_first; 1752 } 1753 } else { 1754 journal->j_head = journal->j_first; 1755 } 1756 journal->j_tail = journal->j_head; 1757 journal->j_free = journal->j_last - journal->j_first; 1758 1759 journal->j_tail_sequence = journal->j_transaction_sequence; 1760 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 1761 journal->j_commit_request = journal->j_commit_sequence; 1762 1763 /* 1764 * Now that journal recovery is done, turn fast commits off here. This 1765 * way, if fast commit was enabled before the crash but if now FS has 1766 * disabled it, we don't enable fast commits. 1767 */ 1768 jbd2_clear_feature_fast_commit(journal); 1769 1770 /* 1771 * As a special case, if the on-disk copy is already marked as needing 1772 * no recovery (s_start == 0), then we can safely defer the superblock 1773 * update until the next commit by setting JBD2_FLUSHED. This avoids 1774 * attempting a write to a potential-readonly device. 1775 */ 1776 if (sb->s_start == 0) { 1777 jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb " 1778 "(start %ld, seq %u, errno %d)\n", 1779 journal->j_tail, journal->j_tail_sequence, 1780 journal->j_errno); 1781 journal->j_flags |= JBD2_FLUSHED; 1782 } else { 1783 /* Lock here to make assertions happy... */ 1784 mutex_lock_io(&journal->j_checkpoint_mutex); 1785 /* 1786 * Update log tail information. We use REQ_FUA since new 1787 * transaction will start reusing journal space and so we 1788 * must make sure information about current log tail is on 1789 * disk before that. 1790 */ 1791 jbd2_journal_update_sb_log_tail(journal, 1792 journal->j_tail_sequence, 1793 journal->j_tail, REQ_FUA); 1794 mutex_unlock(&journal->j_checkpoint_mutex); 1795 } 1796 return jbd2_journal_start_thread(journal); 1797 } 1798 1799 /* 1800 * This function expects that the caller will have locked the journal 1801 * buffer head, and will return with it unlocked 1802 */ 1803 static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags) 1804 { 1805 struct buffer_head *bh = journal->j_sb_buffer; 1806 journal_superblock_t *sb = journal->j_superblock; 1807 int ret = 0; 1808 1809 /* Buffer got discarded which means block device got invalidated */ 1810 if (!buffer_mapped(bh)) { 1811 unlock_buffer(bh); 1812 return -EIO; 1813 } 1814 1815 /* 1816 * Always set high priority flags to exempt from block layer's 1817 * QOS policies, e.g. writeback throttle. 1818 */ 1819 write_flags |= JBD2_JOURNAL_REQ_FLAGS; 1820 if (!(journal->j_flags & JBD2_BARRIER)) 1821 write_flags &= ~(REQ_FUA | REQ_PREFLUSH); 1822 1823 trace_jbd2_write_superblock(journal, write_flags); 1824 1825 if (buffer_write_io_error(bh)) { 1826 /* 1827 * Oh, dear. A previous attempt to write the journal 1828 * superblock failed. This could happen because the 1829 * USB device was yanked out. Or it could happen to 1830 * be a transient write error and maybe the block will 1831 * be remapped. Nothing we can do but to retry the 1832 * write and hope for the best. 1833 */ 1834 printk(KERN_ERR "JBD2: previous I/O error detected " 1835 "for journal superblock update for %s.\n", 1836 journal->j_devname); 1837 clear_buffer_write_io_error(bh); 1838 set_buffer_uptodate(bh); 1839 } 1840 if (jbd2_journal_has_csum_v2or3(journal)) 1841 sb->s_checksum = jbd2_superblock_csum(journal, sb); 1842 get_bh(bh); 1843 bh->b_end_io = end_buffer_write_sync; 1844 submit_bh(REQ_OP_WRITE | write_flags, bh); 1845 wait_on_buffer(bh); 1846 if (buffer_write_io_error(bh)) { 1847 clear_buffer_write_io_error(bh); 1848 set_buffer_uptodate(bh); 1849 ret = -EIO; 1850 } 1851 if (ret) { 1852 printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n", 1853 journal->j_devname); 1854 if (!is_journal_aborted(journal)) 1855 jbd2_journal_abort(journal, ret); 1856 } 1857 1858 return ret; 1859 } 1860 1861 /** 1862 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk. 1863 * @journal: The journal to update. 1864 * @tail_tid: TID of the new transaction at the tail of the log 1865 * @tail_block: The first block of the transaction at the tail of the log 1866 * @write_flags: Flags for the journal sb write operation 1867 * 1868 * Update a journal's superblock information about log tail and write it to 1869 * disk, waiting for the IO to complete. 1870 */ 1871 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid, 1872 unsigned long tail_block, 1873 blk_opf_t write_flags) 1874 { 1875 journal_superblock_t *sb = journal->j_superblock; 1876 int ret; 1877 1878 if (is_journal_aborted(journal)) 1879 return -EIO; 1880 if (jbd2_check_fs_dev_write_error(journal)) { 1881 jbd2_journal_abort(journal, -EIO); 1882 return -EIO; 1883 } 1884 1885 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1886 jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n", 1887 tail_block, tail_tid); 1888 1889 lock_buffer(journal->j_sb_buffer); 1890 sb->s_sequence = cpu_to_be32(tail_tid); 1891 sb->s_start = cpu_to_be32(tail_block); 1892 1893 ret = jbd2_write_superblock(journal, write_flags); 1894 if (ret) 1895 goto out; 1896 1897 /* Log is no longer empty */ 1898 write_lock(&journal->j_state_lock); 1899 WARN_ON(!sb->s_sequence); 1900 journal->j_flags &= ~JBD2_FLUSHED; 1901 write_unlock(&journal->j_state_lock); 1902 1903 out: 1904 return ret; 1905 } 1906 1907 /** 1908 * jbd2_mark_journal_empty() - Mark on disk journal as empty. 1909 * @journal: The journal to update. 1910 * @write_flags: Flags for the journal sb write operation 1911 * 1912 * Update a journal's dynamic superblock fields to show that journal is empty. 1913 * Write updated superblock to disk waiting for IO to complete. 1914 */ 1915 static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags) 1916 { 1917 journal_superblock_t *sb = journal->j_superblock; 1918 bool had_fast_commit = false; 1919 1920 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex)); 1921 lock_buffer(journal->j_sb_buffer); 1922 if (sb->s_start == 0) { /* Is it already empty? */ 1923 unlock_buffer(journal->j_sb_buffer); 1924 return; 1925 } 1926 1927 jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n", 1928 journal->j_tail_sequence); 1929 1930 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1931 sb->s_start = cpu_to_be32(0); 1932 sb->s_head = cpu_to_be32(journal->j_head); 1933 if (jbd2_has_feature_fast_commit(journal)) { 1934 /* 1935 * When journal is clean, no need to commit fast commit flag and 1936 * make file system incompatible with older kernels. 1937 */ 1938 jbd2_clear_feature_fast_commit(journal); 1939 had_fast_commit = true; 1940 } 1941 1942 jbd2_write_superblock(journal, write_flags); 1943 1944 if (had_fast_commit) 1945 jbd2_set_feature_fast_commit(journal); 1946 1947 /* Log is no longer empty */ 1948 write_lock(&journal->j_state_lock); 1949 journal->j_flags |= JBD2_FLUSHED; 1950 write_unlock(&journal->j_state_lock); 1951 } 1952 1953 /** 1954 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock) 1955 * @journal: The journal to erase. 1956 * @flags: A discard/zeroout request is sent for each physically contigous 1957 * region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or 1958 * JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation 1959 * to perform. 1960 * 1961 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes 1962 * will be explicitly written if no hardware offload is available, see 1963 * blkdev_issue_zeroout for more details. 1964 */ 1965 static int __jbd2_journal_erase(journal_t *journal, unsigned int flags) 1966 { 1967 int err = 0; 1968 unsigned long block, log_offset; /* logical */ 1969 unsigned long long phys_block, block_start, block_stop; /* physical */ 1970 loff_t byte_start, byte_stop, byte_count; 1971 1972 /* flags must be set to either discard or zeroout */ 1973 if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags || 1974 ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1975 (flags & JBD2_JOURNAL_FLUSH_ZEROOUT))) 1976 return -EINVAL; 1977 1978 if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) && 1979 !bdev_max_discard_sectors(journal->j_dev)) 1980 return -EOPNOTSUPP; 1981 1982 /* 1983 * lookup block mapping and issue discard/zeroout for each 1984 * contiguous region 1985 */ 1986 log_offset = be32_to_cpu(journal->j_superblock->s_first); 1987 block_start = ~0ULL; 1988 for (block = log_offset; block < journal->j_total_len; block++) { 1989 err = jbd2_journal_bmap(journal, block, &phys_block); 1990 if (err) { 1991 pr_err("JBD2: bad block at offset %lu", block); 1992 return err; 1993 } 1994 1995 if (block_start == ~0ULL) { 1996 block_start = phys_block; 1997 block_stop = block_start - 1; 1998 } 1999 2000 /* 2001 * last block not contiguous with current block, 2002 * process last contiguous region and return to this block on 2003 * next loop 2004 */ 2005 if (phys_block != block_stop + 1) { 2006 block--; 2007 } else { 2008 block_stop++; 2009 /* 2010 * if this isn't the last block of journal, 2011 * no need to process now because next block may also 2012 * be part of this contiguous region 2013 */ 2014 if (block != journal->j_total_len - 1) 2015 continue; 2016 } 2017 2018 /* 2019 * end of contiguous region or this is last block of journal, 2020 * take care of the region 2021 */ 2022 byte_start = block_start * journal->j_blocksize; 2023 byte_stop = block_stop * journal->j_blocksize; 2024 byte_count = (block_stop - block_start + 1) * 2025 journal->j_blocksize; 2026 2027 truncate_inode_pages_range(journal->j_dev->bd_mapping, 2028 byte_start, byte_stop); 2029 2030 if (flags & JBD2_JOURNAL_FLUSH_DISCARD) { 2031 err = blkdev_issue_discard(journal->j_dev, 2032 byte_start >> SECTOR_SHIFT, 2033 byte_count >> SECTOR_SHIFT, 2034 GFP_NOFS); 2035 } else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) { 2036 err = blkdev_issue_zeroout(journal->j_dev, 2037 byte_start >> SECTOR_SHIFT, 2038 byte_count >> SECTOR_SHIFT, 2039 GFP_NOFS, 0); 2040 } 2041 2042 if (unlikely(err != 0)) { 2043 pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu", 2044 err, block_start, block_stop); 2045 return err; 2046 } 2047 2048 /* reset start and stop after processing a region */ 2049 block_start = ~0ULL; 2050 } 2051 2052 return blkdev_issue_flush(journal->j_dev); 2053 } 2054 2055 /** 2056 * jbd2_journal_update_sb_errno() - Update error in the journal. 2057 * @journal: The journal to update. 2058 * 2059 * Update a journal's errno. Write updated superblock to disk waiting for IO 2060 * to complete. 2061 */ 2062 void jbd2_journal_update_sb_errno(journal_t *journal) 2063 { 2064 journal_superblock_t *sb = journal->j_superblock; 2065 int errcode; 2066 2067 lock_buffer(journal->j_sb_buffer); 2068 errcode = journal->j_errno; 2069 if (errcode == -ESHUTDOWN) 2070 errcode = 0; 2071 jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode); 2072 sb->s_errno = cpu_to_be32(errcode); 2073 2074 jbd2_write_superblock(journal, REQ_FUA); 2075 } 2076 EXPORT_SYMBOL(jbd2_journal_update_sb_errno); 2077 2078 /** 2079 * jbd2_journal_load() - Read journal from disk. 2080 * @journal: Journal to act on. 2081 * 2082 * Given a journal_t structure which tells us which disk blocks contain 2083 * a journal, read the journal from disk to initialise the in-memory 2084 * structures. 2085 */ 2086 int jbd2_journal_load(journal_t *journal) 2087 { 2088 int err; 2089 journal_superblock_t *sb = journal->j_superblock; 2090 2091 /* 2092 * Create a slab for this blocksize 2093 */ 2094 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize)); 2095 if (err) 2096 return err; 2097 2098 /* Let the recovery code check whether it needs to recover any 2099 * data from the journal. */ 2100 err = jbd2_journal_recover(journal); 2101 if (err) { 2102 pr_warn("JBD2: journal recovery failed\n"); 2103 return err; 2104 } 2105 2106 if (journal->j_failed_commit) { 2107 printk(KERN_ERR "JBD2: journal transaction %u on %s " 2108 "is corrupt.\n", journal->j_failed_commit, 2109 journal->j_devname); 2110 return -EFSCORRUPTED; 2111 } 2112 /* 2113 * clear JBD2_ABORT flag initialized in journal_init_common 2114 * here to update log tail information with the newest seq. 2115 */ 2116 journal->j_flags &= ~JBD2_ABORT; 2117 2118 /* OK, we've finished with the dynamic journal bits: 2119 * reinitialise the dynamic contents of the superblock in memory 2120 * and reset them on disk. */ 2121 err = journal_reset(journal); 2122 if (err) { 2123 pr_warn("JBD2: journal reset failed\n"); 2124 return err; 2125 } 2126 2127 journal->j_flags |= JBD2_LOADED; 2128 return 0; 2129 } 2130 2131 /** 2132 * jbd2_journal_destroy() - Release a journal_t structure. 2133 * @journal: Journal to act on. 2134 * 2135 * Release a journal_t structure once it is no longer in use by the 2136 * journaled object. 2137 * Return <0 if we couldn't clean up the journal. 2138 */ 2139 int jbd2_journal_destroy(journal_t *journal) 2140 { 2141 int err = 0; 2142 2143 /* Wait for the commit thread to wake up and die. */ 2144 journal_kill_thread(journal); 2145 2146 /* Force a final log commit */ 2147 if (journal->j_running_transaction) 2148 jbd2_journal_commit_transaction(journal); 2149 2150 /* Force any old transactions to disk */ 2151 2152 /* Totally anal locking here... */ 2153 spin_lock(&journal->j_list_lock); 2154 while (journal->j_checkpoint_transactions != NULL) { 2155 spin_unlock(&journal->j_list_lock); 2156 mutex_lock_io(&journal->j_checkpoint_mutex); 2157 err = jbd2_log_do_checkpoint(journal); 2158 mutex_unlock(&journal->j_checkpoint_mutex); 2159 /* 2160 * If checkpointing failed, just free the buffers to avoid 2161 * looping forever 2162 */ 2163 if (err) { 2164 jbd2_journal_destroy_checkpoint(journal); 2165 spin_lock(&journal->j_list_lock); 2166 break; 2167 } 2168 spin_lock(&journal->j_list_lock); 2169 } 2170 2171 J_ASSERT(journal->j_running_transaction == NULL); 2172 J_ASSERT(journal->j_committing_transaction == NULL); 2173 J_ASSERT(journal->j_checkpoint_transactions == NULL); 2174 spin_unlock(&journal->j_list_lock); 2175 2176 /* 2177 * OK, all checkpoint transactions have been checked, now check the 2178 * writeback errseq of fs dev and abort the journal if some buffer 2179 * failed to write back to the original location, otherwise the 2180 * filesystem may become inconsistent. 2181 */ 2182 if (!is_journal_aborted(journal) && 2183 jbd2_check_fs_dev_write_error(journal)) 2184 jbd2_journal_abort(journal, -EIO); 2185 2186 if (journal->j_sb_buffer) { 2187 if (!is_journal_aborted(journal)) { 2188 mutex_lock_io(&journal->j_checkpoint_mutex); 2189 2190 write_lock(&journal->j_state_lock); 2191 journal->j_tail_sequence = 2192 ++journal->j_transaction_sequence; 2193 write_unlock(&journal->j_state_lock); 2194 2195 jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA); 2196 mutex_unlock(&journal->j_checkpoint_mutex); 2197 } else 2198 err = -EIO; 2199 brelse(journal->j_sb_buffer); 2200 } 2201 2202 if (journal->j_shrinker) { 2203 percpu_counter_destroy(&journal->j_checkpoint_jh_count); 2204 shrinker_free(journal->j_shrinker); 2205 } 2206 if (journal->j_proc_entry) 2207 jbd2_stats_proc_exit(journal); 2208 iput(journal->j_inode); 2209 if (journal->j_revoke) 2210 jbd2_journal_destroy_revoke(journal); 2211 if (journal->j_chksum_driver) 2212 crypto_free_shash(journal->j_chksum_driver); 2213 kfree(journal->j_fc_wbuf); 2214 kfree(journal->j_wbuf); 2215 kfree(journal); 2216 2217 return err; 2218 } 2219 2220 2221 /** 2222 * jbd2_journal_check_used_features() - Check if features specified are used. 2223 * @journal: Journal to check. 2224 * @compat: bitmask of compatible features 2225 * @ro: bitmask of features that force read-only mount 2226 * @incompat: bitmask of incompatible features 2227 * 2228 * Check whether the journal uses all of a given set of 2229 * features. Return true (non-zero) if it does. 2230 **/ 2231 2232 int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat, 2233 unsigned long ro, unsigned long incompat) 2234 { 2235 journal_superblock_t *sb; 2236 2237 if (!compat && !ro && !incompat) 2238 return 1; 2239 if (!jbd2_format_support_feature(journal)) 2240 return 0; 2241 2242 sb = journal->j_superblock; 2243 2244 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 2245 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 2246 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 2247 return 1; 2248 2249 return 0; 2250 } 2251 2252 /** 2253 * jbd2_journal_check_available_features() - Check feature set in journalling layer 2254 * @journal: Journal to check. 2255 * @compat: bitmask of compatible features 2256 * @ro: bitmask of features that force read-only mount 2257 * @incompat: bitmask of incompatible features 2258 * 2259 * Check whether the journaling code supports the use of 2260 * all of a given set of features on this journal. Return true 2261 * (non-zero) if it can. */ 2262 2263 int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat, 2264 unsigned long ro, unsigned long incompat) 2265 { 2266 if (!compat && !ro && !incompat) 2267 return 1; 2268 2269 if (!jbd2_format_support_feature(journal)) 2270 return 0; 2271 2272 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat && 2273 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro && 2274 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat) 2275 return 1; 2276 2277 return 0; 2278 } 2279 2280 static int 2281 jbd2_journal_initialize_fast_commit(journal_t *journal) 2282 { 2283 journal_superblock_t *sb = journal->j_superblock; 2284 unsigned long long num_fc_blks; 2285 2286 num_fc_blks = jbd2_journal_get_num_fc_blks(sb); 2287 if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS) 2288 return -ENOSPC; 2289 2290 /* Are we called twice? */ 2291 WARN_ON(journal->j_fc_wbuf != NULL); 2292 journal->j_fc_wbuf = kmalloc_array(num_fc_blks, 2293 sizeof(struct buffer_head *), GFP_KERNEL); 2294 if (!journal->j_fc_wbuf) 2295 return -ENOMEM; 2296 2297 journal->j_fc_wbufsize = num_fc_blks; 2298 journal->j_fc_last = journal->j_last; 2299 journal->j_last = journal->j_fc_last - num_fc_blks; 2300 journal->j_fc_first = journal->j_last + 1; 2301 journal->j_fc_off = 0; 2302 journal->j_free = journal->j_last - journal->j_first; 2303 2304 return 0; 2305 } 2306 2307 /** 2308 * jbd2_journal_set_features() - Mark a given journal feature in the superblock 2309 * @journal: Journal to act on. 2310 * @compat: bitmask of compatible features 2311 * @ro: bitmask of features that force read-only mount 2312 * @incompat: bitmask of incompatible features 2313 * 2314 * Mark a given journal feature as present on the 2315 * superblock. Returns true if the requested features could be set. 2316 * 2317 */ 2318 2319 int jbd2_journal_set_features(journal_t *journal, unsigned long compat, 2320 unsigned long ro, unsigned long incompat) 2321 { 2322 #define INCOMPAT_FEATURE_ON(f) \ 2323 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f))) 2324 #define COMPAT_FEATURE_ON(f) \ 2325 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f))) 2326 journal_superblock_t *sb; 2327 2328 if (jbd2_journal_check_used_features(journal, compat, ro, incompat)) 2329 return 1; 2330 2331 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat)) 2332 return 0; 2333 2334 /* If enabling v2 checksums, turn on v3 instead */ 2335 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) { 2336 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2; 2337 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3; 2338 } 2339 2340 /* Asking for checksumming v3 and v1? Only give them v3. */ 2341 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 && 2342 compat & JBD2_FEATURE_COMPAT_CHECKSUM) 2343 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM; 2344 2345 jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 2346 compat, ro, incompat); 2347 2348 sb = journal->j_superblock; 2349 2350 if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) { 2351 if (jbd2_journal_initialize_fast_commit(journal)) { 2352 pr_err("JBD2: Cannot enable fast commits.\n"); 2353 return 0; 2354 } 2355 } 2356 2357 /* Load the checksum driver if necessary */ 2358 if ((journal->j_chksum_driver == NULL) && 2359 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2360 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0); 2361 if (IS_ERR(journal->j_chksum_driver)) { 2362 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n"); 2363 journal->j_chksum_driver = NULL; 2364 return 0; 2365 } 2366 /* Precompute checksum seed for all metadata */ 2367 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid, 2368 sizeof(sb->s_uuid)); 2369 } 2370 2371 lock_buffer(journal->j_sb_buffer); 2372 2373 /* If enabling v3 checksums, update superblock */ 2374 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) { 2375 sb->s_checksum_type = JBD2_CRC32C_CHKSUM; 2376 sb->s_feature_compat &= 2377 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM); 2378 } 2379 2380 /* If enabling v1 checksums, downgrade superblock */ 2381 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM)) 2382 sb->s_feature_incompat &= 2383 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 | 2384 JBD2_FEATURE_INCOMPAT_CSUM_V3); 2385 2386 sb->s_feature_compat |= cpu_to_be32(compat); 2387 sb->s_feature_ro_compat |= cpu_to_be32(ro); 2388 sb->s_feature_incompat |= cpu_to_be32(incompat); 2389 unlock_buffer(journal->j_sb_buffer); 2390 jbd2_journal_init_transaction_limits(journal); 2391 2392 return 1; 2393 #undef COMPAT_FEATURE_ON 2394 #undef INCOMPAT_FEATURE_ON 2395 } 2396 2397 /* 2398 * jbd2_journal_clear_features() - Clear a given journal feature in the 2399 * superblock 2400 * @journal: Journal to act on. 2401 * @compat: bitmask of compatible features 2402 * @ro: bitmask of features that force read-only mount 2403 * @incompat: bitmask of incompatible features 2404 * 2405 * Clear a given journal feature as present on the 2406 * superblock. 2407 */ 2408 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat, 2409 unsigned long ro, unsigned long incompat) 2410 { 2411 journal_superblock_t *sb; 2412 2413 jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n", 2414 compat, ro, incompat); 2415 2416 sb = journal->j_superblock; 2417 2418 sb->s_feature_compat &= ~cpu_to_be32(compat); 2419 sb->s_feature_ro_compat &= ~cpu_to_be32(ro); 2420 sb->s_feature_incompat &= ~cpu_to_be32(incompat); 2421 jbd2_journal_init_transaction_limits(journal); 2422 } 2423 EXPORT_SYMBOL(jbd2_journal_clear_features); 2424 2425 /** 2426 * jbd2_journal_flush() - Flush journal 2427 * @journal: Journal to act on. 2428 * @flags: optional operation on the journal blocks after the flush (see below) 2429 * 2430 * Flush all data for a given journal to disk and empty the journal. 2431 * Filesystems can use this when remounting readonly to ensure that 2432 * recovery does not need to happen on remount. Optionally, a discard or zeroout 2433 * can be issued on the journal blocks after flushing. 2434 * 2435 * flags: 2436 * JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks 2437 * JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks 2438 */ 2439 int jbd2_journal_flush(journal_t *journal, unsigned int flags) 2440 { 2441 int err = 0; 2442 transaction_t *transaction = NULL; 2443 2444 write_lock(&journal->j_state_lock); 2445 2446 /* Force everything buffered to the log... */ 2447 if (journal->j_running_transaction) { 2448 transaction = journal->j_running_transaction; 2449 __jbd2_log_start_commit(journal, transaction->t_tid); 2450 } else if (journal->j_committing_transaction) 2451 transaction = journal->j_committing_transaction; 2452 2453 /* Wait for the log commit to complete... */ 2454 if (transaction) { 2455 tid_t tid = transaction->t_tid; 2456 2457 write_unlock(&journal->j_state_lock); 2458 jbd2_log_wait_commit(journal, tid); 2459 } else { 2460 write_unlock(&journal->j_state_lock); 2461 } 2462 2463 /* ...and flush everything in the log out to disk. */ 2464 spin_lock(&journal->j_list_lock); 2465 while (!err && journal->j_checkpoint_transactions != NULL) { 2466 spin_unlock(&journal->j_list_lock); 2467 mutex_lock_io(&journal->j_checkpoint_mutex); 2468 err = jbd2_log_do_checkpoint(journal); 2469 mutex_unlock(&journal->j_checkpoint_mutex); 2470 spin_lock(&journal->j_list_lock); 2471 } 2472 spin_unlock(&journal->j_list_lock); 2473 2474 if (is_journal_aborted(journal)) 2475 return -EIO; 2476 2477 mutex_lock_io(&journal->j_checkpoint_mutex); 2478 if (!err) { 2479 err = jbd2_cleanup_journal_tail(journal); 2480 if (err < 0) { 2481 mutex_unlock(&journal->j_checkpoint_mutex); 2482 goto out; 2483 } 2484 err = 0; 2485 } 2486 2487 /* Finally, mark the journal as really needing no recovery. 2488 * This sets s_start==0 in the underlying superblock, which is 2489 * the magic code for a fully-recovered superblock. Any future 2490 * commits of data to the journal will restore the current 2491 * s_start value. */ 2492 jbd2_mark_journal_empty(journal, REQ_FUA); 2493 2494 if (flags) 2495 err = __jbd2_journal_erase(journal, flags); 2496 2497 mutex_unlock(&journal->j_checkpoint_mutex); 2498 write_lock(&journal->j_state_lock); 2499 J_ASSERT(!journal->j_running_transaction); 2500 J_ASSERT(!journal->j_committing_transaction); 2501 J_ASSERT(!journal->j_checkpoint_transactions); 2502 J_ASSERT(journal->j_head == journal->j_tail); 2503 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 2504 write_unlock(&journal->j_state_lock); 2505 out: 2506 return err; 2507 } 2508 2509 /** 2510 * jbd2_journal_wipe() - Wipe journal contents 2511 * @journal: Journal to act on. 2512 * @write: flag (see below) 2513 * 2514 * Wipe out all of the contents of a journal, safely. This will produce 2515 * a warning if the journal contains any valid recovery information. 2516 * Must be called between journal_init_*() and jbd2_journal_load(). 2517 * 2518 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 2519 * we merely suppress recovery. 2520 */ 2521 2522 int jbd2_journal_wipe(journal_t *journal, int write) 2523 { 2524 int err; 2525 2526 J_ASSERT (!(journal->j_flags & JBD2_LOADED)); 2527 2528 if (!journal->j_tail) 2529 return 0; 2530 2531 printk(KERN_WARNING "JBD2: %s recovery information on journal\n", 2532 write ? "Clearing" : "Ignoring"); 2533 2534 err = jbd2_journal_skip_recovery(journal); 2535 if (write) { 2536 /* Lock to make assertions happy... */ 2537 mutex_lock_io(&journal->j_checkpoint_mutex); 2538 jbd2_mark_journal_empty(journal, REQ_FUA); 2539 mutex_unlock(&journal->j_checkpoint_mutex); 2540 } 2541 2542 return err; 2543 } 2544 2545 /** 2546 * jbd2_journal_abort () - Shutdown the journal immediately. 2547 * @journal: the journal to shutdown. 2548 * @errno: an error number to record in the journal indicating 2549 * the reason for the shutdown. 2550 * 2551 * Perform a complete, immediate shutdown of the ENTIRE 2552 * journal (not of a single transaction). This operation cannot be 2553 * undone without closing and reopening the journal. 2554 * 2555 * The jbd2_journal_abort function is intended to support higher level error 2556 * recovery mechanisms such as the ext2/ext3 remount-readonly error 2557 * mode. 2558 * 2559 * Journal abort has very specific semantics. Any existing dirty, 2560 * unjournaled buffers in the main filesystem will still be written to 2561 * disk by bdflush, but the journaling mechanism will be suspended 2562 * immediately and no further transaction commits will be honoured. 2563 * 2564 * Any dirty, journaled buffers will be written back to disk without 2565 * hitting the journal. Atomicity cannot be guaranteed on an aborted 2566 * filesystem, but we _do_ attempt to leave as much data as possible 2567 * behind for fsck to use for cleanup. 2568 * 2569 * Any attempt to get a new transaction handle on a journal which is in 2570 * ABORT state will just result in an -EROFS error return. A 2571 * jbd2_journal_stop on an existing handle will return -EIO if we have 2572 * entered abort state during the update. 2573 * 2574 * Recursive transactions are not disturbed by journal abort until the 2575 * final jbd2_journal_stop, which will receive the -EIO error. 2576 * 2577 * Finally, the jbd2_journal_abort call allows the caller to supply an errno 2578 * which will be recorded (if possible) in the journal superblock. This 2579 * allows a client to record failure conditions in the middle of a 2580 * transaction without having to complete the transaction to record the 2581 * failure to disk. ext3_error, for example, now uses this 2582 * functionality. 2583 * 2584 */ 2585 2586 void jbd2_journal_abort(journal_t *journal, int errno) 2587 { 2588 transaction_t *transaction; 2589 2590 /* 2591 * Lock the aborting procedure until everything is done, this avoid 2592 * races between filesystem's error handling flow (e.g. ext4_abort()), 2593 * ensure panic after the error info is written into journal's 2594 * superblock. 2595 */ 2596 mutex_lock(&journal->j_abort_mutex); 2597 /* 2598 * ESHUTDOWN always takes precedence because a file system check 2599 * caused by any other journal abort error is not required after 2600 * a shutdown triggered. 2601 */ 2602 write_lock(&journal->j_state_lock); 2603 if (journal->j_flags & JBD2_ABORT) { 2604 int old_errno = journal->j_errno; 2605 2606 write_unlock(&journal->j_state_lock); 2607 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) { 2608 journal->j_errno = errno; 2609 jbd2_journal_update_sb_errno(journal); 2610 } 2611 mutex_unlock(&journal->j_abort_mutex); 2612 return; 2613 } 2614 2615 /* 2616 * Mark the abort as occurred and start current running transaction 2617 * to release all journaled buffer. 2618 */ 2619 pr_err("Aborting journal on device %s.\n", journal->j_devname); 2620 2621 journal->j_flags |= JBD2_ABORT; 2622 journal->j_errno = errno; 2623 transaction = journal->j_running_transaction; 2624 if (transaction) 2625 __jbd2_log_start_commit(journal, transaction->t_tid); 2626 write_unlock(&journal->j_state_lock); 2627 2628 /* 2629 * Record errno to the journal super block, so that fsck and jbd2 2630 * layer could realise that a filesystem check is needed. 2631 */ 2632 jbd2_journal_update_sb_errno(journal); 2633 mutex_unlock(&journal->j_abort_mutex); 2634 } 2635 2636 /** 2637 * jbd2_journal_errno() - returns the journal's error state. 2638 * @journal: journal to examine. 2639 * 2640 * This is the errno number set with jbd2_journal_abort(), the last 2641 * time the journal was mounted - if the journal was stopped 2642 * without calling abort this will be 0. 2643 * 2644 * If the journal has been aborted on this mount time -EROFS will 2645 * be returned. 2646 */ 2647 int jbd2_journal_errno(journal_t *journal) 2648 { 2649 int err; 2650 2651 read_lock(&journal->j_state_lock); 2652 if (journal->j_flags & JBD2_ABORT) 2653 err = -EROFS; 2654 else 2655 err = journal->j_errno; 2656 read_unlock(&journal->j_state_lock); 2657 return err; 2658 } 2659 2660 /** 2661 * jbd2_journal_clear_err() - clears the journal's error state 2662 * @journal: journal to act on. 2663 * 2664 * An error must be cleared or acked to take a FS out of readonly 2665 * mode. 2666 */ 2667 int jbd2_journal_clear_err(journal_t *journal) 2668 { 2669 int err = 0; 2670 2671 write_lock(&journal->j_state_lock); 2672 if (journal->j_flags & JBD2_ABORT) 2673 err = -EROFS; 2674 else 2675 journal->j_errno = 0; 2676 write_unlock(&journal->j_state_lock); 2677 return err; 2678 } 2679 2680 /** 2681 * jbd2_journal_ack_err() - Ack journal err. 2682 * @journal: journal to act on. 2683 * 2684 * An error must be cleared or acked to take a FS out of readonly 2685 * mode. 2686 */ 2687 void jbd2_journal_ack_err(journal_t *journal) 2688 { 2689 write_lock(&journal->j_state_lock); 2690 if (journal->j_errno) 2691 journal->j_flags |= JBD2_ACK_ERR; 2692 write_unlock(&journal->j_state_lock); 2693 } 2694 2695 int jbd2_journal_blocks_per_page(struct inode *inode) 2696 { 2697 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits); 2698 } 2699 2700 /* 2701 * helper functions to deal with 32 or 64bit block numbers. 2702 */ 2703 size_t journal_tag_bytes(journal_t *journal) 2704 { 2705 size_t sz; 2706 2707 if (jbd2_has_feature_csum3(journal)) 2708 return sizeof(journal_block_tag3_t); 2709 2710 sz = sizeof(journal_block_tag_t); 2711 2712 if (jbd2_has_feature_csum2(journal)) 2713 sz += sizeof(__u16); 2714 2715 if (jbd2_has_feature_64bit(journal)) 2716 return sz; 2717 else 2718 return sz - sizeof(__u32); 2719 } 2720 2721 /* 2722 * JBD memory management 2723 * 2724 * These functions are used to allocate block-sized chunks of memory 2725 * used for making copies of buffer_head data. Very often it will be 2726 * page-sized chunks of data, but sometimes it will be in 2727 * sub-page-size chunks. (For example, 16k pages on Power systems 2728 * with a 4k block file system.) For blocks smaller than a page, we 2729 * use a SLAB allocator. There are slab caches for each block size, 2730 * which are allocated at mount time, if necessary, and we only free 2731 * (all of) the slab caches when/if the jbd2 module is unloaded. For 2732 * this reason we don't need to a mutex to protect access to 2733 * jbd2_slab[] allocating or releasing memory; only in 2734 * jbd2_journal_create_slab(). 2735 */ 2736 #define JBD2_MAX_SLABS 8 2737 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS]; 2738 2739 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = { 2740 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k", 2741 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k" 2742 }; 2743 2744 2745 static void jbd2_journal_destroy_slabs(void) 2746 { 2747 int i; 2748 2749 for (i = 0; i < JBD2_MAX_SLABS; i++) { 2750 kmem_cache_destroy(jbd2_slab[i]); 2751 jbd2_slab[i] = NULL; 2752 } 2753 } 2754 2755 static int jbd2_journal_create_slab(size_t size) 2756 { 2757 static DEFINE_MUTEX(jbd2_slab_create_mutex); 2758 int i = order_base_2(size) - 10; 2759 size_t slab_size; 2760 2761 if (size == PAGE_SIZE) 2762 return 0; 2763 2764 if (i >= JBD2_MAX_SLABS) 2765 return -EINVAL; 2766 2767 if (unlikely(i < 0)) 2768 i = 0; 2769 mutex_lock(&jbd2_slab_create_mutex); 2770 if (jbd2_slab[i]) { 2771 mutex_unlock(&jbd2_slab_create_mutex); 2772 return 0; /* Already created */ 2773 } 2774 2775 slab_size = 1 << (i+10); 2776 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size, 2777 slab_size, 0, NULL); 2778 mutex_unlock(&jbd2_slab_create_mutex); 2779 if (!jbd2_slab[i]) { 2780 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n"); 2781 return -ENOMEM; 2782 } 2783 return 0; 2784 } 2785 2786 static struct kmem_cache *get_slab(size_t size) 2787 { 2788 int i = order_base_2(size) - 10; 2789 2790 BUG_ON(i >= JBD2_MAX_SLABS); 2791 if (unlikely(i < 0)) 2792 i = 0; 2793 BUG_ON(jbd2_slab[i] == NULL); 2794 return jbd2_slab[i]; 2795 } 2796 2797 void *jbd2_alloc(size_t size, gfp_t flags) 2798 { 2799 void *ptr; 2800 2801 BUG_ON(size & (size-1)); /* Must be a power of 2 */ 2802 2803 if (size < PAGE_SIZE) 2804 ptr = kmem_cache_alloc(get_slab(size), flags); 2805 else 2806 ptr = (void *)__get_free_pages(flags, get_order(size)); 2807 2808 /* Check alignment; SLUB has gotten this wrong in the past, 2809 * and this can lead to user data corruption! */ 2810 BUG_ON(((unsigned long) ptr) & (size-1)); 2811 2812 return ptr; 2813 } 2814 2815 void jbd2_free(void *ptr, size_t size) 2816 { 2817 if (size < PAGE_SIZE) 2818 kmem_cache_free(get_slab(size), ptr); 2819 else 2820 free_pages((unsigned long)ptr, get_order(size)); 2821 }; 2822 2823 /* 2824 * Journal_head storage management 2825 */ 2826 static struct kmem_cache *jbd2_journal_head_cache; 2827 #ifdef CONFIG_JBD2_DEBUG 2828 static atomic_t nr_journal_heads = ATOMIC_INIT(0); 2829 #endif 2830 2831 static int __init jbd2_journal_init_journal_head_cache(void) 2832 { 2833 J_ASSERT(!jbd2_journal_head_cache); 2834 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head", 2835 sizeof(struct journal_head), 2836 0, /* offset */ 2837 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU, 2838 NULL); /* ctor */ 2839 if (!jbd2_journal_head_cache) { 2840 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n"); 2841 return -ENOMEM; 2842 } 2843 return 0; 2844 } 2845 2846 static void jbd2_journal_destroy_journal_head_cache(void) 2847 { 2848 kmem_cache_destroy(jbd2_journal_head_cache); 2849 jbd2_journal_head_cache = NULL; 2850 } 2851 2852 /* 2853 * journal_head splicing and dicing 2854 */ 2855 static struct journal_head *journal_alloc_journal_head(void) 2856 { 2857 struct journal_head *ret; 2858 2859 #ifdef CONFIG_JBD2_DEBUG 2860 atomic_inc(&nr_journal_heads); 2861 #endif 2862 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS); 2863 if (!ret) { 2864 jbd2_debug(1, "out of memory for journal_head\n"); 2865 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__); 2866 ret = kmem_cache_zalloc(jbd2_journal_head_cache, 2867 GFP_NOFS | __GFP_NOFAIL); 2868 } 2869 if (ret) 2870 spin_lock_init(&ret->b_state_lock); 2871 return ret; 2872 } 2873 2874 static void journal_free_journal_head(struct journal_head *jh) 2875 { 2876 #ifdef CONFIG_JBD2_DEBUG 2877 atomic_dec(&nr_journal_heads); 2878 memset(jh, JBD2_POISON_FREE, sizeof(*jh)); 2879 #endif 2880 kmem_cache_free(jbd2_journal_head_cache, jh); 2881 } 2882 2883 /* 2884 * A journal_head is attached to a buffer_head whenever JBD has an 2885 * interest in the buffer. 2886 * 2887 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 2888 * is set. This bit is tested in core kernel code where we need to take 2889 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 2890 * there. 2891 * 2892 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 2893 * 2894 * When a buffer has its BH_JBD bit set it is immune from being released by 2895 * core kernel code, mainly via ->b_count. 2896 * 2897 * A journal_head is detached from its buffer_head when the journal_head's 2898 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 2899 * transaction (b_cp_transaction) hold their references to b_jcount. 2900 * 2901 * Various places in the kernel want to attach a journal_head to a buffer_head 2902 * _before_ attaching the journal_head to a transaction. To protect the 2903 * journal_head in this situation, jbd2_journal_add_journal_head elevates the 2904 * journal_head's b_jcount refcount by one. The caller must call 2905 * jbd2_journal_put_journal_head() to undo this. 2906 * 2907 * So the typical usage would be: 2908 * 2909 * (Attach a journal_head if needed. Increments b_jcount) 2910 * struct journal_head *jh = jbd2_journal_add_journal_head(bh); 2911 * ... 2912 * (Get another reference for transaction) 2913 * jbd2_journal_grab_journal_head(bh); 2914 * jh->b_transaction = xxx; 2915 * (Put original reference) 2916 * jbd2_journal_put_journal_head(jh); 2917 */ 2918 2919 /* 2920 * Give a buffer_head a journal_head. 2921 * 2922 * May sleep. 2923 */ 2924 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh) 2925 { 2926 struct journal_head *jh; 2927 struct journal_head *new_jh = NULL; 2928 2929 repeat: 2930 if (!buffer_jbd(bh)) 2931 new_jh = journal_alloc_journal_head(); 2932 2933 jbd_lock_bh_journal_head(bh); 2934 if (buffer_jbd(bh)) { 2935 jh = bh2jh(bh); 2936 } else { 2937 J_ASSERT_BH(bh, 2938 (atomic_read(&bh->b_count) > 0) || 2939 (bh->b_folio && bh->b_folio->mapping)); 2940 2941 if (!new_jh) { 2942 jbd_unlock_bh_journal_head(bh); 2943 goto repeat; 2944 } 2945 2946 jh = new_jh; 2947 new_jh = NULL; /* We consumed it */ 2948 set_buffer_jbd(bh); 2949 bh->b_private = jh; 2950 jh->b_bh = bh; 2951 get_bh(bh); 2952 BUFFER_TRACE(bh, "added journal_head"); 2953 } 2954 jh->b_jcount++; 2955 jbd_unlock_bh_journal_head(bh); 2956 if (new_jh) 2957 journal_free_journal_head(new_jh); 2958 return bh->b_private; 2959 } 2960 2961 /* 2962 * Grab a ref against this buffer_head's journal_head. If it ended up not 2963 * having a journal_head, return NULL 2964 */ 2965 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh) 2966 { 2967 struct journal_head *jh = NULL; 2968 2969 jbd_lock_bh_journal_head(bh); 2970 if (buffer_jbd(bh)) { 2971 jh = bh2jh(bh); 2972 jh->b_jcount++; 2973 } 2974 jbd_unlock_bh_journal_head(bh); 2975 return jh; 2976 } 2977 EXPORT_SYMBOL(jbd2_journal_grab_journal_head); 2978 2979 static void __journal_remove_journal_head(struct buffer_head *bh) 2980 { 2981 struct journal_head *jh = bh2jh(bh); 2982 2983 J_ASSERT_JH(jh, jh->b_transaction == NULL); 2984 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2985 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 2986 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 2987 J_ASSERT_BH(bh, buffer_jbd(bh)); 2988 J_ASSERT_BH(bh, jh2bh(jh) == bh); 2989 BUFFER_TRACE(bh, "remove journal_head"); 2990 2991 /* Unlink before dropping the lock */ 2992 bh->b_private = NULL; 2993 jh->b_bh = NULL; /* debug, really */ 2994 clear_buffer_jbd(bh); 2995 } 2996 2997 static void journal_release_journal_head(struct journal_head *jh, size_t b_size) 2998 { 2999 if (jh->b_frozen_data) { 3000 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 3001 jbd2_free(jh->b_frozen_data, b_size); 3002 } 3003 if (jh->b_committed_data) { 3004 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 3005 jbd2_free(jh->b_committed_data, b_size); 3006 } 3007 journal_free_journal_head(jh); 3008 } 3009 3010 /* 3011 * Drop a reference on the passed journal_head. If it fell to zero then 3012 * release the journal_head from the buffer_head. 3013 */ 3014 void jbd2_journal_put_journal_head(struct journal_head *jh) 3015 { 3016 struct buffer_head *bh = jh2bh(jh); 3017 3018 jbd_lock_bh_journal_head(bh); 3019 J_ASSERT_JH(jh, jh->b_jcount > 0); 3020 --jh->b_jcount; 3021 if (!jh->b_jcount) { 3022 __journal_remove_journal_head(bh); 3023 jbd_unlock_bh_journal_head(bh); 3024 journal_release_journal_head(jh, bh->b_size); 3025 __brelse(bh); 3026 } else { 3027 jbd_unlock_bh_journal_head(bh); 3028 } 3029 } 3030 EXPORT_SYMBOL(jbd2_journal_put_journal_head); 3031 3032 /* 3033 * Initialize jbd inode head 3034 */ 3035 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode) 3036 { 3037 jinode->i_transaction = NULL; 3038 jinode->i_next_transaction = NULL; 3039 jinode->i_vfs_inode = inode; 3040 jinode->i_flags = 0; 3041 jinode->i_dirty_start = 0; 3042 jinode->i_dirty_end = 0; 3043 INIT_LIST_HEAD(&jinode->i_list); 3044 } 3045 3046 /* 3047 * Function to be called before we start removing inode from memory (i.e., 3048 * clear_inode() is a fine place to be called from). It removes inode from 3049 * transaction's lists. 3050 */ 3051 void jbd2_journal_release_jbd_inode(journal_t *journal, 3052 struct jbd2_inode *jinode) 3053 { 3054 if (!journal) 3055 return; 3056 restart: 3057 spin_lock(&journal->j_list_lock); 3058 /* Is commit writing out inode - we have to wait */ 3059 if (jinode->i_flags & JI_COMMIT_RUNNING) { 3060 wait_queue_head_t *wq; 3061 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING); 3062 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING); 3063 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 3064 spin_unlock(&journal->j_list_lock); 3065 schedule(); 3066 finish_wait(wq, &wait.wq_entry); 3067 goto restart; 3068 } 3069 3070 if (jinode->i_transaction) { 3071 list_del(&jinode->i_list); 3072 jinode->i_transaction = NULL; 3073 } 3074 spin_unlock(&journal->j_list_lock); 3075 } 3076 3077 3078 #ifdef CONFIG_PROC_FS 3079 3080 #define JBD2_STATS_PROC_NAME "fs/jbd2" 3081 3082 static void __init jbd2_create_jbd_stats_proc_entry(void) 3083 { 3084 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL); 3085 } 3086 3087 static void __exit jbd2_remove_jbd_stats_proc_entry(void) 3088 { 3089 if (proc_jbd2_stats) 3090 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL); 3091 } 3092 3093 #else 3094 3095 #define jbd2_create_jbd_stats_proc_entry() do {} while (0) 3096 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0) 3097 3098 #endif 3099 3100 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache; 3101 3102 static int __init jbd2_journal_init_inode_cache(void) 3103 { 3104 J_ASSERT(!jbd2_inode_cache); 3105 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0); 3106 if (!jbd2_inode_cache) { 3107 pr_emerg("JBD2: failed to create inode cache\n"); 3108 return -ENOMEM; 3109 } 3110 return 0; 3111 } 3112 3113 static int __init jbd2_journal_init_handle_cache(void) 3114 { 3115 J_ASSERT(!jbd2_handle_cache); 3116 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY); 3117 if (!jbd2_handle_cache) { 3118 printk(KERN_EMERG "JBD2: failed to create handle cache\n"); 3119 return -ENOMEM; 3120 } 3121 return 0; 3122 } 3123 3124 static void jbd2_journal_destroy_inode_cache(void) 3125 { 3126 kmem_cache_destroy(jbd2_inode_cache); 3127 jbd2_inode_cache = NULL; 3128 } 3129 3130 static void jbd2_journal_destroy_handle_cache(void) 3131 { 3132 kmem_cache_destroy(jbd2_handle_cache); 3133 jbd2_handle_cache = NULL; 3134 } 3135 3136 /* 3137 * Module startup and shutdown 3138 */ 3139 3140 static int __init journal_init_caches(void) 3141 { 3142 int ret; 3143 3144 ret = jbd2_journal_init_revoke_record_cache(); 3145 if (ret == 0) 3146 ret = jbd2_journal_init_revoke_table_cache(); 3147 if (ret == 0) 3148 ret = jbd2_journal_init_journal_head_cache(); 3149 if (ret == 0) 3150 ret = jbd2_journal_init_handle_cache(); 3151 if (ret == 0) 3152 ret = jbd2_journal_init_inode_cache(); 3153 if (ret == 0) 3154 ret = jbd2_journal_init_transaction_cache(); 3155 return ret; 3156 } 3157 3158 static void jbd2_journal_destroy_caches(void) 3159 { 3160 jbd2_journal_destroy_revoke_record_cache(); 3161 jbd2_journal_destroy_revoke_table_cache(); 3162 jbd2_journal_destroy_journal_head_cache(); 3163 jbd2_journal_destroy_handle_cache(); 3164 jbd2_journal_destroy_inode_cache(); 3165 jbd2_journal_destroy_transaction_cache(); 3166 jbd2_journal_destroy_slabs(); 3167 } 3168 3169 static int __init journal_init(void) 3170 { 3171 int ret; 3172 3173 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 3174 3175 ret = journal_init_caches(); 3176 if (ret == 0) { 3177 jbd2_create_jbd_stats_proc_entry(); 3178 } else { 3179 jbd2_journal_destroy_caches(); 3180 } 3181 return ret; 3182 } 3183 3184 static void __exit journal_exit(void) 3185 { 3186 #ifdef CONFIG_JBD2_DEBUG 3187 int n = atomic_read(&nr_journal_heads); 3188 if (n) 3189 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n); 3190 #endif 3191 jbd2_remove_jbd_stats_proc_entry(); 3192 jbd2_journal_destroy_caches(); 3193 } 3194 3195 MODULE_DESCRIPTION("Generic filesystem journal-writing module"); 3196 MODULE_LICENSE("GPL"); 3197 module_init(journal_init); 3198 module_exit(journal_exit); 3199 3200
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.