~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/libfs.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  *      fs/libfs.c
  4  *      Library for filesystems writers.
  5  */
  6 
  7 #include <linux/blkdev.h>
  8 #include <linux/export.h>
  9 #include <linux/pagemap.h>
 10 #include <linux/slab.h>
 11 #include <linux/cred.h>
 12 #include <linux/mount.h>
 13 #include <linux/vfs.h>
 14 #include <linux/quotaops.h>
 15 #include <linux/mutex.h>
 16 #include <linux/namei.h>
 17 #include <linux/exportfs.h>
 18 #include <linux/iversion.h>
 19 #include <linux/writeback.h>
 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
 21 #include <linux/fs_context.h>
 22 #include <linux/pseudo_fs.h>
 23 #include <linux/fsnotify.h>
 24 #include <linux/unicode.h>
 25 #include <linux/fscrypt.h>
 26 #include <linux/pidfs.h>
 27 
 28 #include <linux/uaccess.h>
 29 
 30 #include "internal.h"
 31 
 32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
 33                    struct kstat *stat, u32 request_mask,
 34                    unsigned int query_flags)
 35 {
 36         struct inode *inode = d_inode(path->dentry);
 37         generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
 38         stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
 39         return 0;
 40 }
 41 EXPORT_SYMBOL(simple_getattr);
 42 
 43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
 44 {
 45         u64 id = huge_encode_dev(dentry->d_sb->s_dev);
 46 
 47         buf->f_fsid = u64_to_fsid(id);
 48         buf->f_type = dentry->d_sb->s_magic;
 49         buf->f_bsize = PAGE_SIZE;
 50         buf->f_namelen = NAME_MAX;
 51         return 0;
 52 }
 53 EXPORT_SYMBOL(simple_statfs);
 54 
 55 /*
 56  * Retaining negative dentries for an in-memory filesystem just wastes
 57  * memory and lookup time: arrange for them to be deleted immediately.
 58  */
 59 int always_delete_dentry(const struct dentry *dentry)
 60 {
 61         return 1;
 62 }
 63 EXPORT_SYMBOL(always_delete_dentry);
 64 
 65 const struct dentry_operations simple_dentry_operations = {
 66         .d_delete = always_delete_dentry,
 67 };
 68 EXPORT_SYMBOL(simple_dentry_operations);
 69 
 70 /*
 71  * Lookup the data. This is trivial - if the dentry didn't already
 72  * exist, we know it is negative.  Set d_op to delete negative dentries.
 73  */
 74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
 75 {
 76         if (dentry->d_name.len > NAME_MAX)
 77                 return ERR_PTR(-ENAMETOOLONG);
 78         if (!dentry->d_sb->s_d_op)
 79                 d_set_d_op(dentry, &simple_dentry_operations);
 80         d_add(dentry, NULL);
 81         return NULL;
 82 }
 83 EXPORT_SYMBOL(simple_lookup);
 84 
 85 int dcache_dir_open(struct inode *inode, struct file *file)
 86 {
 87         file->private_data = d_alloc_cursor(file->f_path.dentry);
 88 
 89         return file->private_data ? 0 : -ENOMEM;
 90 }
 91 EXPORT_SYMBOL(dcache_dir_open);
 92 
 93 int dcache_dir_close(struct inode *inode, struct file *file)
 94 {
 95         dput(file->private_data);
 96         return 0;
 97 }
 98 EXPORT_SYMBOL(dcache_dir_close);
 99 
100 /* parent is locked at least shared */
101 /*
102  * Returns an element of siblings' list.
103  * We are looking for <count>th positive after <p>; if
104  * found, dentry is grabbed and returned to caller.
105  * If no such element exists, NULL is returned.
106  */
107 static struct dentry *scan_positives(struct dentry *cursor,
108                                         struct hlist_node **p,
109                                         loff_t count,
110                                         struct dentry *last)
111 {
112         struct dentry *dentry = cursor->d_parent, *found = NULL;
113 
114         spin_lock(&dentry->d_lock);
115         while (*p) {
116                 struct dentry *d = hlist_entry(*p, struct dentry, d_sib);
117                 p = &d->d_sib.next;
118                 // we must at least skip cursors, to avoid livelocks
119                 if (d->d_flags & DCACHE_DENTRY_CURSOR)
120                         continue;
121                 if (simple_positive(d) && !--count) {
122                         spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
123                         if (simple_positive(d))
124                                 found = dget_dlock(d);
125                         spin_unlock(&d->d_lock);
126                         if (likely(found))
127                                 break;
128                         count = 1;
129                 }
130                 if (need_resched()) {
131                         if (!hlist_unhashed(&cursor->d_sib))
132                                 __hlist_del(&cursor->d_sib);
133                         hlist_add_behind(&cursor->d_sib, &d->d_sib);
134                         p = &cursor->d_sib.next;
135                         spin_unlock(&dentry->d_lock);
136                         cond_resched();
137                         spin_lock(&dentry->d_lock);
138                 }
139         }
140         spin_unlock(&dentry->d_lock);
141         dput(last);
142         return found;
143 }
144 
145 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
146 {
147         struct dentry *dentry = file->f_path.dentry;
148         switch (whence) {
149                 case 1:
150                         offset += file->f_pos;
151                         fallthrough;
152                 case 0:
153                         if (offset >= 0)
154                                 break;
155                         fallthrough;
156                 default:
157                         return -EINVAL;
158         }
159         if (offset != file->f_pos) {
160                 struct dentry *cursor = file->private_data;
161                 struct dentry *to = NULL;
162 
163                 inode_lock_shared(dentry->d_inode);
164 
165                 if (offset > 2)
166                         to = scan_positives(cursor, &dentry->d_children.first,
167                                             offset - 2, NULL);
168                 spin_lock(&dentry->d_lock);
169                 hlist_del_init(&cursor->d_sib);
170                 if (to)
171                         hlist_add_behind(&cursor->d_sib, &to->d_sib);
172                 spin_unlock(&dentry->d_lock);
173                 dput(to);
174 
175                 file->f_pos = offset;
176 
177                 inode_unlock_shared(dentry->d_inode);
178         }
179         return offset;
180 }
181 EXPORT_SYMBOL(dcache_dir_lseek);
182 
183 /*
184  * Directory is locked and all positive dentries in it are safe, since
185  * for ramfs-type trees they can't go away without unlink() or rmdir(),
186  * both impossible due to the lock on directory.
187  */
188 
189 int dcache_readdir(struct file *file, struct dir_context *ctx)
190 {
191         struct dentry *dentry = file->f_path.dentry;
192         struct dentry *cursor = file->private_data;
193         struct dentry *next = NULL;
194         struct hlist_node **p;
195 
196         if (!dir_emit_dots(file, ctx))
197                 return 0;
198 
199         if (ctx->pos == 2)
200                 p = &dentry->d_children.first;
201         else
202                 p = &cursor->d_sib.next;
203 
204         while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
205                 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
206                               d_inode(next)->i_ino,
207                               fs_umode_to_dtype(d_inode(next)->i_mode)))
208                         break;
209                 ctx->pos++;
210                 p = &next->d_sib.next;
211         }
212         spin_lock(&dentry->d_lock);
213         hlist_del_init(&cursor->d_sib);
214         if (next)
215                 hlist_add_before(&cursor->d_sib, &next->d_sib);
216         spin_unlock(&dentry->d_lock);
217         dput(next);
218 
219         return 0;
220 }
221 EXPORT_SYMBOL(dcache_readdir);
222 
223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
224 {
225         return -EISDIR;
226 }
227 EXPORT_SYMBOL(generic_read_dir);
228 
229 const struct file_operations simple_dir_operations = {
230         .open           = dcache_dir_open,
231         .release        = dcache_dir_close,
232         .llseek         = dcache_dir_lseek,
233         .read           = generic_read_dir,
234         .iterate_shared = dcache_readdir,
235         .fsync          = noop_fsync,
236 };
237 EXPORT_SYMBOL(simple_dir_operations);
238 
239 const struct inode_operations simple_dir_inode_operations = {
240         .lookup         = simple_lookup,
241 };
242 EXPORT_SYMBOL(simple_dir_inode_operations);
243 
244 /* 0 is '.', 1 is '..', so always start with offset 2 or more */
245 enum {
246         DIR_OFFSET_MIN  = 2,
247 };
248 
249 static void offset_set(struct dentry *dentry, long offset)
250 {
251         dentry->d_fsdata = (void *)offset;
252 }
253 
254 static long dentry2offset(struct dentry *dentry)
255 {
256         return (long)dentry->d_fsdata;
257 }
258 
259 static struct lock_class_key simple_offset_lock_class;
260 
261 /**
262  * simple_offset_init - initialize an offset_ctx
263  * @octx: directory offset map to be initialized
264  *
265  */
266 void simple_offset_init(struct offset_ctx *octx)
267 {
268         mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE);
269         lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class);
270         octx->next_offset = DIR_OFFSET_MIN;
271 }
272 
273 /**
274  * simple_offset_add - Add an entry to a directory's offset map
275  * @octx: directory offset ctx to be updated
276  * @dentry: new dentry being added
277  *
278  * Returns zero on success. @octx and the dentry's offset are updated.
279  * Otherwise, a negative errno value is returned.
280  */
281 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
282 {
283         unsigned long offset;
284         int ret;
285 
286         if (dentry2offset(dentry) != 0)
287                 return -EBUSY;
288 
289         ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN,
290                                  LONG_MAX, &octx->next_offset, GFP_KERNEL);
291         if (ret < 0)
292                 return ret;
293 
294         offset_set(dentry, offset);
295         return 0;
296 }
297 
298 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
299                                  long offset)
300 {
301         int ret;
302 
303         ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL);
304         if (ret)
305                 return ret;
306         offset_set(dentry, offset);
307         return 0;
308 }
309 
310 /**
311  * simple_offset_remove - Remove an entry to a directory's offset map
312  * @octx: directory offset ctx to be updated
313  * @dentry: dentry being removed
314  *
315  */
316 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
317 {
318         long offset;
319 
320         offset = dentry2offset(dentry);
321         if (offset == 0)
322                 return;
323 
324         mtree_erase(&octx->mt, offset);
325         offset_set(dentry, 0);
326 }
327 
328 /**
329  * simple_offset_empty - Check if a dentry can be unlinked
330  * @dentry: dentry to be tested
331  *
332  * Returns 0 if @dentry is a non-empty directory; otherwise returns 1.
333  */
334 int simple_offset_empty(struct dentry *dentry)
335 {
336         struct inode *inode = d_inode(dentry);
337         struct offset_ctx *octx;
338         struct dentry *child;
339         unsigned long index;
340         int ret = 1;
341 
342         if (!inode || !S_ISDIR(inode->i_mode))
343                 return ret;
344 
345         index = DIR_OFFSET_MIN;
346         octx = inode->i_op->get_offset_ctx(inode);
347         mt_for_each(&octx->mt, child, index, LONG_MAX) {
348                 spin_lock(&child->d_lock);
349                 if (simple_positive(child)) {
350                         spin_unlock(&child->d_lock);
351                         ret = 0;
352                         break;
353                 }
354                 spin_unlock(&child->d_lock);
355         }
356 
357         return ret;
358 }
359 
360 /**
361  * simple_offset_rename - handle directory offsets for rename
362  * @old_dir: parent directory of source entry
363  * @old_dentry: dentry of source entry
364  * @new_dir: parent_directory of destination entry
365  * @new_dentry: dentry of destination
366  *
367  * Caller provides appropriate serialization.
368  *
369  * User space expects the directory offset value of the replaced
370  * (new) directory entry to be unchanged after a rename.
371  *
372  * Returns zero on success, a negative errno value on failure.
373  */
374 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
375                          struct inode *new_dir, struct dentry *new_dentry)
376 {
377         struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
378         struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
379         long new_offset = dentry2offset(new_dentry);
380 
381         simple_offset_remove(old_ctx, old_dentry);
382 
383         if (new_offset) {
384                 offset_set(new_dentry, 0);
385                 return simple_offset_replace(new_ctx, old_dentry, new_offset);
386         }
387         return simple_offset_add(new_ctx, old_dentry);
388 }
389 
390 /**
391  * simple_offset_rename_exchange - exchange rename with directory offsets
392  * @old_dir: parent of dentry being moved
393  * @old_dentry: dentry being moved
394  * @new_dir: destination parent
395  * @new_dentry: destination dentry
396  *
397  * This API preserves the directory offset values. Caller provides
398  * appropriate serialization.
399  *
400  * Returns zero on success. Otherwise a negative errno is returned and the
401  * rename is rolled back.
402  */
403 int simple_offset_rename_exchange(struct inode *old_dir,
404                                   struct dentry *old_dentry,
405                                   struct inode *new_dir,
406                                   struct dentry *new_dentry)
407 {
408         struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
409         struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
410         long old_index = dentry2offset(old_dentry);
411         long new_index = dentry2offset(new_dentry);
412         int ret;
413 
414         simple_offset_remove(old_ctx, old_dentry);
415         simple_offset_remove(new_ctx, new_dentry);
416 
417         ret = simple_offset_replace(new_ctx, old_dentry, new_index);
418         if (ret)
419                 goto out_restore;
420 
421         ret = simple_offset_replace(old_ctx, new_dentry, old_index);
422         if (ret) {
423                 simple_offset_remove(new_ctx, old_dentry);
424                 goto out_restore;
425         }
426 
427         ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
428         if (ret) {
429                 simple_offset_remove(new_ctx, old_dentry);
430                 simple_offset_remove(old_ctx, new_dentry);
431                 goto out_restore;
432         }
433         return 0;
434 
435 out_restore:
436         (void)simple_offset_replace(old_ctx, old_dentry, old_index);
437         (void)simple_offset_replace(new_ctx, new_dentry, new_index);
438         return ret;
439 }
440 
441 /**
442  * simple_offset_destroy - Release offset map
443  * @octx: directory offset ctx that is about to be destroyed
444  *
445  * During fs teardown (eg. umount), a directory's offset map might still
446  * contain entries. xa_destroy() cleans out anything that remains.
447  */
448 void simple_offset_destroy(struct offset_ctx *octx)
449 {
450         mtree_destroy(&octx->mt);
451 }
452 
453 static int offset_dir_open(struct inode *inode, struct file *file)
454 {
455         struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode);
456 
457         file->private_data = (void *)ctx->next_offset;
458         return 0;
459 }
460 
461 /**
462  * offset_dir_llseek - Advance the read position of a directory descriptor
463  * @file: an open directory whose position is to be updated
464  * @offset: a byte offset
465  * @whence: enumerator describing the starting position for this update
466  *
467  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
468  *
469  * Returns the updated read position if successful; otherwise a
470  * negative errno is returned and the read position remains unchanged.
471  */
472 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
473 {
474         struct inode *inode = file->f_inode;
475         struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode);
476 
477         switch (whence) {
478         case SEEK_CUR:
479                 offset += file->f_pos;
480                 fallthrough;
481         case SEEK_SET:
482                 if (offset >= 0)
483                         break;
484                 fallthrough;
485         default:
486                 return -EINVAL;
487         }
488 
489         /* In this case, ->private_data is protected by f_pos_lock */
490         if (!offset)
491                 file->private_data = (void *)ctx->next_offset;
492         return vfs_setpos(file, offset, LONG_MAX);
493 }
494 
495 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset)
496 {
497         MA_STATE(mas, &octx->mt, offset, offset);
498         struct dentry *child, *found = NULL;
499 
500         rcu_read_lock();
501         child = mas_find(&mas, LONG_MAX);
502         if (!child)
503                 goto out;
504         spin_lock(&child->d_lock);
505         if (simple_positive(child))
506                 found = dget_dlock(child);
507         spin_unlock(&child->d_lock);
508 out:
509         rcu_read_unlock();
510         return found;
511 }
512 
513 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
514 {
515         struct inode *inode = d_inode(dentry);
516         long offset = dentry2offset(dentry);
517 
518         return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
519                           inode->i_ino, fs_umode_to_dtype(inode->i_mode));
520 }
521 
522 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx, long last_index)
523 {
524         struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
525         struct dentry *dentry;
526 
527         while (true) {
528                 dentry = offset_find_next(octx, ctx->pos);
529                 if (!dentry)
530                         return;
531 
532                 if (dentry2offset(dentry) >= last_index) {
533                         dput(dentry);
534                         return;
535                 }
536 
537                 if (!offset_dir_emit(ctx, dentry)) {
538                         dput(dentry);
539                         return;
540                 }
541 
542                 ctx->pos = dentry2offset(dentry) + 1;
543                 dput(dentry);
544         }
545 }
546 
547 /**
548  * offset_readdir - Emit entries starting at offset @ctx->pos
549  * @file: an open directory to iterate over
550  * @ctx: directory iteration context
551  *
552  * Caller must hold @file's i_rwsem to prevent insertion or removal of
553  * entries during this call.
554  *
555  * On entry, @ctx->pos contains an offset that represents the first entry
556  * to be read from the directory.
557  *
558  * The operation continues until there are no more entries to read, or
559  * until the ctx->actor indicates there is no more space in the caller's
560  * output buffer.
561  *
562  * On return, @ctx->pos contains an offset that will read the next entry
563  * in this directory when offset_readdir() is called again with @ctx.
564  *
565  * Return values:
566  *   %0 - Complete
567  */
568 static int offset_readdir(struct file *file, struct dir_context *ctx)
569 {
570         struct dentry *dir = file->f_path.dentry;
571         long last_index = (long)file->private_data;
572 
573         lockdep_assert_held(&d_inode(dir)->i_rwsem);
574 
575         if (!dir_emit_dots(file, ctx))
576                 return 0;
577 
578         offset_iterate_dir(d_inode(dir), ctx, last_index);
579         return 0;
580 }
581 
582 const struct file_operations simple_offset_dir_operations = {
583         .open           = offset_dir_open,
584         .llseek         = offset_dir_llseek,
585         .iterate_shared = offset_readdir,
586         .read           = generic_read_dir,
587         .fsync          = noop_fsync,
588 };
589 
590 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
591 {
592         struct dentry *child = NULL, *d;
593 
594         spin_lock(&parent->d_lock);
595         d = prev ? d_next_sibling(prev) : d_first_child(parent);
596         hlist_for_each_entry_from(d, d_sib) {
597                 if (simple_positive(d)) {
598                         spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
599                         if (simple_positive(d))
600                                 child = dget_dlock(d);
601                         spin_unlock(&d->d_lock);
602                         if (likely(child))
603                                 break;
604                 }
605         }
606         spin_unlock(&parent->d_lock);
607         dput(prev);
608         return child;
609 }
610 
611 void simple_recursive_removal(struct dentry *dentry,
612                               void (*callback)(struct dentry *))
613 {
614         struct dentry *this = dget(dentry);
615         while (true) {
616                 struct dentry *victim = NULL, *child;
617                 struct inode *inode = this->d_inode;
618 
619                 inode_lock(inode);
620                 if (d_is_dir(this))
621                         inode->i_flags |= S_DEAD;
622                 while ((child = find_next_child(this, victim)) == NULL) {
623                         // kill and ascend
624                         // update metadata while it's still locked
625                         inode_set_ctime_current(inode);
626                         clear_nlink(inode);
627                         inode_unlock(inode);
628                         victim = this;
629                         this = this->d_parent;
630                         inode = this->d_inode;
631                         inode_lock(inode);
632                         if (simple_positive(victim)) {
633                                 d_invalidate(victim);   // avoid lost mounts
634                                 if (d_is_dir(victim))
635                                         fsnotify_rmdir(inode, victim);
636                                 else
637                                         fsnotify_unlink(inode, victim);
638                                 if (callback)
639                                         callback(victim);
640                                 dput(victim);           // unpin it
641                         }
642                         if (victim == dentry) {
643                                 inode_set_mtime_to_ts(inode,
644                                                       inode_set_ctime_current(inode));
645                                 if (d_is_dir(dentry))
646                                         drop_nlink(inode);
647                                 inode_unlock(inode);
648                                 dput(dentry);
649                                 return;
650                         }
651                 }
652                 inode_unlock(inode);
653                 this = child;
654         }
655 }
656 EXPORT_SYMBOL(simple_recursive_removal);
657 
658 static const struct super_operations simple_super_operations = {
659         .statfs         = simple_statfs,
660 };
661 
662 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
663 {
664         struct pseudo_fs_context *ctx = fc->fs_private;
665         struct inode *root;
666 
667         s->s_maxbytes = MAX_LFS_FILESIZE;
668         s->s_blocksize = PAGE_SIZE;
669         s->s_blocksize_bits = PAGE_SHIFT;
670         s->s_magic = ctx->magic;
671         s->s_op = ctx->ops ?: &simple_super_operations;
672         s->s_xattr = ctx->xattr;
673         s->s_time_gran = 1;
674         root = new_inode(s);
675         if (!root)
676                 return -ENOMEM;
677 
678         /*
679          * since this is the first inode, make it number 1. New inodes created
680          * after this must take care not to collide with it (by passing
681          * max_reserved of 1 to iunique).
682          */
683         root->i_ino = 1;
684         root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
685         simple_inode_init_ts(root);
686         s->s_root = d_make_root(root);
687         if (!s->s_root)
688                 return -ENOMEM;
689         s->s_d_op = ctx->dops;
690         return 0;
691 }
692 
693 static int pseudo_fs_get_tree(struct fs_context *fc)
694 {
695         return get_tree_nodev(fc, pseudo_fs_fill_super);
696 }
697 
698 static void pseudo_fs_free(struct fs_context *fc)
699 {
700         kfree(fc->fs_private);
701 }
702 
703 static const struct fs_context_operations pseudo_fs_context_ops = {
704         .free           = pseudo_fs_free,
705         .get_tree       = pseudo_fs_get_tree,
706 };
707 
708 /*
709  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
710  * will never be mountable)
711  */
712 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
713                                         unsigned long magic)
714 {
715         struct pseudo_fs_context *ctx;
716 
717         ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
718         if (likely(ctx)) {
719                 ctx->magic = magic;
720                 fc->fs_private = ctx;
721                 fc->ops = &pseudo_fs_context_ops;
722                 fc->sb_flags |= SB_NOUSER;
723                 fc->global = true;
724         }
725         return ctx;
726 }
727 EXPORT_SYMBOL(init_pseudo);
728 
729 int simple_open(struct inode *inode, struct file *file)
730 {
731         if (inode->i_private)
732                 file->private_data = inode->i_private;
733         return 0;
734 }
735 EXPORT_SYMBOL(simple_open);
736 
737 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
738 {
739         struct inode *inode = d_inode(old_dentry);
740 
741         inode_set_mtime_to_ts(dir,
742                               inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
743         inc_nlink(inode);
744         ihold(inode);
745         dget(dentry);
746         d_instantiate(dentry, inode);
747         return 0;
748 }
749 EXPORT_SYMBOL(simple_link);
750 
751 int simple_empty(struct dentry *dentry)
752 {
753         struct dentry *child;
754         int ret = 0;
755 
756         spin_lock(&dentry->d_lock);
757         hlist_for_each_entry(child, &dentry->d_children, d_sib) {
758                 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
759                 if (simple_positive(child)) {
760                         spin_unlock(&child->d_lock);
761                         goto out;
762                 }
763                 spin_unlock(&child->d_lock);
764         }
765         ret = 1;
766 out:
767         spin_unlock(&dentry->d_lock);
768         return ret;
769 }
770 EXPORT_SYMBOL(simple_empty);
771 
772 int simple_unlink(struct inode *dir, struct dentry *dentry)
773 {
774         struct inode *inode = d_inode(dentry);
775 
776         inode_set_mtime_to_ts(dir,
777                               inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
778         drop_nlink(inode);
779         dput(dentry);
780         return 0;
781 }
782 EXPORT_SYMBOL(simple_unlink);
783 
784 int simple_rmdir(struct inode *dir, struct dentry *dentry)
785 {
786         if (!simple_empty(dentry))
787                 return -ENOTEMPTY;
788 
789         drop_nlink(d_inode(dentry));
790         simple_unlink(dir, dentry);
791         drop_nlink(dir);
792         return 0;
793 }
794 EXPORT_SYMBOL(simple_rmdir);
795 
796 /**
797  * simple_rename_timestamp - update the various inode timestamps for rename
798  * @old_dir: old parent directory
799  * @old_dentry: dentry that is being renamed
800  * @new_dir: new parent directory
801  * @new_dentry: target for rename
802  *
803  * POSIX mandates that the old and new parent directories have their ctime and
804  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
805  * their ctime updated.
806  */
807 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
808                              struct inode *new_dir, struct dentry *new_dentry)
809 {
810         struct inode *newino = d_inode(new_dentry);
811 
812         inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
813         if (new_dir != old_dir)
814                 inode_set_mtime_to_ts(new_dir,
815                                       inode_set_ctime_current(new_dir));
816         inode_set_ctime_current(d_inode(old_dentry));
817         if (newino)
818                 inode_set_ctime_current(newino);
819 }
820 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
821 
822 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
823                            struct inode *new_dir, struct dentry *new_dentry)
824 {
825         bool old_is_dir = d_is_dir(old_dentry);
826         bool new_is_dir = d_is_dir(new_dentry);
827 
828         if (old_dir != new_dir && old_is_dir != new_is_dir) {
829                 if (old_is_dir) {
830                         drop_nlink(old_dir);
831                         inc_nlink(new_dir);
832                 } else {
833                         drop_nlink(new_dir);
834                         inc_nlink(old_dir);
835                 }
836         }
837         simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
838         return 0;
839 }
840 EXPORT_SYMBOL_GPL(simple_rename_exchange);
841 
842 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
843                   struct dentry *old_dentry, struct inode *new_dir,
844                   struct dentry *new_dentry, unsigned int flags)
845 {
846         int they_are_dirs = d_is_dir(old_dentry);
847 
848         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
849                 return -EINVAL;
850 
851         if (flags & RENAME_EXCHANGE)
852                 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
853 
854         if (!simple_empty(new_dentry))
855                 return -ENOTEMPTY;
856 
857         if (d_really_is_positive(new_dentry)) {
858                 simple_unlink(new_dir, new_dentry);
859                 if (they_are_dirs) {
860                         drop_nlink(d_inode(new_dentry));
861                         drop_nlink(old_dir);
862                 }
863         } else if (they_are_dirs) {
864                 drop_nlink(old_dir);
865                 inc_nlink(new_dir);
866         }
867 
868         simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
869         return 0;
870 }
871 EXPORT_SYMBOL(simple_rename);
872 
873 /**
874  * simple_setattr - setattr for simple filesystem
875  * @idmap: idmap of the target mount
876  * @dentry: dentry
877  * @iattr: iattr structure
878  *
879  * Returns 0 on success, -error on failure.
880  *
881  * simple_setattr is a simple ->setattr implementation without a proper
882  * implementation of size changes.
883  *
884  * It can either be used for in-memory filesystems or special files
885  * on simple regular filesystems.  Anything that needs to change on-disk
886  * or wire state on size changes needs its own setattr method.
887  */
888 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
889                    struct iattr *iattr)
890 {
891         struct inode *inode = d_inode(dentry);
892         int error;
893 
894         error = setattr_prepare(idmap, dentry, iattr);
895         if (error)
896                 return error;
897 
898         if (iattr->ia_valid & ATTR_SIZE)
899                 truncate_setsize(inode, iattr->ia_size);
900         setattr_copy(idmap, inode, iattr);
901         mark_inode_dirty(inode);
902         return 0;
903 }
904 EXPORT_SYMBOL(simple_setattr);
905 
906 static int simple_read_folio(struct file *file, struct folio *folio)
907 {
908         folio_zero_range(folio, 0, folio_size(folio));
909         flush_dcache_folio(folio);
910         folio_mark_uptodate(folio);
911         folio_unlock(folio);
912         return 0;
913 }
914 
915 int simple_write_begin(struct file *file, struct address_space *mapping,
916                         loff_t pos, unsigned len,
917                         struct page **pagep, void **fsdata)
918 {
919         struct folio *folio;
920 
921         folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
922                         mapping_gfp_mask(mapping));
923         if (IS_ERR(folio))
924                 return PTR_ERR(folio);
925 
926         *pagep = &folio->page;
927 
928         if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
929                 size_t from = offset_in_folio(folio, pos);
930 
931                 folio_zero_segments(folio, 0, from,
932                                 from + len, folio_size(folio));
933         }
934         return 0;
935 }
936 EXPORT_SYMBOL(simple_write_begin);
937 
938 /**
939  * simple_write_end - .write_end helper for non-block-device FSes
940  * @file: See .write_end of address_space_operations
941  * @mapping:            "
942  * @pos:                "
943  * @len:                "
944  * @copied:             "
945  * @page:               "
946  * @fsdata:             "
947  *
948  * simple_write_end does the minimum needed for updating a page after writing is
949  * done. It has the same API signature as the .write_end of
950  * address_space_operations vector. So it can just be set onto .write_end for
951  * FSes that don't need any other processing. i_mutex is assumed to be held.
952  * Block based filesystems should use generic_write_end().
953  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
954  * is not called, so a filesystem that actually does store data in .write_inode
955  * should extend on what's done here with a call to mark_inode_dirty() in the
956  * case that i_size has changed.
957  *
958  * Use *ONLY* with simple_read_folio()
959  */
960 static int simple_write_end(struct file *file, struct address_space *mapping,
961                         loff_t pos, unsigned len, unsigned copied,
962                         struct page *page, void *fsdata)
963 {
964         struct folio *folio = page_folio(page);
965         struct inode *inode = folio->mapping->host;
966         loff_t last_pos = pos + copied;
967 
968         /* zero the stale part of the folio if we did a short copy */
969         if (!folio_test_uptodate(folio)) {
970                 if (copied < len) {
971                         size_t from = offset_in_folio(folio, pos);
972 
973                         folio_zero_range(folio, from + copied, len - copied);
974                 }
975                 folio_mark_uptodate(folio);
976         }
977         /*
978          * No need to use i_size_read() here, the i_size
979          * cannot change under us because we hold the i_mutex.
980          */
981         if (last_pos > inode->i_size)
982                 i_size_write(inode, last_pos);
983 
984         folio_mark_dirty(folio);
985         folio_unlock(folio);
986         folio_put(folio);
987 
988         return copied;
989 }
990 
991 /*
992  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
993  */
994 const struct address_space_operations ram_aops = {
995         .read_folio     = simple_read_folio,
996         .write_begin    = simple_write_begin,
997         .write_end      = simple_write_end,
998         .dirty_folio    = noop_dirty_folio,
999 };
1000 EXPORT_SYMBOL(ram_aops);
1001 
1002 /*
1003  * the inodes created here are not hashed. If you use iunique to generate
1004  * unique inode values later for this filesystem, then you must take care
1005  * to pass it an appropriate max_reserved value to avoid collisions.
1006  */
1007 int simple_fill_super(struct super_block *s, unsigned long magic,
1008                       const struct tree_descr *files)
1009 {
1010         struct inode *inode;
1011         struct dentry *dentry;
1012         int i;
1013 
1014         s->s_blocksize = PAGE_SIZE;
1015         s->s_blocksize_bits = PAGE_SHIFT;
1016         s->s_magic = magic;
1017         s->s_op = &simple_super_operations;
1018         s->s_time_gran = 1;
1019 
1020         inode = new_inode(s);
1021         if (!inode)
1022                 return -ENOMEM;
1023         /*
1024          * because the root inode is 1, the files array must not contain an
1025          * entry at index 1
1026          */
1027         inode->i_ino = 1;
1028         inode->i_mode = S_IFDIR | 0755;
1029         simple_inode_init_ts(inode);
1030         inode->i_op = &simple_dir_inode_operations;
1031         inode->i_fop = &simple_dir_operations;
1032         set_nlink(inode, 2);
1033         s->s_root = d_make_root(inode);
1034         if (!s->s_root)
1035                 return -ENOMEM;
1036         for (i = 0; !files->name || files->name[0]; i++, files++) {
1037                 if (!files->name)
1038                         continue;
1039 
1040                 /* warn if it tries to conflict with the root inode */
1041                 if (unlikely(i == 1))
1042                         printk(KERN_WARNING "%s: %s passed in a files array"
1043                                 "with an index of 1!\n", __func__,
1044                                 s->s_type->name);
1045 
1046                 dentry = d_alloc_name(s->s_root, files->name);
1047                 if (!dentry)
1048                         return -ENOMEM;
1049                 inode = new_inode(s);
1050                 if (!inode) {
1051                         dput(dentry);
1052                         return -ENOMEM;
1053                 }
1054                 inode->i_mode = S_IFREG | files->mode;
1055                 simple_inode_init_ts(inode);
1056                 inode->i_fop = files->ops;
1057                 inode->i_ino = i;
1058                 d_add(dentry, inode);
1059         }
1060         return 0;
1061 }
1062 EXPORT_SYMBOL(simple_fill_super);
1063 
1064 static DEFINE_SPINLOCK(pin_fs_lock);
1065 
1066 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1067 {
1068         struct vfsmount *mnt = NULL;
1069         spin_lock(&pin_fs_lock);
1070         if (unlikely(!*mount)) {
1071                 spin_unlock(&pin_fs_lock);
1072                 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1073                 if (IS_ERR(mnt))
1074                         return PTR_ERR(mnt);
1075                 spin_lock(&pin_fs_lock);
1076                 if (!*mount)
1077                         *mount = mnt;
1078         }
1079         mntget(*mount);
1080         ++*count;
1081         spin_unlock(&pin_fs_lock);
1082         mntput(mnt);
1083         return 0;
1084 }
1085 EXPORT_SYMBOL(simple_pin_fs);
1086 
1087 void simple_release_fs(struct vfsmount **mount, int *count)
1088 {
1089         struct vfsmount *mnt;
1090         spin_lock(&pin_fs_lock);
1091         mnt = *mount;
1092         if (!--*count)
1093                 *mount = NULL;
1094         spin_unlock(&pin_fs_lock);
1095         mntput(mnt);
1096 }
1097 EXPORT_SYMBOL(simple_release_fs);
1098 
1099 /**
1100  * simple_read_from_buffer - copy data from the buffer to user space
1101  * @to: the user space buffer to read to
1102  * @count: the maximum number of bytes to read
1103  * @ppos: the current position in the buffer
1104  * @from: the buffer to read from
1105  * @available: the size of the buffer
1106  *
1107  * The simple_read_from_buffer() function reads up to @count bytes from the
1108  * buffer @from at offset @ppos into the user space address starting at @to.
1109  *
1110  * On success, the number of bytes read is returned and the offset @ppos is
1111  * advanced by this number, or negative value is returned on error.
1112  **/
1113 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1114                                 const void *from, size_t available)
1115 {
1116         loff_t pos = *ppos;
1117         size_t ret;
1118 
1119         if (pos < 0)
1120                 return -EINVAL;
1121         if (pos >= available || !count)
1122                 return 0;
1123         if (count > available - pos)
1124                 count = available - pos;
1125         ret = copy_to_user(to, from + pos, count);
1126         if (ret == count)
1127                 return -EFAULT;
1128         count -= ret;
1129         *ppos = pos + count;
1130         return count;
1131 }
1132 EXPORT_SYMBOL(simple_read_from_buffer);
1133 
1134 /**
1135  * simple_write_to_buffer - copy data from user space to the buffer
1136  * @to: the buffer to write to
1137  * @available: the size of the buffer
1138  * @ppos: the current position in the buffer
1139  * @from: the user space buffer to read from
1140  * @count: the maximum number of bytes to read
1141  *
1142  * The simple_write_to_buffer() function reads up to @count bytes from the user
1143  * space address starting at @from into the buffer @to at offset @ppos.
1144  *
1145  * On success, the number of bytes written is returned and the offset @ppos is
1146  * advanced by this number, or negative value is returned on error.
1147  **/
1148 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1149                 const void __user *from, size_t count)
1150 {
1151         loff_t pos = *ppos;
1152         size_t res;
1153 
1154         if (pos < 0)
1155                 return -EINVAL;
1156         if (pos >= available || !count)
1157                 return 0;
1158         if (count > available - pos)
1159                 count = available - pos;
1160         res = copy_from_user(to + pos, from, count);
1161         if (res == count)
1162                 return -EFAULT;
1163         count -= res;
1164         *ppos = pos + count;
1165         return count;
1166 }
1167 EXPORT_SYMBOL(simple_write_to_buffer);
1168 
1169 /**
1170  * memory_read_from_buffer - copy data from the buffer
1171  * @to: the kernel space buffer to read to
1172  * @count: the maximum number of bytes to read
1173  * @ppos: the current position in the buffer
1174  * @from: the buffer to read from
1175  * @available: the size of the buffer
1176  *
1177  * The memory_read_from_buffer() function reads up to @count bytes from the
1178  * buffer @from at offset @ppos into the kernel space address starting at @to.
1179  *
1180  * On success, the number of bytes read is returned and the offset @ppos is
1181  * advanced by this number, or negative value is returned on error.
1182  **/
1183 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1184                                 const void *from, size_t available)
1185 {
1186         loff_t pos = *ppos;
1187 
1188         if (pos < 0)
1189                 return -EINVAL;
1190         if (pos >= available)
1191                 return 0;
1192         if (count > available - pos)
1193                 count = available - pos;
1194         memcpy(to, from + pos, count);
1195         *ppos = pos + count;
1196 
1197         return count;
1198 }
1199 EXPORT_SYMBOL(memory_read_from_buffer);
1200 
1201 /*
1202  * Transaction based IO.
1203  * The file expects a single write which triggers the transaction, and then
1204  * possibly a read which collects the result - which is stored in a
1205  * file-local buffer.
1206  */
1207 
1208 void simple_transaction_set(struct file *file, size_t n)
1209 {
1210         struct simple_transaction_argresp *ar = file->private_data;
1211 
1212         BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1213 
1214         /*
1215          * The barrier ensures that ar->size will really remain zero until
1216          * ar->data is ready for reading.
1217          */
1218         smp_mb();
1219         ar->size = n;
1220 }
1221 EXPORT_SYMBOL(simple_transaction_set);
1222 
1223 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1224 {
1225         struct simple_transaction_argresp *ar;
1226         static DEFINE_SPINLOCK(simple_transaction_lock);
1227 
1228         if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1229                 return ERR_PTR(-EFBIG);
1230 
1231         ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1232         if (!ar)
1233                 return ERR_PTR(-ENOMEM);
1234 
1235         spin_lock(&simple_transaction_lock);
1236 
1237         /* only one write allowed per open */
1238         if (file->private_data) {
1239                 spin_unlock(&simple_transaction_lock);
1240                 free_page((unsigned long)ar);
1241                 return ERR_PTR(-EBUSY);
1242         }
1243 
1244         file->private_data = ar;
1245 
1246         spin_unlock(&simple_transaction_lock);
1247 
1248         if (copy_from_user(ar->data, buf, size))
1249                 return ERR_PTR(-EFAULT);
1250 
1251         return ar->data;
1252 }
1253 EXPORT_SYMBOL(simple_transaction_get);
1254 
1255 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1256 {
1257         struct simple_transaction_argresp *ar = file->private_data;
1258 
1259         if (!ar)
1260                 return 0;
1261         return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1262 }
1263 EXPORT_SYMBOL(simple_transaction_read);
1264 
1265 int simple_transaction_release(struct inode *inode, struct file *file)
1266 {
1267         free_page((unsigned long)file->private_data);
1268         return 0;
1269 }
1270 EXPORT_SYMBOL(simple_transaction_release);
1271 
1272 /* Simple attribute files */
1273 
1274 struct simple_attr {
1275         int (*get)(void *, u64 *);
1276         int (*set)(void *, u64);
1277         char get_buf[24];       /* enough to store a u64 and "\n\0" */
1278         char set_buf[24];
1279         void *data;
1280         const char *fmt;        /* format for read operation */
1281         struct mutex mutex;     /* protects access to these buffers */
1282 };
1283 
1284 /* simple_attr_open is called by an actual attribute open file operation
1285  * to set the attribute specific access operations. */
1286 int simple_attr_open(struct inode *inode, struct file *file,
1287                      int (*get)(void *, u64 *), int (*set)(void *, u64),
1288                      const char *fmt)
1289 {
1290         struct simple_attr *attr;
1291 
1292         attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1293         if (!attr)
1294                 return -ENOMEM;
1295 
1296         attr->get = get;
1297         attr->set = set;
1298         attr->data = inode->i_private;
1299         attr->fmt = fmt;
1300         mutex_init(&attr->mutex);
1301 
1302         file->private_data = attr;
1303 
1304         return nonseekable_open(inode, file);
1305 }
1306 EXPORT_SYMBOL_GPL(simple_attr_open);
1307 
1308 int simple_attr_release(struct inode *inode, struct file *file)
1309 {
1310         kfree(file->private_data);
1311         return 0;
1312 }
1313 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only?  This?  Really? */
1314 
1315 /* read from the buffer that is filled with the get function */
1316 ssize_t simple_attr_read(struct file *file, char __user *buf,
1317                          size_t len, loff_t *ppos)
1318 {
1319         struct simple_attr *attr;
1320         size_t size;
1321         ssize_t ret;
1322 
1323         attr = file->private_data;
1324 
1325         if (!attr->get)
1326                 return -EACCES;
1327 
1328         ret = mutex_lock_interruptible(&attr->mutex);
1329         if (ret)
1330                 return ret;
1331 
1332         if (*ppos && attr->get_buf[0]) {
1333                 /* continued read */
1334                 size = strlen(attr->get_buf);
1335         } else {
1336                 /* first read */
1337                 u64 val;
1338                 ret = attr->get(attr->data, &val);
1339                 if (ret)
1340                         goto out;
1341 
1342                 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1343                                  attr->fmt, (unsigned long long)val);
1344         }
1345 
1346         ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1347 out:
1348         mutex_unlock(&attr->mutex);
1349         return ret;
1350 }
1351 EXPORT_SYMBOL_GPL(simple_attr_read);
1352 
1353 /* interpret the buffer as a number to call the set function with */
1354 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1355                           size_t len, loff_t *ppos, bool is_signed)
1356 {
1357         struct simple_attr *attr;
1358         unsigned long long val;
1359         size_t size;
1360         ssize_t ret;
1361 
1362         attr = file->private_data;
1363         if (!attr->set)
1364                 return -EACCES;
1365 
1366         ret = mutex_lock_interruptible(&attr->mutex);
1367         if (ret)
1368                 return ret;
1369 
1370         ret = -EFAULT;
1371         size = min(sizeof(attr->set_buf) - 1, len);
1372         if (copy_from_user(attr->set_buf, buf, size))
1373                 goto out;
1374 
1375         attr->set_buf[size] = '\0';
1376         if (is_signed)
1377                 ret = kstrtoll(attr->set_buf, 0, &val);
1378         else
1379                 ret = kstrtoull(attr->set_buf, 0, &val);
1380         if (ret)
1381                 goto out;
1382         ret = attr->set(attr->data, val);
1383         if (ret == 0)
1384                 ret = len; /* on success, claim we got the whole input */
1385 out:
1386         mutex_unlock(&attr->mutex);
1387         return ret;
1388 }
1389 
1390 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1391                           size_t len, loff_t *ppos)
1392 {
1393         return simple_attr_write_xsigned(file, buf, len, ppos, false);
1394 }
1395 EXPORT_SYMBOL_GPL(simple_attr_write);
1396 
1397 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1398                           size_t len, loff_t *ppos)
1399 {
1400         return simple_attr_write_xsigned(file, buf, len, ppos, true);
1401 }
1402 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1403 
1404 /**
1405  * generic_encode_ino32_fh - generic export_operations->encode_fh function
1406  * @inode:   the object to encode
1407  * @fh:      where to store the file handle fragment
1408  * @max_len: maximum length to store there (in 4 byte units)
1409  * @parent:  parent directory inode, if wanted
1410  *
1411  * This generic encode_fh function assumes that the 32 inode number
1412  * is suitable for locating an inode, and that the generation number
1413  * can be used to check that it is still valid.  It places them in the
1414  * filehandle fragment where export_decode_fh expects to find them.
1415  */
1416 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1417                             struct inode *parent)
1418 {
1419         struct fid *fid = (void *)fh;
1420         int len = *max_len;
1421         int type = FILEID_INO32_GEN;
1422 
1423         if (parent && (len < 4)) {
1424                 *max_len = 4;
1425                 return FILEID_INVALID;
1426         } else if (len < 2) {
1427                 *max_len = 2;
1428                 return FILEID_INVALID;
1429         }
1430 
1431         len = 2;
1432         fid->i32.ino = inode->i_ino;
1433         fid->i32.gen = inode->i_generation;
1434         if (parent) {
1435                 fid->i32.parent_ino = parent->i_ino;
1436                 fid->i32.parent_gen = parent->i_generation;
1437                 len = 4;
1438                 type = FILEID_INO32_GEN_PARENT;
1439         }
1440         *max_len = len;
1441         return type;
1442 }
1443 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1444 
1445 /**
1446  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1447  * @sb:         filesystem to do the file handle conversion on
1448  * @fid:        file handle to convert
1449  * @fh_len:     length of the file handle in bytes
1450  * @fh_type:    type of file handle
1451  * @get_inode:  filesystem callback to retrieve inode
1452  *
1453  * This function decodes @fid as long as it has one of the well-known
1454  * Linux filehandle types and calls @get_inode on it to retrieve the
1455  * inode for the object specified in the file handle.
1456  */
1457 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1458                 int fh_len, int fh_type, struct inode *(*get_inode)
1459                         (struct super_block *sb, u64 ino, u32 gen))
1460 {
1461         struct inode *inode = NULL;
1462 
1463         if (fh_len < 2)
1464                 return NULL;
1465 
1466         switch (fh_type) {
1467         case FILEID_INO32_GEN:
1468         case FILEID_INO32_GEN_PARENT:
1469                 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1470                 break;
1471         }
1472 
1473         return d_obtain_alias(inode);
1474 }
1475 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1476 
1477 /**
1478  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1479  * @sb:         filesystem to do the file handle conversion on
1480  * @fid:        file handle to convert
1481  * @fh_len:     length of the file handle in bytes
1482  * @fh_type:    type of file handle
1483  * @get_inode:  filesystem callback to retrieve inode
1484  *
1485  * This function decodes @fid as long as it has one of the well-known
1486  * Linux filehandle types and calls @get_inode on it to retrieve the
1487  * inode for the _parent_ object specified in the file handle if it
1488  * is specified in the file handle, or NULL otherwise.
1489  */
1490 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1491                 int fh_len, int fh_type, struct inode *(*get_inode)
1492                         (struct super_block *sb, u64 ino, u32 gen))
1493 {
1494         struct inode *inode = NULL;
1495 
1496         if (fh_len <= 2)
1497                 return NULL;
1498 
1499         switch (fh_type) {
1500         case FILEID_INO32_GEN_PARENT:
1501                 inode = get_inode(sb, fid->i32.parent_ino,
1502                                   (fh_len > 3 ? fid->i32.parent_gen : 0));
1503                 break;
1504         }
1505 
1506         return d_obtain_alias(inode);
1507 }
1508 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1509 
1510 /**
1511  * __generic_file_fsync - generic fsync implementation for simple filesystems
1512  *
1513  * @file:       file to synchronize
1514  * @start:      start offset in bytes
1515  * @end:        end offset in bytes (inclusive)
1516  * @datasync:   only synchronize essential metadata if true
1517  *
1518  * This is a generic implementation of the fsync method for simple
1519  * filesystems which track all non-inode metadata in the buffers list
1520  * hanging off the address_space structure.
1521  */
1522 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1523                                  int datasync)
1524 {
1525         struct inode *inode = file->f_mapping->host;
1526         int err;
1527         int ret;
1528 
1529         err = file_write_and_wait_range(file, start, end);
1530         if (err)
1531                 return err;
1532 
1533         inode_lock(inode);
1534         ret = sync_mapping_buffers(inode->i_mapping);
1535         if (!(inode->i_state & I_DIRTY_ALL))
1536                 goto out;
1537         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1538                 goto out;
1539 
1540         err = sync_inode_metadata(inode, 1);
1541         if (ret == 0)
1542                 ret = err;
1543 
1544 out:
1545         inode_unlock(inode);
1546         /* check and advance again to catch errors after syncing out buffers */
1547         err = file_check_and_advance_wb_err(file);
1548         if (ret == 0)
1549                 ret = err;
1550         return ret;
1551 }
1552 EXPORT_SYMBOL(__generic_file_fsync);
1553 
1554 /**
1555  * generic_file_fsync - generic fsync implementation for simple filesystems
1556  *                      with flush
1557  * @file:       file to synchronize
1558  * @start:      start offset in bytes
1559  * @end:        end offset in bytes (inclusive)
1560  * @datasync:   only synchronize essential metadata if true
1561  *
1562  */
1563 
1564 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1565                        int datasync)
1566 {
1567         struct inode *inode = file->f_mapping->host;
1568         int err;
1569 
1570         err = __generic_file_fsync(file, start, end, datasync);
1571         if (err)
1572                 return err;
1573         return blkdev_issue_flush(inode->i_sb->s_bdev);
1574 }
1575 EXPORT_SYMBOL(generic_file_fsync);
1576 
1577 /**
1578  * generic_check_addressable - Check addressability of file system
1579  * @blocksize_bits:     log of file system block size
1580  * @num_blocks:         number of blocks in file system
1581  *
1582  * Determine whether a file system with @num_blocks blocks (and a
1583  * block size of 2**@blocksize_bits) is addressable by the sector_t
1584  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1585  */
1586 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1587 {
1588         u64 last_fs_block = num_blocks - 1;
1589         u64 last_fs_page =
1590                 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1591 
1592         if (unlikely(num_blocks == 0))
1593                 return 0;
1594 
1595         if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1596                 return -EINVAL;
1597 
1598         if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1599             (last_fs_page > (pgoff_t)(~0ULL))) {
1600                 return -EFBIG;
1601         }
1602         return 0;
1603 }
1604 EXPORT_SYMBOL(generic_check_addressable);
1605 
1606 /*
1607  * No-op implementation of ->fsync for in-memory filesystems.
1608  */
1609 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1610 {
1611         return 0;
1612 }
1613 EXPORT_SYMBOL(noop_fsync);
1614 
1615 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1616 {
1617         /*
1618          * iomap based filesystems support direct I/O without need for
1619          * this callback. However, it still needs to be set in
1620          * inode->a_ops so that open/fcntl know that direct I/O is
1621          * generally supported.
1622          */
1623         return -EINVAL;
1624 }
1625 EXPORT_SYMBOL_GPL(noop_direct_IO);
1626 
1627 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1628 void kfree_link(void *p)
1629 {
1630         kfree(p);
1631 }
1632 EXPORT_SYMBOL(kfree_link);
1633 
1634 struct inode *alloc_anon_inode(struct super_block *s)
1635 {
1636         static const struct address_space_operations anon_aops = {
1637                 .dirty_folio    = noop_dirty_folio,
1638         };
1639         struct inode *inode = new_inode_pseudo(s);
1640 
1641         if (!inode)
1642                 return ERR_PTR(-ENOMEM);
1643 
1644         inode->i_ino = get_next_ino();
1645         inode->i_mapping->a_ops = &anon_aops;
1646 
1647         /*
1648          * Mark the inode dirty from the very beginning,
1649          * that way it will never be moved to the dirty
1650          * list because mark_inode_dirty() will think
1651          * that it already _is_ on the dirty list.
1652          */
1653         inode->i_state = I_DIRTY;
1654         inode->i_mode = S_IRUSR | S_IWUSR;
1655         inode->i_uid = current_fsuid();
1656         inode->i_gid = current_fsgid();
1657         inode->i_flags |= S_PRIVATE;
1658         simple_inode_init_ts(inode);
1659         return inode;
1660 }
1661 EXPORT_SYMBOL(alloc_anon_inode);
1662 
1663 /**
1664  * simple_nosetlease - generic helper for prohibiting leases
1665  * @filp: file pointer
1666  * @arg: type of lease to obtain
1667  * @flp: new lease supplied for insertion
1668  * @priv: private data for lm_setup operation
1669  *
1670  * Generic helper for filesystems that do not wish to allow leases to be set.
1671  * All arguments are ignored and it just returns -EINVAL.
1672  */
1673 int
1674 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp,
1675                   void **priv)
1676 {
1677         return -EINVAL;
1678 }
1679 EXPORT_SYMBOL(simple_nosetlease);
1680 
1681 /**
1682  * simple_get_link - generic helper to get the target of "fast" symlinks
1683  * @dentry: not used here
1684  * @inode: the symlink inode
1685  * @done: not used here
1686  *
1687  * Generic helper for filesystems to use for symlink inodes where a pointer to
1688  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1689  * since as an optimization the path lookup code uses any non-NULL ->i_link
1690  * directly, without calling ->get_link().  But ->get_link() still must be set,
1691  * to mark the inode_operations as being for a symlink.
1692  *
1693  * Return: the symlink target
1694  */
1695 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1696                             struct delayed_call *done)
1697 {
1698         return inode->i_link;
1699 }
1700 EXPORT_SYMBOL(simple_get_link);
1701 
1702 const struct inode_operations simple_symlink_inode_operations = {
1703         .get_link = simple_get_link,
1704 };
1705 EXPORT_SYMBOL(simple_symlink_inode_operations);
1706 
1707 /*
1708  * Operations for a permanently empty directory.
1709  */
1710 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1711 {
1712         return ERR_PTR(-ENOENT);
1713 }
1714 
1715 static int empty_dir_getattr(struct mnt_idmap *idmap,
1716                              const struct path *path, struct kstat *stat,
1717                              u32 request_mask, unsigned int query_flags)
1718 {
1719         struct inode *inode = d_inode(path->dentry);
1720         generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1721         return 0;
1722 }
1723 
1724 static int empty_dir_setattr(struct mnt_idmap *idmap,
1725                              struct dentry *dentry, struct iattr *attr)
1726 {
1727         return -EPERM;
1728 }
1729 
1730 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1731 {
1732         return -EOPNOTSUPP;
1733 }
1734 
1735 static const struct inode_operations empty_dir_inode_operations = {
1736         .lookup         = empty_dir_lookup,
1737         .permission     = generic_permission,
1738         .setattr        = empty_dir_setattr,
1739         .getattr        = empty_dir_getattr,
1740         .listxattr      = empty_dir_listxattr,
1741 };
1742 
1743 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1744 {
1745         /* An empty directory has two entries . and .. at offsets 0 and 1 */
1746         return generic_file_llseek_size(file, offset, whence, 2, 2);
1747 }
1748 
1749 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1750 {
1751         dir_emit_dots(file, ctx);
1752         return 0;
1753 }
1754 
1755 static const struct file_operations empty_dir_operations = {
1756         .llseek         = empty_dir_llseek,
1757         .read           = generic_read_dir,
1758         .iterate_shared = empty_dir_readdir,
1759         .fsync          = noop_fsync,
1760 };
1761 
1762 
1763 void make_empty_dir_inode(struct inode *inode)
1764 {
1765         set_nlink(inode, 2);
1766         inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1767         inode->i_uid = GLOBAL_ROOT_UID;
1768         inode->i_gid = GLOBAL_ROOT_GID;
1769         inode->i_rdev = 0;
1770         inode->i_size = 0;
1771         inode->i_blkbits = PAGE_SHIFT;
1772         inode->i_blocks = 0;
1773 
1774         inode->i_op = &empty_dir_inode_operations;
1775         inode->i_opflags &= ~IOP_XATTR;
1776         inode->i_fop = &empty_dir_operations;
1777 }
1778 
1779 bool is_empty_dir_inode(struct inode *inode)
1780 {
1781         return (inode->i_fop == &empty_dir_operations) &&
1782                 (inode->i_op == &empty_dir_inode_operations);
1783 }
1784 
1785 #if IS_ENABLED(CONFIG_UNICODE)
1786 /**
1787  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1788  * @dentry:     dentry whose name we are checking against
1789  * @len:        len of name of dentry
1790  * @str:        str pointer to name of dentry
1791  * @name:       Name to compare against
1792  *
1793  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1794  */
1795 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1796                                 const char *str, const struct qstr *name)
1797 {
1798         const struct dentry *parent;
1799         const struct inode *dir;
1800         char strbuf[DNAME_INLINE_LEN];
1801         struct qstr qstr;
1802 
1803         /*
1804          * Attempt a case-sensitive match first. It is cheaper and
1805          * should cover most lookups, including all the sane
1806          * applications that expect a case-sensitive filesystem.
1807          *
1808          * This comparison is safe under RCU because the caller
1809          * guarantees the consistency between str and len. See
1810          * __d_lookup_rcu_op_compare() for details.
1811          */
1812         if (len == name->len && !memcmp(str, name->name, len))
1813                 return 0;
1814 
1815         parent = READ_ONCE(dentry->d_parent);
1816         dir = READ_ONCE(parent->d_inode);
1817         if (!dir || !IS_CASEFOLDED(dir))
1818                 return 1;
1819 
1820         /*
1821          * If the dentry name is stored in-line, then it may be concurrently
1822          * modified by a rename.  If this happens, the VFS will eventually retry
1823          * the lookup, so it doesn't matter what ->d_compare() returns.
1824          * However, it's unsafe to call utf8_strncasecmp() with an unstable
1825          * string.  Therefore, we have to copy the name into a temporary buffer.
1826          */
1827         if (len <= DNAME_INLINE_LEN - 1) {
1828                 memcpy(strbuf, str, len);
1829                 strbuf[len] = 0;
1830                 str = strbuf;
1831                 /* prevent compiler from optimizing out the temporary buffer */
1832                 barrier();
1833         }
1834         qstr.len = len;
1835         qstr.name = str;
1836 
1837         return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr);
1838 }
1839 
1840 /**
1841  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1842  * @dentry:     dentry of the parent directory
1843  * @str:        qstr of name whose hash we should fill in
1844  *
1845  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1846  */
1847 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1848 {
1849         const struct inode *dir = READ_ONCE(dentry->d_inode);
1850         struct super_block *sb = dentry->d_sb;
1851         const struct unicode_map *um = sb->s_encoding;
1852         int ret;
1853 
1854         if (!dir || !IS_CASEFOLDED(dir))
1855                 return 0;
1856 
1857         ret = utf8_casefold_hash(um, dentry, str);
1858         if (ret < 0 && sb_has_strict_encoding(sb))
1859                 return -EINVAL;
1860         return 0;
1861 }
1862 
1863 static const struct dentry_operations generic_ci_dentry_ops = {
1864         .d_hash = generic_ci_d_hash,
1865         .d_compare = generic_ci_d_compare,
1866 #ifdef CONFIG_FS_ENCRYPTION
1867         .d_revalidate = fscrypt_d_revalidate,
1868 #endif
1869 };
1870 
1871 /**
1872  * generic_ci_match() - Match a name (case-insensitively) with a dirent.
1873  * This is a filesystem helper for comparison with directory entries.
1874  * generic_ci_d_compare should be used in VFS' ->d_compare instead.
1875  *
1876  * @parent: Inode of the parent of the dirent under comparison
1877  * @name: name under lookup.
1878  * @folded_name: Optional pre-folded name under lookup
1879  * @de_name: Dirent name.
1880  * @de_name_len: dirent name length.
1881  *
1882  * Test whether a case-insensitive directory entry matches the filename
1883  * being searched.  If @folded_name is provided, it is used instead of
1884  * recalculating the casefold of @name.
1885  *
1886  * Return: > 0 if the directory entry matches, 0 if it doesn't match, or
1887  * < 0 on error.
1888  */
1889 int generic_ci_match(const struct inode *parent,
1890                      const struct qstr *name,
1891                      const struct qstr *folded_name,
1892                      const u8 *de_name, u32 de_name_len)
1893 {
1894         const struct super_block *sb = parent->i_sb;
1895         const struct unicode_map *um = sb->s_encoding;
1896         struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len);
1897         struct qstr dirent = QSTR_INIT(de_name, de_name_len);
1898         int res = 0;
1899 
1900         if (IS_ENCRYPTED(parent)) {
1901                 const struct fscrypt_str encrypted_name =
1902                         FSTR_INIT((u8 *) de_name, de_name_len);
1903 
1904                 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent)))
1905                         return -EINVAL;
1906 
1907                 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL);
1908                 if (!decrypted_name.name)
1909                         return -ENOMEM;
1910                 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name,
1911                                                 &decrypted_name);
1912                 if (res < 0) {
1913                         kfree(decrypted_name.name);
1914                         return res;
1915                 }
1916                 dirent.name = decrypted_name.name;
1917                 dirent.len = decrypted_name.len;
1918         }
1919 
1920         /*
1921          * Attempt a case-sensitive match first. It is cheaper and
1922          * should cover most lookups, including all the sane
1923          * applications that expect a case-sensitive filesystem.
1924          */
1925 
1926         if (dirent.len == name->len &&
1927             !memcmp(name->name, dirent.name, dirent.len))
1928                 goto out;
1929 
1930         if (folded_name->name)
1931                 res = utf8_strncasecmp_folded(um, folded_name, &dirent);
1932         else
1933                 res = utf8_strncasecmp(um, name, &dirent);
1934 
1935 out:
1936         kfree(decrypted_name.name);
1937         if (res < 0 && sb_has_strict_encoding(sb)) {
1938                 pr_err_ratelimited("Directory contains filename that is invalid UTF-8");
1939                 return 0;
1940         }
1941         return !res;
1942 }
1943 EXPORT_SYMBOL(generic_ci_match);
1944 #endif
1945 
1946 #ifdef CONFIG_FS_ENCRYPTION
1947 static const struct dentry_operations generic_encrypted_dentry_ops = {
1948         .d_revalidate = fscrypt_d_revalidate,
1949 };
1950 #endif
1951 
1952 /**
1953  * generic_set_sb_d_ops - helper for choosing the set of
1954  * filesystem-wide dentry operations for the enabled features
1955  * @sb: superblock to be configured
1956  *
1957  * Filesystems supporting casefolding and/or fscrypt can call this
1958  * helper at mount-time to configure sb->s_d_op to best set of dentry
1959  * operations required for the enabled features. The helper must be
1960  * called after these have been configured, but before the root dentry
1961  * is created.
1962  */
1963 void generic_set_sb_d_ops(struct super_block *sb)
1964 {
1965 #if IS_ENABLED(CONFIG_UNICODE)
1966         if (sb->s_encoding) {
1967                 sb->s_d_op = &generic_ci_dentry_ops;
1968                 return;
1969         }
1970 #endif
1971 #ifdef CONFIG_FS_ENCRYPTION
1972         if (sb->s_cop) {
1973                 sb->s_d_op = &generic_encrypted_dentry_ops;
1974                 return;
1975         }
1976 #endif
1977 }
1978 EXPORT_SYMBOL(generic_set_sb_d_ops);
1979 
1980 /**
1981  * inode_maybe_inc_iversion - increments i_version
1982  * @inode: inode with the i_version that should be updated
1983  * @force: increment the counter even if it's not necessary?
1984  *
1985  * Every time the inode is modified, the i_version field must be seen to have
1986  * changed by any observer.
1987  *
1988  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1989  * the value, and clear the queried flag.
1990  *
1991  * In the common case where neither is set, then we can return "false" without
1992  * updating i_version.
1993  *
1994  * If this function returns false, and no other metadata has changed, then we
1995  * can avoid logging the metadata.
1996  */
1997 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1998 {
1999         u64 cur, new;
2000 
2001         /*
2002          * The i_version field is not strictly ordered with any other inode
2003          * information, but the legacy inode_inc_iversion code used a spinlock
2004          * to serialize increments.
2005          *
2006          * Here, we add full memory barriers to ensure that any de-facto
2007          * ordering with other info is preserved.
2008          *
2009          * This barrier pairs with the barrier in inode_query_iversion()
2010          */
2011         smp_mb();
2012         cur = inode_peek_iversion_raw(inode);
2013         do {
2014                 /* If flag is clear then we needn't do anything */
2015                 if (!force && !(cur & I_VERSION_QUERIED))
2016                         return false;
2017 
2018                 /* Since lowest bit is flag, add 2 to avoid it */
2019                 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
2020         } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2021         return true;
2022 }
2023 EXPORT_SYMBOL(inode_maybe_inc_iversion);
2024 
2025 /**
2026  * inode_query_iversion - read i_version for later use
2027  * @inode: inode from which i_version should be read
2028  *
2029  * Read the inode i_version counter. This should be used by callers that wish
2030  * to store the returned i_version for later comparison. This will guarantee
2031  * that a later query of the i_version will result in a different value if
2032  * anything has changed.
2033  *
2034  * In this implementation, we fetch the current value, set the QUERIED flag and
2035  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
2036  * that fails, we try again with the newly fetched value from the cmpxchg.
2037  */
2038 u64 inode_query_iversion(struct inode *inode)
2039 {
2040         u64 cur, new;
2041 
2042         cur = inode_peek_iversion_raw(inode);
2043         do {
2044                 /* If flag is already set, then no need to swap */
2045                 if (cur & I_VERSION_QUERIED) {
2046                         /*
2047                          * This barrier (and the implicit barrier in the
2048                          * cmpxchg below) pairs with the barrier in
2049                          * inode_maybe_inc_iversion().
2050                          */
2051                         smp_mb();
2052                         break;
2053                 }
2054 
2055                 new = cur | I_VERSION_QUERIED;
2056         } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
2057         return cur >> I_VERSION_QUERIED_SHIFT;
2058 }
2059 EXPORT_SYMBOL(inode_query_iversion);
2060 
2061 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
2062                 ssize_t direct_written, ssize_t buffered_written)
2063 {
2064         struct address_space *mapping = iocb->ki_filp->f_mapping;
2065         loff_t pos = iocb->ki_pos - buffered_written;
2066         loff_t end = iocb->ki_pos - 1;
2067         int err;
2068 
2069         /*
2070          * If the buffered write fallback returned an error, we want to return
2071          * the number of bytes which were written by direct I/O, or the error
2072          * code if that was zero.
2073          *
2074          * Note that this differs from normal direct-io semantics, which will
2075          * return -EFOO even if some bytes were written.
2076          */
2077         if (unlikely(buffered_written < 0)) {
2078                 if (direct_written)
2079                         return direct_written;
2080                 return buffered_written;
2081         }
2082 
2083         /*
2084          * We need to ensure that the page cache pages are written to disk and
2085          * invalidated to preserve the expected O_DIRECT semantics.
2086          */
2087         err = filemap_write_and_wait_range(mapping, pos, end);
2088         if (err < 0) {
2089                 /*
2090                  * We don't know how much we wrote, so just return the number of
2091                  * bytes which were direct-written
2092                  */
2093                 iocb->ki_pos -= buffered_written;
2094                 if (direct_written)
2095                         return direct_written;
2096                 return err;
2097         }
2098         invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2099         return direct_written + buffered_written;
2100 }
2101 EXPORT_SYMBOL_GPL(direct_write_fallback);
2102 
2103 /**
2104  * simple_inode_init_ts - initialize the timestamps for a new inode
2105  * @inode: inode to be initialized
2106  *
2107  * When a new inode is created, most filesystems set the timestamps to the
2108  * current time. Add a helper to do this.
2109  */
2110 struct timespec64 simple_inode_init_ts(struct inode *inode)
2111 {
2112         struct timespec64 ts = inode_set_ctime_current(inode);
2113 
2114         inode_set_atime_to_ts(inode, ts);
2115         inode_set_mtime_to_ts(inode, ts);
2116         return ts;
2117 }
2118 EXPORT_SYMBOL(simple_inode_init_ts);
2119 
2120 static inline struct dentry *get_stashed_dentry(struct dentry **stashed)
2121 {
2122         struct dentry *dentry;
2123 
2124         guard(rcu)();
2125         dentry = rcu_dereference(*stashed);
2126         if (!dentry)
2127                 return NULL;
2128         if (!lockref_get_not_dead(&dentry->d_lockref))
2129                 return NULL;
2130         return dentry;
2131 }
2132 
2133 static struct dentry *prepare_anon_dentry(struct dentry **stashed,
2134                                           struct super_block *sb,
2135                                           void *data)
2136 {
2137         struct dentry *dentry;
2138         struct inode *inode;
2139         const struct stashed_operations *sops = sb->s_fs_info;
2140         int ret;
2141 
2142         inode = new_inode_pseudo(sb);
2143         if (!inode) {
2144                 sops->put_data(data);
2145                 return ERR_PTR(-ENOMEM);
2146         }
2147 
2148         inode->i_flags |= S_IMMUTABLE;
2149         inode->i_mode = S_IFREG;
2150         simple_inode_init_ts(inode);
2151 
2152         ret = sops->init_inode(inode, data);
2153         if (ret < 0) {
2154                 iput(inode);
2155                 return ERR_PTR(ret);
2156         }
2157 
2158         /* Notice when this is changed. */
2159         WARN_ON_ONCE(!S_ISREG(inode->i_mode));
2160         WARN_ON_ONCE(!IS_IMMUTABLE(inode));
2161 
2162         dentry = d_alloc_anon(sb);
2163         if (!dentry) {
2164                 iput(inode);
2165                 return ERR_PTR(-ENOMEM);
2166         }
2167 
2168         /* Store address of location where dentry's supposed to be stashed. */
2169         dentry->d_fsdata = stashed;
2170 
2171         /* @data is now owned by the fs */
2172         d_instantiate(dentry, inode);
2173         return dentry;
2174 }
2175 
2176 static struct dentry *stash_dentry(struct dentry **stashed,
2177                                    struct dentry *dentry)
2178 {
2179         guard(rcu)();
2180         for (;;) {
2181                 struct dentry *old;
2182 
2183                 /* Assume any old dentry was cleared out. */
2184                 old = cmpxchg(stashed, NULL, dentry);
2185                 if (likely(!old))
2186                         return dentry;
2187 
2188                 /* Check if somebody else installed a reusable dentry. */
2189                 if (lockref_get_not_dead(&old->d_lockref))
2190                         return old;
2191 
2192                 /* There's an old dead dentry there, try to take it over. */
2193                 if (likely(try_cmpxchg(stashed, &old, dentry)))
2194                         return dentry;
2195         }
2196 }
2197 
2198 /**
2199  * path_from_stashed - create path from stashed or new dentry
2200  * @stashed:    where to retrieve or stash dentry
2201  * @mnt:        mnt of the filesystems to use
2202  * @data:       data to store in inode->i_private
2203  * @path:       path to create
2204  *
2205  * The function tries to retrieve a stashed dentry from @stashed. If the dentry
2206  * is still valid then it will be reused. If the dentry isn't able the function
2207  * will allocate a new dentry and inode. It will then check again whether it
2208  * can reuse an existing dentry in case one has been added in the meantime or
2209  * update @stashed with the newly added dentry.
2210  *
2211  * Special-purpose helper for nsfs and pidfs.
2212  *
2213  * Return: On success zero and on failure a negative error is returned.
2214  */
2215 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data,
2216                       struct path *path)
2217 {
2218         struct dentry *dentry;
2219         const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info;
2220 
2221         /* See if dentry can be reused. */
2222         path->dentry = get_stashed_dentry(stashed);
2223         if (path->dentry) {
2224                 sops->put_data(data);
2225                 goto out_path;
2226         }
2227 
2228         /* Allocate a new dentry. */
2229         dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data);
2230         if (IS_ERR(dentry))
2231                 return PTR_ERR(dentry);
2232 
2233         /* Added a new dentry. @data is now owned by the filesystem. */
2234         path->dentry = stash_dentry(stashed, dentry);
2235         if (path->dentry != dentry)
2236                 dput(dentry);
2237 
2238 out_path:
2239         WARN_ON_ONCE(path->dentry->d_fsdata != stashed);
2240         WARN_ON_ONCE(d_inode(path->dentry)->i_private != data);
2241         path->mnt = mntget(mnt);
2242         return 0;
2243 }
2244 
2245 void stashed_dentry_prune(struct dentry *dentry)
2246 {
2247         struct dentry **stashed = dentry->d_fsdata;
2248         struct inode *inode = d_inode(dentry);
2249 
2250         if (WARN_ON_ONCE(!stashed))
2251                 return;
2252 
2253         if (!inode)
2254                 return;
2255 
2256         /*
2257          * Only replace our own @dentry as someone else might've
2258          * already cleared out @dentry and stashed their own
2259          * dentry in there.
2260          */
2261         cmpxchg(stashed, dentry, NULL);
2262 }
2263 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php