~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/jfs/jfs_dmap.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  *   Copyright (C) International Business Machines Corp., 2000-2004
  4  *   Portions Copyright (C) Tino Reichardt, 2012
  5  */
  6 
  7 #include <linux/fs.h>
  8 #include <linux/slab.h>
  9 #include "jfs_incore.h"
 10 #include "jfs_superblock.h"
 11 #include "jfs_dmap.h"
 12 #include "jfs_imap.h"
 13 #include "jfs_lock.h"
 14 #include "jfs_metapage.h"
 15 #include "jfs_debug.h"
 16 #include "jfs_discard.h"
 17 
 18 /*
 19  *      SERIALIZATION of the Block Allocation Map.
 20  *
 21  *      the working state of the block allocation map is accessed in
 22  *      two directions:
 23  *
 24  *      1) allocation and free requests that start at the dmap
 25  *         level and move up through the dmap control pages (i.e.
 26  *         the vast majority of requests).
 27  *
 28  *      2) allocation requests that start at dmap control page
 29  *         level and work down towards the dmaps.
 30  *
 31  *      the serialization scheme used here is as follows.
 32  *
 33  *      requests which start at the bottom are serialized against each
 34  *      other through buffers and each requests holds onto its buffers
 35  *      as it works it way up from a single dmap to the required level
 36  *      of dmap control page.
 37  *      requests that start at the top are serialized against each other
 38  *      and request that start from the bottom by the multiple read/single
 39  *      write inode lock of the bmap inode. requests starting at the top
 40  *      take this lock in write mode while request starting at the bottom
 41  *      take the lock in read mode.  a single top-down request may proceed
 42  *      exclusively while multiple bottoms-up requests may proceed
 43  *      simultaneously (under the protection of busy buffers).
 44  *
 45  *      in addition to information found in dmaps and dmap control pages,
 46  *      the working state of the block allocation map also includes read/
 47  *      write information maintained in the bmap descriptor (i.e. total
 48  *      free block count, allocation group level free block counts).
 49  *      a single exclusive lock (BMAP_LOCK) is used to guard this information
 50  *      in the face of multiple-bottoms up requests.
 51  *      (lock ordering: IREAD_LOCK, BMAP_LOCK);
 52  *
 53  *      accesses to the persistent state of the block allocation map (limited
 54  *      to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
 55  */
 56 
 57 #define BMAP_LOCK_INIT(bmp)     mutex_init(&bmp->db_bmaplock)
 58 #define BMAP_LOCK(bmp)          mutex_lock(&bmp->db_bmaplock)
 59 #define BMAP_UNLOCK(bmp)        mutex_unlock(&bmp->db_bmaplock)
 60 
 61 /*
 62  * forward references
 63  */
 64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
 65                         int nblocks);
 66 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl);
 67 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl);
 68 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl);
 69 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl);
 70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
 71                     int level);
 72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
 73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
 74                        int nblocks);
 75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
 76                        int nblocks,
 77                        int l2nb, s64 * results);
 78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
 79                        int nblocks);
 80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
 81                           int l2nb,
 82                           s64 * results);
 83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
 84                      s64 * results);
 85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
 86                       s64 * results);
 87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
 88 static int dbFindBits(u32 word, int l2nb);
 89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
 90 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl);
 91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
 92                       int nblocks);
 93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
 94                       int nblocks);
 95 static int dbMaxBud(u8 * cp);
 96 static int blkstol2(s64 nb);
 97 
 98 static int cntlz(u32 value);
 99 static int cnttz(u32 word);
100 
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102                          int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108 
109 /*
110  *      buddy table
111  *
112  * table used for determining buddy sizes within characters of
113  * dmap bitmap words.  the characters themselves serve as indexes
114  * into the table, with the table elements yielding the maximum
115  * binary buddy of free bits within the character.
116  */
117 static const s8 budtab[256] = {
118         3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130         2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133         2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135 
136 /*
137  * NAME:        dbMount()
138  *
139  * FUNCTION:    initializate the block allocation map.
140  *
141  *              memory is allocated for the in-core bmap descriptor and
142  *              the in-core descriptor is initialized from disk.
143  *
144  * PARAMETERS:
145  *      ipbmap  - pointer to in-core inode for the block map.
146  *
147  * RETURN VALUES:
148  *      0       - success
149  *      -ENOMEM - insufficient memory
150  *      -EIO    - i/o error
151  *      -EINVAL - wrong bmap data
152  */
153 int dbMount(struct inode *ipbmap)
154 {
155         struct bmap *bmp;
156         struct dbmap_disk *dbmp_le;
157         struct metapage *mp;
158         int i, err;
159 
160         /*
161          * allocate/initialize the in-memory bmap descriptor
162          */
163         /* allocate memory for the in-memory bmap descriptor */
164         bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165         if (bmp == NULL)
166                 return -ENOMEM;
167 
168         /* read the on-disk bmap descriptor. */
169         mp = read_metapage(ipbmap,
170                            BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171                            PSIZE, 0);
172         if (mp == NULL) {
173                 err = -EIO;
174                 goto err_kfree_bmp;
175         }
176 
177         /* copy the on-disk bmap descriptor to its in-memory version. */
178         dbmp_le = (struct dbmap_disk *) mp->data;
179         bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180         bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 
182         bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
183         if (bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE ||
184                 bmp->db_l2nbperpage < 0) {
185                 err = -EINVAL;
186                 goto err_release_metapage;
187         }
188 
189         bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
190         if (!bmp->db_numag || bmp->db_numag >= MAXAG) {
191                 err = -EINVAL;
192                 goto err_release_metapage;
193         }
194 
195         bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
196         bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
197         bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
198         if (bmp->db_maxag >= MAXAG || bmp->db_maxag < 0 ||
199                 bmp->db_agpref >= MAXAG || bmp->db_agpref < 0) {
200                 err = -EINVAL;
201                 goto err_release_metapage;
202         }
203 
204         bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
205         bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
206         bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
207         bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
208         bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
209         if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
210             bmp->db_agl2size < 0) {
211                 err = -EINVAL;
212                 goto err_release_metapage;
213         }
214 
215         if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
216                 err = -EINVAL;
217                 goto err_release_metapage;
218         }
219 
220         for (i = 0; i < MAXAG; i++)
221                 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
222         bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
223         bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
224 
225         /* release the buffer. */
226         release_metapage(mp);
227 
228         /* bind the bmap inode and the bmap descriptor to each other. */
229         bmp->db_ipbmap = ipbmap;
230         JFS_SBI(ipbmap->i_sb)->bmap = bmp;
231 
232         memset(bmp->db_active, 0, sizeof(bmp->db_active));
233 
234         /*
235          * allocate/initialize the bmap lock
236          */
237         BMAP_LOCK_INIT(bmp);
238 
239         return (0);
240 
241 err_release_metapage:
242         release_metapage(mp);
243 err_kfree_bmp:
244         kfree(bmp);
245         return err;
246 }
247 
248 
249 /*
250  * NAME:        dbUnmount()
251  *
252  * FUNCTION:    terminate the block allocation map in preparation for
253  *              file system unmount.
254  *
255  *              the in-core bmap descriptor is written to disk and
256  *              the memory for this descriptor is freed.
257  *
258  * PARAMETERS:
259  *      ipbmap  - pointer to in-core inode for the block map.
260  *
261  * RETURN VALUES:
262  *      0       - success
263  *      -EIO    - i/o error
264  */
265 int dbUnmount(struct inode *ipbmap, int mounterror)
266 {
267         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
268 
269         if (!(mounterror || isReadOnly(ipbmap)))
270                 dbSync(ipbmap);
271 
272         /*
273          * Invalidate the page cache buffers
274          */
275         truncate_inode_pages(ipbmap->i_mapping, 0);
276 
277         /* free the memory for the in-memory bmap. */
278         kfree(bmp);
279         JFS_SBI(ipbmap->i_sb)->bmap = NULL;
280 
281         return (0);
282 }
283 
284 /*
285  *      dbSync()
286  */
287 int dbSync(struct inode *ipbmap)
288 {
289         struct dbmap_disk *dbmp_le;
290         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
291         struct metapage *mp;
292         int i;
293 
294         /*
295          * write bmap global control page
296          */
297         /* get the buffer for the on-disk bmap descriptor. */
298         mp = read_metapage(ipbmap,
299                            BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
300                            PSIZE, 0);
301         if (mp == NULL) {
302                 jfs_err("dbSync: read_metapage failed!");
303                 return -EIO;
304         }
305         /* copy the in-memory version of the bmap to the on-disk version */
306         dbmp_le = (struct dbmap_disk *) mp->data;
307         dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
308         dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
309         dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
310         dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
311         dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
312         dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
313         dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
314         dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
315         dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
316         dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
317         dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
318         dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
319         for (i = 0; i < MAXAG; i++)
320                 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
321         dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
322         dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
323 
324         /* write the buffer */
325         write_metapage(mp);
326 
327         /*
328          * write out dirty pages of bmap
329          */
330         filemap_write_and_wait(ipbmap->i_mapping);
331 
332         diWriteSpecial(ipbmap, 0);
333 
334         return (0);
335 }
336 
337 /*
338  * NAME:        dbFree()
339  *
340  * FUNCTION:    free the specified block range from the working block
341  *              allocation map.
342  *
343  *              the blocks will be free from the working map one dmap
344  *              at a time.
345  *
346  * PARAMETERS:
347  *      ip      - pointer to in-core inode;
348  *      blkno   - starting block number to be freed.
349  *      nblocks - number of blocks to be freed.
350  *
351  * RETURN VALUES:
352  *      0       - success
353  *      -EIO    - i/o error
354  */
355 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
356 {
357         struct metapage *mp;
358         struct dmap *dp;
359         int nb, rc;
360         s64 lblkno, rem;
361         struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
362         struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
363         struct super_block *sb = ipbmap->i_sb;
364 
365         IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
366 
367         /* block to be freed better be within the mapsize. */
368         if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
369                 IREAD_UNLOCK(ipbmap);
370                 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
371                        (unsigned long long) blkno,
372                        (unsigned long long) nblocks);
373                 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
374                 return -EIO;
375         }
376 
377         /**
378          * TRIM the blocks, when mounted with discard option
379          */
380         if (JFS_SBI(sb)->flag & JFS_DISCARD)
381                 if (JFS_SBI(sb)->minblks_trim <= nblocks)
382                         jfs_issue_discard(ipbmap, blkno, nblocks);
383 
384         /*
385          * free the blocks a dmap at a time.
386          */
387         mp = NULL;
388         for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
389                 /* release previous dmap if any */
390                 if (mp) {
391                         write_metapage(mp);
392                 }
393 
394                 /* get the buffer for the current dmap. */
395                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
396                 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
397                 if (mp == NULL) {
398                         IREAD_UNLOCK(ipbmap);
399                         return -EIO;
400                 }
401                 dp = (struct dmap *) mp->data;
402 
403                 /* determine the number of blocks to be freed from
404                  * this dmap.
405                  */
406                 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
407 
408                 /* free the blocks. */
409                 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
410                         jfs_error(ip->i_sb, "error in block map\n");
411                         release_metapage(mp);
412                         IREAD_UNLOCK(ipbmap);
413                         return (rc);
414                 }
415         }
416 
417         /* write the last buffer. */
418         if (mp)
419                 write_metapage(mp);
420 
421         IREAD_UNLOCK(ipbmap);
422 
423         return (0);
424 }
425 
426 
427 /*
428  * NAME:        dbUpdatePMap()
429  *
430  * FUNCTION:    update the allocation state (free or allocate) of the
431  *              specified block range in the persistent block allocation map.
432  *
433  *              the blocks will be updated in the persistent map one
434  *              dmap at a time.
435  *
436  * PARAMETERS:
437  *      ipbmap  - pointer to in-core inode for the block map.
438  *      free    - 'true' if block range is to be freed from the persistent
439  *                map; 'false' if it is to be allocated.
440  *      blkno   - starting block number of the range.
441  *      nblocks - number of contiguous blocks in the range.
442  *      tblk    - transaction block;
443  *
444  * RETURN VALUES:
445  *      0       - success
446  *      -EIO    - i/o error
447  */
448 int
449 dbUpdatePMap(struct inode *ipbmap,
450              int free, s64 blkno, s64 nblocks, struct tblock * tblk)
451 {
452         int nblks, dbitno, wbitno, rbits;
453         int word, nbits, nwords;
454         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
455         s64 lblkno, rem, lastlblkno;
456         u32 mask;
457         struct dmap *dp;
458         struct metapage *mp;
459         struct jfs_log *log;
460         int lsn, difft, diffp;
461         unsigned long flags;
462 
463         /* the blocks better be within the mapsize. */
464         if (blkno + nblocks > bmp->db_mapsize) {
465                 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
466                        (unsigned long long) blkno,
467                        (unsigned long long) nblocks);
468                 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
469                 return -EIO;
470         }
471 
472         /* compute delta of transaction lsn from log syncpt */
473         lsn = tblk->lsn;
474         log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
475         logdiff(difft, lsn, log);
476 
477         /*
478          * update the block state a dmap at a time.
479          */
480         mp = NULL;
481         lastlblkno = 0;
482         for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
483                 /* get the buffer for the current dmap. */
484                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
485                 if (lblkno != lastlblkno) {
486                         if (mp) {
487                                 write_metapage(mp);
488                         }
489 
490                         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
491                                            0);
492                         if (mp == NULL)
493                                 return -EIO;
494                         metapage_wait_for_io(mp);
495                 }
496                 dp = (struct dmap *) mp->data;
497 
498                 /* determine the bit number and word within the dmap of
499                  * the starting block.  also determine how many blocks
500                  * are to be updated within this dmap.
501                  */
502                 dbitno = blkno & (BPERDMAP - 1);
503                 word = dbitno >> L2DBWORD;
504                 nblks = min(rem, (s64)BPERDMAP - dbitno);
505 
506                 /* update the bits of the dmap words. the first and last
507                  * words may only have a subset of their bits updated. if
508                  * this is the case, we'll work against that word (i.e.
509                  * partial first and/or last) only in a single pass.  a
510                  * single pass will also be used to update all words that
511                  * are to have all their bits updated.
512                  */
513                 for (rbits = nblks; rbits > 0;
514                      rbits -= nbits, dbitno += nbits) {
515                         /* determine the bit number within the word and
516                          * the number of bits within the word.
517                          */
518                         wbitno = dbitno & (DBWORD - 1);
519                         nbits = min(rbits, DBWORD - wbitno);
520 
521                         /* check if only part of the word is to be updated. */
522                         if (nbits < DBWORD) {
523                                 /* update (free or allocate) the bits
524                                  * in this word.
525                                  */
526                                 mask =
527                                     (ONES << (DBWORD - nbits) >> wbitno);
528                                 if (free)
529                                         dp->pmap[word] &=
530                                             cpu_to_le32(~mask);
531                                 else
532                                         dp->pmap[word] |=
533                                             cpu_to_le32(mask);
534 
535                                 word += 1;
536                         } else {
537                                 /* one or more words are to have all
538                                  * their bits updated.  determine how
539                                  * many words and how many bits.
540                                  */
541                                 nwords = rbits >> L2DBWORD;
542                                 nbits = nwords << L2DBWORD;
543 
544                                 /* update (free or allocate) the bits
545                                  * in these words.
546                                  */
547                                 if (free)
548                                         memset(&dp->pmap[word], 0,
549                                                nwords * 4);
550                                 else
551                                         memset(&dp->pmap[word], (int) ONES,
552                                                nwords * 4);
553 
554                                 word += nwords;
555                         }
556                 }
557 
558                 /*
559                  * update dmap lsn
560                  */
561                 if (lblkno == lastlblkno)
562                         continue;
563 
564                 lastlblkno = lblkno;
565 
566                 LOGSYNC_LOCK(log, flags);
567                 if (mp->lsn != 0) {
568                         /* inherit older/smaller lsn */
569                         logdiff(diffp, mp->lsn, log);
570                         if (difft < diffp) {
571                                 mp->lsn = lsn;
572 
573                                 /* move bp after tblock in logsync list */
574                                 list_move(&mp->synclist, &tblk->synclist);
575                         }
576 
577                         /* inherit younger/larger clsn */
578                         logdiff(difft, tblk->clsn, log);
579                         logdiff(diffp, mp->clsn, log);
580                         if (difft > diffp)
581                                 mp->clsn = tblk->clsn;
582                 } else {
583                         mp->log = log;
584                         mp->lsn = lsn;
585 
586                         /* insert bp after tblock in logsync list */
587                         log->count++;
588                         list_add(&mp->synclist, &tblk->synclist);
589 
590                         mp->clsn = tblk->clsn;
591                 }
592                 LOGSYNC_UNLOCK(log, flags);
593         }
594 
595         /* write the last buffer. */
596         if (mp) {
597                 write_metapage(mp);
598         }
599 
600         return (0);
601 }
602 
603 
604 /*
605  * NAME:        dbNextAG()
606  *
607  * FUNCTION:    find the preferred allocation group for new allocations.
608  *
609  *              Within the allocation groups, we maintain a preferred
610  *              allocation group which consists of a group with at least
611  *              average free space.  It is the preferred group that we target
612  *              new inode allocation towards.  The tie-in between inode
613  *              allocation and block allocation occurs as we allocate the
614  *              first (data) block of an inode and specify the inode (block)
615  *              as the allocation hint for this block.
616  *
617  *              We try to avoid having more than one open file growing in
618  *              an allocation group, as this will lead to fragmentation.
619  *              This differs from the old OS/2 method of trying to keep
620  *              empty ags around for large allocations.
621  *
622  * PARAMETERS:
623  *      ipbmap  - pointer to in-core inode for the block map.
624  *
625  * RETURN VALUES:
626  *      the preferred allocation group number.
627  */
628 int dbNextAG(struct inode *ipbmap)
629 {
630         s64 avgfree;
631         int agpref;
632         s64 hwm = 0;
633         int i;
634         int next_best = -1;
635         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
636 
637         BMAP_LOCK(bmp);
638 
639         /* determine the average number of free blocks within the ags. */
640         avgfree = (u32)bmp->db_nfree / bmp->db_numag;
641 
642         /*
643          * if the current preferred ag does not have an active allocator
644          * and has at least average freespace, return it
645          */
646         agpref = bmp->db_agpref;
647         if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
648             (bmp->db_agfree[agpref] >= avgfree))
649                 goto unlock;
650 
651         /* From the last preferred ag, find the next one with at least
652          * average free space.
653          */
654         for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
655                 if (agpref >= bmp->db_numag)
656                         agpref = 0;
657 
658                 if (atomic_read(&bmp->db_active[agpref]))
659                         /* open file is currently growing in this ag */
660                         continue;
661                 if (bmp->db_agfree[agpref] >= avgfree) {
662                         /* Return this one */
663                         bmp->db_agpref = agpref;
664                         goto unlock;
665                 } else if (bmp->db_agfree[agpref] > hwm) {
666                         /* Less than avg. freespace, but best so far */
667                         hwm = bmp->db_agfree[agpref];
668                         next_best = agpref;
669                 }
670         }
671 
672         /*
673          * If no inactive ag was found with average freespace, use the
674          * next best
675          */
676         if (next_best != -1)
677                 bmp->db_agpref = next_best;
678         /* else leave db_agpref unchanged */
679 unlock:
680         BMAP_UNLOCK(bmp);
681 
682         /* return the preferred group.
683          */
684         return (bmp->db_agpref);
685 }
686 
687 /*
688  * NAME:        dbAlloc()
689  *
690  * FUNCTION:    attempt to allocate a specified number of contiguous free
691  *              blocks from the working allocation block map.
692  *
693  *              the block allocation policy uses hints and a multi-step
694  *              approach.
695  *
696  *              for allocation requests smaller than the number of blocks
697  *              per dmap, we first try to allocate the new blocks
698  *              immediately following the hint.  if these blocks are not
699  *              available, we try to allocate blocks near the hint.  if
700  *              no blocks near the hint are available, we next try to
701  *              allocate within the same dmap as contains the hint.
702  *
703  *              if no blocks are available in the dmap or the allocation
704  *              request is larger than the dmap size, we try to allocate
705  *              within the same allocation group as contains the hint. if
706  *              this does not succeed, we finally try to allocate anywhere
707  *              within the aggregate.
708  *
709  *              we also try to allocate anywhere within the aggregate
710  *              for allocation requests larger than the allocation group
711  *              size or requests that specify no hint value.
712  *
713  * PARAMETERS:
714  *      ip      - pointer to in-core inode;
715  *      hint    - allocation hint.
716  *      nblocks - number of contiguous blocks in the range.
717  *      results - on successful return, set to the starting block number
718  *                of the newly allocated contiguous range.
719  *
720  * RETURN VALUES:
721  *      0       - success
722  *      -ENOSPC - insufficient disk resources
723  *      -EIO    - i/o error
724  */
725 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
726 {
727         int rc, agno;
728         struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
729         struct bmap *bmp;
730         struct metapage *mp;
731         s64 lblkno, blkno;
732         struct dmap *dp;
733         int l2nb;
734         s64 mapSize;
735         int writers;
736 
737         /* assert that nblocks is valid */
738         assert(nblocks > 0);
739 
740         /* get the log2 number of blocks to be allocated.
741          * if the number of blocks is not a log2 multiple,
742          * it will be rounded up to the next log2 multiple.
743          */
744         l2nb = BLKSTOL2(nblocks);
745 
746         bmp = JFS_SBI(ip->i_sb)->bmap;
747 
748         mapSize = bmp->db_mapsize;
749 
750         /* the hint should be within the map */
751         if (hint >= mapSize) {
752                 jfs_error(ip->i_sb, "the hint is outside the map\n");
753                 return -EIO;
754         }
755 
756         /* if the number of blocks to be allocated is greater than the
757          * allocation group size, try to allocate anywhere.
758          */
759         if (l2nb > bmp->db_agl2size) {
760                 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
761 
762                 rc = dbAllocAny(bmp, nblocks, l2nb, results);
763 
764                 goto write_unlock;
765         }
766 
767         /*
768          * If no hint, let dbNextAG recommend an allocation group
769          */
770         if (hint == 0)
771                 goto pref_ag;
772 
773         /* we would like to allocate close to the hint.  adjust the
774          * hint to the block following the hint since the allocators
775          * will start looking for free space starting at this point.
776          */
777         blkno = hint + 1;
778 
779         if (blkno >= bmp->db_mapsize)
780                 goto pref_ag;
781 
782         agno = blkno >> bmp->db_agl2size;
783 
784         /* check if blkno crosses over into a new allocation group.
785          * if so, check if we should allow allocations within this
786          * allocation group.
787          */
788         if ((blkno & (bmp->db_agsize - 1)) == 0)
789                 /* check if the AG is currently being written to.
790                  * if so, call dbNextAG() to find a non-busy
791                  * AG with sufficient free space.
792                  */
793                 if (atomic_read(&bmp->db_active[agno]))
794                         goto pref_ag;
795 
796         /* check if the allocation request size can be satisfied from a
797          * single dmap.  if so, try to allocate from the dmap containing
798          * the hint using a tiered strategy.
799          */
800         if (nblocks <= BPERDMAP) {
801                 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
802 
803                 /* get the buffer for the dmap containing the hint.
804                  */
805                 rc = -EIO;
806                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
807                 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
808                 if (mp == NULL)
809                         goto read_unlock;
810 
811                 dp = (struct dmap *) mp->data;
812 
813                 /* first, try to satisfy the allocation request with the
814                  * blocks beginning at the hint.
815                  */
816                 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
817                     != -ENOSPC) {
818                         if (rc == 0) {
819                                 *results = blkno;
820                                 mark_metapage_dirty(mp);
821                         }
822 
823                         release_metapage(mp);
824                         goto read_unlock;
825                 }
826 
827                 writers = atomic_read(&bmp->db_active[agno]);
828                 if ((writers > 1) ||
829                     ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
830                         /*
831                          * Someone else is writing in this allocation
832                          * group.  To avoid fragmenting, try another ag
833                          */
834                         release_metapage(mp);
835                         IREAD_UNLOCK(ipbmap);
836                         goto pref_ag;
837                 }
838 
839                 /* next, try to satisfy the allocation request with blocks
840                  * near the hint.
841                  */
842                 if ((rc =
843                      dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
844                     != -ENOSPC) {
845                         if (rc == 0)
846                                 mark_metapage_dirty(mp);
847 
848                         release_metapage(mp);
849                         goto read_unlock;
850                 }
851 
852                 /* try to satisfy the allocation request with blocks within
853                  * the same dmap as the hint.
854                  */
855                 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
856                     != -ENOSPC) {
857                         if (rc == 0)
858                                 mark_metapage_dirty(mp);
859 
860                         release_metapage(mp);
861                         goto read_unlock;
862                 }
863 
864                 release_metapage(mp);
865                 IREAD_UNLOCK(ipbmap);
866         }
867 
868         /* try to satisfy the allocation request with blocks within
869          * the same allocation group as the hint.
870          */
871         IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
872         if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
873                 goto write_unlock;
874 
875         IWRITE_UNLOCK(ipbmap);
876 
877 
878       pref_ag:
879         /*
880          * Let dbNextAG recommend a preferred allocation group
881          */
882         agno = dbNextAG(ipbmap);
883         IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
884 
885         /* Try to allocate within this allocation group.  if that fails, try to
886          * allocate anywhere in the map.
887          */
888         if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
889                 rc = dbAllocAny(bmp, nblocks, l2nb, results);
890 
891       write_unlock:
892         IWRITE_UNLOCK(ipbmap);
893 
894         return (rc);
895 
896       read_unlock:
897         IREAD_UNLOCK(ipbmap);
898 
899         return (rc);
900 }
901 
902 /*
903  * NAME:        dbReAlloc()
904  *
905  * FUNCTION:    attempt to extend a current allocation by a specified
906  *              number of blocks.
907  *
908  *              this routine attempts to satisfy the allocation request
909  *              by first trying to extend the existing allocation in
910  *              place by allocating the additional blocks as the blocks
911  *              immediately following the current allocation.  if these
912  *              blocks are not available, this routine will attempt to
913  *              allocate a new set of contiguous blocks large enough
914  *              to cover the existing allocation plus the additional
915  *              number of blocks required.
916  *
917  * PARAMETERS:
918  *      ip          -  pointer to in-core inode requiring allocation.
919  *      blkno       -  starting block of the current allocation.
920  *      nblocks     -  number of contiguous blocks within the current
921  *                     allocation.
922  *      addnblocks  -  number of blocks to add to the allocation.
923  *      results -      on successful return, set to the starting block number
924  *                     of the existing allocation if the existing allocation
925  *                     was extended in place or to a newly allocated contiguous
926  *                     range if the existing allocation could not be extended
927  *                     in place.
928  *
929  * RETURN VALUES:
930  *      0       - success
931  *      -ENOSPC - insufficient disk resources
932  *      -EIO    - i/o error
933  */
934 int
935 dbReAlloc(struct inode *ip,
936           s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
937 {
938         int rc;
939 
940         /* try to extend the allocation in place.
941          */
942         if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
943                 *results = blkno;
944                 return (0);
945         } else {
946                 if (rc != -ENOSPC)
947                         return (rc);
948         }
949 
950         /* could not extend the allocation in place, so allocate a
951          * new set of blocks for the entire request (i.e. try to get
952          * a range of contiguous blocks large enough to cover the
953          * existing allocation plus the additional blocks.)
954          */
955         return (dbAlloc
956                 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
957 }
958 
959 
960 /*
961  * NAME:        dbExtend()
962  *
963  * FUNCTION:    attempt to extend a current allocation by a specified
964  *              number of blocks.
965  *
966  *              this routine attempts to satisfy the allocation request
967  *              by first trying to extend the existing allocation in
968  *              place by allocating the additional blocks as the blocks
969  *              immediately following the current allocation.
970  *
971  * PARAMETERS:
972  *      ip          -  pointer to in-core inode requiring allocation.
973  *      blkno       -  starting block of the current allocation.
974  *      nblocks     -  number of contiguous blocks within the current
975  *                     allocation.
976  *      addnblocks  -  number of blocks to add to the allocation.
977  *
978  * RETURN VALUES:
979  *      0       - success
980  *      -ENOSPC - insufficient disk resources
981  *      -EIO    - i/o error
982  */
983 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
984 {
985         struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
986         s64 lblkno, lastblkno, extblkno;
987         uint rel_block;
988         struct metapage *mp;
989         struct dmap *dp;
990         int rc;
991         struct inode *ipbmap = sbi->ipbmap;
992         struct bmap *bmp;
993 
994         /*
995          * We don't want a non-aligned extent to cross a page boundary
996          */
997         if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
998             (rel_block + nblocks + addnblocks > sbi->nbperpage))
999                 return -ENOSPC;
1000 
1001         /* get the last block of the current allocation */
1002         lastblkno = blkno + nblocks - 1;
1003 
1004         /* determine the block number of the block following
1005          * the existing allocation.
1006          */
1007         extblkno = lastblkno + 1;
1008 
1009         IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1010 
1011         /* better be within the file system */
1012         bmp = sbi->bmap;
1013         if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1014                 IREAD_UNLOCK(ipbmap);
1015                 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1016                 return -EIO;
1017         }
1018 
1019         /* we'll attempt to extend the current allocation in place by
1020          * allocating the additional blocks as the blocks immediately
1021          * following the current allocation.  we only try to extend the
1022          * current allocation in place if the number of additional blocks
1023          * can fit into a dmap, the last block of the current allocation
1024          * is not the last block of the file system, and the start of the
1025          * inplace extension is not on an allocation group boundary.
1026          */
1027         if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1028             (extblkno & (bmp->db_agsize - 1)) == 0) {
1029                 IREAD_UNLOCK(ipbmap);
1030                 return -ENOSPC;
1031         }
1032 
1033         /* get the buffer for the dmap containing the first block
1034          * of the extension.
1035          */
1036         lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1037         mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1038         if (mp == NULL) {
1039                 IREAD_UNLOCK(ipbmap);
1040                 return -EIO;
1041         }
1042 
1043         dp = (struct dmap *) mp->data;
1044 
1045         /* try to allocate the blocks immediately following the
1046          * current allocation.
1047          */
1048         rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1049 
1050         IREAD_UNLOCK(ipbmap);
1051 
1052         /* were we successful ? */
1053         if (rc == 0)
1054                 write_metapage(mp);
1055         else
1056                 /* we were not successful */
1057                 release_metapage(mp);
1058 
1059         return (rc);
1060 }
1061 
1062 
1063 /*
1064  * NAME:        dbAllocNext()
1065  *
1066  * FUNCTION:    attempt to allocate the blocks of the specified block
1067  *              range within a dmap.
1068  *
1069  * PARAMETERS:
1070  *      bmp     -  pointer to bmap descriptor
1071  *      dp      -  pointer to dmap.
1072  *      blkno   -  starting block number of the range.
1073  *      nblocks -  number of contiguous free blocks of the range.
1074  *
1075  * RETURN VALUES:
1076  *      0       - success
1077  *      -ENOSPC - insufficient disk resources
1078  *      -EIO    - i/o error
1079  *
1080  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1081  */
1082 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1083                        int nblocks)
1084 {
1085         int dbitno, word, rembits, nb, nwords, wbitno, nw;
1086         int l2size;
1087         s8 *leaf;
1088         u32 mask;
1089 
1090         if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1091                 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1092                 return -EIO;
1093         }
1094 
1095         /* pick up a pointer to the leaves of the dmap tree.
1096          */
1097         leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1098 
1099         /* determine the bit number and word within the dmap of the
1100          * starting block.
1101          */
1102         dbitno = blkno & (BPERDMAP - 1);
1103         word = dbitno >> L2DBWORD;
1104 
1105         /* check if the specified block range is contained within
1106          * this dmap.
1107          */
1108         if (dbitno + nblocks > BPERDMAP)
1109                 return -ENOSPC;
1110 
1111         /* check if the starting leaf indicates that anything
1112          * is free.
1113          */
1114         if (leaf[word] == NOFREE)
1115                 return -ENOSPC;
1116 
1117         /* check the dmaps words corresponding to block range to see
1118          * if the block range is free.  not all bits of the first and
1119          * last words may be contained within the block range.  if this
1120          * is the case, we'll work against those words (i.e. partial first
1121          * and/or last) on an individual basis (a single pass) and examine
1122          * the actual bits to determine if they are free.  a single pass
1123          * will be used for all dmap words fully contained within the
1124          * specified range.  within this pass, the leaves of the dmap
1125          * tree will be examined to determine if the blocks are free. a
1126          * single leaf may describe the free space of multiple dmap
1127          * words, so we may visit only a subset of the actual leaves
1128          * corresponding to the dmap words of the block range.
1129          */
1130         for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1131                 /* determine the bit number within the word and
1132                  * the number of bits within the word.
1133                  */
1134                 wbitno = dbitno & (DBWORD - 1);
1135                 nb = min(rembits, DBWORD - wbitno);
1136 
1137                 /* check if only part of the word is to be examined.
1138                  */
1139                 if (nb < DBWORD) {
1140                         /* check if the bits are free.
1141                          */
1142                         mask = (ONES << (DBWORD - nb) >> wbitno);
1143                         if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1144                                 return -ENOSPC;
1145 
1146                         word += 1;
1147                 } else {
1148                         /* one or more dmap words are fully contained
1149                          * within the block range.  determine how many
1150                          * words and how many bits.
1151                          */
1152                         nwords = rembits >> L2DBWORD;
1153                         nb = nwords << L2DBWORD;
1154 
1155                         /* now examine the appropriate leaves to determine
1156                          * if the blocks are free.
1157                          */
1158                         while (nwords > 0) {
1159                                 /* does the leaf describe any free space ?
1160                                  */
1161                                 if (leaf[word] < BUDMIN)
1162                                         return -ENOSPC;
1163 
1164                                 /* determine the l2 number of bits provided
1165                                  * by this leaf.
1166                                  */
1167                                 l2size =
1168                                     min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1169 
1170                                 /* determine how many words were handled.
1171                                  */
1172                                 nw = BUDSIZE(l2size, BUDMIN);
1173 
1174                                 nwords -= nw;
1175                                 word += nw;
1176                         }
1177                 }
1178         }
1179 
1180         /* allocate the blocks.
1181          */
1182         return (dbAllocDmap(bmp, dp, blkno, nblocks));
1183 }
1184 
1185 
1186 /*
1187  * NAME:        dbAllocNear()
1188  *
1189  * FUNCTION:    attempt to allocate a number of contiguous free blocks near
1190  *              a specified block (hint) within a dmap.
1191  *
1192  *              starting with the dmap leaf that covers the hint, we'll
1193  *              check the next four contiguous leaves for sufficient free
1194  *              space.  if sufficient free space is found, we'll allocate
1195  *              the desired free space.
1196  *
1197  * PARAMETERS:
1198  *      bmp     -  pointer to bmap descriptor
1199  *      dp      -  pointer to dmap.
1200  *      blkno   -  block number to allocate near.
1201  *      nblocks -  actual number of contiguous free blocks desired.
1202  *      l2nb    -  log2 number of contiguous free blocks desired.
1203  *      results -  on successful return, set to the starting block number
1204  *                 of the newly allocated range.
1205  *
1206  * RETURN VALUES:
1207  *      0       - success
1208  *      -ENOSPC - insufficient disk resources
1209  *      -EIO    - i/o error
1210  *
1211  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1212  */
1213 static int
1214 dbAllocNear(struct bmap * bmp,
1215             struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1216 {
1217         int word, lword, rc;
1218         s8 *leaf;
1219 
1220         if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1221                 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1222                 return -EIO;
1223         }
1224 
1225         leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1226 
1227         /* determine the word within the dmap that holds the hint
1228          * (i.e. blkno).  also, determine the last word in the dmap
1229          * that we'll include in our examination.
1230          */
1231         word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1232         lword = min(word + 4, LPERDMAP);
1233 
1234         /* examine the leaves for sufficient free space.
1235          */
1236         for (; word < lword; word++) {
1237                 /* does the leaf describe sufficient free space ?
1238                  */
1239                 if (leaf[word] < l2nb)
1240                         continue;
1241 
1242                 /* determine the block number within the file system
1243                  * of the first block described by this dmap word.
1244                  */
1245                 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1246 
1247                 /* if not all bits of the dmap word are free, get the
1248                  * starting bit number within the dmap word of the required
1249                  * string of free bits and adjust the block number with the
1250                  * value.
1251                  */
1252                 if (leaf[word] < BUDMIN)
1253                         blkno +=
1254                             dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1255 
1256                 /* allocate the blocks.
1257                  */
1258                 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1259                         *results = blkno;
1260 
1261                 return (rc);
1262         }
1263 
1264         return -ENOSPC;
1265 }
1266 
1267 
1268 /*
1269  * NAME:        dbAllocAG()
1270  *
1271  * FUNCTION:    attempt to allocate the specified number of contiguous
1272  *              free blocks within the specified allocation group.
1273  *
1274  *              unless the allocation group size is equal to the number
1275  *              of blocks per dmap, the dmap control pages will be used to
1276  *              find the required free space, if available.  we start the
1277  *              search at the highest dmap control page level which
1278  *              distinctly describes the allocation group's free space
1279  *              (i.e. the highest level at which the allocation group's
1280  *              free space is not mixed in with that of any other group).
1281  *              in addition, we start the search within this level at a
1282  *              height of the dmapctl dmtree at which the nodes distinctly
1283  *              describe the allocation group's free space.  at this height,
1284  *              the allocation group's free space may be represented by 1
1285  *              or two sub-trees, depending on the allocation group size.
1286  *              we search the top nodes of these subtrees left to right for
1287  *              sufficient free space.  if sufficient free space is found,
1288  *              the subtree is searched to find the leftmost leaf that
1289  *              has free space.  once we have made it to the leaf, we
1290  *              move the search to the next lower level dmap control page
1291  *              corresponding to this leaf.  we continue down the dmap control
1292  *              pages until we find the dmap that contains or starts the
1293  *              sufficient free space and we allocate at this dmap.
1294  *
1295  *              if the allocation group size is equal to the dmap size,
1296  *              we'll start at the dmap corresponding to the allocation
1297  *              group and attempt the allocation at this level.
1298  *
1299  *              the dmap control page search is also not performed if the
1300  *              allocation group is completely free and we go to the first
1301  *              dmap of the allocation group to do the allocation.  this is
1302  *              done because the allocation group may be part (not the first
1303  *              part) of a larger binary buddy system, causing the dmap
1304  *              control pages to indicate no free space (NOFREE) within
1305  *              the allocation group.
1306  *
1307  * PARAMETERS:
1308  *      bmp     -  pointer to bmap descriptor
1309  *      agno    - allocation group number.
1310  *      nblocks -  actual number of contiguous free blocks desired.
1311  *      l2nb    -  log2 number of contiguous free blocks desired.
1312  *      results -  on successful return, set to the starting block number
1313  *                 of the newly allocated range.
1314  *
1315  * RETURN VALUES:
1316  *      0       - success
1317  *      -ENOSPC - insufficient disk resources
1318  *      -EIO    - i/o error
1319  *
1320  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1321  */
1322 static int
1323 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1324 {
1325         struct metapage *mp;
1326         struct dmapctl *dcp;
1327         int rc, ti, i, k, m, n, agperlev;
1328         s64 blkno, lblkno;
1329         int budmin;
1330 
1331         /* allocation request should not be for more than the
1332          * allocation group size.
1333          */
1334         if (l2nb > bmp->db_agl2size) {
1335                 jfs_error(bmp->db_ipbmap->i_sb,
1336                           "allocation request is larger than the allocation group size\n");
1337                 return -EIO;
1338         }
1339 
1340         /* determine the starting block number of the allocation
1341          * group.
1342          */
1343         blkno = (s64) agno << bmp->db_agl2size;
1344 
1345         /* check if the allocation group size is the minimum allocation
1346          * group size or if the allocation group is completely free. if
1347          * the allocation group size is the minimum size of BPERDMAP (i.e.
1348          * 1 dmap), there is no need to search the dmap control page (below)
1349          * that fully describes the allocation group since the allocation
1350          * group is already fully described by a dmap.  in this case, we
1351          * just call dbAllocCtl() to search the dmap tree and allocate the
1352          * required space if available.
1353          *
1354          * if the allocation group is completely free, dbAllocCtl() is
1355          * also called to allocate the required space.  this is done for
1356          * two reasons.  first, it makes no sense searching the dmap control
1357          * pages for free space when we know that free space exists.  second,
1358          * the dmap control pages may indicate that the allocation group
1359          * has no free space if the allocation group is part (not the first
1360          * part) of a larger binary buddy system.
1361          */
1362         if (bmp->db_agsize == BPERDMAP
1363             || bmp->db_agfree[agno] == bmp->db_agsize) {
1364                 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1365                 if ((rc == -ENOSPC) &&
1366                     (bmp->db_agfree[agno] == bmp->db_agsize)) {
1367                         printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1368                                (unsigned long long) blkno,
1369                                (unsigned long long) nblocks);
1370                         jfs_error(bmp->db_ipbmap->i_sb,
1371                                   "dbAllocCtl failed in free AG\n");
1372                 }
1373                 return (rc);
1374         }
1375 
1376         /* the buffer for the dmap control page that fully describes the
1377          * allocation group.
1378          */
1379         lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1380         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1381         if (mp == NULL)
1382                 return -EIO;
1383         dcp = (struct dmapctl *) mp->data;
1384         budmin = dcp->budmin;
1385 
1386         if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1387                 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1388                 release_metapage(mp);
1389                 return -EIO;
1390         }
1391 
1392         /* search the subtree(s) of the dmap control page that describes
1393          * the allocation group, looking for sufficient free space.  to begin,
1394          * determine how many allocation groups are represented in a dmap
1395          * control page at the control page level (i.e. L0, L1, L2) that
1396          * fully describes an allocation group. next, determine the starting
1397          * tree index of this allocation group within the control page.
1398          */
1399         agperlev =
1400             (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1401         ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1402 
1403         /* dmap control page trees fan-out by 4 and a single allocation
1404          * group may be described by 1 or 2 subtrees within the ag level
1405          * dmap control page, depending upon the ag size. examine the ag's
1406          * subtrees for sufficient free space, starting with the leftmost
1407          * subtree.
1408          */
1409         for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1410                 /* is there sufficient free space ?
1411                  */
1412                 if (l2nb > dcp->stree[ti])
1413                         continue;
1414 
1415                 /* sufficient free space found in a subtree. now search down
1416                  * the subtree to find the leftmost leaf that describes this
1417                  * free space.
1418                  */
1419                 for (k = bmp->db_agheight; k > 0; k--) {
1420                         for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1421                                 if (l2nb <= dcp->stree[m + n]) {
1422                                         ti = m + n;
1423                                         break;
1424                                 }
1425                         }
1426                         if (n == 4) {
1427                                 jfs_error(bmp->db_ipbmap->i_sb,
1428                                           "failed descending stree\n");
1429                                 release_metapage(mp);
1430                                 return -EIO;
1431                         }
1432                 }
1433 
1434                 /* determine the block number within the file system
1435                  * that corresponds to this leaf.
1436                  */
1437                 if (bmp->db_aglevel == 2)
1438                         blkno = 0;
1439                 else if (bmp->db_aglevel == 1)
1440                         blkno &= ~(MAXL1SIZE - 1);
1441                 else            /* bmp->db_aglevel == 0 */
1442                         blkno &= ~(MAXL0SIZE - 1);
1443 
1444                 blkno +=
1445                     ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1446 
1447                 /* release the buffer in preparation for going down
1448                  * the next level of dmap control pages.
1449                  */
1450                 release_metapage(mp);
1451 
1452                 /* check if we need to continue to search down the lower
1453                  * level dmap control pages.  we need to if the number of
1454                  * blocks required is less than maximum number of blocks
1455                  * described at the next lower level.
1456                  */
1457                 if (l2nb < budmin) {
1458 
1459                         /* search the lower level dmap control pages to get
1460                          * the starting block number of the dmap that
1461                          * contains or starts off the free space.
1462                          */
1463                         if ((rc =
1464                              dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1465                                        &blkno))) {
1466                                 if (rc == -ENOSPC) {
1467                                         jfs_error(bmp->db_ipbmap->i_sb,
1468                                                   "control page inconsistent\n");
1469                                         return -EIO;
1470                                 }
1471                                 return (rc);
1472                         }
1473                 }
1474 
1475                 /* allocate the blocks.
1476                  */
1477                 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1478                 if (rc == -ENOSPC) {
1479                         jfs_error(bmp->db_ipbmap->i_sb,
1480                                   "unable to allocate blocks\n");
1481                         rc = -EIO;
1482                 }
1483                 return (rc);
1484         }
1485 
1486         /* no space in the allocation group.  release the buffer and
1487          * return -ENOSPC.
1488          */
1489         release_metapage(mp);
1490 
1491         return -ENOSPC;
1492 }
1493 
1494 
1495 /*
1496  * NAME:        dbAllocAny()
1497  *
1498  * FUNCTION:    attempt to allocate the specified number of contiguous
1499  *              free blocks anywhere in the file system.
1500  *
1501  *              dbAllocAny() attempts to find the sufficient free space by
1502  *              searching down the dmap control pages, starting with the
1503  *              highest level (i.e. L0, L1, L2) control page.  if free space
1504  *              large enough to satisfy the desired free space is found, the
1505  *              desired free space is allocated.
1506  *
1507  * PARAMETERS:
1508  *      bmp     -  pointer to bmap descriptor
1509  *      nblocks  -  actual number of contiguous free blocks desired.
1510  *      l2nb     -  log2 number of contiguous free blocks desired.
1511  *      results -  on successful return, set to the starting block number
1512  *                 of the newly allocated range.
1513  *
1514  * RETURN VALUES:
1515  *      0       - success
1516  *      -ENOSPC - insufficient disk resources
1517  *      -EIO    - i/o error
1518  *
1519  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1520  */
1521 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1522 {
1523         int rc;
1524         s64 blkno = 0;
1525 
1526         /* starting with the top level dmap control page, search
1527          * down the dmap control levels for sufficient free space.
1528          * if free space is found, dbFindCtl() returns the starting
1529          * block number of the dmap that contains or starts off the
1530          * range of free space.
1531          */
1532         if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1533                 return (rc);
1534 
1535         /* allocate the blocks.
1536          */
1537         rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1538         if (rc == -ENOSPC) {
1539                 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1540                 return -EIO;
1541         }
1542         return (rc);
1543 }
1544 
1545 
1546 /*
1547  * NAME:        dbDiscardAG()
1548  *
1549  * FUNCTION:    attempt to discard (TRIM) all free blocks of specific AG
1550  *
1551  *              algorithm:
1552  *              1) allocate blocks, as large as possible and save them
1553  *                 while holding IWRITE_LOCK on ipbmap
1554  *              2) trim all these saved block/length values
1555  *              3) mark the blocks free again
1556  *
1557  *              benefit:
1558  *              - we work only on one ag at some time, minimizing how long we
1559  *                need to lock ipbmap
1560  *              - reading / writing the fs is possible most time, even on
1561  *                trimming
1562  *
1563  *              downside:
1564  *              - we write two times to the dmapctl and dmap pages
1565  *              - but for me, this seems the best way, better ideas?
1566  *              /TR 2012
1567  *
1568  * PARAMETERS:
1569  *      ip      - pointer to in-core inode
1570  *      agno    - ag to trim
1571  *      minlen  - minimum value of contiguous blocks
1572  *
1573  * RETURN VALUES:
1574  *      s64     - actual number of blocks trimmed
1575  */
1576 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1577 {
1578         struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1579         struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1580         s64 nblocks, blkno;
1581         u64 trimmed = 0;
1582         int rc, l2nb;
1583         struct super_block *sb = ipbmap->i_sb;
1584 
1585         struct range2trim {
1586                 u64 blkno;
1587                 u64 nblocks;
1588         } *totrim, *tt;
1589 
1590         /* max blkno / nblocks pairs to trim */
1591         int count = 0, range_cnt;
1592         u64 max_ranges;
1593 
1594         /* prevent others from writing new stuff here, while trimming */
1595         IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1596 
1597         nblocks = bmp->db_agfree[agno];
1598         max_ranges = nblocks;
1599         do_div(max_ranges, minlen);
1600         range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1601         totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1602         if (totrim == NULL) {
1603                 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1604                 IWRITE_UNLOCK(ipbmap);
1605                 return 0;
1606         }
1607 
1608         tt = totrim;
1609         while (nblocks >= minlen) {
1610                 l2nb = BLKSTOL2(nblocks);
1611 
1612                 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1613                 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1614                 if (rc == 0) {
1615                         tt->blkno = blkno;
1616                         tt->nblocks = nblocks;
1617                         tt++; count++;
1618 
1619                         /* the whole ag is free, trim now */
1620                         if (bmp->db_agfree[agno] == 0)
1621                                 break;
1622 
1623                         /* give a hint for the next while */
1624                         nblocks = bmp->db_agfree[agno];
1625                         continue;
1626                 } else if (rc == -ENOSPC) {
1627                         /* search for next smaller log2 block */
1628                         l2nb = BLKSTOL2(nblocks) - 1;
1629                         if (unlikely(l2nb < 0))
1630                                 break;
1631                         nblocks = 1LL << l2nb;
1632                 } else {
1633                         /* Trim any already allocated blocks */
1634                         jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1635                         break;
1636                 }
1637 
1638                 /* check, if our trim array is full */
1639                 if (unlikely(count >= range_cnt - 1))
1640                         break;
1641         }
1642         IWRITE_UNLOCK(ipbmap);
1643 
1644         tt->nblocks = 0; /* mark the current end */
1645         for (tt = totrim; tt->nblocks != 0; tt++) {
1646                 /* when mounted with online discard, dbFree() will
1647                  * call jfs_issue_discard() itself */
1648                 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1649                         jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1650                 dbFree(ip, tt->blkno, tt->nblocks);
1651                 trimmed += tt->nblocks;
1652         }
1653         kfree(totrim);
1654 
1655         return trimmed;
1656 }
1657 
1658 /*
1659  * NAME:        dbFindCtl()
1660  *
1661  * FUNCTION:    starting at a specified dmap control page level and block
1662  *              number, search down the dmap control levels for a range of
1663  *              contiguous free blocks large enough to satisfy an allocation
1664  *              request for the specified number of free blocks.
1665  *
1666  *              if sufficient contiguous free blocks are found, this routine
1667  *              returns the starting block number within a dmap page that
1668  *              contains or starts a range of contiqious free blocks that
1669  *              is sufficient in size.
1670  *
1671  * PARAMETERS:
1672  *      bmp     -  pointer to bmap descriptor
1673  *      level   -  starting dmap control page level.
1674  *      l2nb    -  log2 number of contiguous free blocks desired.
1675  *      *blkno  -  on entry, starting block number for conducting the search.
1676  *                 on successful return, the first block within a dmap page
1677  *                 that contains or starts a range of contiguous free blocks.
1678  *
1679  * RETURN VALUES:
1680  *      0       - success
1681  *      -ENOSPC - insufficient disk resources
1682  *      -EIO    - i/o error
1683  *
1684  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1685  */
1686 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1687 {
1688         int rc, leafidx, lev;
1689         s64 b, lblkno;
1690         struct dmapctl *dcp;
1691         int budmin;
1692         struct metapage *mp;
1693 
1694         /* starting at the specified dmap control page level and block
1695          * number, search down the dmap control levels for the starting
1696          * block number of a dmap page that contains or starts off
1697          * sufficient free blocks.
1698          */
1699         for (lev = level, b = *blkno; lev >= 0; lev--) {
1700                 /* get the buffer of the dmap control page for the block
1701                  * number and level (i.e. L0, L1, L2).
1702                  */
1703                 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1704                 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1705                 if (mp == NULL)
1706                         return -EIO;
1707                 dcp = (struct dmapctl *) mp->data;
1708                 budmin = dcp->budmin;
1709 
1710                 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1711                         jfs_error(bmp->db_ipbmap->i_sb,
1712                                   "Corrupt dmapctl page\n");
1713                         release_metapage(mp);
1714                         return -EIO;
1715                 }
1716 
1717                 /* search the tree within the dmap control page for
1718                  * sufficient free space.  if sufficient free space is found,
1719                  * dbFindLeaf() returns the index of the leaf at which
1720                  * free space was found.
1721                  */
1722                 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx, true);
1723 
1724                 /* release the buffer.
1725                  */
1726                 release_metapage(mp);
1727 
1728                 /* space found ?
1729                  */
1730                 if (rc) {
1731                         if (lev != level) {
1732                                 jfs_error(bmp->db_ipbmap->i_sb,
1733                                           "dmap inconsistent\n");
1734                                 return -EIO;
1735                         }
1736                         return -ENOSPC;
1737                 }
1738 
1739                 /* adjust the block number to reflect the location within
1740                  * the dmap control page (i.e. the leaf) at which free
1741                  * space was found.
1742                  */
1743                 b += (((s64) leafidx) << budmin);
1744 
1745                 /* we stop the search at this dmap control page level if
1746                  * the number of blocks required is greater than or equal
1747                  * to the maximum number of blocks described at the next
1748                  * (lower) level.
1749                  */
1750                 if (l2nb >= budmin)
1751                         break;
1752         }
1753 
1754         *blkno = b;
1755         return (0);
1756 }
1757 
1758 
1759 /*
1760  * NAME:        dbAllocCtl()
1761  *
1762  * FUNCTION:    attempt to allocate a specified number of contiguous
1763  *              blocks starting within a specific dmap.
1764  *
1765  *              this routine is called by higher level routines that search
1766  *              the dmap control pages above the actual dmaps for contiguous
1767  *              free space.  the result of successful searches by these
1768  *              routines are the starting block numbers within dmaps, with
1769  *              the dmaps themselves containing the desired contiguous free
1770  *              space or starting a contiguous free space of desired size
1771  *              that is made up of the blocks of one or more dmaps. these
1772  *              calls should not fail due to insufficent resources.
1773  *
1774  *              this routine is called in some cases where it is not known
1775  *              whether it will fail due to insufficient resources.  more
1776  *              specifically, this occurs when allocating from an allocation
1777  *              group whose size is equal to the number of blocks per dmap.
1778  *              in this case, the dmap control pages are not examined prior
1779  *              to calling this routine (to save pathlength) and the call
1780  *              might fail.
1781  *
1782  *              for a request size that fits within a dmap, this routine relies
1783  *              upon the dmap's dmtree to find the requested contiguous free
1784  *              space.  for request sizes that are larger than a dmap, the
1785  *              requested free space will start at the first block of the
1786  *              first dmap (i.e. blkno).
1787  *
1788  * PARAMETERS:
1789  *      bmp     -  pointer to bmap descriptor
1790  *      nblocks  -  actual number of contiguous free blocks to allocate.
1791  *      l2nb     -  log2 number of contiguous free blocks to allocate.
1792  *      blkno    -  starting block number of the dmap to start the allocation
1793  *                  from.
1794  *      results -  on successful return, set to the starting block number
1795  *                 of the newly allocated range.
1796  *
1797  * RETURN VALUES:
1798  *      0       - success
1799  *      -ENOSPC - insufficient disk resources
1800  *      -EIO    - i/o error
1801  *
1802  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1803  */
1804 static int
1805 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1806 {
1807         int rc, nb;
1808         s64 b, lblkno, n;
1809         struct metapage *mp;
1810         struct dmap *dp;
1811 
1812         /* check if the allocation request is confined to a single dmap.
1813          */
1814         if (l2nb <= L2BPERDMAP) {
1815                 /* get the buffer for the dmap.
1816                  */
1817                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1818                 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1819                 if (mp == NULL)
1820                         return -EIO;
1821                 dp = (struct dmap *) mp->data;
1822 
1823                 /* try to allocate the blocks.
1824                  */
1825                 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1826                 if (rc == 0)
1827                         mark_metapage_dirty(mp);
1828 
1829                 release_metapage(mp);
1830 
1831                 return (rc);
1832         }
1833 
1834         /* allocation request involving multiple dmaps. it must start on
1835          * a dmap boundary.
1836          */
1837         assert((blkno & (BPERDMAP - 1)) == 0);
1838 
1839         /* allocate the blocks dmap by dmap.
1840          */
1841         for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1842                 /* get the buffer for the dmap.
1843                  */
1844                 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1845                 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1846                 if (mp == NULL) {
1847                         rc = -EIO;
1848                         goto backout;
1849                 }
1850                 dp = (struct dmap *) mp->data;
1851 
1852                 /* the dmap better be all free.
1853                  */
1854                 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1855                         release_metapage(mp);
1856                         jfs_error(bmp->db_ipbmap->i_sb,
1857                                   "the dmap is not all free\n");
1858                         rc = -EIO;
1859                         goto backout;
1860                 }
1861 
1862                 /* determine how many blocks to allocate from this dmap.
1863                  */
1864                 nb = min_t(s64, n, BPERDMAP);
1865 
1866                 /* allocate the blocks from the dmap.
1867                  */
1868                 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1869                         release_metapage(mp);
1870                         goto backout;
1871                 }
1872 
1873                 /* write the buffer.
1874                  */
1875                 write_metapage(mp);
1876         }
1877 
1878         /* set the results (starting block number) and return.
1879          */
1880         *results = blkno;
1881         return (0);
1882 
1883         /* something failed in handling an allocation request involving
1884          * multiple dmaps.  we'll try to clean up by backing out any
1885          * allocation that has already happened for this request.  if
1886          * we fail in backing out the allocation, we'll mark the file
1887          * system to indicate that blocks have been leaked.
1888          */
1889       backout:
1890 
1891         /* try to backout the allocations dmap by dmap.
1892          */
1893         for (n = nblocks - n, b = blkno; n > 0;
1894              n -= BPERDMAP, b += BPERDMAP) {
1895                 /* get the buffer for this dmap.
1896                  */
1897                 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1898                 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1899                 if (mp == NULL) {
1900                         /* could not back out.  mark the file system
1901                          * to indicate that we have leaked blocks.
1902                          */
1903                         jfs_error(bmp->db_ipbmap->i_sb,
1904                                   "I/O Error: Block Leakage\n");
1905                         continue;
1906                 }
1907                 dp = (struct dmap *) mp->data;
1908 
1909                 /* free the blocks is this dmap.
1910                  */
1911                 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1912                         /* could not back out.  mark the file system
1913                          * to indicate that we have leaked blocks.
1914                          */
1915                         release_metapage(mp);
1916                         jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1917                         continue;
1918                 }
1919 
1920                 /* write the buffer.
1921                  */
1922                 write_metapage(mp);
1923         }
1924 
1925         return (rc);
1926 }
1927 
1928 
1929 /*
1930  * NAME:        dbAllocDmapLev()
1931  *
1932  * FUNCTION:    attempt to allocate a specified number of contiguous blocks
1933  *              from a specified dmap.
1934  *
1935  *              this routine checks if the contiguous blocks are available.
1936  *              if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1937  *              returned.
1938  *
1939  * PARAMETERS:
1940  *      mp      -  pointer to bmap descriptor
1941  *      dp      -  pointer to dmap to attempt to allocate blocks from.
1942  *      l2nb    -  log2 number of contiguous block desired.
1943  *      nblocks -  actual number of contiguous block desired.
1944  *      results -  on successful return, set to the starting block number
1945  *                 of the newly allocated range.
1946  *
1947  * RETURN VALUES:
1948  *      0       - success
1949  *      -ENOSPC - insufficient disk resources
1950  *      -EIO    - i/o error
1951  *
1952  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1953  *      IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1954  */
1955 static int
1956 dbAllocDmapLev(struct bmap * bmp,
1957                struct dmap * dp, int nblocks, int l2nb, s64 * results)
1958 {
1959         s64 blkno;
1960         int leafidx, rc;
1961 
1962         /* can't be more than a dmaps worth of blocks */
1963         assert(l2nb <= L2BPERDMAP);
1964 
1965         /* search the tree within the dmap page for sufficient
1966          * free space.  if sufficient free space is found, dbFindLeaf()
1967          * returns the index of the leaf at which free space was found.
1968          */
1969         if (dbFindLeaf((dmtree_t *) &dp->tree, l2nb, &leafidx, false))
1970                 return -ENOSPC;
1971 
1972         if (leafidx < 0)
1973                 return -EIO;
1974 
1975         /* determine the block number within the file system corresponding
1976          * to the leaf at which free space was found.
1977          */
1978         blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1979 
1980         /* if not all bits of the dmap word are free, get the starting
1981          * bit number within the dmap word of the required string of free
1982          * bits and adjust the block number with this value.
1983          */
1984         if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1985                 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1986 
1987         /* allocate the blocks */
1988         if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1989                 *results = blkno;
1990 
1991         return (rc);
1992 }
1993 
1994 
1995 /*
1996  * NAME:        dbAllocDmap()
1997  *
1998  * FUNCTION:    adjust the disk allocation map to reflect the allocation
1999  *              of a specified block range within a dmap.
2000  *
2001  *              this routine allocates the specified blocks from the dmap
2002  *              through a call to dbAllocBits(). if the allocation of the
2003  *              block range causes the maximum string of free blocks within
2004  *              the dmap to change (i.e. the value of the root of the dmap's
2005  *              dmtree), this routine will cause this change to be reflected
2006  *              up through the appropriate levels of the dmap control pages
2007  *              by a call to dbAdjCtl() for the L0 dmap control page that
2008  *              covers this dmap.
2009  *
2010  * PARAMETERS:
2011  *      bmp     -  pointer to bmap descriptor
2012  *      dp      -  pointer to dmap to allocate the block range from.
2013  *      blkno   -  starting block number of the block to be allocated.
2014  *      nblocks -  number of blocks to be allocated.
2015  *
2016  * RETURN VALUES:
2017  *      0       - success
2018  *      -EIO    - i/o error
2019  *
2020  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2021  */
2022 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2023                        int nblocks)
2024 {
2025         s8 oldroot;
2026         int rc;
2027 
2028         /* save the current value of the root (i.e. maximum free string)
2029          * of the dmap tree.
2030          */
2031         oldroot = dp->tree.stree[ROOT];
2032 
2033         /* allocate the specified (blocks) bits */
2034         dbAllocBits(bmp, dp, blkno, nblocks);
2035 
2036         /* if the root has not changed, done. */
2037         if (dp->tree.stree[ROOT] == oldroot)
2038                 return (0);
2039 
2040         /* root changed. bubble the change up to the dmap control pages.
2041          * if the adjustment of the upper level control pages fails,
2042          * backout the bit allocation (thus making everything consistent).
2043          */
2044         if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2045                 dbFreeBits(bmp, dp, blkno, nblocks);
2046 
2047         return (rc);
2048 }
2049 
2050 
2051 /*
2052  * NAME:        dbFreeDmap()
2053  *
2054  * FUNCTION:    adjust the disk allocation map to reflect the allocation
2055  *              of a specified block range within a dmap.
2056  *
2057  *              this routine frees the specified blocks from the dmap through
2058  *              a call to dbFreeBits(). if the deallocation of the block range
2059  *              causes the maximum string of free blocks within the dmap to
2060  *              change (i.e. the value of the root of the dmap's dmtree), this
2061  *              routine will cause this change to be reflected up through the
2062  *              appropriate levels of the dmap control pages by a call to
2063  *              dbAdjCtl() for the L0 dmap control page that covers this dmap.
2064  *
2065  * PARAMETERS:
2066  *      bmp     -  pointer to bmap descriptor
2067  *      dp      -  pointer to dmap to free the block range from.
2068  *      blkno   -  starting block number of the block to be freed.
2069  *      nblocks -  number of blocks to be freed.
2070  *
2071  * RETURN VALUES:
2072  *      0       - success
2073  *      -EIO    - i/o error
2074  *
2075  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2076  */
2077 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2078                       int nblocks)
2079 {
2080         s8 oldroot;
2081         int rc = 0, word;
2082 
2083         /* save the current value of the root (i.e. maximum free string)
2084          * of the dmap tree.
2085          */
2086         oldroot = dp->tree.stree[ROOT];
2087 
2088         /* free the specified (blocks) bits */
2089         rc = dbFreeBits(bmp, dp, blkno, nblocks);
2090 
2091         /* if error or the root has not changed, done. */
2092         if (rc || (dp->tree.stree[ROOT] == oldroot))
2093                 return (rc);
2094 
2095         /* root changed. bubble the change up to the dmap control pages.
2096          * if the adjustment of the upper level control pages fails,
2097          * backout the deallocation.
2098          */
2099         if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2100                 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2101 
2102                 /* as part of backing out the deallocation, we will have
2103                  * to back split the dmap tree if the deallocation caused
2104                  * the freed blocks to become part of a larger binary buddy
2105                  * system.
2106                  */
2107                 if (dp->tree.stree[word] == NOFREE)
2108                         dbBackSplit((dmtree_t *)&dp->tree, word, false);
2109 
2110                 dbAllocBits(bmp, dp, blkno, nblocks);
2111         }
2112 
2113         return (rc);
2114 }
2115 
2116 
2117 /*
2118  * NAME:        dbAllocBits()
2119  *
2120  * FUNCTION:    allocate a specified block range from a dmap.
2121  *
2122  *              this routine updates the dmap to reflect the working
2123  *              state allocation of the specified block range. it directly
2124  *              updates the bits of the working map and causes the adjustment
2125  *              of the binary buddy system described by the dmap's dmtree
2126  *              leaves to reflect the bits allocated.  it also causes the
2127  *              dmap's dmtree, as a whole, to reflect the allocated range.
2128  *
2129  * PARAMETERS:
2130  *      bmp     -  pointer to bmap descriptor
2131  *      dp      -  pointer to dmap to allocate bits from.
2132  *      blkno   -  starting block number of the bits to be allocated.
2133  *      nblocks -  number of bits to be allocated.
2134  *
2135  * RETURN VALUES: none
2136  *
2137  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2138  */
2139 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2140                         int nblocks)
2141 {
2142         int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2143         dmtree_t *tp = (dmtree_t *) & dp->tree;
2144         int size;
2145         s8 *leaf;
2146 
2147         /* pick up a pointer to the leaves of the dmap tree */
2148         leaf = dp->tree.stree + LEAFIND;
2149 
2150         /* determine the bit number and word within the dmap of the
2151          * starting block.
2152          */
2153         dbitno = blkno & (BPERDMAP - 1);
2154         word = dbitno >> L2DBWORD;
2155 
2156         /* block range better be within the dmap */
2157         assert(dbitno + nblocks <= BPERDMAP);
2158 
2159         /* allocate the bits of the dmap's words corresponding to the block
2160          * range. not all bits of the first and last words may be contained
2161          * within the block range.  if this is the case, we'll work against
2162          * those words (i.e. partial first and/or last) on an individual basis
2163          * (a single pass), allocating the bits of interest by hand and
2164          * updating the leaf corresponding to the dmap word. a single pass
2165          * will be used for all dmap words fully contained within the
2166          * specified range.  within this pass, the bits of all fully contained
2167          * dmap words will be marked as free in a single shot and the leaves
2168          * will be updated. a single leaf may describe the free space of
2169          * multiple dmap words, so we may update only a subset of the actual
2170          * leaves corresponding to the dmap words of the block range.
2171          */
2172         for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2173                 /* determine the bit number within the word and
2174                  * the number of bits within the word.
2175                  */
2176                 wbitno = dbitno & (DBWORD - 1);
2177                 nb = min(rembits, DBWORD - wbitno);
2178 
2179                 /* check if only part of a word is to be allocated.
2180                  */
2181                 if (nb < DBWORD) {
2182                         /* allocate (set to 1) the appropriate bits within
2183                          * this dmap word.
2184                          */
2185                         dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2186                                                       >> wbitno);
2187 
2188                         /* update the leaf for this dmap word. in addition
2189                          * to setting the leaf value to the binary buddy max
2190                          * of the updated dmap word, dbSplit() will split
2191                          * the binary system of the leaves if need be.
2192                          */
2193                         dbSplit(tp, word, BUDMIN,
2194                                 dbMaxBud((u8 *)&dp->wmap[word]), false);
2195 
2196                         word += 1;
2197                 } else {
2198                         /* one or more dmap words are fully contained
2199                          * within the block range.  determine how many
2200                          * words and allocate (set to 1) the bits of these
2201                          * words.
2202                          */
2203                         nwords = rembits >> L2DBWORD;
2204                         memset(&dp->wmap[word], (int) ONES, nwords * 4);
2205 
2206                         /* determine how many bits.
2207                          */
2208                         nb = nwords << L2DBWORD;
2209 
2210                         /* now update the appropriate leaves to reflect
2211                          * the allocated words.
2212                          */
2213                         for (; nwords > 0; nwords -= nw) {
2214                                 if (leaf[word] < BUDMIN) {
2215                                         jfs_error(bmp->db_ipbmap->i_sb,
2216                                                   "leaf page corrupt\n");
2217                                         break;
2218                                 }
2219 
2220                                 /* determine what the leaf value should be
2221                                  * updated to as the minimum of the l2 number
2222                                  * of bits being allocated and the l2 number
2223                                  * of bits currently described by this leaf.
2224                                  */
2225                                 size = min_t(int, leaf[word],
2226                                              NLSTOL2BSZ(nwords));
2227 
2228                                 /* update the leaf to reflect the allocation.
2229                                  * in addition to setting the leaf value to
2230                                  * NOFREE, dbSplit() will split the binary
2231                                  * system of the leaves to reflect the current
2232                                  * allocation (size).
2233                                  */
2234                                 dbSplit(tp, word, size, NOFREE, false);
2235 
2236                                 /* get the number of dmap words handled */
2237                                 nw = BUDSIZE(size, BUDMIN);
2238                                 word += nw;
2239                         }
2240                 }
2241         }
2242 
2243         /* update the free count for this dmap */
2244         le32_add_cpu(&dp->nfree, -nblocks);
2245 
2246         BMAP_LOCK(bmp);
2247 
2248         /* if this allocation group is completely free,
2249          * update the maximum allocation group number if this allocation
2250          * group is the new max.
2251          */
2252         agno = blkno >> bmp->db_agl2size;
2253         if (agno > bmp->db_maxag)
2254                 bmp->db_maxag = agno;
2255 
2256         /* update the free count for the allocation group and map */
2257         bmp->db_agfree[agno] -= nblocks;
2258         bmp->db_nfree -= nblocks;
2259 
2260         BMAP_UNLOCK(bmp);
2261 }
2262 
2263 
2264 /*
2265  * NAME:        dbFreeBits()
2266  *
2267  * FUNCTION:    free a specified block range from a dmap.
2268  *
2269  *              this routine updates the dmap to reflect the working
2270  *              state allocation of the specified block range. it directly
2271  *              updates the bits of the working map and causes the adjustment
2272  *              of the binary buddy system described by the dmap's dmtree
2273  *              leaves to reflect the bits freed.  it also causes the dmap's
2274  *              dmtree, as a whole, to reflect the deallocated range.
2275  *
2276  * PARAMETERS:
2277  *      bmp     -  pointer to bmap descriptor
2278  *      dp      -  pointer to dmap to free bits from.
2279  *      blkno   -  starting block number of the bits to be freed.
2280  *      nblocks -  number of bits to be freed.
2281  *
2282  * RETURN VALUES: 0 for success
2283  *
2284  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2285  */
2286 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2287                        int nblocks)
2288 {
2289         int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2290         dmtree_t *tp = (dmtree_t *) & dp->tree;
2291         int rc = 0;
2292         int size;
2293 
2294         /* determine the bit number and word within the dmap of the
2295          * starting block.
2296          */
2297         dbitno = blkno & (BPERDMAP - 1);
2298         word = dbitno >> L2DBWORD;
2299 
2300         /* block range better be within the dmap.
2301          */
2302         assert(dbitno + nblocks <= BPERDMAP);
2303 
2304         /* free the bits of the dmaps words corresponding to the block range.
2305          * not all bits of the first and last words may be contained within
2306          * the block range.  if this is the case, we'll work against those
2307          * words (i.e. partial first and/or last) on an individual basis
2308          * (a single pass), freeing the bits of interest by hand and updating
2309          * the leaf corresponding to the dmap word. a single pass will be used
2310          * for all dmap words fully contained within the specified range.
2311          * within this pass, the bits of all fully contained dmap words will
2312          * be marked as free in a single shot and the leaves will be updated. a
2313          * single leaf may describe the free space of multiple dmap words,
2314          * so we may update only a subset of the actual leaves corresponding
2315          * to the dmap words of the block range.
2316          *
2317          * dbJoin() is used to update leaf values and will join the binary
2318          * buddy system of the leaves if the new leaf values indicate this
2319          * should be done.
2320          */
2321         for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2322                 /* determine the bit number within the word and
2323                  * the number of bits within the word.
2324                  */
2325                 wbitno = dbitno & (DBWORD - 1);
2326                 nb = min(rembits, DBWORD - wbitno);
2327 
2328                 /* check if only part of a word is to be freed.
2329                  */
2330                 if (nb < DBWORD) {
2331                         /* free (zero) the appropriate bits within this
2332                          * dmap word.
2333                          */
2334                         dp->wmap[word] &=
2335                             cpu_to_le32(~(ONES << (DBWORD - nb)
2336                                           >> wbitno));
2337 
2338                         /* update the leaf for this dmap word.
2339                          */
2340                         rc = dbJoin(tp, word,
2341                                     dbMaxBud((u8 *)&dp->wmap[word]), false);
2342                         if (rc)
2343                                 return rc;
2344 
2345                         word += 1;
2346                 } else {
2347                         /* one or more dmap words are fully contained
2348                          * within the block range.  determine how many
2349                          * words and free (zero) the bits of these words.
2350                          */
2351                         nwords = rembits >> L2DBWORD;
2352                         memset(&dp->wmap[word], 0, nwords * 4);
2353 
2354                         /* determine how many bits.
2355                          */
2356                         nb = nwords << L2DBWORD;
2357 
2358                         /* now update the appropriate leaves to reflect
2359                          * the freed words.
2360                          */
2361                         for (; nwords > 0; nwords -= nw) {
2362                                 /* determine what the leaf value should be
2363                                  * updated to as the minimum of the l2 number
2364                                  * of bits being freed and the l2 (max) number
2365                                  * of bits that can be described by this leaf.
2366                                  */
2367                                 size =
2368                                     min(LITOL2BSZ
2369                                         (word, L2LPERDMAP, BUDMIN),
2370                                         NLSTOL2BSZ(nwords));
2371 
2372                                 /* update the leaf.
2373                                  */
2374                                 rc = dbJoin(tp, word, size, false);
2375                                 if (rc)
2376                                         return rc;
2377 
2378                                 /* get the number of dmap words handled.
2379                                  */
2380                                 nw = BUDSIZE(size, BUDMIN);
2381                                 word += nw;
2382                         }
2383                 }
2384         }
2385 
2386         /* update the free count for this dmap.
2387          */
2388         le32_add_cpu(&dp->nfree, nblocks);
2389 
2390         BMAP_LOCK(bmp);
2391 
2392         /* update the free count for the allocation group and
2393          * map.
2394          */
2395         agno = blkno >> bmp->db_agl2size;
2396         bmp->db_nfree += nblocks;
2397         bmp->db_agfree[agno] += nblocks;
2398 
2399         /* check if this allocation group is not completely free and
2400          * if it is currently the maximum (rightmost) allocation group.
2401          * if so, establish the new maximum allocation group number by
2402          * searching left for the first allocation group with allocation.
2403          */
2404         if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2405             (agno == bmp->db_numag - 1 &&
2406              bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2407                 while (bmp->db_maxag > 0) {
2408                         bmp->db_maxag -= 1;
2409                         if (bmp->db_agfree[bmp->db_maxag] !=
2410                             bmp->db_agsize)
2411                                 break;
2412                 }
2413 
2414                 /* re-establish the allocation group preference if the
2415                  * current preference is right of the maximum allocation
2416                  * group.
2417                  */
2418                 if (bmp->db_agpref > bmp->db_maxag)
2419                         bmp->db_agpref = bmp->db_maxag;
2420         }
2421 
2422         BMAP_UNLOCK(bmp);
2423 
2424         return 0;
2425 }
2426 
2427 
2428 /*
2429  * NAME:        dbAdjCtl()
2430  *
2431  * FUNCTION:    adjust a dmap control page at a specified level to reflect
2432  *              the change in a lower level dmap or dmap control page's
2433  *              maximum string of free blocks (i.e. a change in the root
2434  *              of the lower level object's dmtree) due to the allocation
2435  *              or deallocation of a range of blocks with a single dmap.
2436  *
2437  *              on entry, this routine is provided with the new value of
2438  *              the lower level dmap or dmap control page root and the
2439  *              starting block number of the block range whose allocation
2440  *              or deallocation resulted in the root change.  this range
2441  *              is respresented by a single leaf of the current dmapctl
2442  *              and the leaf will be updated with this value, possibly
2443  *              causing a binary buddy system within the leaves to be
2444  *              split or joined.  the update may also cause the dmapctl's
2445  *              dmtree to be updated.
2446  *
2447  *              if the adjustment of the dmap control page, itself, causes its
2448  *              root to change, this change will be bubbled up to the next dmap
2449  *              control level by a recursive call to this routine, specifying
2450  *              the new root value and the next dmap control page level to
2451  *              be adjusted.
2452  * PARAMETERS:
2453  *      bmp     -  pointer to bmap descriptor
2454  *      blkno   -  the first block of a block range within a dmap.  it is
2455  *                 the allocation or deallocation of this block range that
2456  *                 requires the dmap control page to be adjusted.
2457  *      newval  -  the new value of the lower level dmap or dmap control
2458  *                 page root.
2459  *      alloc   -  'true' if adjustment is due to an allocation.
2460  *      level   -  current level of dmap control page (i.e. L0, L1, L2) to
2461  *                 be adjusted.
2462  *
2463  * RETURN VALUES:
2464  *      0       - success
2465  *      -EIO    - i/o error
2466  *
2467  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2468  */
2469 static int
2470 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2471 {
2472         struct metapage *mp;
2473         s8 oldroot;
2474         int oldval;
2475         s64 lblkno;
2476         struct dmapctl *dcp;
2477         int rc, leafno, ti;
2478 
2479         /* get the buffer for the dmap control page for the specified
2480          * block number and control page level.
2481          */
2482         lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2483         mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2484         if (mp == NULL)
2485                 return -EIO;
2486         dcp = (struct dmapctl *) mp->data;
2487 
2488         if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2489                 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2490                 release_metapage(mp);
2491                 return -EIO;
2492         }
2493 
2494         /* determine the leaf number corresponding to the block and
2495          * the index within the dmap control tree.
2496          */
2497         leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2498         ti = leafno + le32_to_cpu(dcp->leafidx);
2499 
2500         /* save the current leaf value and the current root level (i.e.
2501          * maximum l2 free string described by this dmapctl).
2502          */
2503         oldval = dcp->stree[ti];
2504         oldroot = dcp->stree[ROOT];
2505 
2506         /* check if this is a control page update for an allocation.
2507          * if so, update the leaf to reflect the new leaf value using
2508          * dbSplit(); otherwise (deallocation), use dbJoin() to update
2509          * the leaf with the new value.  in addition to updating the
2510          * leaf, dbSplit() will also split the binary buddy system of
2511          * the leaves, if required, and bubble new values within the
2512          * dmapctl tree, if required.  similarly, dbJoin() will join
2513          * the binary buddy system of leaves and bubble new values up
2514          * the dmapctl tree as required by the new leaf value.
2515          */
2516         if (alloc) {
2517                 /* check if we are in the middle of a binary buddy
2518                  * system.  this happens when we are performing the
2519                  * first allocation out of an allocation group that
2520                  * is part (not the first part) of a larger binary
2521                  * buddy system.  if we are in the middle, back split
2522                  * the system prior to calling dbSplit() which assumes
2523                  * that it is at the front of a binary buddy system.
2524                  */
2525                 if (oldval == NOFREE) {
2526                         rc = dbBackSplit((dmtree_t *)dcp, leafno, true);
2527                         if (rc) {
2528                                 release_metapage(mp);
2529                                 return rc;
2530                         }
2531                         oldval = dcp->stree[ti];
2532                 }
2533                 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval, true);
2534         } else {
2535                 rc = dbJoin((dmtree_t *) dcp, leafno, newval, true);
2536                 if (rc) {
2537                         release_metapage(mp);
2538                         return rc;
2539                 }
2540         }
2541 
2542         /* check if the root of the current dmap control page changed due
2543          * to the update and if the current dmap control page is not at
2544          * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2545          * root changed and this is not the top level), call this routine
2546          * again (recursion) for the next higher level of the mapping to
2547          * reflect the change in root for the current dmap control page.
2548          */
2549         if (dcp->stree[ROOT] != oldroot) {
2550                 /* are we below the top level of the map.  if so,
2551                  * bubble the root up to the next higher level.
2552                  */
2553                 if (level < bmp->db_maxlevel) {
2554                         /* bubble up the new root of this dmap control page to
2555                          * the next level.
2556                          */
2557                         if ((rc =
2558                              dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2559                                       level + 1))) {
2560                                 /* something went wrong in bubbling up the new
2561                                  * root value, so backout the changes to the
2562                                  * current dmap control page.
2563                                  */
2564                                 if (alloc) {
2565                                         dbJoin((dmtree_t *) dcp, leafno,
2566                                                oldval, true);
2567                                 } else {
2568                                         /* the dbJoin() above might have
2569                                          * caused a larger binary buddy system
2570                                          * to form and we may now be in the
2571                                          * middle of it.  if this is the case,
2572                                          * back split the buddies.
2573                                          */
2574                                         if (dcp->stree[ti] == NOFREE)
2575                                                 dbBackSplit((dmtree_t *)
2576                                                             dcp, leafno, true);
2577                                         dbSplit((dmtree_t *) dcp, leafno,
2578                                                 dcp->budmin, oldval, true);
2579                                 }
2580 
2581                                 /* release the buffer and return the error.
2582                                  */
2583                                 release_metapage(mp);
2584                                 return (rc);
2585                         }
2586                 } else {
2587                         /* we're at the top level of the map. update
2588                          * the bmap control page to reflect the size
2589                          * of the maximum free buddy system.
2590                          */
2591                         assert(level == bmp->db_maxlevel);
2592                         if (bmp->db_maxfreebud != oldroot) {
2593                                 jfs_error(bmp->db_ipbmap->i_sb,
2594                                           "the maximum free buddy is not the old root\n");
2595                         }
2596                         bmp->db_maxfreebud = dcp->stree[ROOT];
2597                 }
2598         }
2599 
2600         /* write the buffer.
2601          */
2602         write_metapage(mp);
2603 
2604         return (0);
2605 }
2606 
2607 
2608 /*
2609  * NAME:        dbSplit()
2610  *
2611  * FUNCTION:    update the leaf of a dmtree with a new value, splitting
2612  *              the leaf from the binary buddy system of the dmtree's
2613  *              leaves, as required.
2614  *
2615  * PARAMETERS:
2616  *      tp      - pointer to the tree containing the leaf.
2617  *      leafno  - the number of the leaf to be updated.
2618  *      splitsz - the size the binary buddy system starting at the leaf
2619  *                must be split to, specified as the log2 number of blocks.
2620  *      newval  - the new value for the leaf.
2621  *
2622  * RETURN VALUES: none
2623  *
2624  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2625  */
2626 static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl)
2627 {
2628         int budsz;
2629         int cursz;
2630         s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2631 
2632         /* check if the leaf needs to be split.
2633          */
2634         if (leaf[leafno] > tp->dmt_budmin) {
2635                 /* the split occurs by cutting the buddy system in half
2636                  * at the specified leaf until we reach the specified
2637                  * size.  pick up the starting split size (current size
2638                  * - 1 in l2) and the corresponding buddy size.
2639                  */
2640                 cursz = leaf[leafno] - 1;
2641                 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2642 
2643                 /* split until we reach the specified size.
2644                  */
2645                 while (cursz >= splitsz) {
2646                         /* update the buddy's leaf with its new value.
2647                          */
2648                         dbAdjTree(tp, leafno ^ budsz, cursz, is_ctl);
2649 
2650                         /* on to the next size and buddy.
2651                          */
2652                         cursz -= 1;
2653                         budsz >>= 1;
2654                 }
2655         }
2656 
2657         /* adjust the dmap tree to reflect the specified leaf's new
2658          * value.
2659          */
2660         dbAdjTree(tp, leafno, newval, is_ctl);
2661 }
2662 
2663 
2664 /*
2665  * NAME:        dbBackSplit()
2666  *
2667  * FUNCTION:    back split the binary buddy system of dmtree leaves
2668  *              that hold a specified leaf until the specified leaf
2669  *              starts its own binary buddy system.
2670  *
2671  *              the allocators typically perform allocations at the start
2672  *              of binary buddy systems and dbSplit() is used to accomplish
2673  *              any required splits.  in some cases, however, allocation
2674  *              may occur in the middle of a binary system and requires a
2675  *              back split, with the split proceeding out from the middle of
2676  *              the system (less efficient) rather than the start of the
2677  *              system (more efficient).  the cases in which a back split
2678  *              is required are rare and are limited to the first allocation
2679  *              within an allocation group which is a part (not first part)
2680  *              of a larger binary buddy system and a few exception cases
2681  *              in which a previous join operation must be backed out.
2682  *
2683  * PARAMETERS:
2684  *      tp      - pointer to the tree containing the leaf.
2685  *      leafno  - the number of the leaf to be updated.
2686  *
2687  * RETURN VALUES: none
2688  *
2689  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2690  */
2691 static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl)
2692 {
2693         int budsz, bud, w, bsz, size;
2694         int cursz;
2695         s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2696 
2697         /* leaf should be part (not first part) of a binary
2698          * buddy system.
2699          */
2700         assert(leaf[leafno] == NOFREE);
2701 
2702         /* the back split is accomplished by iteratively finding the leaf
2703          * that starts the buddy system that contains the specified leaf and
2704          * splitting that system in two.  this iteration continues until
2705          * the specified leaf becomes the start of a buddy system.
2706          *
2707          * determine maximum possible l2 size for the specified leaf.
2708          */
2709         size =
2710             LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2711                       tp->dmt_budmin);
2712 
2713         /* determine the number of leaves covered by this size.  this
2714          * is the buddy size that we will start with as we search for
2715          * the buddy system that contains the specified leaf.
2716          */
2717         budsz = BUDSIZE(size, tp->dmt_budmin);
2718 
2719         /* back split.
2720          */
2721         while (leaf[leafno] == NOFREE) {
2722                 /* find the leftmost buddy leaf.
2723                  */
2724                 for (w = leafno, bsz = budsz;; bsz <<= 1,
2725                      w = (w < bud) ? w : bud) {
2726                         if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2727                                 jfs_err("JFS: block map error in dbBackSplit");
2728                                 return -EIO;
2729                         }
2730 
2731                         /* determine the buddy.
2732                          */
2733                         bud = w ^ bsz;
2734 
2735                         /* check if this buddy is the start of the system.
2736                          */
2737                         if (leaf[bud] != NOFREE) {
2738                                 /* split the leaf at the start of the
2739                                  * system in two.
2740                                  */
2741                                 cursz = leaf[bud] - 1;
2742                                 dbSplit(tp, bud, cursz, cursz, is_ctl);
2743                                 break;
2744                         }
2745                 }
2746         }
2747 
2748         if (leaf[leafno] != size) {
2749                 jfs_err("JFS: wrong leaf value in dbBackSplit");
2750                 return -EIO;
2751         }
2752         return 0;
2753 }
2754 
2755 
2756 /*
2757  * NAME:        dbJoin()
2758  *
2759  * FUNCTION:    update the leaf of a dmtree with a new value, joining
2760  *              the leaf with other leaves of the dmtree into a multi-leaf
2761  *              binary buddy system, as required.
2762  *
2763  * PARAMETERS:
2764  *      tp      - pointer to the tree containing the leaf.
2765  *      leafno  - the number of the leaf to be updated.
2766  *      newval  - the new value for the leaf.
2767  *
2768  * RETURN VALUES: none
2769  */
2770 static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2771 {
2772         int budsz, buddy;
2773         s8 *leaf;
2774 
2775         /* can the new leaf value require a join with other leaves ?
2776          */
2777         if (newval >= tp->dmt_budmin) {
2778                 /* pickup a pointer to the leaves of the tree.
2779                  */
2780                 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2781 
2782                 /* try to join the specified leaf into a large binary
2783                  * buddy system.  the join proceeds by attempting to join
2784                  * the specified leafno with its buddy (leaf) at new value.
2785                  * if the join occurs, we attempt to join the left leaf
2786                  * of the joined buddies with its buddy at new value + 1.
2787                  * we continue to join until we find a buddy that cannot be
2788                  * joined (does not have a value equal to the size of the
2789                  * last join) or until all leaves have been joined into a
2790                  * single system.
2791                  *
2792                  * get the buddy size (number of words covered) of
2793                  * the new value.
2794                  */
2795                 budsz = BUDSIZE(newval, tp->dmt_budmin);
2796 
2797                 /* try to join.
2798                  */
2799                 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2800                         /* get the buddy leaf.
2801                          */
2802                         buddy = leafno ^ budsz;
2803 
2804                         /* if the leaf's new value is greater than its
2805                          * buddy's value, we join no more.
2806                          */
2807                         if (newval > leaf[buddy])
2808                                 break;
2809 
2810                         /* It shouldn't be less */
2811                         if (newval < leaf[buddy])
2812                                 return -EIO;
2813 
2814                         /* check which (leafno or buddy) is the left buddy.
2815                          * the left buddy gets to claim the blocks resulting
2816                          * from the join while the right gets to claim none.
2817                          * the left buddy is also eligible to participate in
2818                          * a join at the next higher level while the right
2819                          * is not.
2820                          *
2821                          */
2822                         if (leafno < buddy) {
2823                                 /* leafno is the left buddy.
2824                                  */
2825                                 dbAdjTree(tp, buddy, NOFREE, is_ctl);
2826                         } else {
2827                                 /* buddy is the left buddy and becomes
2828                                  * leafno.
2829                                  */
2830                                 dbAdjTree(tp, leafno, NOFREE, is_ctl);
2831                                 leafno = buddy;
2832                         }
2833 
2834                         /* on to try the next join.
2835                          */
2836                         newval += 1;
2837                         budsz <<= 1;
2838                 }
2839         }
2840 
2841         /* update the leaf value.
2842          */
2843         dbAdjTree(tp, leafno, newval, is_ctl);
2844 
2845         return 0;
2846 }
2847 
2848 
2849 /*
2850  * NAME:        dbAdjTree()
2851  *
2852  * FUNCTION:    update a leaf of a dmtree with a new value, adjusting
2853  *              the dmtree, as required, to reflect the new leaf value.
2854  *              the combination of any buddies must already be done before
2855  *              this is called.
2856  *
2857  * PARAMETERS:
2858  *      tp      - pointer to the tree to be adjusted.
2859  *      leafno  - the number of the leaf to be updated.
2860  *      newval  - the new value for the leaf.
2861  *
2862  * RETURN VALUES: none
2863  */
2864 static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2865 {
2866         int lp, pp, k;
2867         int max, size;
2868 
2869         size = is_ctl ? CTLTREESIZE : TREESIZE;
2870 
2871         /* pick up the index of the leaf for this leafno.
2872          */
2873         lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2874 
2875         if (WARN_ON_ONCE(lp >= size || lp < 0))
2876                 return;
2877 
2878         /* is the current value the same as the old value ?  if so,
2879          * there is nothing to do.
2880          */
2881         if (tp->dmt_stree[lp] == newval)
2882                 return;
2883 
2884         /* set the new value.
2885          */
2886         tp->dmt_stree[lp] = newval;
2887 
2888         /* bubble the new value up the tree as required.
2889          */
2890         for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2891                 /* get the index of the first leaf of the 4 leaf
2892                  * group containing the specified leaf (leafno).
2893                  */
2894                 lp = ((lp - 1) & ~0x03) + 1;
2895 
2896                 /* get the index of the parent of this 4 leaf group.
2897                  */
2898                 pp = (lp - 1) >> 2;
2899 
2900                 /* determine the maximum of the 4 leaves.
2901                  */
2902                 max = TREEMAX(&tp->dmt_stree[lp]);
2903 
2904                 /* if the maximum of the 4 is the same as the
2905                  * parent's value, we're done.
2906                  */
2907                 if (tp->dmt_stree[pp] == max)
2908                         break;
2909 
2910                 /* parent gets new value.
2911                  */
2912                 tp->dmt_stree[pp] = max;
2913 
2914                 /* parent becomes leaf for next go-round.
2915                  */
2916                 lp = pp;
2917         }
2918 }
2919 
2920 
2921 /*
2922  * NAME:        dbFindLeaf()
2923  *
2924  * FUNCTION:    search a dmtree_t for sufficient free blocks, returning
2925  *              the index of a leaf describing the free blocks if
2926  *              sufficient free blocks are found.
2927  *
2928  *              the search starts at the top of the dmtree_t tree and
2929  *              proceeds down the tree to the leftmost leaf with sufficient
2930  *              free space.
2931  *
2932  * PARAMETERS:
2933  *      tp      - pointer to the tree to be searched.
2934  *      l2nb    - log2 number of free blocks to search for.
2935  *      leafidx - return pointer to be set to the index of the leaf
2936  *                describing at least l2nb free blocks if sufficient
2937  *                free blocks are found.
2938  *      is_ctl  - determines if the tree is of type ctl
2939  *
2940  * RETURN VALUES:
2941  *      0       - success
2942  *      -ENOSPC - insufficient free blocks.
2943  */
2944 static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl)
2945 {
2946         int ti, n = 0, k, x = 0;
2947         int max_size, max_idx;
2948 
2949         max_size = is_ctl ? CTLTREESIZE : TREESIZE;
2950         max_idx = is_ctl ? LPERCTL : LPERDMAP;
2951 
2952         /* first check the root of the tree to see if there is
2953          * sufficient free space.
2954          */
2955         if (l2nb > tp->dmt_stree[ROOT])
2956                 return -ENOSPC;
2957 
2958         /* sufficient free space available. now search down the tree
2959          * starting at the next level for the leftmost leaf that
2960          * describes sufficient free space.
2961          */
2962         for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2963              k > 0; k--, ti = ((ti + n) << 2) + 1) {
2964                 /* search the four nodes at this level, starting from
2965                  * the left.
2966                  */
2967                 for (x = ti, n = 0; n < 4; n++) {
2968                         /* sufficient free space found.  move to the next
2969                          * level (or quit if this is the last level).
2970                          */
2971                         if (x + n > max_size)
2972                                 return -ENOSPC;
2973                         if (l2nb <= tp->dmt_stree[x + n])
2974                                 break;
2975                 }
2976 
2977                 /* better have found something since the higher
2978                  * levels of the tree said it was here.
2979                  */
2980                 assert(n < 4);
2981         }
2982         if (le32_to_cpu(tp->dmt_leafidx) >= max_idx)
2983                 return -ENOSPC;
2984 
2985         /* set the return to the leftmost leaf describing sufficient
2986          * free space.
2987          */
2988         *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2989 
2990         return (0);
2991 }
2992 
2993 
2994 /*
2995  * NAME:        dbFindBits()
2996  *
2997  * FUNCTION:    find a specified number of binary buddy free bits within a
2998  *              dmap bitmap word value.
2999  *
3000  *              this routine searches the bitmap value for (1 << l2nb) free
3001  *              bits at (1 << l2nb) alignments within the value.
3002  *
3003  * PARAMETERS:
3004  *      word    -  dmap bitmap word value.
3005  *      l2nb    -  number of free bits specified as a log2 number.
3006  *
3007  * RETURN VALUES:
3008  *      starting bit number of free bits.
3009  */
3010 static int dbFindBits(u32 word, int l2nb)
3011 {
3012         int bitno, nb;
3013         u32 mask;
3014 
3015         /* get the number of bits.
3016          */
3017         nb = 1 << l2nb;
3018         assert(nb <= DBWORD);
3019 
3020         /* complement the word so we can use a mask (i.e. 0s represent
3021          * free bits) and compute the mask.
3022          */
3023         word = ~word;
3024         mask = ONES << (DBWORD - nb);
3025 
3026         /* scan the word for nb free bits at nb alignments.
3027          */
3028         for (bitno = 0; mask != 0; bitno += nb, mask = (mask >> nb)) {
3029                 if ((mask & word) == mask)
3030                         break;
3031         }
3032 
3033         ASSERT(bitno < 32);
3034 
3035         /* return the bit number.
3036          */
3037         return (bitno);
3038 }
3039 
3040 
3041 /*
3042  * NAME:        dbMaxBud(u8 *cp)
3043  *
3044  * FUNCTION:    determine the largest binary buddy string of free
3045  *              bits within 32-bits of the map.
3046  *
3047  * PARAMETERS:
3048  *      cp      -  pointer to the 32-bit value.
3049  *
3050  * RETURN VALUES:
3051  *      largest binary buddy of free bits within a dmap word.
3052  */
3053 static int dbMaxBud(u8 * cp)
3054 {
3055         signed char tmp1, tmp2;
3056 
3057         /* check if the wmap word is all free. if so, the
3058          * free buddy size is BUDMIN.
3059          */
3060         if (*((uint *) cp) == 0)
3061                 return (BUDMIN);
3062 
3063         /* check if the wmap word is half free. if so, the
3064          * free buddy size is BUDMIN-1.
3065          */
3066         if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3067                 return (BUDMIN - 1);
3068 
3069         /* not all free or half free. determine the free buddy
3070          * size thru table lookup using quarters of the wmap word.
3071          */
3072         tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3073         tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3074         return (max(tmp1, tmp2));
3075 }
3076 
3077 
3078 /*
3079  * NAME:        cnttz(uint word)
3080  *
3081  * FUNCTION:    determine the number of trailing zeros within a 32-bit
3082  *              value.
3083  *
3084  * PARAMETERS:
3085  *      value   -  32-bit value to be examined.
3086  *
3087  * RETURN VALUES:
3088  *      count of trailing zeros
3089  */
3090 static int cnttz(u32 word)
3091 {
3092         int n;
3093 
3094         for (n = 0; n < 32; n++, word >>= 1) {
3095                 if (word & 0x01)
3096                         break;
3097         }
3098 
3099         return (n);
3100 }
3101 
3102 
3103 /*
3104  * NAME:        cntlz(u32 value)
3105  *
3106  * FUNCTION:    determine the number of leading zeros within a 32-bit
3107  *              value.
3108  *
3109  * PARAMETERS:
3110  *      value   -  32-bit value to be examined.
3111  *
3112  * RETURN VALUES:
3113  *      count of leading zeros
3114  */
3115 static int cntlz(u32 value)
3116 {
3117         int n;
3118 
3119         for (n = 0; n < 32; n++, value <<= 1) {
3120                 if (value & HIGHORDER)
3121                         break;
3122         }
3123         return (n);
3124 }
3125 
3126 
3127 /*
3128  * NAME:        blkstol2(s64 nb)
3129  *
3130  * FUNCTION:    convert a block count to its log2 value. if the block
3131  *              count is not a l2 multiple, it is rounded up to the next
3132  *              larger l2 multiple.
3133  *
3134  * PARAMETERS:
3135  *      nb      -  number of blocks
3136  *
3137  * RETURN VALUES:
3138  *      log2 number of blocks
3139  */
3140 static int blkstol2(s64 nb)
3141 {
3142         int l2nb;
3143         s64 mask;               /* meant to be signed */
3144 
3145         mask = (s64) 1 << (64 - 1);
3146 
3147         /* count the leading bits.
3148          */
3149         for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3150                 /* leading bit found.
3151                  */
3152                 if (nb & mask) {
3153                         /* determine the l2 value.
3154                          */
3155                         l2nb = (64 - 1) - l2nb;
3156 
3157                         /* check if we need to round up.
3158                          */
3159                         if (~mask & nb)
3160                                 l2nb++;
3161 
3162                         return (l2nb);
3163                 }
3164         }
3165         assert(0);
3166         return 0;               /* fix compiler warning */
3167 }
3168 
3169 
3170 /*
3171  * NAME:        dbAllocBottomUp()
3172  *
3173  * FUNCTION:    alloc the specified block range from the working block
3174  *              allocation map.
3175  *
3176  *              the blocks will be alloc from the working map one dmap
3177  *              at a time.
3178  *
3179  * PARAMETERS:
3180  *      ip      -  pointer to in-core inode;
3181  *      blkno   -  starting block number to be freed.
3182  *      nblocks -  number of blocks to be freed.
3183  *
3184  * RETURN VALUES:
3185  *      0       - success
3186  *      -EIO    - i/o error
3187  */
3188 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3189 {
3190         struct metapage *mp;
3191         struct dmap *dp;
3192         int nb, rc;
3193         s64 lblkno, rem;
3194         struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3195         struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3196 
3197         IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3198 
3199         /* block to be allocated better be within the mapsize. */
3200         ASSERT(nblocks <= bmp->db_mapsize - blkno);
3201 
3202         /*
3203          * allocate the blocks a dmap at a time.
3204          */
3205         mp = NULL;
3206         for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3207                 /* release previous dmap if any */
3208                 if (mp) {
3209                         write_metapage(mp);
3210                 }
3211 
3212                 /* get the buffer for the current dmap. */
3213                 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3214                 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3215                 if (mp == NULL) {
3216                         IREAD_UNLOCK(ipbmap);
3217                         return -EIO;
3218                 }
3219                 dp = (struct dmap *) mp->data;
3220 
3221                 /* determine the number of blocks to be allocated from
3222                  * this dmap.
3223                  */
3224                 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3225 
3226                 /* allocate the blocks. */
3227                 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3228                         release_metapage(mp);
3229                         IREAD_UNLOCK(ipbmap);
3230                         return (rc);
3231                 }
3232         }
3233 
3234         /* write the last buffer. */
3235         write_metapage(mp);
3236 
3237         IREAD_UNLOCK(ipbmap);
3238 
3239         return (0);
3240 }
3241 
3242 
3243 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3244                          int nblocks)
3245 {
3246         int rc;
3247         int dbitno, word, rembits, nb, nwords, wbitno, agno;
3248         s8 oldroot;
3249         struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3250 
3251         /* save the current value of the root (i.e. maximum free string)
3252          * of the dmap tree.
3253          */
3254         oldroot = tp->stree[ROOT];
3255 
3256         /* determine the bit number and word within the dmap of the
3257          * starting block.
3258          */
3259         dbitno = blkno & (BPERDMAP - 1);
3260         word = dbitno >> L2DBWORD;
3261 
3262         /* block range better be within the dmap */
3263         assert(dbitno + nblocks <= BPERDMAP);
3264 
3265         /* allocate the bits of the dmap's words corresponding to the block
3266          * range. not all bits of the first and last words may be contained
3267          * within the block range.  if this is the case, we'll work against
3268          * those words (i.e. partial first and/or last) on an individual basis
3269          * (a single pass), allocating the bits of interest by hand and
3270          * updating the leaf corresponding to the dmap word. a single pass
3271          * will be used for all dmap words fully contained within the
3272          * specified range.  within this pass, the bits of all fully contained
3273          * dmap words will be marked as free in a single shot and the leaves
3274          * will be updated. a single leaf may describe the free space of
3275          * multiple dmap words, so we may update only a subset of the actual
3276          * leaves corresponding to the dmap words of the block range.
3277          */
3278         for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3279                 /* determine the bit number within the word and
3280                  * the number of bits within the word.
3281                  */
3282                 wbitno = dbitno & (DBWORD - 1);
3283                 nb = min(rembits, DBWORD - wbitno);
3284 
3285                 /* check if only part of a word is to be allocated.
3286                  */
3287                 if (nb < DBWORD) {
3288                         /* allocate (set to 1) the appropriate bits within
3289                          * this dmap word.
3290                          */
3291                         dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3292                                                       >> wbitno);
3293 
3294                         word++;
3295                 } else {
3296                         /* one or more dmap words are fully contained
3297                          * within the block range.  determine how many
3298                          * words and allocate (set to 1) the bits of these
3299                          * words.
3300                          */
3301                         nwords = rembits >> L2DBWORD;
3302                         memset(&dp->wmap[word], (int) ONES, nwords * 4);
3303 
3304                         /* determine how many bits */
3305                         nb = nwords << L2DBWORD;
3306                         word += nwords;
3307                 }
3308         }
3309 
3310         /* update the free count for this dmap */
3311         le32_add_cpu(&dp->nfree, -nblocks);
3312 
3313         /* reconstruct summary tree */
3314         dbInitDmapTree(dp);
3315 
3316         BMAP_LOCK(bmp);
3317 
3318         /* if this allocation group is completely free,
3319          * update the highest active allocation group number
3320          * if this allocation group is the new max.
3321          */
3322         agno = blkno >> bmp->db_agl2size;
3323         if (agno > bmp->db_maxag)
3324                 bmp->db_maxag = agno;
3325 
3326         /* update the free count for the allocation group and map */
3327         bmp->db_agfree[agno] -= nblocks;
3328         bmp->db_nfree -= nblocks;
3329 
3330         BMAP_UNLOCK(bmp);
3331 
3332         /* if the root has not changed, done. */
3333         if (tp->stree[ROOT] == oldroot)
3334                 return (0);
3335 
3336         /* root changed. bubble the change up to the dmap control pages.
3337          * if the adjustment of the upper level control pages fails,
3338          * backout the bit allocation (thus making everything consistent).
3339          */
3340         if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3341                 dbFreeBits(bmp, dp, blkno, nblocks);
3342 
3343         return (rc);
3344 }
3345 
3346 
3347 /*
3348  * NAME:        dbExtendFS()
3349  *
3350  * FUNCTION:    extend bmap from blkno for nblocks;
3351  *              dbExtendFS() updates bmap ready for dbAllocBottomUp();
3352  *
3353  * L2
3354  *  |
3355  *   L1---------------------------------L1
3356  *    |                                  |
3357  *     L0---------L0---------L0           L0---------L0---------L0
3358  *      |          |          |            |          |          |
3359  *       d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3360  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3361  *
3362  * <---old---><----------------------------extend----------------------->
3363  */
3364 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3365 {
3366         struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3367         int nbperpage = sbi->nbperpage;
3368         int i, i0 = true, j, j0 = true, k, n;
3369         s64 newsize;
3370         s64 p;
3371         struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3372         struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3373         struct dmap *dp;
3374         s8 *l0leaf, *l1leaf, *l2leaf;
3375         struct bmap *bmp = sbi->bmap;
3376         int agno, l2agsize, oldl2agsize;
3377         s64 ag_rem;
3378 
3379         newsize = blkno + nblocks;
3380 
3381         jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3382                  (long long) blkno, (long long) nblocks, (long long) newsize);
3383 
3384         /*
3385          *      initialize bmap control page.
3386          *
3387          * all the data in bmap control page should exclude
3388          * the mkfs hidden dmap page.
3389          */
3390 
3391         /* update mapsize */
3392         bmp->db_mapsize = newsize;
3393         bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3394 
3395         /* compute new AG size */
3396         l2agsize = dbGetL2AGSize(newsize);
3397         oldl2agsize = bmp->db_agl2size;
3398 
3399         bmp->db_agl2size = l2agsize;
3400         bmp->db_agsize = 1 << l2agsize;
3401 
3402         /* compute new number of AG */
3403         agno = bmp->db_numag;
3404         bmp->db_numag = newsize >> l2agsize;
3405         bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3406 
3407         /*
3408          *      reconfigure db_agfree[]
3409          * from old AG configuration to new AG configuration;
3410          *
3411          * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3412          * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3413          * note: new AG size = old AG size * (2**x).
3414          */
3415         if (l2agsize == oldl2agsize)
3416                 goto extend;
3417         k = 1 << (l2agsize - oldl2agsize);
3418         ag_rem = bmp->db_agfree[0];     /* save agfree[0] */
3419         for (i = 0, n = 0; i < agno; n++) {
3420                 bmp->db_agfree[n] = 0;  /* init collection point */
3421 
3422                 /* coalesce contiguous k AGs; */
3423                 for (j = 0; j < k && i < agno; j++, i++) {
3424                         /* merge AGi to AGn */
3425                         bmp->db_agfree[n] += bmp->db_agfree[i];
3426                 }
3427         }
3428         bmp->db_agfree[0] += ag_rem;    /* restore agfree[0] */
3429 
3430         for (; n < MAXAG; n++)
3431                 bmp->db_agfree[n] = 0;
3432 
3433         /*
3434          * update highest active ag number
3435          */
3436 
3437         bmp->db_maxag = bmp->db_maxag / k;
3438 
3439         /*
3440          *      extend bmap
3441          *
3442          * update bit maps and corresponding level control pages;
3443          * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3444          */
3445       extend:
3446         /* get L2 page */
3447         p = BMAPBLKNO + nbperpage;      /* L2 page */
3448         l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3449         if (!l2mp) {
3450                 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3451                 return -EIO;
3452         }
3453         l2dcp = (struct dmapctl *) l2mp->data;
3454 
3455         /* compute start L1 */
3456         k = blkno >> L2MAXL1SIZE;
3457         l2leaf = l2dcp->stree + CTLLEAFIND + k;
3458         p = BLKTOL1(blkno, sbi->l2nbperpage);   /* L1 page */
3459 
3460         /*
3461          * extend each L1 in L2
3462          */
3463         for (; k < LPERCTL; k++, p += nbperpage) {
3464                 /* get L1 page */
3465                 if (j0) {
3466                         /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3467                         l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3468                         if (l1mp == NULL)
3469                                 goto errout;
3470                         l1dcp = (struct dmapctl *) l1mp->data;
3471 
3472                         /* compute start L0 */
3473                         j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3474                         l1leaf = l1dcp->stree + CTLLEAFIND + j;
3475                         p = BLKTOL0(blkno, sbi->l2nbperpage);
3476                         j0 = false;
3477                 } else {
3478                         /* assign/init L1 page */
3479                         l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3480                         if (l1mp == NULL)
3481                                 goto errout;
3482 
3483                         l1dcp = (struct dmapctl *) l1mp->data;
3484 
3485                         /* compute start L0 */
3486                         j = 0;
3487                         l1leaf = l1dcp->stree + CTLLEAFIND;
3488                         p += nbperpage; /* 1st L0 of L1.k */
3489                 }
3490 
3491                 /*
3492                  * extend each L0 in L1
3493                  */
3494                 for (; j < LPERCTL; j++) {
3495                         /* get L0 page */
3496                         if (i0) {
3497                                 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3498 
3499                                 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3500                                 if (l0mp == NULL)
3501                                         goto errout;
3502                                 l0dcp = (struct dmapctl *) l0mp->data;
3503 
3504                                 /* compute start dmap */
3505                                 i = (blkno & (MAXL0SIZE - 1)) >>
3506                                     L2BPERDMAP;
3507                                 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3508                                 p = BLKTODMAP(blkno,
3509                                               sbi->l2nbperpage);
3510                                 i0 = false;
3511                         } else {
3512                                 /* assign/init L0 page */
3513                                 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3514                                 if (l0mp == NULL)
3515                                         goto errout;
3516 
3517                                 l0dcp = (struct dmapctl *) l0mp->data;
3518 
3519                                 /* compute start dmap */
3520                                 i = 0;
3521                                 l0leaf = l0dcp->stree + CTLLEAFIND;
3522                                 p += nbperpage; /* 1st dmap of L0.j */
3523                         }
3524 
3525                         /*
3526                          * extend each dmap in L0
3527                          */
3528                         for (; i < LPERCTL; i++) {
3529                                 /*
3530                                  * reconstruct the dmap page, and
3531                                  * initialize corresponding parent L0 leaf
3532                                  */
3533                                 if ((n = blkno & (BPERDMAP - 1))) {
3534                                         /* read in dmap page: */
3535                                         mp = read_metapage(ipbmap, p,
3536                                                            PSIZE, 0);
3537                                         if (mp == NULL)
3538                                                 goto errout;
3539                                         n = min(nblocks, (s64)BPERDMAP - n);
3540                                 } else {
3541                                         /* assign/init dmap page */
3542                                         mp = read_metapage(ipbmap, p,
3543                                                            PSIZE, 0);
3544                                         if (mp == NULL)
3545                                                 goto errout;
3546 
3547                                         n = min_t(s64, nblocks, BPERDMAP);
3548                                 }
3549 
3550                                 dp = (struct dmap *) mp->data;
3551                                 *l0leaf = dbInitDmap(dp, blkno, n);
3552 
3553                                 bmp->db_nfree += n;
3554                                 agno = le64_to_cpu(dp->start) >> l2agsize;
3555                                 bmp->db_agfree[agno] += n;
3556 
3557                                 write_metapage(mp);
3558 
3559                                 l0leaf++;
3560                                 p += nbperpage;
3561 
3562                                 blkno += n;
3563                                 nblocks -= n;
3564                                 if (nblocks == 0)
3565                                         break;
3566                         }       /* for each dmap in a L0 */
3567 
3568                         /*
3569                          * build current L0 page from its leaves, and
3570                          * initialize corresponding parent L1 leaf
3571                          */
3572                         *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3573                         write_metapage(l0mp);
3574                         l0mp = NULL;
3575 
3576                         if (nblocks)
3577                                 l1leaf++;       /* continue for next L0 */
3578                         else {
3579                                 /* more than 1 L0 ? */
3580                                 if (j > 0)
3581                                         break;  /* build L1 page */
3582                                 else {
3583                                         /* summarize in global bmap page */
3584                                         bmp->db_maxfreebud = *l1leaf;
3585                                         release_metapage(l1mp);
3586                                         release_metapage(l2mp);
3587                                         goto finalize;
3588                                 }
3589                         }
3590                 }               /* for each L0 in a L1 */
3591 
3592                 /*
3593                  * build current L1 page from its leaves, and
3594                  * initialize corresponding parent L2 leaf
3595                  */
3596                 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3597                 write_metapage(l1mp);
3598                 l1mp = NULL;
3599 
3600                 if (nblocks)
3601                         l2leaf++;       /* continue for next L1 */
3602                 else {
3603                         /* more than 1 L1 ? */
3604                         if (k > 0)
3605                                 break;  /* build L2 page */
3606                         else {
3607                                 /* summarize in global bmap page */
3608                                 bmp->db_maxfreebud = *l2leaf;
3609                                 release_metapage(l2mp);
3610                                 goto finalize;
3611                         }
3612                 }
3613         }                       /* for each L1 in a L2 */
3614 
3615         jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3616 errout:
3617         if (l0mp)
3618                 release_metapage(l0mp);
3619         if (l1mp)
3620                 release_metapage(l1mp);
3621         release_metapage(l2mp);
3622         return -EIO;
3623 
3624         /*
3625          *      finalize bmap control page
3626          */
3627 finalize:
3628 
3629         return 0;
3630 }
3631 
3632 
3633 /*
3634  *      dbFinalizeBmap()
3635  */
3636 void dbFinalizeBmap(struct inode *ipbmap)
3637 {
3638         struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3639         int actags, inactags, l2nl;
3640         s64 ag_rem, actfree, inactfree, avgfree;
3641         int i, n;
3642 
3643         /*
3644          *      finalize bmap control page
3645          */
3646 //finalize:
3647         /*
3648          * compute db_agpref: preferred ag to allocate from
3649          * (the leftmost ag with average free space in it);
3650          */
3651 //agpref:
3652         /* get the number of active ags and inactive ags */
3653         actags = bmp->db_maxag + 1;
3654         inactags = bmp->db_numag - actags;
3655         ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);        /* ??? */
3656 
3657         /* determine how many blocks are in the inactive allocation
3658          * groups. in doing this, we must account for the fact that
3659          * the rightmost group might be a partial group (i.e. file
3660          * system size is not a multiple of the group size).
3661          */
3662         inactfree = (inactags && ag_rem) ?
3663             ((inactags - 1) << bmp->db_agl2size) + ag_rem
3664             : inactags << bmp->db_agl2size;
3665 
3666         /* determine how many free blocks are in the active
3667          * allocation groups plus the average number of free blocks
3668          * within the active ags.
3669          */
3670         actfree = bmp->db_nfree - inactfree;
3671         avgfree = (u32) actfree / (u32) actags;
3672 
3673         /* if the preferred allocation group has not average free space.
3674          * re-establish the preferred group as the leftmost
3675          * group with average free space.
3676          */
3677         if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3678                 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3679                      bmp->db_agpref++) {
3680                         if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3681                                 break;
3682                 }
3683                 if (bmp->db_agpref >= bmp->db_numag) {
3684                         jfs_error(ipbmap->i_sb,
3685                                   "cannot find ag with average freespace\n");
3686                 }
3687         }
3688 
3689         /*
3690          * compute db_aglevel, db_agheight, db_width, db_agstart:
3691          * an ag is covered in aglevel dmapctl summary tree,
3692          * at agheight level height (from leaf) with agwidth number of nodes
3693          * each, which starts at agstart index node of the smmary tree node
3694          * array;
3695          */
3696         bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3697         l2nl =
3698             bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3699         bmp->db_agheight = l2nl >> 1;
3700         bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3701         for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3702              i--) {
3703                 bmp->db_agstart += n;
3704                 n <<= 2;
3705         }
3706 
3707 }
3708 
3709 
3710 /*
3711  * NAME:        dbInitDmap()/ujfs_idmap_page()
3712  *
3713  * FUNCTION:    initialize working/persistent bitmap of the dmap page
3714  *              for the specified number of blocks:
3715  *
3716  *              at entry, the bitmaps had been initialized as free (ZEROS);
3717  *              The number of blocks will only account for the actually
3718  *              existing blocks. Blocks which don't actually exist in
3719  *              the aggregate will be marked as allocated (ONES);
3720  *
3721  * PARAMETERS:
3722  *      dp      - pointer to page of map
3723  *      nblocks - number of blocks this page
3724  *
3725  * RETURNS: NONE
3726  */
3727 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3728 {
3729         int blkno, w, b, r, nw, nb, i;
3730 
3731         /* starting block number within the dmap */
3732         blkno = Blkno & (BPERDMAP - 1);
3733 
3734         if (blkno == 0) {
3735                 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3736                 dp->start = cpu_to_le64(Blkno);
3737 
3738                 if (nblocks == BPERDMAP) {
3739                         memset(&dp->wmap[0], 0, LPERDMAP * 4);
3740                         memset(&dp->pmap[0], 0, LPERDMAP * 4);
3741                         goto initTree;
3742                 }
3743         } else {
3744                 le32_add_cpu(&dp->nblocks, nblocks);
3745                 le32_add_cpu(&dp->nfree, nblocks);
3746         }
3747 
3748         /* word number containing start block number */
3749         w = blkno >> L2DBWORD;
3750 
3751         /*
3752          * free the bits corresponding to the block range (ZEROS):
3753          * note: not all bits of the first and last words may be contained
3754          * within the block range.
3755          */
3756         for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3757                 /* number of bits preceding range to be freed in the word */
3758                 b = blkno & (DBWORD - 1);
3759                 /* number of bits to free in the word */
3760                 nb = min(r, DBWORD - b);
3761 
3762                 /* is partial word to be freed ? */
3763                 if (nb < DBWORD) {
3764                         /* free (set to 0) from the bitmap word */
3765                         dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3766                                                      >> b));
3767                         dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3768                                                      >> b));
3769 
3770                         /* skip the word freed */
3771                         w++;
3772                 } else {
3773                         /* free (set to 0) contiguous bitmap words */
3774                         nw = r >> L2DBWORD;
3775                         memset(&dp->wmap[w], 0, nw * 4);
3776                         memset(&dp->pmap[w], 0, nw * 4);
3777 
3778                         /* skip the words freed */
3779                         nb = nw << L2DBWORD;
3780                         w += nw;
3781                 }
3782         }
3783 
3784         /*
3785          * mark bits following the range to be freed (non-existing
3786          * blocks) as allocated (ONES)
3787          */
3788 
3789         if (blkno == BPERDMAP)
3790                 goto initTree;
3791 
3792         /* the first word beyond the end of existing blocks */
3793         w = blkno >> L2DBWORD;
3794 
3795         /* does nblocks fall on a 32-bit boundary ? */
3796         b = blkno & (DBWORD - 1);
3797         if (b) {
3798                 /* mark a partial word allocated */
3799                 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3800                 w++;
3801         }
3802 
3803         /* set the rest of the words in the page to allocated (ONES) */
3804         for (i = w; i < LPERDMAP; i++)
3805                 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3806 
3807         /*
3808          * init tree
3809          */
3810       initTree:
3811         return (dbInitDmapTree(dp));
3812 }
3813 
3814 
3815 /*
3816  * NAME:        dbInitDmapTree()/ujfs_complete_dmap()
3817  *
3818  * FUNCTION:    initialize summary tree of the specified dmap:
3819  *
3820  *              at entry, bitmap of the dmap has been initialized;
3821  *
3822  * PARAMETERS:
3823  *      dp      - dmap to complete
3824  *      blkno   - starting block number for this dmap
3825  *      treemax - will be filled in with max free for this dmap
3826  *
3827  * RETURNS:     max free string at the root of the tree
3828  */
3829 static int dbInitDmapTree(struct dmap * dp)
3830 {
3831         struct dmaptree *tp;
3832         s8 *cp;
3833         int i;
3834 
3835         /* init fixed info of tree */
3836         tp = &dp->tree;
3837         tp->nleafs = cpu_to_le32(LPERDMAP);
3838         tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3839         tp->leafidx = cpu_to_le32(LEAFIND);
3840         tp->height = cpu_to_le32(4);
3841         tp->budmin = BUDMIN;
3842 
3843         /* init each leaf from corresponding wmap word:
3844          * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3845          * bitmap word are allocated.
3846          */
3847         cp = tp->stree + le32_to_cpu(tp->leafidx);
3848         for (i = 0; i < LPERDMAP; i++)
3849                 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3850 
3851         /* build the dmap's binary buddy summary tree */
3852         return (dbInitTree(tp));
3853 }
3854 
3855 
3856 /*
3857  * NAME:        dbInitTree()/ujfs_adjtree()
3858  *
3859  * FUNCTION:    initialize binary buddy summary tree of a dmap or dmapctl.
3860  *
3861  *              at entry, the leaves of the tree has been initialized
3862  *              from corresponding bitmap word or root of summary tree
3863  *              of the child control page;
3864  *              configure binary buddy system at the leaf level, then
3865  *              bubble up the values of the leaf nodes up the tree.
3866  *
3867  * PARAMETERS:
3868  *      cp      - Pointer to the root of the tree
3869  *      l2leaves- Number of leaf nodes as a power of 2
3870  *      l2min   - Number of blocks that can be covered by a leaf
3871  *                as a power of 2
3872  *
3873  * RETURNS: max free string at the root of the tree
3874  */
3875 static int dbInitTree(struct dmaptree * dtp)
3876 {
3877         int l2max, l2free, bsize, nextb, i;
3878         int child, parent, nparent;
3879         s8 *tp, *cp, *cp1;
3880 
3881         tp = dtp->stree;
3882 
3883         /* Determine the maximum free string possible for the leaves */
3884         l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3885 
3886         /*
3887          * configure the leaf level into binary buddy system
3888          *
3889          * Try to combine buddies starting with a buddy size of 1
3890          * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3891          * can be combined if both buddies have a maximum free of l2min;
3892          * the combination will result in the left-most buddy leaf having
3893          * a maximum free of l2min+1.
3894          * After processing all buddies for a given size, process buddies
3895          * at the next higher buddy size (i.e. current size * 2) and
3896          * the next maximum free (current free + 1).
3897          * This continues until the maximum possible buddy combination
3898          * yields maximum free.
3899          */
3900         for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3901              l2free++, bsize = nextb) {
3902                 /* get next buddy size == current buddy pair size */
3903                 nextb = bsize << 1;
3904 
3905                 /* scan each adjacent buddy pair at current buddy size */
3906                 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3907                      i < le32_to_cpu(dtp->nleafs);
3908                      i += nextb, cp += nextb) {
3909                         /* coalesce if both adjacent buddies are max free */
3910                         if (*cp == l2free && *(cp + bsize) == l2free) {
3911                                 *cp = l2free + 1;       /* left take right */
3912                                 *(cp + bsize) = -1;     /* right give left */
3913                         }
3914                 }
3915         }
3916 
3917         /*
3918          * bubble summary information of leaves up the tree.
3919          *
3920          * Starting at the leaf node level, the four nodes described by
3921          * the higher level parent node are compared for a maximum free and
3922          * this maximum becomes the value of the parent node.
3923          * when all lower level nodes are processed in this fashion then
3924          * move up to the next level (parent becomes a lower level node) and
3925          * continue the process for that level.
3926          */
3927         for (child = le32_to_cpu(dtp->leafidx),
3928              nparent = le32_to_cpu(dtp->nleafs) >> 2;
3929              nparent > 0; nparent >>= 2, child = parent) {
3930                 /* get index of 1st node of parent level */
3931                 parent = (child - 1) >> 2;
3932 
3933                 /* set the value of the parent node as the maximum
3934                  * of the four nodes of the current level.
3935                  */
3936                 for (i = 0, cp = tp + child, cp1 = tp + parent;
3937                      i < nparent; i++, cp += 4, cp1++)
3938                         *cp1 = TREEMAX(cp);
3939         }
3940 
3941         return (*tp);
3942 }
3943 
3944 
3945 /*
3946  *      dbInitDmapCtl()
3947  *
3948  * function: initialize dmapctl page
3949  */
3950 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3951 {                               /* start leaf index not covered by range */
3952         s8 *cp;
3953 
3954         dcp->nleafs = cpu_to_le32(LPERCTL);
3955         dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3956         dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3957         dcp->height = cpu_to_le32(5);
3958         dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3959 
3960         /*
3961          * initialize the leaves of current level that were not covered
3962          * by the specified input block range (i.e. the leaves have no
3963          * low level dmapctl or dmap).
3964          */
3965         cp = &dcp->stree[CTLLEAFIND + i];
3966         for (; i < LPERCTL; i++)
3967                 *cp++ = NOFREE;
3968 
3969         /* build the dmap's binary buddy summary tree */
3970         return (dbInitTree((struct dmaptree *) dcp));
3971 }
3972 
3973 
3974 /*
3975  * NAME:        dbGetL2AGSize()/ujfs_getagl2size()
3976  *
3977  * FUNCTION:    Determine log2(allocation group size) from aggregate size
3978  *
3979  * PARAMETERS:
3980  *      nblocks - Number of blocks in aggregate
3981  *
3982  * RETURNS: log2(allocation group size) in aggregate blocks
3983  */
3984 static int dbGetL2AGSize(s64 nblocks)
3985 {
3986         s64 sz;
3987         s64 m;
3988         int l2sz;
3989 
3990         if (nblocks < BPERDMAP * MAXAG)
3991                 return (L2BPERDMAP);
3992 
3993         /* round up aggregate size to power of 2 */
3994         m = ((u64) 1 << (64 - 1));
3995         for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3996                 if (m & nblocks)
3997                         break;
3998         }
3999 
4000         sz = (s64) 1 << l2sz;
4001         if (sz < nblocks)
4002                 l2sz += 1;
4003 
4004         /* agsize = roundupSize/max_number_of_ag */
4005         return (l2sz - L2MAXAG);
4006 }
4007 
4008 
4009 /*
4010  * NAME:        dbMapFileSizeToMapSize()
4011  *
4012  * FUNCTION:    compute number of blocks the block allocation map file
4013  *              can cover from the map file size;
4014  *
4015  * RETURNS:     Number of blocks which can be covered by this block map file;
4016  */
4017 
4018 /*
4019  * maximum number of map pages at each level including control pages
4020  */
4021 #define MAXL0PAGES      (1 + LPERCTL)
4022 #define MAXL1PAGES      (1 + LPERCTL * MAXL0PAGES)
4023 
4024 /*
4025  * convert number of map pages to the zero origin top dmapctl level
4026  */
4027 #define BMAPPGTOLEV(npages)     \
4028         (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4029          ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4030 
4031 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4032 {
4033         struct super_block *sb = ipbmap->i_sb;
4034         s64 nblocks;
4035         s64 npages, ndmaps;
4036         int level, i;
4037         int complete, factor;
4038 
4039         nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4040         npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4041         level = BMAPPGTOLEV(npages);
4042 
4043         /* At each level, accumulate the number of dmap pages covered by
4044          * the number of full child levels below it;
4045          * repeat for the last incomplete child level.
4046          */
4047         ndmaps = 0;
4048         npages--;               /* skip the first global control page */
4049         /* skip higher level control pages above top level covered by map */
4050         npages -= (2 - level);
4051         npages--;               /* skip top level's control page */
4052         for (i = level; i >= 0; i--) {
4053                 factor =
4054                     (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4055                 complete = (u32) npages / factor;
4056                 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4057                                       ((i == 1) ? LPERCTL : 1));
4058 
4059                 /* pages in last/incomplete child */
4060                 npages = (u32) npages % factor;
4061                 /* skip incomplete child's level control page */
4062                 npages--;
4063         }
4064 
4065         /* convert the number of dmaps into the number of blocks
4066          * which can be covered by the dmaps;
4067          */
4068         nblocks = ndmaps << L2BPERDMAP;
4069 
4070         return (nblocks);
4071 }
4072 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php