~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/libfs.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *      fs/libfs.c
  4  *      Library for filesystems writers.
  5  */
  6 
  7 #include <linux/blkdev.h>
  8 #include <linux/export.h>
  9 #include <linux/pagemap.h>
 10 #include <linux/slab.h>
 11 #include <linux/cred.h>
 12 #include <linux/mount.h>
 13 #include <linux/vfs.h>
 14 #include <linux/quotaops.h>
 15 #include <linux/mutex.h>
 16 #include <linux/namei.h>
 17 #include <linux/exportfs.h>
 18 #include <linux/iversion.h>
 19 #include <linux/writeback.h>
 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
 21 #include <linux/fs_context.h>
 22 #include <linux/pseudo_fs.h>
 23 #include <linux/fsnotify.h>
 24 #include <linux/unicode.h>
 25 #include <linux/fscrypt.h>
 26 #include <linux/pidfs.h>
 27 
 28 #include <linux/uaccess.h>
 29 
 30 #include "internal.h"
 31 
 32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
 33                    struct kstat *stat, u32 request_mask,
 34                    unsigned int query_flags)
 35 {
 36         struct inode *inode = d_inode(path->dentry);
 37         generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
 38         stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
 39         return 0;
 40 }
 41 EXPORT_SYMBOL(simple_getattr);
 42 
 43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
 44 {
 45         u64 id = huge_encode_dev(dentry->d_sb->s_dev);
 46 
 47         buf->f_fsid = u64_to_fsid(id);
 48         buf->f_type = dentry->d_sb->s_magic;
 49         buf->f_bsize = PAGE_SIZE;
 50         buf->f_namelen = NAME_MAX;
 51         return 0;
 52 }
 53 EXPORT_SYMBOL(simple_statfs);
 54 
 55 /*
 56  * Retaining negative dentries for an in-memory filesystem just wastes
 57  * memory and lookup time: arrange for them to be deleted immediately.
 58  */
 59 int always_delete_dentry(const struct dentry *dentry)
 60 {
 61         return 1;
 62 }
 63 EXPORT_SYMBOL(always_delete_dentry);
 64 
 65 const struct dentry_operations simple_dentry_operations = {
 66         .d_delete = always_delete_dentry,
 67 };
 68 EXPORT_SYMBOL(simple_dentry_operations);
 69 
 70 /*
 71  * Lookup the data. This is trivial - if the dentry didn't already
 72  * exist, we know it is negative.  Set d_op to delete negative dentries.
 73  */
 74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
 75 {
 76         if (dentry->d_name.len > NAME_MAX)
 77                 return ERR_PTR(-ENAMETOOLONG);
 78         if (!dentry->d_sb->s_d_op)
 79                 d_set_d_op(dentry, &simple_dentry_operations);
 80         d_add(dentry, NULL);
 81         return NULL;
 82 }
 83 EXPORT_SYMBOL(simple_lookup);
 84 
 85 int dcache_dir_open(struct inode *inode, struct file *file)
 86 {
 87         file->private_data = d_alloc_cursor(file->f_path.dentry);
 88 
 89         return file->private_data ? 0 : -ENOMEM;
 90 }
 91 EXPORT_SYMBOL(dcache_dir_open);
 92 
 93 int dcache_dir_close(struct inode *inode, struct file *file)
 94 {
 95         dput(file->private_data);
 96         return 0;
 97 }
 98 EXPORT_SYMBOL(dcache_dir_close);
 99 
100 /* parent is locked at least shared */
101 /*
102  * Returns an element of siblings' list.
103  * We are looking for <count>th positive after <p>; if
104  * found, dentry is grabbed and returned to caller.
105  * If no such element exists, NULL is returned.
106  */
107 static struct dentry *scan_positives(struct dentry *cursor,
108                                         struct hlist_node **p,
109                                         loff_t count,
110                                         struct dentry *last)
111 {
112         struct dentry *dentry = cursor->d_parent, *found = NULL;
113 
114         spin_lock(&dentry->d_lock);
115         while (*p) {
116                 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
117                 p = &d->d_sib.next;
118                 // we must at least skip cursors, to avoid livelocks
119                 if (d->d_flags & DCACHE_DENTRY_CURSOR)
120                         continue;
121                 if (simple_positive(d) && !--count) {
122                         spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
123                         if (simple_positive(d))
124                                 found = dget_dlock(d);
125                         spin_unlock(&d->d_lock);
126                         if (likely(found))
127                                 break;
128                         count = 1;
129                 }
130                 if (need_resched()) {
131                         if (!hlist_unhashed(&cursor->d_sib))
132                                 __hlist_del(&cursor->d_sib);
133                         hlist_add_behind(&cursor->d_sib, &d->d_sib);
134                         p = &cursor->d_sib.next;
135                         spin_unlock(&dentry->d_lock);
136                         cond_resched();
137                         spin_lock(&dentry->d_lock);
138                 }
139         }
140         spin_unlock(&dentry->d_lock);
141         dput(last);
142         return found;
143 }
144 
145 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
146 {
147         struct dentry *dentry = file->f_path.dentry;
148         switch (whence) {
149                 case 1:
150                         offset += file->f_pos;
151                         fallthrough;
152                 case 0:
153                         if (offset >= 0)
154                                 break;
155                         fallthrough;
156                 default:
157                         return -EINVAL;
158         }
159         if (offset != file->f_pos) {
160                 struct dentry *cursor = file->private_data;
161                 struct dentry *to = NULL;
162 
163                 inode_lock_shared(dentry->d_inode);
164 
165                 if (offset > 2)
166                         to = scan_positives(cursor, &dentry->d_children.first,
167                                             offset - 2, NULL);
168                 spin_lock(&dentry->d_lock);
169                 hlist_del_init(&cursor->d_sib);
170                 if (to)
171                         hlist_add_behind(&cursor->d_sib, &to->d_sib);
172                 spin_unlock(&dentry->d_lock);
173                 dput(to);
174 
175                 file->f_pos = offset;
176 
177                 inode_unlock_shared(dentry->d_inode);
178         }
179         return offset;
180 }
181 EXPORT_SYMBOL(dcache_dir_lseek);
182 
183 /*
184  * Directory is locked and all positive dentries in it are safe, since
185  * for ramfs-type trees they can't go away without unlink() or rmdir(),
186  * both impossible due to the lock on directory.
187  */
188 
189 int dcache_readdir(struct file *file, struct dir_context *ctx)
190 {
191         struct dentry *dentry = file->f_path.dentry;
192         struct dentry *cursor = file->private_data;
193         struct dentry *next = NULL;
194         struct hlist_node **p;
195 
196         if (!dir_emit_dots(file, ctx))
197                 return 0;
198 
199         if (ctx->pos == 2)
200                 p = &dentry->d_children.first;
201         else
202                 p = &cursor->d_sib.next;
203 
204         while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205                 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206                               d_inode(next)->i_ino,
207                               fs_umode_to_dtype(d_inode(next)->i_mode)))
208                         break;
209                 ctx->pos++;
210                 p = &next->d_sib.next;
211         }
212         spin_lock(&dentry->d_lock);
213         hlist_del_init(&cursor->d_sib);
214         if (next)
215                 hlist_add_before(&cursor->d_sib, &next->d_sib);
216         spin_unlock(&dentry->d_lock);
217         dput(next);
218 
219         return 0;
220 }
221 EXPORT_SYMBOL(dcache_readdir);
222 
223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
224 {
225         return -EISDIR;
226 }
227 EXPORT_SYMBOL(generic_read_dir);
228 
229 const struct file_operations simple_dir_operations = {
230         .open           = dcache_dir_open,
231         .release        = dcache_dir_close,
232         .llseek         = dcache_dir_lseek,
233         .read           = generic_read_dir,
234         .iterate_shared = dcache_readdir,
235         .fsync          = noop_fsync,
236 };
237 EXPORT_SYMBOL(simple_dir_operations);
238 
239 const struct inode_operations simple_dir_inode_operations = {
240         .lookup         = simple_lookup,
241 };
242 EXPORT_SYMBOL(simple_dir_inode_operations);
243 
244 /* 0 is '.', 1 is '..', so always start with offset 2 or more */
245 enum {
246         DIR_OFFSET_MIN  = 2,
247 };
248 
249 static void offset_set(struct dentry *dentry, long offset)
250 {
251         dentry->d_fsdata = (void *)offset;
252 }
253 
254 static long dentry2offset(struct dentry *dentry)
255 {
256         return (long)dentry->d_fsdata;
257 }
258 
259 static struct lock_class_key simple_offset_lock_class;
260 
261 /**
262  * simple_offset_init - initialize an offset_ctx
263  * @octx: directory offset map to be initialized
264  *
265  */
266 void simple_offset_init(struct offset_ctx *octx)
267 {
268         mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
269         lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
270         octx->next_offset = DIR_OFFSET_MIN;
271 }
272 
273 /**
274  * simple_offset_add - Add an entry to a directory's offset map
275  * @octx: directory offset ctx to be updated
276  * @dentry: new dentry being added
277  *
278  * Returns zero on success. @octx and the dentry's offset are updated.
279  * Otherwise, a negative errno value is returned.
280  */
281 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
282 {
283         unsigned long offset;
284         int ret;
285 
286         if (dentry2offset(dentry) != 0)
287                 return -EBUSY;
288 
289         ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
290                                  LONG_MAX, &octx->next_offset, GFP_KERNEL);
291         if (ret < 0)
292                 return ret;
293 
294         offset_set(dentry, offset);
295         return 0;
296 }
297 
298 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
299                                  long offset)
300 {
301         int ret;
302 
303         ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
304         if (ret)
305                 return ret;
306         offset_set(dentry, offset);
307         return 0;
308 }
309 
310 /**
311  * simple_offset_remove - Remove an entry to a directory's offset map
312  * @octx: directory offset ctx to be updated
313  * @dentry: dentry being removed
314  *
315  */
316 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
317 {
318         long offset;
319 
320         offset = dentry2offset(dentry);
321         if (offset == 0)
322                 return;
323 
324         mtree_erase(&octx->mt, offset);
325         offset_set(dentry, 0);
326 }
327 
328 /**
329  * simple_offset_empty - Check if a dentry can be unlinked
330  * @dentry: dentry to be tested
331  *
332  * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
333  */
334 int simple_offset_empty(struct dentry *dentry)
335 {
336         struct inode *inode = d_inode(dentry);
337         struct offset_ctx *octx;
338         struct dentry *child;
339         unsigned long index;
340         int ret = 1;
341 
342         if (!inode || !S_ISDIR(inode->i_mode))
343                 return ret;
344 
345         index = DIR_OFFSET_MIN;
346         octx = inode->i_op->get_offset_ctx(inode);
347         mt_for_each(&octx->mt, child, index, LONG_MAX) {
348                 spin_lock(&child->d_lock);
349                 if (simple_positive(child)) {
350                         spin_unlock(&child->d_lock);
351                         ret = 0;
352                         break;
353                 }
354                 spin_unlock(&child->d_lock);
355         }
356 
357         return ret;
358 }
359 
360 /**
361  * simple_offset_rename - handle directory offsets for rename
362  * @old_dir: parent directory of source entry
363  * @old_dentry: dentry of source entry
364  * @new_dir: parent_directory of destination entry
365  * @new_dentry: dentry of destination
366  *
367  * Caller provides appropriate serialization.
368  *
369  * User space expects the directory offset value of the replaced
370  * (new) directory entry to be unchanged after a rename.
371  *
372  * Returns zero on success, a negative errno value on failure.
373  */
374 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
375                          struct inode *new_dir, struct dentry *new_dentry)
376 {
377         struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
378         struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
379         long new_offset = dentry2offset(new_dentry);
380 
381         simple_offset_remove(old_ctx, old_dentry);
382 
383         if (new_offset) {
384                 offset_set(new_dentry, 0);
385                 return simple_offset_replace(new_ctx, old_dentry, new_offset);
386         }
387         return simple_offset_add(new_ctx, old_dentry);
388 }
389 
390 /**
391  * simple_offset_rename_exchange - exchange rename with directory offsets
392  * @old_dir: parent of dentry being moved
393  * @old_dentry: dentry being moved
394  * @new_dir: destination parent
395  * @new_dentry: destination dentry
396  *
397  * This API preserves the directory offset values. Caller provides
398  * appropriate serialization.
399  *
400  * Returns zero on success. Otherwise a negative errno is returned and the
401  * rename is rolled back.
402  */
403 int simple_offset_rename_exchange(struct inode *old_dir,
404                                   struct dentry *old_dentry,
405                                   struct inode *new_dir,
406                                   struct dentry *new_dentry)
407 {
408         struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
409         struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
410         long old_index = dentry2offset(old_dentry);
411         long new_index = dentry2offset(new_dentry);
412         int ret;
413 
414         simple_offset_remove(old_ctx, old_dentry);
415         simple_offset_remove(new_ctx, new_dentry);
416 
417         ret = simple_offset_replace(new_ctx, old_dentry, new_index);
418         if (ret)
419                 goto out_restore;
420 
421         ret = simple_offset_replace(old_ctx, new_dentry, old_index);
422         if (ret) {
423                 simple_offset_remove(new_ctx, old_dentry);
424                 goto out_restore;
425         }
426 
427         ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
428         if (ret) {
429                 simple_offset_remove(new_ctx, old_dentry);
430                 simple_offset_remove(old_ctx, new_dentry);
431                 goto out_restore;
432         }
433         return 0;
434 
435 out_restore:
436         (void)simple_offset_replace(old_ctx, old_dentry, old_index);
437         (void)simple_offset_replace(new_ctx, new_dentry, new_index);
438         return ret;
439 }
440 
441 /**
442  * simple_offset_destroy - Release offset map
443  * @octx: directory offset ctx that is about to be destroyed
444  *
445  * During fs teardown (eg. umount), a directory's offset map might still
446  * contain entries. xa_destroy() cleans out anything that remains.
447  */
448 void simple_offset_destroy(struct offset_ctx *octx)
449 {
450         mtree_destroy(&octx->mt);
451 }
452 
453 /**
454  * offset_dir_llseek - Advance the read position of a directory descriptor
455  * @file: an open directory whose position is to be updated
456  * @offset: a byte offset
457  * @whence: enumerator describing the starting position for this update
458  *
459  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
460  *
461  * Returns the updated read position if successful; otherwise a
462  * negative errno is returned and the read position remains unchanged.
463  */
464 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
465 {
466         switch (whence) {
467         case SEEK_CUR:
468                 offset += file->f_pos;
469                 fallthrough;
470         case SEEK_SET:
471                 if (offset >= 0)
472                         break;
473                 fallthrough;
474         default:
475                 return -EINVAL;
476         }
477 
478         /* In this case, ->private_data is protected by f_pos_lock */
479         file->private_data = NULL;
480         return vfs_setpos(file, offset, LONG_MAX);
481 }
482 
483 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
484 {
485         MA_STATE(mas, &octx->mt, offset, offset);
486         struct dentry *child, *found = NULL;
487 
488         rcu_read_lock();
489         child = mas_find(&mas, LONG_MAX);
490         if (!child)
491                 goto out;
492         spin_lock(&child->d_lock);
493         if (simple_positive(child))
494                 found = dget_dlock(child);
495         spin_unlock(&child->d_lock);
496 out:
497         rcu_read_unlock();
498         return found;
499 }
500 
501 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
502 {
503         struct inode *inode = d_inode(dentry);
504         long offset = dentry2offset(dentry);
505 
506         return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
507                           inode->i_ino, fs_umode_to_dtype(inode->i_mode));
508 }
509 
510 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
511 {
512         struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
513         struct dentry *dentry;
514 
515         while (true) {
516                 dentry = offset_find_next(octx, ctx->pos);
517                 if (!dentry)
518                         return ERR_PTR(-ENOENT);
519 
520                 if (!offset_dir_emit(ctx, dentry)) {
521                         dput(dentry);
522                         break;
523                 }
524 
525                 ctx->pos = dentry2offset(dentry) + 1;
526                 dput(dentry);
527         }
528         return NULL;
529 }
530 
531 /**
532  * offset_readdir - Emit entries starting at offset @ctx->pos
533  * @file: an open directory to iterate over
534  * @ctx: directory iteration context
535  *
536  * Caller must hold @file's i_rwsem to prevent insertion or removal of
537  * entries during this call.
538  *
539  * On entry, @ctx->pos contains an offset that represents the first entry
540  * to be read from the directory.
541  *
542  * The operation continues until there are no more entries to read, or
543  * until the ctx->actor indicates there is no more space in the caller's
544  * output buffer.
545  *
546  * On return, @ctx->pos contains an offset that will read the next entry
547  * in this directory when offset_readdir() is called again with @ctx.
548  *
549  * Return values:
550  *   %0 - Complete
551  */
552 static int offset_readdir(struct file *file, struct dir_context *ctx)
553 {
554         struct dentry *dir = file->f_path.dentry;
555 
556         lockdep_assert_held(&d_inode(dir)->i_rwsem);
557 
558         if (!dir_emit_dots(file, ctx))
559                 return 0;
560 
561         /* In this case, ->private_data is protected by f_pos_lock */
562         if (ctx->pos == DIR_OFFSET_MIN)
563                 file->private_data = NULL;
564         else if (file->private_data == ERR_PTR(-ENOENT))
565                 return 0;
566         file->private_data = offset_iterate_dir(d_inode(dir), ctx);
567         return 0;
568 }
569 
570 const struct file_operations simple_offset_dir_operations = {
571         .llseek         = offset_dir_llseek,
572         .iterate_shared = offset_readdir,
573         .read           = generic_read_dir,
574         .fsync          = noop_fsync,
575 };
576 
577 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
578 {
579         struct dentry *child = NULL, *d;
580 
581         spin_lock(&parent->d_lock);
582         d = prev ? d_next_sibling(prev) : d_first_child(parent);
583         hlist_for_each_entry_from(d, d_sib) {
584                 if (simple_positive(d)) {
585                         spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
586                         if (simple_positive(d))
587                                 child = dget_dlock(d);
588                         spin_unlock(&d->d_lock);
589                         if (likely(child))
590                                 break;
591                 }
592         }
593         spin_unlock(&parent->d_lock);
594         dput(prev);
595         return child;
596 }
597 
598 void simple_recursive_removal(struct dentry *dentry,
599                               void (*callback)(struct dentry *))
600 {
601         struct dentry *this = dget(dentry);
602         while (true) {
603                 struct dentry *victim = NULL, *child;
604                 struct inode *inode = this->d_inode;
605 
606                 inode_lock(inode);
607                 if (d_is_dir(this))
608                         inode->i_flags |= S_DEAD;
609                 while ((child = find_next_child(this, victim)) == NULL) {
610                         // kill and ascend
611                         // update metadata while it's still locked
612                         inode_set_ctime_current(inode);
613                         clear_nlink(inode);
614                         inode_unlock(inode);
615                         victim = this;
616                         this = this->d_parent;
617                         inode = this->d_inode;
618                         inode_lock(inode);
619                         if (simple_positive(victim)) {
620                                 d_invalidate(victim);   // avoid lost mounts
621                                 if (d_is_dir(victim))
622                                         fsnotify_rmdir(inode, victim);
623                                 else
624                                         fsnotify_unlink(inode, victim);
625                                 if (callback)
626                                         callback(victim);
627                                 dput(victim);           // unpin it
628                         }
629                         if (victim == dentry) {
630                                 inode_set_mtime_to_ts(inode,
631                                                       inode_set_ctime_current(inode));
632                                 if (d_is_dir(dentry))
633                                         drop_nlink(inode);
634                                 inode_unlock(inode);
635                                 dput(dentry);
636                                 return;
637                         }
638                 }
639                 inode_unlock(inode);
640                 this = child;
641         }
642 }
643 EXPORT_SYMBOL(simple_recursive_removal);
644 
645 static const struct super_operations simple_super_operations = {
646         .statfs         = simple_statfs,
647 };
648 
649 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
650 {
651         struct pseudo_fs_context *ctx = fc->fs_private;
652         struct inode *root;
653 
654         s->s_maxbytes = MAX_LFS_FILESIZE;
655         s->s_blocksize = PAGE_SIZE;
656         s->s_blocksize_bits = PAGE_SHIFT;
657         s->s_magic = ctx->magic;
658         s->s_op = ctx->ops ?: &simple_super_operations;
659         s->s_xattr = ctx->xattr;
660         s->s_time_gran = 1;
661         root = new_inode(s);
662         if (!root)
663                 return -ENOMEM;
664 
665         /*
666          * since this is the first inode, make it number 1. New inodes created
667          * after this must take care not to collide with it (by passing
668          * max_reserved of 1 to iunique).
669          */
670         root->i_ino = 1;
671         root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
672         simple_inode_init_ts(root);
673         s->s_root = d_make_root(root);
674         if (!s->s_root)
675                 return -ENOMEM;
676         s->s_d_op = ctx->dops;
677         return 0;
678 }
679 
680 static int pseudo_fs_get_tree(struct fs_context *fc)
681 {
682         return get_tree_nodev(fc, pseudo_fs_fill_super);
683 }
684 
685 static void pseudo_fs_free(struct fs_context *fc)
686 {
687         kfree(fc->fs_private);
688 }
689 
690 static const struct fs_context_operations pseudo_fs_context_ops = {
691         .free           = pseudo_fs_free,
692         .get_tree       = pseudo_fs_get_tree,
693 };
694 
695 /*
696  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
697  * will never be mountable)
698  */
699 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
700                                         unsigned long magic)
701 {
702         struct pseudo_fs_context *ctx;
703 
704         ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
705         if (likely(ctx)) {
706                 ctx->magic = magic;
707                 fc->fs_private = ctx;
708                 fc->ops = &pseudo_fs_context_ops;
709                 fc->sb_flags |= SB_NOUSER;
710                 fc->global = true;
711         }
712         return ctx;
713 }
714 EXPORT_SYMBOL(init_pseudo);
715 
716 int simple_open(struct inode *inode, struct file *file)
717 {
718         if (inode->i_private)
719                 file->private_data = inode->i_private;
720         return 0;
721 }
722 EXPORT_SYMBOL(simple_open);
723 
724 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
725 {
726         struct inode *inode = d_inode(old_dentry);
727 
728         inode_set_mtime_to_ts(dir,
729                               inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
730         inc_nlink(inode);
731         ihold(inode);
732         dget(dentry);
733         d_instantiate(dentry, inode);
734         return 0;
735 }
736 EXPORT_SYMBOL(simple_link);
737 
738 int simple_empty(struct dentry *dentry)
739 {
740         struct dentry *child;
741         int ret = 0;
742 
743         spin_lock(&dentry->d_lock);
744         hlist_for_each_entry(child, &dentry->d_children, d_sib) {
745                 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
746                 if (simple_positive(child)) {
747                         spin_unlock(&child->d_lock);
748                         goto out;
749                 }
750                 spin_unlock(&child->d_lock);
751         }
752         ret = 1;
753 out:
754         spin_unlock(&dentry->d_lock);
755         return ret;
756 }
757 EXPORT_SYMBOL(simple_empty);
758 
759 int simple_unlink(struct inode *dir, struct dentry *dentry)
760 {
761         struct inode *inode = d_inode(dentry);
762 
763         inode_set_mtime_to_ts(dir,
764                               inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
765         drop_nlink(inode);
766         dput(dentry);
767         return 0;
768 }
769 EXPORT_SYMBOL(simple_unlink);
770 
771 int simple_rmdir(struct inode *dir, struct dentry *dentry)
772 {
773         if (!simple_empty(dentry))
774                 return -ENOTEMPTY;
775 
776         drop_nlink(d_inode(dentry));
777         simple_unlink(dir, dentry);
778         drop_nlink(dir);
779         return 0;
780 }
781 EXPORT_SYMBOL(simple_rmdir);
782 
783 /**
784  * simple_rename_timestamp - update the various inode timestamps for rename
785  * @old_dir: old parent directory
786  * @old_dentry: dentry that is being renamed
787  * @new_dir: new parent directory
788  * @new_dentry: target for rename
789  *
790  * POSIX mandates that the old and new parent directories have their ctime and
791  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
792  * their ctime updated.
793  */
794 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
795                              struct inode *new_dir, struct dentry *new_dentry)
796 {
797         struct inode *newino = d_inode(new_dentry);
798 
799         inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
800         if (new_dir != old_dir)
801                 inode_set_mtime_to_ts(new_dir,
802                                       inode_set_ctime_current(new_dir));
803         inode_set_ctime_current(d_inode(old_dentry));
804         if (newino)
805                 inode_set_ctime_current(newino);
806 }
807 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
808 
809 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
810                            struct inode *new_dir, struct dentry *new_dentry)
811 {
812         bool old_is_dir = d_is_dir(old_dentry);
813         bool new_is_dir = d_is_dir(new_dentry);
814 
815         if (old_dir != new_dir && old_is_dir != new_is_dir) {
816                 if (old_is_dir) {
817                         drop_nlink(old_dir);
818                         inc_nlink(new_dir);
819                 } else {
820                         drop_nlink(new_dir);
821                         inc_nlink(old_dir);
822                 }
823         }
824         simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
825         return 0;
826 }
827 EXPORT_SYMBOL_GPL(simple_rename_exchange);
828 
829 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
830                   struct dentry *old_dentry, struct inode *new_dir,
831                   struct dentry *new_dentry, unsigned int flags)
832 {
833         int they_are_dirs = d_is_dir(old_dentry);
834 
835         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
836                 return -EINVAL;
837 
838         if (flags & RENAME_EXCHANGE)
839                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
840 
841         if (!simple_empty(new_dentry))
842                 return -ENOTEMPTY;
843 
844         if (d_really_is_positive(new_dentry)) {
845                 simple_unlink(new_dir, new_dentry);
846                 if (they_are_dirs) {
847                         drop_nlink(d_inode(new_dentry));
848                         drop_nlink(old_dir);
849                 }
850         } else if (they_are_dirs) {
851                 drop_nlink(old_dir);
852                 inc_nlink(new_dir);
853         }
854 
855         simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
856         return 0;
857 }
858 EXPORT_SYMBOL(simple_rename);
859 
860 /**
861  * simple_setattr - setattr for simple filesystem
862  * @idmap: idmap of the target mount
863  * @dentry: dentry
864  * @iattr: iattr structure
865  *
866  * Returns 0 on success, -error on failure.
867  *
868  * simple_setattr is a simple ->setattr implementation without a proper
869  * implementation of size changes.
870  *
871  * It can either be used for in-memory filesystems or special files
872  * on simple regular filesystems.  Anything that needs to change on-disk
873  * or wire state on size changes needs its own setattr method.
874  */
875 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
876                    struct iattr *iattr)
877 {
878         struct inode *inode = d_inode(dentry);
879         int error;
880 
881         error = setattr_prepare(idmap, dentry, iattr);
882         if (error)
883                 return error;
884 
885         if (iattr->ia_valid & ATTR_SIZE)
886                 truncate_setsize(inode, iattr->ia_size);
887         setattr_copy(idmap, inode, iattr);
888         mark_inode_dirty(inode);
889         return 0;
890 }
891 EXPORT_SYMBOL(simple_setattr);
892 
893 static int simple_read_folio(struct file *file, struct folio *folio)
894 {
895         folio_zero_range(folio, 0, folio_size(folio));
896         flush_dcache_folio(folio);
897         folio_mark_uptodate(folio);
898         folio_unlock(folio);
899         return 0;
900 }
901 
902 int simple_write_begin(struct file *file, struct address_space *mapping,
903                         loff_t pos, unsigned len,
904                         struct page **pagep, void **fsdata)
905 {
906         struct folio *folio;
907 
908         folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
909                         mapping_gfp_mask(mapping));
910         if (IS_ERR(folio))
911                 return PTR_ERR(folio);
912 
913         *pagep = &folio->page;
914 
915         if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
916                 size_t from = offset_in_folio(folio, pos);
917 
918                 folio_zero_segments(folio, 0, from,
919                                 from + len, folio_size(folio));
920         }
921         return 0;
922 }
923 EXPORT_SYMBOL(simple_write_begin);
924 
925 /**
926  * simple_write_end - .write_end helper for non-block-device FSes
927  * @file: See .write_end of address_space_operations
928  * @mapping:            "
929  * @pos:                "
930  * @len:                "
931  * @copied:             "
932  * @page:               "
933  * @fsdata:             "
934  *
935  * simple_write_end does the minimum needed for updating a page after writing is
936  * done. It has the same API signature as the .write_end of
937  * address_space_operations vector. So it can just be set onto .write_end for
938  * FSes that don't need any other processing. i_mutex is assumed to be held.
939  * Block based filesystems should use generic_write_end().
940  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
941  * is not called, so a filesystem that actually does store data in .write_inode
942  * should extend on what's done here with a call to mark_inode_dirty() in the
943  * case that i_size has changed.
944  *
945  * Use *ONLY* with simple_read_folio()
946  */
947 static int simple_write_end(struct file *file, struct address_space *mapping,
948                         loff_t pos, unsigned len, unsigned copied,
949                         struct page *page, void *fsdata)
950 {
951         struct folio *folio = page_folio(page);
952         struct inode *inode = folio->mapping->host;
953         loff_t last_pos = pos + copied;
954 
955         /* zero the stale part of the folio if we did a short copy */
956         if (!folio_test_uptodate(folio)) {
957                 if (copied < len) {
958                         size_t from = offset_in_folio(folio, pos);
959 
960                         folio_zero_range(folio, from + copied, len - copied);
961                 }
962                 folio_mark_uptodate(folio);
963         }
964         /*
965          * No need to use i_size_read() here, the i_size
966          * cannot change under us because we hold the i_mutex.
967          */
968         if (last_pos > inode->i_size)
969                 i_size_write(inode, last_pos);
970 
971         folio_mark_dirty(folio);
972         folio_unlock(folio);
973         folio_put(folio);
974 
975         return copied;
976 }
977 
978 /*
979  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
980  */
981 const struct address_space_operations ram_aops = {
982         .read_folio     = simple_read_folio,
983         .write_begin    = simple_write_begin,
984         .write_end      = simple_write_end,
985         .dirty_folio    = noop_dirty_folio,
986 };
987 EXPORT_SYMBOL(ram_aops);
988 
989 /*
990  * the inodes created here are not hashed. If you use iunique to generate
991  * unique inode values later for this filesystem, then you must take care
992  * to pass it an appropriate max_reserved value to avoid collisions.
993  */
994 int simple_fill_super(struct super_block *s, unsigned long magic,
995                       const struct tree_descr *files)
996 {
997         struct inode *inode;
998         struct dentry *dentry;
999         int i;
1000 
1001         s->s_blocksize = PAGE_SIZE;
1002         s->s_blocksize_bits = PAGE_SHIFT;
1003         s->s_magic = magic;
1004         s->s_op = &simple_super_operations;
1005         s->s_time_gran = 1;
1006 
1007         inode = new_inode(s);
1008         if (!inode)
1009                 return -ENOMEM;
1010         /*
1011          * because the root inode is 1, the files array must not contain an
1012          * entry at index 1
1013          */
1014         inode->i_ino = 1;
1015         inode->i_mode = S_IFDIR | 0755;
1016         simple_inode_init_ts(inode);
1017         inode->i_op = &simple_dir_inode_operations;
1018         inode->i_fop = &simple_dir_operations;
1019         set_nlink(inode, 2);
1020         s->s_root = d_make_root(inode);
1021         if (!s->s_root)
1022                 return -ENOMEM;
1023         for (i = 0; !files->name || files->name[0]; i++, files++) {
1024                 if (!files->name)
1025                         continue;
1026 
1027                 /* warn if it tries to conflict with the root inode */
1028                 if (unlikely(i == 1))
1029                         printk(KERN_WARNING "%s: %s passed in a files array"
1030                                 "with an index of 1!\n", __func__,
1031                                 s->s_type->name);
1032 
1033                 dentry = d_alloc_name(s->s_root, files->name);
1034                 if (!dentry)
1035                         return -ENOMEM;
1036                 inode = new_inode(s);
1037                 if (!inode) {
1038                         dput(dentry);
1039                         return -ENOMEM;
1040                 }
1041                 inode->i_mode = S_IFREG | files->mode;
1042                 simple_inode_init_ts(inode);
1043                 inode->i_fop = files->ops;
1044                 inode->i_ino = i;
1045                 d_add(dentry, inode);
1046         }
1047         return 0;
1048 }
1049 EXPORT_SYMBOL(simple_fill_super);
1050 
1051 static DEFINE_SPINLOCK(pin_fs_lock);
1052 
1053 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1054 {
1055         struct vfsmount *mnt = NULL;
1056         spin_lock(&pin_fs_lock);
1057         if (unlikely(!*mount)) {
1058                 spin_unlock(&pin_fs_lock);
1059                 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1060                 if (IS_ERR(mnt))
1061                         return PTR_ERR(mnt);
1062                 spin_lock(&pin_fs_lock);
1063                 if (!*mount)
1064                         *mount = mnt;
1065         }
1066         mntget(*mount);
1067         ++*count;
1068         spin_unlock(&pin_fs_lock);
1069         mntput(mnt);
1070         return 0;
1071 }
1072 EXPORT_SYMBOL(simple_pin_fs);
1073 
1074 void simple_release_fs(struct vfsmount **mount, int *count)
1075 {
1076         struct vfsmount *mnt;
1077         spin_lock(&pin_fs_lock);
1078         mnt = *mount;
1079         if (!--*count)
1080                 *mount = NULL;
1081         spin_unlock(&pin_fs_lock);
1082         mntput(mnt);
1083 }
1084 EXPORT_SYMBOL(simple_release_fs);
1085 
1086 /**
1087  * simple_read_from_buffer - copy data from the buffer to user space
1088  * @to: the user space buffer to read to
1089  * @count: the maximum number of bytes to read
1090  * @ppos: the current position in the buffer
1091  * @from: the buffer to read from
1092  * @available: the size of the buffer
1093  *
1094  * The simple_read_from_buffer() function reads up to @count bytes from the
1095  * buffer @from at offset @ppos into the user space address starting at @to.
1096  *
1097  * On success, the number of bytes read is returned and the offset @ppos is
1098  * advanced by this number, or negative value is returned on error.
1099  **/
1100 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1101                                 const void *from, size_t available)
1102 {
1103         loff_t pos = *ppos;
1104         size_t ret;
1105 
1106         if (pos < 0)
1107                 return -EINVAL;
1108         if (pos >= available || !count)
1109                 return 0;
1110         if (count > available - pos)
1111                 count = available - pos;
1112         ret = copy_to_user(to, from + pos, count);
1113         if (ret == count)
1114                 return -EFAULT;
1115         count -= ret;
1116         *ppos = pos + count;
1117         return count;
1118 }
1119 EXPORT_SYMBOL(simple_read_from_buffer);
1120 
1121 /**
1122  * simple_write_to_buffer - copy data from user space to the buffer
1123  * @to: the buffer to write to
1124  * @available: the size of the buffer
1125  * @ppos: the current position in the buffer
1126  * @from: the user space buffer to read from
1127  * @count: the maximum number of bytes to read
1128  *
1129  * The simple_write_to_buffer() function reads up to @count bytes from the user
1130  * space address starting at @from into the buffer @to at offset @ppos.
1131  *
1132  * On success, the number of bytes written is returned and the offset @ppos is
1133  * advanced by this number, or negative value is returned on error.
1134  **/
1135 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1136                 const void __user *from, size_t count)
1137 {
1138         loff_t pos = *ppos;
1139         size_t res;
1140 
1141         if (pos < 0)
1142                 return -EINVAL;
1143         if (pos >= available || !count)
1144                 return 0;
1145         if (count > available - pos)
1146                 count = available - pos;
1147         res = copy_from_user(to + pos, from, count);
1148         if (res == count)
1149                 return -EFAULT;
1150         count -= res;
1151         *ppos = pos + count;
1152         return count;
1153 }
1154 EXPORT_SYMBOL(simple_write_to_buffer);
1155 
1156 /**
1157  * memory_read_from_buffer - copy data from the buffer
1158  * @to: the kernel space buffer to read to
1159  * @count: the maximum number of bytes to read
1160  * @ppos: the current position in the buffer
1161  * @from: the buffer to read from
1162  * @available: the size of the buffer
1163  *
1164  * The memory_read_from_buffer() function reads up to @count bytes from the
1165  * buffer @from at offset @ppos into the kernel space address starting at @to.
1166  *
1167  * On success, the number of bytes read is returned and the offset @ppos is
1168  * advanced by this number, or negative value is returned on error.
1169  **/
1170 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1171                                 const void *from, size_t available)
1172 {
1173         loff_t pos = *ppos;
1174 
1175         if (pos < 0)
1176                 return -EINVAL;
1177         if (pos >= available)
1178                 return 0;
1179         if (count > available - pos)
1180                 count = available - pos;
1181         memcpy(to, from + pos, count);
1182         *ppos = pos + count;
1183 
1184         return count;
1185 }
1186 EXPORT_SYMBOL(memory_read_from_buffer);
1187 
1188 /*
1189  * Transaction based IO.
1190  * The file expects a single write which triggers the transaction, and then
1191  * possibly a read which collects the result - which is stored in a
1192  * file-local buffer.
1193  */
1194 
1195 void simple_transaction_set(struct file *file, size_t n)
1196 {
1197         struct simple_transaction_argresp *ar = file->private_data;
1198 
1199         BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1200 
1201         /*
1202          * The barrier ensures that ar->size will really remain zero until
1203          * ar->data is ready for reading.
1204          */
1205         smp_mb();
1206         ar->size = n;
1207 }
1208 EXPORT_SYMBOL(simple_transaction_set);
1209 
1210 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1211 {
1212         struct simple_transaction_argresp *ar;
1213         static DEFINE_SPINLOCK(simple_transaction_lock);
1214 
1215         if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1216                 return ERR_PTR(-EFBIG);
1217 
1218         ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1219         if (!ar)
1220                 return ERR_PTR(-ENOMEM);
1221 
1222         spin_lock(&simple_transaction_lock);
1223 
1224         /* only one write allowed per open */
1225         if (file->private_data) {
1226                 spin_unlock(&simple_transaction_lock);
1227                 free_page((unsigned long)ar);
1228                 return ERR_PTR(-EBUSY);
1229         }
1230 
1231         file->private_data = ar;
1232 
1233         spin_unlock(&simple_transaction_lock);
1234 
1235         if (copy_from_user(ar->data, buf, size))
1236                 return ERR_PTR(-EFAULT);
1237 
1238         return ar->data;
1239 }
1240 EXPORT_SYMBOL(simple_transaction_get);
1241 
1242 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1243 {
1244         struct simple_transaction_argresp *ar = file->private_data;
1245 
1246         if (!ar)
1247                 return 0;
1248         return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1249 }
1250 EXPORT_SYMBOL(simple_transaction_read);
1251 
1252 int simple_transaction_release(struct inode *inode, struct file *file)
1253 {
1254         free_page((unsigned long)file->private_data);
1255         return 0;
1256 }
1257 EXPORT_SYMBOL(simple_transaction_release);
1258 
1259 /* Simple attribute files */
1260 
1261 struct simple_attr {
1262         int (*get)(void *, u64 *);
1263         int (*set)(void *, u64);
1264         char get_buf[24];       /* enough to store a u64 and "\n\0" */
1265         char set_buf[24];
1266         void *data;
1267         const char *fmt;        /* format for read operation */
1268         struct mutex mutex;     /* protects access to these buffers */
1269 };
1270 
1271 /* simple_attr_open is called by an actual attribute open file operation
1272  * to set the attribute specific access operations. */
1273 int simple_attr_open(struct inode *inode, struct file *file,
1274                      int (*get)(void *, u64 *), int (*set)(void *, u64),
1275                      const char *fmt)
1276 {
1277         struct simple_attr *attr;
1278 
1279         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1280         if (!attr)
1281                 return -ENOMEM;
1282 
1283         attr->get = get;
1284         attr->set = set;
1285         attr->data = inode->i_private;
1286         attr->fmt = fmt;
1287         mutex_init(&attr->mutex);
1288 
1289         file->private_data = attr;
1290 
1291         return nonseekable_open(inode, file);
1292 }
1293 EXPORT_SYMBOL_GPL(simple_attr_open);
1294 
1295 int simple_attr_release(struct inode *inode, struct file *file)
1296 {
1297         kfree(file->private_data);
1298         return 0;
1299 }
1300 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
1301 
1302 /* read from the buffer that is filled with the get function */
1303 ssize_t simple_attr_read(struct file *file, char __user *buf,
1304                          size_t len, loff_t *ppos)
1305 {
1306         struct simple_attr *attr;
1307         size_t size;
1308         ssize_t ret;
1309 
1310         attr = file->private_data;
1311 
1312         if (!attr->get)
1313                 return -EACCES;
1314 
1315         ret = mutex_lock_interruptible(&attr->mutex);
1316         if (ret)
1317                 return ret;
1318 
1319         if (*ppos && attr->get_buf[0]) {
1320                 /* continued read */
1321                 size = strlen(attr->get_buf);
1322         } else {
1323                 /* first read */
1324                 u64 val;
1325                 ret = attr->get(attr->data, &val);
1326                 if (ret)
1327                         goto out;
1328 
1329                 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1330                                  attr->fmt, (unsigned long long)val);
1331         }
1332 
1333         ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1334 out:
1335         mutex_unlock(&attr->mutex);
1336         return ret;
1337 }
1338 EXPORT_SYMBOL_GPL(simple_attr_read);
1339 
1340 /* interpret the buffer as a number to call the set function with */
1341 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1342                           size_t len, loff_t *ppos, bool is_signed)
1343 {
1344         struct simple_attr *attr;
1345         unsigned long long val;
1346         size_t size;
1347         ssize_t ret;
1348 
1349         attr = file->private_data;
1350         if (!attr->set)
1351                 return -EACCES;
1352 
1353         ret = mutex_lock_interruptible(&attr->mutex);
1354         if (ret)
1355                 return ret;
1356 
1357         ret = -EFAULT;
1358         size = min(sizeof(attr->set_buf) - 1, len);
1359         if (copy_from_user(attr->set_buf, buf, size))
1360                 goto out;
1361 
1362         attr->set_buf[size] = '\0';
1363         if (is_signed)
1364                 ret = kstrtoll(attr->set_buf, 0, &val);
1365         else
1366                 ret = kstrtoull(attr->set_buf, 0, &val);
1367         if (ret)
1368                 goto out;
1369         ret = attr->set(attr->data, val);
1370         if (ret == 0)
1371                 ret = len; /* on success, claim we got the whole input */
1372 out:
1373         mutex_unlock(&attr->mutex);
1374         return ret;
1375 }
1376 
1377 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1378                           size_t len, loff_t *ppos)
1379 {
1380         return simple_attr_write_xsigned(file, buf, len, ppos, false);
1381 }
1382 EXPORT_SYMBOL_GPL(simple_attr_write);
1383 
1384 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1385                           size_t len, loff_t *ppos)
1386 {
1387         return simple_attr_write_xsigned(file, buf, len, ppos, true);
1388 }
1389 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1390 
1391 /**
1392  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1393  * @inode:   the object to encode
1394  * @fh:      where to store the file handle fragment
1395  * @max_len: maximum length to store there (in 4 byte units)
1396  * @parent:  parent directory inode, if wanted
1397  *
1398  * This generic encode_fh function assumes that the 32 inode number
1399  * is suitable for locating an inode, and that the generation number
1400  * can be used to check that it is still valid.  It places them in the
1401  * filehandle fragment where export_decode_fh expects to find them.
1402  */
1403 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1404                             struct inode *parent)
1405 {
1406         struct fid *fid = (void *)fh;
1407         int len = *max_len;
1408         int type = FILEID_INO32_GEN;
1409 
1410         if (parent && (len < 4)) {
1411                 *max_len = 4;
1412                 return FILEID_INVALID;
1413         } else if (len < 2) {
1414                 *max_len = 2;
1415                 return FILEID_INVALID;
1416         }
1417 
1418         len = 2;
1419         fid->i32.ino = inode->i_ino;
1420         fid->i32.gen = inode->i_generation;
1421         if (parent) {
1422                 fid->i32.parent_ino = parent->i_ino;
1423                 fid->i32.parent_gen = parent->i_generation;
1424                 len = 4;
1425                 type = FILEID_INO32_GEN_PARENT;
1426         }
1427         *max_len = len;
1428         return type;
1429 }
1430 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1431 
1432 /**
1433  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1434  * @sb:         filesystem to do the file handle conversion on
1435  * @fid:        file handle to convert
1436  * @fh_len:     length of the file handle in bytes
1437  * @fh_type:    type of file handle
1438  * @get_inode:  filesystem callback to retrieve inode
1439  *
1440  * This function decodes @fid as long as it has one of the well-known
1441  * Linux filehandle types and calls @get_inode on it to retrieve the
1442  * inode for the object specified in the file handle.
1443  */
1444 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1445                 int fh_len, int fh_type, struct inode *(*get_inode)
1446                         (struct super_block *sb, u64 ino, u32 gen))
1447 {
1448         struct inode *inode = NULL;
1449 
1450         if (fh_len < 2)
1451                 return NULL;
1452 
1453         switch (fh_type) {
1454         case FILEID_INO32_GEN:
1455         case FILEID_INO32_GEN_PARENT:
1456                 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1457                 break;
1458         }
1459 
1460         return d_obtain_alias(inode);
1461 }
1462 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1463 
1464 /**
1465  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1466  * @sb:         filesystem to do the file handle conversion on
1467  * @fid:        file handle to convert
1468  * @fh_len:     length of the file handle in bytes
1469  * @fh_type:    type of file handle
1470  * @get_inode:  filesystem callback to retrieve inode
1471  *
1472  * This function decodes @fid as long as it has one of the well-known
1473  * Linux filehandle types and calls @get_inode on it to retrieve the
1474  * inode for the _parent_ object specified in the file handle if it
1475  * is specified in the file handle, or NULL otherwise.
1476  */
1477 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1478                 int fh_len, int fh_type, struct inode *(*get_inode)
1479                         (struct super_block *sb, u64 ino, u32 gen))
1480 {
1481         struct inode *inode = NULL;
1482 
1483         if (fh_len <= 2)
1484                 return NULL;
1485 
1486         switch (fh_type) {
1487         case FILEID_INO32_GEN_PARENT:
1488                 inode = get_inode(sb, fid->i32.parent_ino,
1489                                   (fh_len > 3 ? fid->i32.parent_gen : 0));
1490                 break;
1491         }
1492 
1493         return d_obtain_alias(inode);
1494 }
1495 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1496 
1497 /**
1498  * __generic_file_fsync - generic fsync implementation for simple filesystems
1499  *
1500  * @file:       file to synchronize
1501  * @start:      start offset in bytes
1502  * @end:        end offset in bytes (inclusive)
1503  * @datasync:   only synchronize essential metadata if true
1504  *
1505  * This is a generic implementation of the fsync method for simple
1506  * filesystems which track all non-inode metadata in the buffers list
1507  * hanging off the address_space structure.
1508  */
1509 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1510                                  int datasync)
1511 {
1512         struct inode *inode = file->f_mapping->host;
1513         int err;
1514         int ret;
1515 
1516         err = file_write_and_wait_range(file, start, end);
1517         if (err)
1518                 return err;
1519 
1520         inode_lock(inode);
1521         ret = sync_mapping_buffers(inode->i_mapping);
1522         if (!(inode->i_state & I_DIRTY_ALL))
1523                 goto out;
1524         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1525                 goto out;
1526 
1527         err = sync_inode_metadata(inode, 1);
1528         if (ret == 0)
1529                 ret = err;
1530 
1531 out:
1532         inode_unlock(inode);
1533         /* check and advance again to catch errors after syncing out buffers */
1534         err = file_check_and_advance_wb_err(file);
1535         if (ret == 0)
1536                 ret = err;
1537         return ret;
1538 }
1539 EXPORT_SYMBOL(__generic_file_fsync);
1540 
1541 /**
1542  * generic_file_fsync - generic fsync implementation for simple filesystems
1543  *                      with flush
1544  * @file:       file to synchronize
1545  * @start:      start offset in bytes
1546  * @end:        end offset in bytes (inclusive)
1547  * @datasync:   only synchronize essential metadata if true
1548  *
1549  */
1550 
1551 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1552                        int datasync)
1553 {
1554         struct inode *inode = file->f_mapping->host;
1555         int err;
1556 
1557         err = __generic_file_fsync(file, start, end, datasync);
1558         if (err)
1559                 return err;
1560         return blkdev_issue_flush(inode->i_sb->s_bdev);
1561 }
1562 EXPORT_SYMBOL(generic_file_fsync);
1563 
1564 /**
1565  * generic_check_addressable - Check addressability of file system
1566  * @blocksize_bits:     log of file system block size
1567  * @num_blocks:         number of blocks in file system
1568  *
1569  * Determine whether a file system with @num_blocks blocks (and a
1570  * block size of 2**@blocksize_bits) is addressable by the sector_t
1571  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1572  */
1573 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1574 {
1575         u64 last_fs_block = num_blocks - 1;
1576         u64 last_fs_page =
1577                 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1578 
1579         if (unlikely(num_blocks == 0))
1580                 return 0;
1581 
1582         if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1583                 return -EINVAL;
1584 
1585         if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1586             (last_fs_page > (pgoff_t)(~0ULL))) {
1587                 return -EFBIG;
1588         }
1589         return 0;
1590 }
1591 EXPORT_SYMBOL(generic_check_addressable);
1592 
1593 /*
1594  * No-op implementation of ->fsync for in-memory filesystems.
1595  */
1596 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1597 {
1598         return 0;
1599 }
1600 EXPORT_SYMBOL(noop_fsync);
1601 
1602 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1603 {
1604         /*
1605          * iomap based filesystems support direct I/O without need for
1606          * this callback. However, it still needs to be set in
1607          * inode->a_ops so that open/fcntl know that direct I/O is
1608          * generally supported.
1609          */
1610         return -EINVAL;
1611 }
1612 EXPORT_SYMBOL_GPL(noop_direct_IO);
1613 
1614 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1615 void kfree_link(void *p)
1616 {
1617         kfree(p);
1618 }
1619 EXPORT_SYMBOL(kfree_link);
1620 
1621 struct inode *alloc_anon_inode(struct super_block *s)
1622 {
1623         static const struct address_space_operations anon_aops = {
1624                 .dirty_folio    = noop_dirty_folio,
1625         };
1626         struct inode *inode = new_inode_pseudo(s);
1627 
1628         if (!inode)
1629                 return ERR_PTR(-ENOMEM);
1630 
1631         inode->i_ino = get_next_ino();
1632         inode->i_mapping->a_ops = &anon_aops;
1633 
1634         /*
1635          * Mark the inode dirty from the very beginning,
1636          * that way it will never be moved to the dirty
1637          * list because mark_inode_dirty() will think
1638          * that it already _is_ on the dirty list.
1639          */
1640         inode->i_state = I_DIRTY;
1641         inode->i_mode = S_IRUSR | S_IWUSR;
1642         inode->i_uid = current_fsuid();
1643         inode->i_gid = current_fsgid();
1644         inode->i_flags |= S_PRIVATE;
1645         simple_inode_init_ts(inode);
1646         return inode;
1647 }
1648 EXPORT_SYMBOL(alloc_anon_inode);
1649 
1650 /**
1651  * simple_nosetlease - generic helper for prohibiting leases
1652  * @filp: file pointer
1653  * @arg: type of lease to obtain
1654  * @flp: new lease supplied for insertion
1655  * @priv: private data for lm_setup operation
1656  *
1657  * Generic helper for filesystems that do not wish to allow leases to be set.
1658  * All arguments are ignored and it just returns -EINVAL.
1659  */
1660 int
1661 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1662                   void **priv)
1663 {
1664         return -EINVAL;
1665 }
1666 EXPORT_SYMBOL(simple_nosetlease);
1667 
1668 /**
1669  * simple_get_link - generic helper to get the target of "fast" symlinks
1670  * @dentry: not used here
1671  * @inode: the symlink inode
1672  * @done: not used here
1673  *
1674  * Generic helper for filesystems to use for symlink inodes where a pointer to
1675  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1676  * since as an optimization the path lookup code uses any non-NULL ->i_link
1677  * directly, without calling ->get_link().  But ->get_link() still must be set,
1678  * to mark the inode_operations as being for a symlink.
1679  *
1680  * Return: the symlink target
1681  */
1682 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1683                             struct delayed_call *done)
1684 {
1685         return inode->i_link;
1686 }
1687 EXPORT_SYMBOL(simple_get_link);
1688 
1689 const struct inode_operations simple_symlink_inode_operations = {
1690         .get_link = simple_get_link,
1691 };
1692 EXPORT_SYMBOL(simple_symlink_inode_operations);
1693 
1694 /*
1695  * Operations for a permanently empty directory.
1696  */
1697 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1698 {
1699         return ERR_PTR(-ENOENT);
1700 }
1701 
1702 static int empty_dir_getattr(struct mnt_idmap *idmap,
1703                              const struct path *path, struct kstat *stat,
1704                              u32 request_mask, unsigned int query_flags)
1705 {
1706         struct inode *inode = d_inode(path->dentry);
1707         generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1708         return 0;
1709 }
1710 
1711 static int empty_dir_setattr(struct mnt_idmap *idmap,
1712                              struct dentry *dentry, struct iattr *attr)
1713 {
1714         return -EPERM;
1715 }
1716 
1717 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1718 {
1719         return -EOPNOTSUPP;
1720 }
1721 
1722 static const struct inode_operations empty_dir_inode_operations = {
1723         .lookup         = empty_dir_lookup,
1724         .permission     = generic_permission,
1725         .setattr        = empty_dir_setattr,
1726         .getattr        = empty_dir_getattr,
1727         .listxattr      = empty_dir_listxattr,
1728 };
1729 
1730 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1731 {
1732         /* An empty directory has two entries . and .. at offsets 0 and 1 */
1733         return generic_file_llseek_size(file, offset, whence, 2, 2);
1734 }
1735 
1736 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1737 {
1738         dir_emit_dots(file, ctx);
1739         return 0;
1740 }
1741 
1742 static const struct file_operations empty_dir_operations = {
1743         .llseek         = empty_dir_llseek,
1744         .read           = generic_read_dir,
1745         .iterate_shared = empty_dir_readdir,
1746         .fsync          = noop_fsync,
1747 };
1748 
1749 
1750 void make_empty_dir_inode(struct inode *inode)
1751 {
1752         set_nlink(inode, 2);
1753         inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1754         inode->i_uid = GLOBAL_ROOT_UID;
1755         inode->i_gid = GLOBAL_ROOT_GID;
1756         inode->i_rdev = 0;
1757         inode->i_size = 0;
1758         inode->i_blkbits = PAGE_SHIFT;
1759         inode->i_blocks = 0;
1760 
1761         inode->i_op = &empty_dir_inode_operations;
1762         inode->i_opflags &= ~IOP_XATTR;
1763         inode->i_fop = &empty_dir_operations;
1764 }
1765 
1766 bool is_empty_dir_inode(struct inode *inode)
1767 {
1768         return (inode->i_fop == &empty_dir_operations) &&
1769                 (inode->i_op == &empty_dir_inode_operations);
1770 }
1771 
1772 #if IS_ENABLED(CONFIG_UNICODE)
1773 /**
1774  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1775  * @dentry:     dentry whose name we are checking against
1776  * @len:        len of name of dentry
1777  * @str:        str pointer to name of dentry
1778  * @name:       Name to compare against
1779  *
1780  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1781  */
1782 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1783                                 const char *str, const struct qstr *name)
1784 {
1785         const struct dentry *parent;
1786         const struct inode *dir;
1787         char strbuf[DNAME_INLINE_LEN];
1788         struct qstr qstr;
1789 
1790         /*
1791          * Attempt a case-sensitive match first. It is cheaper and
1792          * should cover most lookups, including all the sane
1793          * applications that expect a case-sensitive filesystem.
1794          *
1795          * This comparison is safe under RCU because the caller
1796          * guarantees the consistency between str and len. See
1797          * __d_lookup_rcu_op_compare() for details.
1798          */
1799         if (len == name->len && !memcmp(str, name->name, len))
1800                 return 0;
1801 
1802         parent = READ_ONCE(dentry->d_parent);
1803         dir = READ_ONCE(parent->d_inode);
1804         if (!dir || !IS_CASEFOLDED(dir))
1805                 return 1;
1806 
1807         /*
1808          * If the dentry name is stored in-line, then it may be concurrently
1809          * modified by a rename.  If this happens, the VFS will eventually retry
1810          * the lookup, so it doesn't matter what ->d_compare() returns.
1811          * However, it's unsafe to call utf8_strncasecmp() with an unstable
1812          * string.  Therefore, we have to copy the name into a temporary buffer.
1813          */
1814         if (len <= DNAME_INLINE_LEN - 1) {
1815                 memcpy(strbuf, str, len);
1816                 strbuf[len] = 0;
1817                 str = strbuf;
1818                 /* prevent compiler from optimizing out the temporary buffer */
1819                 barrier();
1820         }
1821         qstr.len = len;
1822         qstr.name = str;
1823 
1824         return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1825 }
1826 
1827 /**
1828  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1829  * @dentry:     dentry of the parent directory
1830  * @str:        qstr of name whose hash we should fill in
1831  *
1832  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1833  */
1834 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1835 {
1836         const struct inode *dir = READ_ONCE(dentry->d_inode);
1837         struct super_block *sb = dentry->d_sb;
1838         const struct unicode_map *um = sb->s_encoding;
1839         int ret;
1840 
1841         if (!dir || !IS_CASEFOLDED(dir))
1842                 return 0;
1843 
1844         ret = utf8_casefold_hash(um, dentry, str);
1845         if (ret < 0 && sb_has_strict_encoding(sb))
1846                 return -EINVAL;
1847         return 0;
1848 }
1849 
1850 static const struct dentry_operations generic_ci_dentry_ops = {
1851         .d_hash = generic_ci_d_hash,
1852         .d_compare = generic_ci_d_compare,
1853 #ifdef CONFIG_FS_ENCRYPTION
1854         .d_revalidate = fscrypt_d_revalidate,
1855 #endif
1856 };
1857 
1858 /**
1859  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1860  * This is a filesystem helper for comparison with directory entries.
1861  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1862  *
1863  * @parent: Inode of the parent of the dirent under comparison
1864  * @name: name under lookup.
1865  * @folded_name: Optional pre-folded name under lookup
1866  * @de_name: Dirent name.
1867  * @de_name_len: dirent name length.
1868  *
1869  * Test whether a case-insensitive directory entry matches the filename
1870  * being searched.  If @folded_name is provided, it is used instead of
1871  * recalculating the casefold of @name.
1872  *
1873  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1874  * < 0 on error.
1875  */
1876 int generic_ci_match(const struct inode *parent,
1877                      const struct qstr *name,
1878                      const struct qstr *folded_name,
1879                      const u8 *de_name, u32 de_name_len)
1880 {
1881         const struct super_block *sb = parent->i_sb;
1882         const struct unicode_map *um = sb->s_encoding;
1883         struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1884         struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1885         int res = 0;
1886 
1887         if (IS_ENCRYPTED(parent)) {
1888                 const struct fscrypt_str encrypted_name =
1889                         FSTR_INIT((u8 *) de_name, de_name_len);
1890 
1891                 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1892                         return -EINVAL;
1893 
1894                 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1895                 if (!decrypted_name.name)
1896                         return -ENOMEM;
1897                 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1898                                                 &decrypted_name);
1899                 if (res < 0) {
1900                         kfree(decrypted_name.name);
1901                         return res;
1902                 }
1903                 dirent.name = decrypted_name.name;
1904                 dirent.len = decrypted_name.len;
1905         }
1906 
1907         /*
1908          * Attempt a case-sensitive match first. It is cheaper and
1909          * should cover most lookups, including all the sane
1910          * applications that expect a case-sensitive filesystem.
1911          */
1912 
1913         if (dirent.len == name->len &&
1914             !memcmp(name->name, dirent.name, dirent.len))
1915                 goto out;
1916 
1917         if (folded_name->name)
1918                 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1919         else
1920                 res = utf8_strncasecmp(um, name, &dirent);
1921 
1922 out:
1923         kfree(decrypted_name.name);
1924         if (res < 0 && sb_has_strict_encoding(sb)) {
1925                 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1926                 return 0;
1927         }
1928         return !res;
1929 }
1930 EXPORT_SYMBOL(generic_ci_match);
1931 #endif
1932 
1933 #ifdef CONFIG_FS_ENCRYPTION
1934 static const struct dentry_operations generic_encrypted_dentry_ops = {
1935         .d_revalidate = fscrypt_d_revalidate,
1936 };
1937 #endif
1938 
1939 /**
1940  * generic_set_sb_d_ops - helper for choosing the set of
1941  * filesystem-wide dentry operations for the enabled features
1942  * @sb: superblock to be configured
1943  *
1944  * Filesystems supporting casefolding and/or fscrypt can call this
1945  * helper at mount-time to configure sb->s_d_op to best set of dentry
1946  * operations required for the enabled features. The helper must be
1947  * called after these have been configured, but before the root dentry
1948  * is created.
1949  */
1950 void generic_set_sb_d_ops(struct super_block *sb)
1951 {
1952 #if IS_ENABLED(CONFIG_UNICODE)
1953         if (sb->s_encoding) {
1954                 sb->s_d_op = &generic_ci_dentry_ops;
1955                 return;
1956         }
1957 #endif
1958 #ifdef CONFIG_FS_ENCRYPTION
1959         if (sb->s_cop) {
1960                 sb->s_d_op = &generic_encrypted_dentry_ops;
1961                 return;
1962         }
1963 #endif
1964 }
1965 EXPORT_SYMBOL(generic_set_sb_d_ops);
1966 
1967 /**
1968  * inode_maybe_inc_iversion - increments i_version
1969  * @inode: inode with the i_version that should be updated
1970  * @force: increment the counter even if it's not necessary?
1971  *
1972  * Every time the inode is modified, the i_version field must be seen to have
1973  * changed by any observer.
1974  *
1975  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1976  * the value, and clear the queried flag.
1977  *
1978  * In the common case where neither is set, then we can return "false" without
1979  * updating i_version.
1980  *
1981  * If this function returns false, and no other metadata has changed, then we
1982  * can avoid logging the metadata.
1983  */
1984 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1985 {
1986         u64 cur, new;
1987 
1988         /*
1989          * The i_version field is not strictly ordered with any other inode
1990          * information, but the legacy inode_inc_iversion code used a spinlock
1991          * to serialize increments.
1992          *
1993          * Here, we add full memory barriers to ensure that any de-facto
1994          * ordering with other info is preserved.
1995          *
1996          * This barrier pairs with the barrier in inode_query_iversion()
1997          */
1998         smp_mb();
1999         cur = inode_peek_iversion_raw(inode);
2000         do {
2001                 /* If flag is clear then we needn't do anything */
2002                 if (!force && !(cur & I_VERSION_QUERIED))
2003                         return false;
2004 
2005                 /* Since lowest bit is flag, add 2 to avoid it */
2006                 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2007         } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2008         return true;
2009 }
2010 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2011 
2012 /**
2013  * inode_query_iversion - read i_version for later use
2014  * @inode: inode from which i_version should be read
2015  *
2016  * Read the inode i_version counter. This should be used by callers that wish
2017  * to store the returned i_version for later comparison. This will guarantee
2018  * that a later query of the i_version will result in a different value if
2019  * anything has changed.
2020  *
2021  * In this implementation, we fetch the current value, set the QUERIED flag and
2022  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2023  * that fails, we try again with the newly fetched value from the cmpxchg.
2024  */
2025 u64 inode_query_iversion(struct inode *inode)
2026 {
2027         u64 cur, new;
2028 
2029         cur = inode_peek_iversion_raw(inode);
2030         do {
2031                 /* If flag is already set, then no need to swap */
2032                 if (cur & I_VERSION_QUERIED) {
2033                         /*
2034                          * This barrier (and the implicit barrier in the
2035                          * cmpxchg below) pairs with the barrier in
2036                          * inode_maybe_inc_iversion().
2037                          */
2038                         smp_mb();
2039                         break;
2040                 }
2041 
2042                 new = cur | I_VERSION_QUERIED;
2043         } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2044         return cur >> I_VERSION_QUERIED_SHIFT;
2045 }
2046 EXPORT_SYMBOL(inode_query_iversion);
2047 
2048 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2049                 ssize_t direct_written, ssize_t buffered_written)
2050 {
2051         struct address_space *mapping = iocb->ki_filp->f_mapping;
2052         loff_t pos = iocb->ki_pos - buffered_written;
2053         loff_t end = iocb->ki_pos - 1;
2054         int err;
2055 
2056         /*
2057          * If the buffered write fallback returned an error, we want to return
2058          * the number of bytes which were written by direct I/O, or the error
2059          * code if that was zero.
2060          *
2061          * Note that this differs from normal direct-io semantics, which will
2062          * return -EFOO even if some bytes were written.
2063          */
2064         if (unlikely(buffered_written < 0)) {
2065                 if (direct_written)
2066                         return direct_written;
2067                 return buffered_written;
2068         }
2069 
2070         /*
2071          * We need to ensure that the page cache pages are written to disk and
2072          * invalidated to preserve the expected O_DIRECT semantics.
2073          */
2074         err = filemap_write_and_wait_range(mapping, pos, end);
2075         if (err < 0) {
2076                 /*
2077                  * We don't know how much we wrote, so just return the number of
2078                  * bytes which were direct-written
2079                  */
2080                 iocb->ki_pos -= buffered_written;
2081                 if (direct_written)
2082                         return direct_written;
2083                 return err;
2084         }
2085         invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2086         return direct_written + buffered_written;
2087 }
2088 EXPORT_SYMBOL_GPL(direct_write_fallback);
2089 
2090 /**
2091  * simple_inode_init_ts - initialize the timestamps for a new inode
2092  * @inode: inode to be initialized
2093  *
2094  * When a new inode is created, most filesystems set the timestamps to the
2095  * current time. Add a helper to do this.
2096  */
2097 struct timespec64 simple_inode_init_ts(struct inode *inode)
2098 {
2099         struct timespec64 ts = inode_set_ctime_current(inode);
2100 
2101         inode_set_atime_to_ts(inode, ts);
2102         inode_set_mtime_to_ts(inode, ts);
2103         return ts;
2104 }
2105 EXPORT_SYMBOL(simple_inode_init_ts);
2106 
2107 static inline struct dentry *get_stashed_dentry(struct dentry *stashed)
2108 {
2109         struct dentry *dentry;
2110 
2111         guard(rcu)();
2112         dentry = READ_ONCE(stashed);
2113         if (!dentry)
2114                 return NULL;
2115         if (!lockref_get_not_dead(&dentry->d_lockref))
2116                 return NULL;
2117         return dentry;
2118 }
2119 
2120 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2121                                           struct super_block *sb,
2122                                           void *data)
2123 {
2124         struct dentry *dentry;
2125         struct inode *inode;
2126         const struct stashed_operations *sops = sb->s_fs_info;
2127         int ret;
2128 
2129         inode = new_inode_pseudo(sb);
2130         if (!inode) {
2131                 sops->put_data(data);
2132                 return ERR_PTR(-ENOMEM);
2133         }
2134 
2135         inode->i_flags |= S_IMMUTABLE;
2136         inode->i_mode = S_IFREG;
2137         simple_inode_init_ts(inode);
2138 
2139         ret = sops->init_inode(inode, data);
2140         if (ret < 0) {
2141                 iput(inode);
2142                 return ERR_PTR(ret);
2143         }
2144 
2145         /* Notice when this is changed. */
2146         WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2147         WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2148 
2149         dentry = d_alloc_anon(sb);
2150         if (!dentry) {
2151                 iput(inode);
2152                 return ERR_PTR(-ENOMEM);
2153         }
2154 
2155         /* Store address of location where dentry's supposed to be stashed. */
2156         dentry->d_fsdata = stashed;
2157 
2158         /* @data is now owned by the fs */
2159         d_instantiate(dentry, inode);
2160         return dentry;
2161 }
2162 
2163 static struct dentry *stash_dentry(struct dentry **stashed,
2164                                    struct dentry *dentry)
2165 {
2166         guard(rcu)();
2167         for (;;) {
2168                 struct dentry *old;
2169 
2170                 /* Assume any old dentry was cleared out. */
2171                 old = cmpxchg(stashed, NULL, dentry);
2172                 if (likely(!old))
2173                         return dentry;
2174 
2175                 /* Check if somebody else installed a reusable dentry. */
2176                 if (lockref_get_not_dead(&old->d_lockref))
2177                         return old;
2178 
2179                 /* There's an old dead dentry there, try to take it over. */
2180                 if (likely(try_cmpxchg(stashed, &old, dentry)))
2181                         return dentry;
2182         }
2183 }
2184 
2185 /**
2186  * path_from_stashed - create path from stashed or new dentry
2187  * @stashed:    where to retrieve or stash dentry
2188  * @mnt:        mnt of the filesystems to use
2189  * @data:       data to store in inode->i_private
2190  * @path:       path to create
2191  *
2192  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2193  * is still valid then it will be reused. If the dentry isn't able the function
2194  * will allocate a new dentry and inode. It will then check again whether it
2195  * can reuse an existing dentry in case one has been added in the meantime or
2196  * update @stashed with the newly added dentry.
2197  *
2198  * Special-purpose helper for nsfs and pidfs.
2199  *
2200  * Return: On success zero and on failure a negative error is returned.
2201  */
2202 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2203                       struct path *path)
2204 {
2205         struct dentry *dentry;
2206         const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2207 
2208         /* See if dentry can be reused. */
2209         path->dentry = get_stashed_dentry(*stashed);
2210         if (path->dentry) {
2211                 sops->put_data(data);
2212                 goto out_path;
2213         }
2214 
2215         /* Allocate a new dentry. */
2216         dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2217         if (IS_ERR(dentry))
2218                 return PTR_ERR(dentry);
2219 
2220         /* Added a new dentry. @data is now owned by the filesystem. */
2221         path->dentry = stash_dentry(stashed, dentry);
2222         if (path->dentry != dentry)
2223                 dput(dentry);
2224 
2225 out_path:
2226         WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2227         WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2228         path->mnt = mntget(mnt);
2229         return 0;
2230 }
2231 
2232 void stashed_dentry_prune(struct dentry *dentry)
2233 {
2234         struct dentry **stashed = dentry->d_fsdata;
2235         struct inode *inode = d_inode(dentry);
2236 
2237         if (WARN_ON_ONCE(!stashed))
2238                 return;
2239 
2240         if (!inode)
2241                 return;
2242 
2243         /*
2244          * Only replace our own @dentry as someone else might've
2245          * already cleared out @dentry and stashed their own
2246          * dentry in there.
2247          */
2248         cmpxchg(stashed, dentry, NULL);
2249 }
2250 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php