1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 #include <linux/pidfs.h> 27 28 #include <linux/uaccess.h> 29 30 #include "internal.h" 31 32 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 33 struct kstat *stat, u32 request_mask, 34 unsigned int query_flags) 35 { 36 struct inode *inode = d_inode(path->dentry); 37 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 38 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 39 return 0; 40 } 41 EXPORT_SYMBOL(simple_getattr); 42 43 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 44 { 45 u64 id = huge_encode_dev(dentry->d_sb->s_dev); 46 47 buf->f_fsid = u64_to_fsid(id); 48 buf->f_type = dentry->d_sb->s_magic; 49 buf->f_bsize = PAGE_SIZE; 50 buf->f_namelen = NAME_MAX; 51 return 0; 52 } 53 EXPORT_SYMBOL(simple_statfs); 54 55 /* 56 * Retaining negative dentries for an in-memory filesystem just wastes 57 * memory and lookup time: arrange for them to be deleted immediately. 58 */ 59 int always_delete_dentry(const struct dentry *dentry) 60 { 61 return 1; 62 } 63 EXPORT_SYMBOL(always_delete_dentry); 64 65 const struct dentry_operations simple_dentry_operations = { 66 .d_delete = always_delete_dentry, 67 }; 68 EXPORT_SYMBOL(simple_dentry_operations); 69 70 /* 71 * Lookup the data. This is trivial - if the dentry didn't already 72 * exist, we know it is negative. Set d_op to delete negative dentries. 73 */ 74 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 75 { 76 if (dentry->d_name.len > NAME_MAX) 77 return ERR_PTR(-ENAMETOOLONG); 78 if (!dentry->d_sb->s_d_op) 79 d_set_d_op(dentry, &simple_dentry_operations); 80 d_add(dentry, NULL); 81 return NULL; 82 } 83 EXPORT_SYMBOL(simple_lookup); 84 85 int dcache_dir_open(struct inode *inode, struct file *file) 86 { 87 file->private_data = d_alloc_cursor(file->f_path.dentry); 88 89 return file->private_data ? 0 : -ENOMEM; 90 } 91 EXPORT_SYMBOL(dcache_dir_open); 92 93 int dcache_dir_close(struct inode *inode, struct file *file) 94 { 95 dput(file->private_data); 96 return 0; 97 } 98 EXPORT_SYMBOL(dcache_dir_close); 99 100 /* parent is locked at least shared */ 101 /* 102 * Returns an element of siblings' list. 103 * We are looking for <count>th positive after <p>; if 104 * found, dentry is grabbed and returned to caller. 105 * If no such element exists, NULL is returned. 106 */ 107 static struct dentry *scan_positives(struct dentry *cursor, 108 struct hlist_node **p, 109 loff_t count, 110 struct dentry *last) 111 { 112 struct dentry *dentry = cursor->d_parent, *found = NULL; 113 114 spin_lock(&dentry->d_lock); 115 while (*p) { 116 struct dentry *d = hlist_entry(*p, struct dentry, d_sib); 117 p = &d->d_sib.next; 118 // we must at least skip cursors, to avoid livelocks 119 if (d->d_flags & DCACHE_DENTRY_CURSOR) 120 continue; 121 if (simple_positive(d) && !--count) { 122 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 123 if (simple_positive(d)) 124 found = dget_dlock(d); 125 spin_unlock(&d->d_lock); 126 if (likely(found)) 127 break; 128 count = 1; 129 } 130 if (need_resched()) { 131 if (!hlist_unhashed(&cursor->d_sib)) 132 __hlist_del(&cursor->d_sib); 133 hlist_add_behind(&cursor->d_sib, &d->d_sib); 134 p = &cursor->d_sib.next; 135 spin_unlock(&dentry->d_lock); 136 cond_resched(); 137 spin_lock(&dentry->d_lock); 138 } 139 } 140 spin_unlock(&dentry->d_lock); 141 dput(last); 142 return found; 143 } 144 145 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 146 { 147 struct dentry *dentry = file->f_path.dentry; 148 switch (whence) { 149 case 1: 150 offset += file->f_pos; 151 fallthrough; 152 case 0: 153 if (offset >= 0) 154 break; 155 fallthrough; 156 default: 157 return -EINVAL; 158 } 159 if (offset != file->f_pos) { 160 struct dentry *cursor = file->private_data; 161 struct dentry *to = NULL; 162 163 inode_lock_shared(dentry->d_inode); 164 165 if (offset > 2) 166 to = scan_positives(cursor, &dentry->d_children.first, 167 offset - 2, NULL); 168 spin_lock(&dentry->d_lock); 169 hlist_del_init(&cursor->d_sib); 170 if (to) 171 hlist_add_behind(&cursor->d_sib, &to->d_sib); 172 spin_unlock(&dentry->d_lock); 173 dput(to); 174 175 file->f_pos = offset; 176 177 inode_unlock_shared(dentry->d_inode); 178 } 179 return offset; 180 } 181 EXPORT_SYMBOL(dcache_dir_lseek); 182 183 /* 184 * Directory is locked and all positive dentries in it are safe, since 185 * for ramfs-type trees they can't go away without unlink() or rmdir(), 186 * both impossible due to the lock on directory. 187 */ 188 189 int dcache_readdir(struct file *file, struct dir_context *ctx) 190 { 191 struct dentry *dentry = file->f_path.dentry; 192 struct dentry *cursor = file->private_data; 193 struct dentry *next = NULL; 194 struct hlist_node **p; 195 196 if (!dir_emit_dots(file, ctx)) 197 return 0; 198 199 if (ctx->pos == 2) 200 p = &dentry->d_children.first; 201 else 202 p = &cursor->d_sib.next; 203 204 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 205 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 206 d_inode(next)->i_ino, 207 fs_umode_to_dtype(d_inode(next)->i_mode))) 208 break; 209 ctx->pos++; 210 p = &next->d_sib.next; 211 } 212 spin_lock(&dentry->d_lock); 213 hlist_del_init(&cursor->d_sib); 214 if (next) 215 hlist_add_before(&cursor->d_sib, &next->d_sib); 216 spin_unlock(&dentry->d_lock); 217 dput(next); 218 219 return 0; 220 } 221 EXPORT_SYMBOL(dcache_readdir); 222 223 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 224 { 225 return -EISDIR; 226 } 227 EXPORT_SYMBOL(generic_read_dir); 228 229 const struct file_operations simple_dir_operations = { 230 .open = dcache_dir_open, 231 .release = dcache_dir_close, 232 .llseek = dcache_dir_lseek, 233 .read = generic_read_dir, 234 .iterate_shared = dcache_readdir, 235 .fsync = noop_fsync, 236 }; 237 EXPORT_SYMBOL(simple_dir_operations); 238 239 const struct inode_operations simple_dir_inode_operations = { 240 .lookup = simple_lookup, 241 }; 242 EXPORT_SYMBOL(simple_dir_inode_operations); 243 244 /* 0 is '.', 1 is '..', so always start with offset 2 or more */ 245 enum { 246 DIR_OFFSET_MIN = 2, 247 }; 248 249 static void offset_set(struct dentry *dentry, long offset) 250 { 251 dentry->d_fsdata = (void *)offset; 252 } 253 254 static long dentry2offset(struct dentry *dentry) 255 { 256 return (long)dentry->d_fsdata; 257 } 258 259 static struct lock_class_key simple_offset_lock_class; 260 261 /** 262 * simple_offset_init - initialize an offset_ctx 263 * @octx: directory offset map to be initialized 264 * 265 */ 266 void simple_offset_init(struct offset_ctx *octx) 267 { 268 mt_init_flags(&octx->mt, MT_FLAGS_ALLOC_RANGE); 269 lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); 270 octx->next_offset = DIR_OFFSET_MIN; 271 } 272 273 /** 274 * simple_offset_add - Add an entry to a directory's offset map 275 * @octx: directory offset ctx to be updated 276 * @dentry: new dentry being added 277 * 278 * Returns zero on success. @octx and the dentry's offset are updated. 279 * Otherwise, a negative errno value is returned. 280 */ 281 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 282 { 283 unsigned long offset; 284 int ret; 285 286 if (dentry2offset(dentry) != 0) 287 return -EBUSY; 288 289 ret = mtree_alloc_cyclic(&octx->mt, &offset, dentry, DIR_OFFSET_MIN, 290 LONG_MAX, &octx->next_offset, GFP_KERNEL); 291 if (ret < 0) 292 return ret; 293 294 offset_set(dentry, offset); 295 return 0; 296 } 297 298 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry, 299 long offset) 300 { 301 int ret; 302 303 ret = mtree_store(&octx->mt, offset, dentry, GFP_KERNEL); 304 if (ret) 305 return ret; 306 offset_set(dentry, offset); 307 return 0; 308 } 309 310 /** 311 * simple_offset_remove - Remove an entry to a directory's offset map 312 * @octx: directory offset ctx to be updated 313 * @dentry: dentry being removed 314 * 315 */ 316 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 317 { 318 long offset; 319 320 offset = dentry2offset(dentry); 321 if (offset == 0) 322 return; 323 324 mtree_erase(&octx->mt, offset); 325 offset_set(dentry, 0); 326 } 327 328 /** 329 * simple_offset_empty - Check if a dentry can be unlinked 330 * @dentry: dentry to be tested 331 * 332 * Returns 0 if @dentry is a non-empty directory; otherwise returns 1. 333 */ 334 int simple_offset_empty(struct dentry *dentry) 335 { 336 struct inode *inode = d_inode(dentry); 337 struct offset_ctx *octx; 338 struct dentry *child; 339 unsigned long index; 340 int ret = 1; 341 342 if (!inode || !S_ISDIR(inode->i_mode)) 343 return ret; 344 345 index = DIR_OFFSET_MIN; 346 octx = inode->i_op->get_offset_ctx(inode); 347 mt_for_each(&octx->mt, child, index, LONG_MAX) { 348 spin_lock(&child->d_lock); 349 if (simple_positive(child)) { 350 spin_unlock(&child->d_lock); 351 ret = 0; 352 break; 353 } 354 spin_unlock(&child->d_lock); 355 } 356 357 return ret; 358 } 359 360 /** 361 * simple_offset_rename - handle directory offsets for rename 362 * @old_dir: parent directory of source entry 363 * @old_dentry: dentry of source entry 364 * @new_dir: parent_directory of destination entry 365 * @new_dentry: dentry of destination 366 * 367 * Caller provides appropriate serialization. 368 * 369 * User space expects the directory offset value of the replaced 370 * (new) directory entry to be unchanged after a rename. 371 * 372 * Returns zero on success, a negative errno value on failure. 373 */ 374 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry, 375 struct inode *new_dir, struct dentry *new_dentry) 376 { 377 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 378 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 379 long new_offset = dentry2offset(new_dentry); 380 381 simple_offset_remove(old_ctx, old_dentry); 382 383 if (new_offset) { 384 offset_set(new_dentry, 0); 385 return simple_offset_replace(new_ctx, old_dentry, new_offset); 386 } 387 return simple_offset_add(new_ctx, old_dentry); 388 } 389 390 /** 391 * simple_offset_rename_exchange - exchange rename with directory offsets 392 * @old_dir: parent of dentry being moved 393 * @old_dentry: dentry being moved 394 * @new_dir: destination parent 395 * @new_dentry: destination dentry 396 * 397 * This API preserves the directory offset values. Caller provides 398 * appropriate serialization. 399 * 400 * Returns zero on success. Otherwise a negative errno is returned and the 401 * rename is rolled back. 402 */ 403 int simple_offset_rename_exchange(struct inode *old_dir, 404 struct dentry *old_dentry, 405 struct inode *new_dir, 406 struct dentry *new_dentry) 407 { 408 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 409 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 410 long old_index = dentry2offset(old_dentry); 411 long new_index = dentry2offset(new_dentry); 412 int ret; 413 414 simple_offset_remove(old_ctx, old_dentry); 415 simple_offset_remove(new_ctx, new_dentry); 416 417 ret = simple_offset_replace(new_ctx, old_dentry, new_index); 418 if (ret) 419 goto out_restore; 420 421 ret = simple_offset_replace(old_ctx, new_dentry, old_index); 422 if (ret) { 423 simple_offset_remove(new_ctx, old_dentry); 424 goto out_restore; 425 } 426 427 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 428 if (ret) { 429 simple_offset_remove(new_ctx, old_dentry); 430 simple_offset_remove(old_ctx, new_dentry); 431 goto out_restore; 432 } 433 return 0; 434 435 out_restore: 436 (void)simple_offset_replace(old_ctx, old_dentry, old_index); 437 (void)simple_offset_replace(new_ctx, new_dentry, new_index); 438 return ret; 439 } 440 441 /** 442 * simple_offset_destroy - Release offset map 443 * @octx: directory offset ctx that is about to be destroyed 444 * 445 * During fs teardown (eg. umount), a directory's offset map might still 446 * contain entries. xa_destroy() cleans out anything that remains. 447 */ 448 void simple_offset_destroy(struct offset_ctx *octx) 449 { 450 mtree_destroy(&octx->mt); 451 } 452 453 static int offset_dir_open(struct inode *inode, struct file *file) 454 { 455 struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode); 456 457 file->private_data = (void *)ctx->next_offset; 458 return 0; 459 } 460 461 /** 462 * offset_dir_llseek - Advance the read position of a directory descriptor 463 * @file: an open directory whose position is to be updated 464 * @offset: a byte offset 465 * @whence: enumerator describing the starting position for this update 466 * 467 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 468 * 469 * Returns the updated read position if successful; otherwise a 470 * negative errno is returned and the read position remains unchanged. 471 */ 472 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 473 { 474 struct inode *inode = file->f_inode; 475 struct offset_ctx *ctx = inode->i_op->get_offset_ctx(inode); 476 477 switch (whence) { 478 case SEEK_CUR: 479 offset += file->f_pos; 480 fallthrough; 481 case SEEK_SET: 482 if (offset >= 0) 483 break; 484 fallthrough; 485 default: 486 return -EINVAL; 487 } 488 489 /* In this case, ->private_data is protected by f_pos_lock */ 490 if (!offset) 491 file->private_data = (void *)ctx->next_offset; 492 return vfs_setpos(file, offset, LONG_MAX); 493 } 494 495 static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset) 496 { 497 MA_STATE(mas, &octx->mt, offset, offset); 498 struct dentry *child, *found = NULL; 499 500 rcu_read_lock(); 501 child = mas_find(&mas, LONG_MAX); 502 if (!child) 503 goto out; 504 spin_lock(&child->d_lock); 505 if (simple_positive(child)) 506 found = dget_dlock(child); 507 spin_unlock(&child->d_lock); 508 out: 509 rcu_read_unlock(); 510 return found; 511 } 512 513 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 514 { 515 struct inode *inode = d_inode(dentry); 516 long offset = dentry2offset(dentry); 517 518 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 519 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 520 } 521 522 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx, long last_index) 523 { 524 struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); 525 struct dentry *dentry; 526 527 while (true) { 528 dentry = offset_find_next(octx, ctx->pos); 529 if (!dentry) 530 return; 531 532 if (dentry2offset(dentry) >= last_index) { 533 dput(dentry); 534 return; 535 } 536 537 if (!offset_dir_emit(ctx, dentry)) { 538 dput(dentry); 539 return; 540 } 541 542 ctx->pos = dentry2offset(dentry) + 1; 543 dput(dentry); 544 } 545 } 546 547 /** 548 * offset_readdir - Emit entries starting at offset @ctx->pos 549 * @file: an open directory to iterate over 550 * @ctx: directory iteration context 551 * 552 * Caller must hold @file's i_rwsem to prevent insertion or removal of 553 * entries during this call. 554 * 555 * On entry, @ctx->pos contains an offset that represents the first entry 556 * to be read from the directory. 557 * 558 * The operation continues until there are no more entries to read, or 559 * until the ctx->actor indicates there is no more space in the caller's 560 * output buffer. 561 * 562 * On return, @ctx->pos contains an offset that will read the next entry 563 * in this directory when offset_readdir() is called again with @ctx. 564 * 565 * Return values: 566 * %0 - Complete 567 */ 568 static int offset_readdir(struct file *file, struct dir_context *ctx) 569 { 570 struct dentry *dir = file->f_path.dentry; 571 long last_index = (long)file->private_data; 572 573 lockdep_assert_held(&d_inode(dir)->i_rwsem); 574 575 if (!dir_emit_dots(file, ctx)) 576 return 0; 577 578 offset_iterate_dir(d_inode(dir), ctx, last_index); 579 return 0; 580 } 581 582 const struct file_operations simple_offset_dir_operations = { 583 .open = offset_dir_open, 584 .llseek = offset_dir_llseek, 585 .iterate_shared = offset_readdir, 586 .read = generic_read_dir, 587 .fsync = noop_fsync, 588 }; 589 590 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 591 { 592 struct dentry *child = NULL, *d; 593 594 spin_lock(&parent->d_lock); 595 d = prev ? d_next_sibling(prev) : d_first_child(parent); 596 hlist_for_each_entry_from(d, d_sib) { 597 if (simple_positive(d)) { 598 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 599 if (simple_positive(d)) 600 child = dget_dlock(d); 601 spin_unlock(&d->d_lock); 602 if (likely(child)) 603 break; 604 } 605 } 606 spin_unlock(&parent->d_lock); 607 dput(prev); 608 return child; 609 } 610 611 void simple_recursive_removal(struct dentry *dentry, 612 void (*callback)(struct dentry *)) 613 { 614 struct dentry *this = dget(dentry); 615 while (true) { 616 struct dentry *victim = NULL, *child; 617 struct inode *inode = this->d_inode; 618 619 inode_lock(inode); 620 if (d_is_dir(this)) 621 inode->i_flags |= S_DEAD; 622 while ((child = find_next_child(this, victim)) == NULL) { 623 // kill and ascend 624 // update metadata while it's still locked 625 inode_set_ctime_current(inode); 626 clear_nlink(inode); 627 inode_unlock(inode); 628 victim = this; 629 this = this->d_parent; 630 inode = this->d_inode; 631 inode_lock(inode); 632 if (simple_positive(victim)) { 633 d_invalidate(victim); // avoid lost mounts 634 if (d_is_dir(victim)) 635 fsnotify_rmdir(inode, victim); 636 else 637 fsnotify_unlink(inode, victim); 638 if (callback) 639 callback(victim); 640 dput(victim); // unpin it 641 } 642 if (victim == dentry) { 643 inode_set_mtime_to_ts(inode, 644 inode_set_ctime_current(inode)); 645 if (d_is_dir(dentry)) 646 drop_nlink(inode); 647 inode_unlock(inode); 648 dput(dentry); 649 return; 650 } 651 } 652 inode_unlock(inode); 653 this = child; 654 } 655 } 656 EXPORT_SYMBOL(simple_recursive_removal); 657 658 static const struct super_operations simple_super_operations = { 659 .statfs = simple_statfs, 660 }; 661 662 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 663 { 664 struct pseudo_fs_context *ctx = fc->fs_private; 665 struct inode *root; 666 667 s->s_maxbytes = MAX_LFS_FILESIZE; 668 s->s_blocksize = PAGE_SIZE; 669 s->s_blocksize_bits = PAGE_SHIFT; 670 s->s_magic = ctx->magic; 671 s->s_op = ctx->ops ?: &simple_super_operations; 672 s->s_xattr = ctx->xattr; 673 s->s_time_gran = 1; 674 root = new_inode(s); 675 if (!root) 676 return -ENOMEM; 677 678 /* 679 * since this is the first inode, make it number 1. New inodes created 680 * after this must take care not to collide with it (by passing 681 * max_reserved of 1 to iunique). 682 */ 683 root->i_ino = 1; 684 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 685 simple_inode_init_ts(root); 686 s->s_root = d_make_root(root); 687 if (!s->s_root) 688 return -ENOMEM; 689 s->s_d_op = ctx->dops; 690 return 0; 691 } 692 693 static int pseudo_fs_get_tree(struct fs_context *fc) 694 { 695 return get_tree_nodev(fc, pseudo_fs_fill_super); 696 } 697 698 static void pseudo_fs_free(struct fs_context *fc) 699 { 700 kfree(fc->fs_private); 701 } 702 703 static const struct fs_context_operations pseudo_fs_context_ops = { 704 .free = pseudo_fs_free, 705 .get_tree = pseudo_fs_get_tree, 706 }; 707 708 /* 709 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 710 * will never be mountable) 711 */ 712 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 713 unsigned long magic) 714 { 715 struct pseudo_fs_context *ctx; 716 717 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 718 if (likely(ctx)) { 719 ctx->magic = magic; 720 fc->fs_private = ctx; 721 fc->ops = &pseudo_fs_context_ops; 722 fc->sb_flags |= SB_NOUSER; 723 fc->global = true; 724 } 725 return ctx; 726 } 727 EXPORT_SYMBOL(init_pseudo); 728 729 int simple_open(struct inode *inode, struct file *file) 730 { 731 if (inode->i_private) 732 file->private_data = inode->i_private; 733 return 0; 734 } 735 EXPORT_SYMBOL(simple_open); 736 737 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 738 { 739 struct inode *inode = d_inode(old_dentry); 740 741 inode_set_mtime_to_ts(dir, 742 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 743 inc_nlink(inode); 744 ihold(inode); 745 dget(dentry); 746 d_instantiate(dentry, inode); 747 return 0; 748 } 749 EXPORT_SYMBOL(simple_link); 750 751 int simple_empty(struct dentry *dentry) 752 { 753 struct dentry *child; 754 int ret = 0; 755 756 spin_lock(&dentry->d_lock); 757 hlist_for_each_entry(child, &dentry->d_children, d_sib) { 758 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 759 if (simple_positive(child)) { 760 spin_unlock(&child->d_lock); 761 goto out; 762 } 763 spin_unlock(&child->d_lock); 764 } 765 ret = 1; 766 out: 767 spin_unlock(&dentry->d_lock); 768 return ret; 769 } 770 EXPORT_SYMBOL(simple_empty); 771 772 int simple_unlink(struct inode *dir, struct dentry *dentry) 773 { 774 struct inode *inode = d_inode(dentry); 775 776 inode_set_mtime_to_ts(dir, 777 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 778 drop_nlink(inode); 779 dput(dentry); 780 return 0; 781 } 782 EXPORT_SYMBOL(simple_unlink); 783 784 int simple_rmdir(struct inode *dir, struct dentry *dentry) 785 { 786 if (!simple_empty(dentry)) 787 return -ENOTEMPTY; 788 789 drop_nlink(d_inode(dentry)); 790 simple_unlink(dir, dentry); 791 drop_nlink(dir); 792 return 0; 793 } 794 EXPORT_SYMBOL(simple_rmdir); 795 796 /** 797 * simple_rename_timestamp - update the various inode timestamps for rename 798 * @old_dir: old parent directory 799 * @old_dentry: dentry that is being renamed 800 * @new_dir: new parent directory 801 * @new_dentry: target for rename 802 * 803 * POSIX mandates that the old and new parent directories have their ctime and 804 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 805 * their ctime updated. 806 */ 807 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 808 struct inode *new_dir, struct dentry *new_dentry) 809 { 810 struct inode *newino = d_inode(new_dentry); 811 812 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 813 if (new_dir != old_dir) 814 inode_set_mtime_to_ts(new_dir, 815 inode_set_ctime_current(new_dir)); 816 inode_set_ctime_current(d_inode(old_dentry)); 817 if (newino) 818 inode_set_ctime_current(newino); 819 } 820 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 821 822 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 823 struct inode *new_dir, struct dentry *new_dentry) 824 { 825 bool old_is_dir = d_is_dir(old_dentry); 826 bool new_is_dir = d_is_dir(new_dentry); 827 828 if (old_dir != new_dir && old_is_dir != new_is_dir) { 829 if (old_is_dir) { 830 drop_nlink(old_dir); 831 inc_nlink(new_dir); 832 } else { 833 drop_nlink(new_dir); 834 inc_nlink(old_dir); 835 } 836 } 837 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 838 return 0; 839 } 840 EXPORT_SYMBOL_GPL(simple_rename_exchange); 841 842 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 843 struct dentry *old_dentry, struct inode *new_dir, 844 struct dentry *new_dentry, unsigned int flags) 845 { 846 int they_are_dirs = d_is_dir(old_dentry); 847 848 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 849 return -EINVAL; 850 851 if (flags & RENAME_EXCHANGE) 852 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 853 854 if (!simple_empty(new_dentry)) 855 return -ENOTEMPTY; 856 857 if (d_really_is_positive(new_dentry)) { 858 simple_unlink(new_dir, new_dentry); 859 if (they_are_dirs) { 860 drop_nlink(d_inode(new_dentry)); 861 drop_nlink(old_dir); 862 } 863 } else if (they_are_dirs) { 864 drop_nlink(old_dir); 865 inc_nlink(new_dir); 866 } 867 868 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 869 return 0; 870 } 871 EXPORT_SYMBOL(simple_rename); 872 873 /** 874 * simple_setattr - setattr for simple filesystem 875 * @idmap: idmap of the target mount 876 * @dentry: dentry 877 * @iattr: iattr structure 878 * 879 * Returns 0 on success, -error on failure. 880 * 881 * simple_setattr is a simple ->setattr implementation without a proper 882 * implementation of size changes. 883 * 884 * It can either be used for in-memory filesystems or special files 885 * on simple regular filesystems. Anything that needs to change on-disk 886 * or wire state on size changes needs its own setattr method. 887 */ 888 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 889 struct iattr *iattr) 890 { 891 struct inode *inode = d_inode(dentry); 892 int error; 893 894 error = setattr_prepare(idmap, dentry, iattr); 895 if (error) 896 return error; 897 898 if (iattr->ia_valid & ATTR_SIZE) 899 truncate_setsize(inode, iattr->ia_size); 900 setattr_copy(idmap, inode, iattr); 901 mark_inode_dirty(inode); 902 return 0; 903 } 904 EXPORT_SYMBOL(simple_setattr); 905 906 static int simple_read_folio(struct file *file, struct folio *folio) 907 { 908 folio_zero_range(folio, 0, folio_size(folio)); 909 flush_dcache_folio(folio); 910 folio_mark_uptodate(folio); 911 folio_unlock(folio); 912 return 0; 913 } 914 915 int simple_write_begin(struct file *file, struct address_space *mapping, 916 loff_t pos, unsigned len, 917 struct page **pagep, void **fsdata) 918 { 919 struct folio *folio; 920 921 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 922 mapping_gfp_mask(mapping)); 923 if (IS_ERR(folio)) 924 return PTR_ERR(folio); 925 926 *pagep = &folio->page; 927 928 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 929 size_t from = offset_in_folio(folio, pos); 930 931 folio_zero_segments(folio, 0, from, 932 from + len, folio_size(folio)); 933 } 934 return 0; 935 } 936 EXPORT_SYMBOL(simple_write_begin); 937 938 /** 939 * simple_write_end - .write_end helper for non-block-device FSes 940 * @file: See .write_end of address_space_operations 941 * @mapping: " 942 * @pos: " 943 * @len: " 944 * @copied: " 945 * @page: " 946 * @fsdata: " 947 * 948 * simple_write_end does the minimum needed for updating a page after writing is 949 * done. It has the same API signature as the .write_end of 950 * address_space_operations vector. So it can just be set onto .write_end for 951 * FSes that don't need any other processing. i_mutex is assumed to be held. 952 * Block based filesystems should use generic_write_end(). 953 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 954 * is not called, so a filesystem that actually does store data in .write_inode 955 * should extend on what's done here with a call to mark_inode_dirty() in the 956 * case that i_size has changed. 957 * 958 * Use *ONLY* with simple_read_folio() 959 */ 960 static int simple_write_end(struct file *file, struct address_space *mapping, 961 loff_t pos, unsigned len, unsigned copied, 962 struct page *page, void *fsdata) 963 { 964 struct folio *folio = page_folio(page); 965 struct inode *inode = folio->mapping->host; 966 loff_t last_pos = pos + copied; 967 968 /* zero the stale part of the folio if we did a short copy */ 969 if (!folio_test_uptodate(folio)) { 970 if (copied < len) { 971 size_t from = offset_in_folio(folio, pos); 972 973 folio_zero_range(folio, from + copied, len - copied); 974 } 975 folio_mark_uptodate(folio); 976 } 977 /* 978 * No need to use i_size_read() here, the i_size 979 * cannot change under us because we hold the i_mutex. 980 */ 981 if (last_pos > inode->i_size) 982 i_size_write(inode, last_pos); 983 984 folio_mark_dirty(folio); 985 folio_unlock(folio); 986 folio_put(folio); 987 988 return copied; 989 } 990 991 /* 992 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 993 */ 994 const struct address_space_operations ram_aops = { 995 .read_folio = simple_read_folio, 996 .write_begin = simple_write_begin, 997 .write_end = simple_write_end, 998 .dirty_folio = noop_dirty_folio, 999 }; 1000 EXPORT_SYMBOL(ram_aops); 1001 1002 /* 1003 * the inodes created here are not hashed. If you use iunique to generate 1004 * unique inode values later for this filesystem, then you must take care 1005 * to pass it an appropriate max_reserved value to avoid collisions. 1006 */ 1007 int simple_fill_super(struct super_block *s, unsigned long magic, 1008 const struct tree_descr *files) 1009 { 1010 struct inode *inode; 1011 struct dentry *dentry; 1012 int i; 1013 1014 s->s_blocksize = PAGE_SIZE; 1015 s->s_blocksize_bits = PAGE_SHIFT; 1016 s->s_magic = magic; 1017 s->s_op = &simple_super_operations; 1018 s->s_time_gran = 1; 1019 1020 inode = new_inode(s); 1021 if (!inode) 1022 return -ENOMEM; 1023 /* 1024 * because the root inode is 1, the files array must not contain an 1025 * entry at index 1 1026 */ 1027 inode->i_ino = 1; 1028 inode->i_mode = S_IFDIR | 0755; 1029 simple_inode_init_ts(inode); 1030 inode->i_op = &simple_dir_inode_operations; 1031 inode->i_fop = &simple_dir_operations; 1032 set_nlink(inode, 2); 1033 s->s_root = d_make_root(inode); 1034 if (!s->s_root) 1035 return -ENOMEM; 1036 for (i = 0; !files->name || files->name[0]; i++, files++) { 1037 if (!files->name) 1038 continue; 1039 1040 /* warn if it tries to conflict with the root inode */ 1041 if (unlikely(i == 1)) 1042 printk(KERN_WARNING "%s: %s passed in a files array" 1043 "with an index of 1!\n", __func__, 1044 s->s_type->name); 1045 1046 dentry = d_alloc_name(s->s_root, files->name); 1047 if (!dentry) 1048 return -ENOMEM; 1049 inode = new_inode(s); 1050 if (!inode) { 1051 dput(dentry); 1052 return -ENOMEM; 1053 } 1054 inode->i_mode = S_IFREG | files->mode; 1055 simple_inode_init_ts(inode); 1056 inode->i_fop = files->ops; 1057 inode->i_ino = i; 1058 d_add(dentry, inode); 1059 } 1060 return 0; 1061 } 1062 EXPORT_SYMBOL(simple_fill_super); 1063 1064 static DEFINE_SPINLOCK(pin_fs_lock); 1065 1066 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 1067 { 1068 struct vfsmount *mnt = NULL; 1069 spin_lock(&pin_fs_lock); 1070 if (unlikely(!*mount)) { 1071 spin_unlock(&pin_fs_lock); 1072 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 1073 if (IS_ERR(mnt)) 1074 return PTR_ERR(mnt); 1075 spin_lock(&pin_fs_lock); 1076 if (!*mount) 1077 *mount = mnt; 1078 } 1079 mntget(*mount); 1080 ++*count; 1081 spin_unlock(&pin_fs_lock); 1082 mntput(mnt); 1083 return 0; 1084 } 1085 EXPORT_SYMBOL(simple_pin_fs); 1086 1087 void simple_release_fs(struct vfsmount **mount, int *count) 1088 { 1089 struct vfsmount *mnt; 1090 spin_lock(&pin_fs_lock); 1091 mnt = *mount; 1092 if (!--*count) 1093 *mount = NULL; 1094 spin_unlock(&pin_fs_lock); 1095 mntput(mnt); 1096 } 1097 EXPORT_SYMBOL(simple_release_fs); 1098 1099 /** 1100 * simple_read_from_buffer - copy data from the buffer to user space 1101 * @to: the user space buffer to read to 1102 * @count: the maximum number of bytes to read 1103 * @ppos: the current position in the buffer 1104 * @from: the buffer to read from 1105 * @available: the size of the buffer 1106 * 1107 * The simple_read_from_buffer() function reads up to @count bytes from the 1108 * buffer @from at offset @ppos into the user space address starting at @to. 1109 * 1110 * On success, the number of bytes read is returned and the offset @ppos is 1111 * advanced by this number, or negative value is returned on error. 1112 **/ 1113 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1114 const void *from, size_t available) 1115 { 1116 loff_t pos = *ppos; 1117 size_t ret; 1118 1119 if (pos < 0) 1120 return -EINVAL; 1121 if (pos >= available || !count) 1122 return 0; 1123 if (count > available - pos) 1124 count = available - pos; 1125 ret = copy_to_user(to, from + pos, count); 1126 if (ret == count) 1127 return -EFAULT; 1128 count -= ret; 1129 *ppos = pos + count; 1130 return count; 1131 } 1132 EXPORT_SYMBOL(simple_read_from_buffer); 1133 1134 /** 1135 * simple_write_to_buffer - copy data from user space to the buffer 1136 * @to: the buffer to write to 1137 * @available: the size of the buffer 1138 * @ppos: the current position in the buffer 1139 * @from: the user space buffer to read from 1140 * @count: the maximum number of bytes to read 1141 * 1142 * The simple_write_to_buffer() function reads up to @count bytes from the user 1143 * space address starting at @from into the buffer @to at offset @ppos. 1144 * 1145 * On success, the number of bytes written is returned and the offset @ppos is 1146 * advanced by this number, or negative value is returned on error. 1147 **/ 1148 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1149 const void __user *from, size_t count) 1150 { 1151 loff_t pos = *ppos; 1152 size_t res; 1153 1154 if (pos < 0) 1155 return -EINVAL; 1156 if (pos >= available || !count) 1157 return 0; 1158 if (count > available - pos) 1159 count = available - pos; 1160 res = copy_from_user(to + pos, from, count); 1161 if (res == count) 1162 return -EFAULT; 1163 count -= res; 1164 *ppos = pos + count; 1165 return count; 1166 } 1167 EXPORT_SYMBOL(simple_write_to_buffer); 1168 1169 /** 1170 * memory_read_from_buffer - copy data from the buffer 1171 * @to: the kernel space buffer to read to 1172 * @count: the maximum number of bytes to read 1173 * @ppos: the current position in the buffer 1174 * @from: the buffer to read from 1175 * @available: the size of the buffer 1176 * 1177 * The memory_read_from_buffer() function reads up to @count bytes from the 1178 * buffer @from at offset @ppos into the kernel space address starting at @to. 1179 * 1180 * On success, the number of bytes read is returned and the offset @ppos is 1181 * advanced by this number, or negative value is returned on error. 1182 **/ 1183 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1184 const void *from, size_t available) 1185 { 1186 loff_t pos = *ppos; 1187 1188 if (pos < 0) 1189 return -EINVAL; 1190 if (pos >= available) 1191 return 0; 1192 if (count > available - pos) 1193 count = available - pos; 1194 memcpy(to, from + pos, count); 1195 *ppos = pos + count; 1196 1197 return count; 1198 } 1199 EXPORT_SYMBOL(memory_read_from_buffer); 1200 1201 /* 1202 * Transaction based IO. 1203 * The file expects a single write which triggers the transaction, and then 1204 * possibly a read which collects the result - which is stored in a 1205 * file-local buffer. 1206 */ 1207 1208 void simple_transaction_set(struct file *file, size_t n) 1209 { 1210 struct simple_transaction_argresp *ar = file->private_data; 1211 1212 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1213 1214 /* 1215 * The barrier ensures that ar->size will really remain zero until 1216 * ar->data is ready for reading. 1217 */ 1218 smp_mb(); 1219 ar->size = n; 1220 } 1221 EXPORT_SYMBOL(simple_transaction_set); 1222 1223 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1224 { 1225 struct simple_transaction_argresp *ar; 1226 static DEFINE_SPINLOCK(simple_transaction_lock); 1227 1228 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1229 return ERR_PTR(-EFBIG); 1230 1231 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1232 if (!ar) 1233 return ERR_PTR(-ENOMEM); 1234 1235 spin_lock(&simple_transaction_lock); 1236 1237 /* only one write allowed per open */ 1238 if (file->private_data) { 1239 spin_unlock(&simple_transaction_lock); 1240 free_page((unsigned long)ar); 1241 return ERR_PTR(-EBUSY); 1242 } 1243 1244 file->private_data = ar; 1245 1246 spin_unlock(&simple_transaction_lock); 1247 1248 if (copy_from_user(ar->data, buf, size)) 1249 return ERR_PTR(-EFAULT); 1250 1251 return ar->data; 1252 } 1253 EXPORT_SYMBOL(simple_transaction_get); 1254 1255 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1256 { 1257 struct simple_transaction_argresp *ar = file->private_data; 1258 1259 if (!ar) 1260 return 0; 1261 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1262 } 1263 EXPORT_SYMBOL(simple_transaction_read); 1264 1265 int simple_transaction_release(struct inode *inode, struct file *file) 1266 { 1267 free_page((unsigned long)file->private_data); 1268 return 0; 1269 } 1270 EXPORT_SYMBOL(simple_transaction_release); 1271 1272 /* Simple attribute files */ 1273 1274 struct simple_attr { 1275 int (*get)(void *, u64 *); 1276 int (*set)(void *, u64); 1277 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1278 char set_buf[24]; 1279 void *data; 1280 const char *fmt; /* format for read operation */ 1281 struct mutex mutex; /* protects access to these buffers */ 1282 }; 1283 1284 /* simple_attr_open is called by an actual attribute open file operation 1285 * to set the attribute specific access operations. */ 1286 int simple_attr_open(struct inode *inode, struct file *file, 1287 int (*get)(void *, u64 *), int (*set)(void *, u64), 1288 const char *fmt) 1289 { 1290 struct simple_attr *attr; 1291 1292 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1293 if (!attr) 1294 return -ENOMEM; 1295 1296 attr->get = get; 1297 attr->set = set; 1298 attr->data = inode->i_private; 1299 attr->fmt = fmt; 1300 mutex_init(&attr->mutex); 1301 1302 file->private_data = attr; 1303 1304 return nonseekable_open(inode, file); 1305 } 1306 EXPORT_SYMBOL_GPL(simple_attr_open); 1307 1308 int simple_attr_release(struct inode *inode, struct file *file) 1309 { 1310 kfree(file->private_data); 1311 return 0; 1312 } 1313 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1314 1315 /* read from the buffer that is filled with the get function */ 1316 ssize_t simple_attr_read(struct file *file, char __user *buf, 1317 size_t len, loff_t *ppos) 1318 { 1319 struct simple_attr *attr; 1320 size_t size; 1321 ssize_t ret; 1322 1323 attr = file->private_data; 1324 1325 if (!attr->get) 1326 return -EACCES; 1327 1328 ret = mutex_lock_interruptible(&attr->mutex); 1329 if (ret) 1330 return ret; 1331 1332 if (*ppos && attr->get_buf[0]) { 1333 /* continued read */ 1334 size = strlen(attr->get_buf); 1335 } else { 1336 /* first read */ 1337 u64 val; 1338 ret = attr->get(attr->data, &val); 1339 if (ret) 1340 goto out; 1341 1342 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1343 attr->fmt, (unsigned long long)val); 1344 } 1345 1346 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1347 out: 1348 mutex_unlock(&attr->mutex); 1349 return ret; 1350 } 1351 EXPORT_SYMBOL_GPL(simple_attr_read); 1352 1353 /* interpret the buffer as a number to call the set function with */ 1354 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1355 size_t len, loff_t *ppos, bool is_signed) 1356 { 1357 struct simple_attr *attr; 1358 unsigned long long val; 1359 size_t size; 1360 ssize_t ret; 1361 1362 attr = file->private_data; 1363 if (!attr->set) 1364 return -EACCES; 1365 1366 ret = mutex_lock_interruptible(&attr->mutex); 1367 if (ret) 1368 return ret; 1369 1370 ret = -EFAULT; 1371 size = min(sizeof(attr->set_buf) - 1, len); 1372 if (copy_from_user(attr->set_buf, buf, size)) 1373 goto out; 1374 1375 attr->set_buf[size] = '\0'; 1376 if (is_signed) 1377 ret = kstrtoll(attr->set_buf, 0, &val); 1378 else 1379 ret = kstrtoull(attr->set_buf, 0, &val); 1380 if (ret) 1381 goto out; 1382 ret = attr->set(attr->data, val); 1383 if (ret == 0) 1384 ret = len; /* on success, claim we got the whole input */ 1385 out: 1386 mutex_unlock(&attr->mutex); 1387 return ret; 1388 } 1389 1390 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1391 size_t len, loff_t *ppos) 1392 { 1393 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1394 } 1395 EXPORT_SYMBOL_GPL(simple_attr_write); 1396 1397 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1398 size_t len, loff_t *ppos) 1399 { 1400 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1401 } 1402 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1403 1404 /** 1405 * generic_encode_ino32_fh - generic export_operations->encode_fh function 1406 * @inode: the object to encode 1407 * @fh: where to store the file handle fragment 1408 * @max_len: maximum length to store there (in 4 byte units) 1409 * @parent: parent directory inode, if wanted 1410 * 1411 * This generic encode_fh function assumes that the 32 inode number 1412 * is suitable for locating an inode, and that the generation number 1413 * can be used to check that it is still valid. It places them in the 1414 * filehandle fragment where export_decode_fh expects to find them. 1415 */ 1416 int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, 1417 struct inode *parent) 1418 { 1419 struct fid *fid = (void *)fh; 1420 int len = *max_len; 1421 int type = FILEID_INO32_GEN; 1422 1423 if (parent && (len < 4)) { 1424 *max_len = 4; 1425 return FILEID_INVALID; 1426 } else if (len < 2) { 1427 *max_len = 2; 1428 return FILEID_INVALID; 1429 } 1430 1431 len = 2; 1432 fid->i32.ino = inode->i_ino; 1433 fid->i32.gen = inode->i_generation; 1434 if (parent) { 1435 fid->i32.parent_ino = parent->i_ino; 1436 fid->i32.parent_gen = parent->i_generation; 1437 len = 4; 1438 type = FILEID_INO32_GEN_PARENT; 1439 } 1440 *max_len = len; 1441 return type; 1442 } 1443 EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); 1444 1445 /** 1446 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1447 * @sb: filesystem to do the file handle conversion on 1448 * @fid: file handle to convert 1449 * @fh_len: length of the file handle in bytes 1450 * @fh_type: type of file handle 1451 * @get_inode: filesystem callback to retrieve inode 1452 * 1453 * This function decodes @fid as long as it has one of the well-known 1454 * Linux filehandle types and calls @get_inode on it to retrieve the 1455 * inode for the object specified in the file handle. 1456 */ 1457 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1458 int fh_len, int fh_type, struct inode *(*get_inode) 1459 (struct super_block *sb, u64 ino, u32 gen)) 1460 { 1461 struct inode *inode = NULL; 1462 1463 if (fh_len < 2) 1464 return NULL; 1465 1466 switch (fh_type) { 1467 case FILEID_INO32_GEN: 1468 case FILEID_INO32_GEN_PARENT: 1469 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1470 break; 1471 } 1472 1473 return d_obtain_alias(inode); 1474 } 1475 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1476 1477 /** 1478 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1479 * @sb: filesystem to do the file handle conversion on 1480 * @fid: file handle to convert 1481 * @fh_len: length of the file handle in bytes 1482 * @fh_type: type of file handle 1483 * @get_inode: filesystem callback to retrieve inode 1484 * 1485 * This function decodes @fid as long as it has one of the well-known 1486 * Linux filehandle types and calls @get_inode on it to retrieve the 1487 * inode for the _parent_ object specified in the file handle if it 1488 * is specified in the file handle, or NULL otherwise. 1489 */ 1490 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1491 int fh_len, int fh_type, struct inode *(*get_inode) 1492 (struct super_block *sb, u64 ino, u32 gen)) 1493 { 1494 struct inode *inode = NULL; 1495 1496 if (fh_len <= 2) 1497 return NULL; 1498 1499 switch (fh_type) { 1500 case FILEID_INO32_GEN_PARENT: 1501 inode = get_inode(sb, fid->i32.parent_ino, 1502 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1503 break; 1504 } 1505 1506 return d_obtain_alias(inode); 1507 } 1508 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1509 1510 /** 1511 * __generic_file_fsync - generic fsync implementation for simple filesystems 1512 * 1513 * @file: file to synchronize 1514 * @start: start offset in bytes 1515 * @end: end offset in bytes (inclusive) 1516 * @datasync: only synchronize essential metadata if true 1517 * 1518 * This is a generic implementation of the fsync method for simple 1519 * filesystems which track all non-inode metadata in the buffers list 1520 * hanging off the address_space structure. 1521 */ 1522 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1523 int datasync) 1524 { 1525 struct inode *inode = file->f_mapping->host; 1526 int err; 1527 int ret; 1528 1529 err = file_write_and_wait_range(file, start, end); 1530 if (err) 1531 return err; 1532 1533 inode_lock(inode); 1534 ret = sync_mapping_buffers(inode->i_mapping); 1535 if (!(inode->i_state & I_DIRTY_ALL)) 1536 goto out; 1537 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1538 goto out; 1539 1540 err = sync_inode_metadata(inode, 1); 1541 if (ret == 0) 1542 ret = err; 1543 1544 out: 1545 inode_unlock(inode); 1546 /* check and advance again to catch errors after syncing out buffers */ 1547 err = file_check_and_advance_wb_err(file); 1548 if (ret == 0) 1549 ret = err; 1550 return ret; 1551 } 1552 EXPORT_SYMBOL(__generic_file_fsync); 1553 1554 /** 1555 * generic_file_fsync - generic fsync implementation for simple filesystems 1556 * with flush 1557 * @file: file to synchronize 1558 * @start: start offset in bytes 1559 * @end: end offset in bytes (inclusive) 1560 * @datasync: only synchronize essential metadata if true 1561 * 1562 */ 1563 1564 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1565 int datasync) 1566 { 1567 struct inode *inode = file->f_mapping->host; 1568 int err; 1569 1570 err = __generic_file_fsync(file, start, end, datasync); 1571 if (err) 1572 return err; 1573 return blkdev_issue_flush(inode->i_sb->s_bdev); 1574 } 1575 EXPORT_SYMBOL(generic_file_fsync); 1576 1577 /** 1578 * generic_check_addressable - Check addressability of file system 1579 * @blocksize_bits: log of file system block size 1580 * @num_blocks: number of blocks in file system 1581 * 1582 * Determine whether a file system with @num_blocks blocks (and a 1583 * block size of 2**@blocksize_bits) is addressable by the sector_t 1584 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1585 */ 1586 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1587 { 1588 u64 last_fs_block = num_blocks - 1; 1589 u64 last_fs_page = 1590 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1591 1592 if (unlikely(num_blocks == 0)) 1593 return 0; 1594 1595 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1596 return -EINVAL; 1597 1598 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1599 (last_fs_page > (pgoff_t)(~0ULL))) { 1600 return -EFBIG; 1601 } 1602 return 0; 1603 } 1604 EXPORT_SYMBOL(generic_check_addressable); 1605 1606 /* 1607 * No-op implementation of ->fsync for in-memory filesystems. 1608 */ 1609 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1610 { 1611 return 0; 1612 } 1613 EXPORT_SYMBOL(noop_fsync); 1614 1615 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1616 { 1617 /* 1618 * iomap based filesystems support direct I/O without need for 1619 * this callback. However, it still needs to be set in 1620 * inode->a_ops so that open/fcntl know that direct I/O is 1621 * generally supported. 1622 */ 1623 return -EINVAL; 1624 } 1625 EXPORT_SYMBOL_GPL(noop_direct_IO); 1626 1627 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1628 void kfree_link(void *p) 1629 { 1630 kfree(p); 1631 } 1632 EXPORT_SYMBOL(kfree_link); 1633 1634 struct inode *alloc_anon_inode(struct super_block *s) 1635 { 1636 static const struct address_space_operations anon_aops = { 1637 .dirty_folio = noop_dirty_folio, 1638 }; 1639 struct inode *inode = new_inode_pseudo(s); 1640 1641 if (!inode) 1642 return ERR_PTR(-ENOMEM); 1643 1644 inode->i_ino = get_next_ino(); 1645 inode->i_mapping->a_ops = &anon_aops; 1646 1647 /* 1648 * Mark the inode dirty from the very beginning, 1649 * that way it will never be moved to the dirty 1650 * list because mark_inode_dirty() will think 1651 * that it already _is_ on the dirty list. 1652 */ 1653 inode->i_state = I_DIRTY; 1654 inode->i_mode = S_IRUSR | S_IWUSR; 1655 inode->i_uid = current_fsuid(); 1656 inode->i_gid = current_fsgid(); 1657 inode->i_flags |= S_PRIVATE; 1658 simple_inode_init_ts(inode); 1659 return inode; 1660 } 1661 EXPORT_SYMBOL(alloc_anon_inode); 1662 1663 /** 1664 * simple_nosetlease - generic helper for prohibiting leases 1665 * @filp: file pointer 1666 * @arg: type of lease to obtain 1667 * @flp: new lease supplied for insertion 1668 * @priv: private data for lm_setup operation 1669 * 1670 * Generic helper for filesystems that do not wish to allow leases to be set. 1671 * All arguments are ignored and it just returns -EINVAL. 1672 */ 1673 int 1674 simple_nosetlease(struct file *filp, int arg, struct file_lease **flp, 1675 void **priv) 1676 { 1677 return -EINVAL; 1678 } 1679 EXPORT_SYMBOL(simple_nosetlease); 1680 1681 /** 1682 * simple_get_link - generic helper to get the target of "fast" symlinks 1683 * @dentry: not used here 1684 * @inode: the symlink inode 1685 * @done: not used here 1686 * 1687 * Generic helper for filesystems to use for symlink inodes where a pointer to 1688 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1689 * since as an optimization the path lookup code uses any non-NULL ->i_link 1690 * directly, without calling ->get_link(). But ->get_link() still must be set, 1691 * to mark the inode_operations as being for a symlink. 1692 * 1693 * Return: the symlink target 1694 */ 1695 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1696 struct delayed_call *done) 1697 { 1698 return inode->i_link; 1699 } 1700 EXPORT_SYMBOL(simple_get_link); 1701 1702 const struct inode_operations simple_symlink_inode_operations = { 1703 .get_link = simple_get_link, 1704 }; 1705 EXPORT_SYMBOL(simple_symlink_inode_operations); 1706 1707 /* 1708 * Operations for a permanently empty directory. 1709 */ 1710 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1711 { 1712 return ERR_PTR(-ENOENT); 1713 } 1714 1715 static int empty_dir_getattr(struct mnt_idmap *idmap, 1716 const struct path *path, struct kstat *stat, 1717 u32 request_mask, unsigned int query_flags) 1718 { 1719 struct inode *inode = d_inode(path->dentry); 1720 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1721 return 0; 1722 } 1723 1724 static int empty_dir_setattr(struct mnt_idmap *idmap, 1725 struct dentry *dentry, struct iattr *attr) 1726 { 1727 return -EPERM; 1728 } 1729 1730 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1731 { 1732 return -EOPNOTSUPP; 1733 } 1734 1735 static const struct inode_operations empty_dir_inode_operations = { 1736 .lookup = empty_dir_lookup, 1737 .permission = generic_permission, 1738 .setattr = empty_dir_setattr, 1739 .getattr = empty_dir_getattr, 1740 .listxattr = empty_dir_listxattr, 1741 }; 1742 1743 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1744 { 1745 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1746 return generic_file_llseek_size(file, offset, whence, 2, 2); 1747 } 1748 1749 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1750 { 1751 dir_emit_dots(file, ctx); 1752 return 0; 1753 } 1754 1755 static const struct file_operations empty_dir_operations = { 1756 .llseek = empty_dir_llseek, 1757 .read = generic_read_dir, 1758 .iterate_shared = empty_dir_readdir, 1759 .fsync = noop_fsync, 1760 }; 1761 1762 1763 void make_empty_dir_inode(struct inode *inode) 1764 { 1765 set_nlink(inode, 2); 1766 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1767 inode->i_uid = GLOBAL_ROOT_UID; 1768 inode->i_gid = GLOBAL_ROOT_GID; 1769 inode->i_rdev = 0; 1770 inode->i_size = 0; 1771 inode->i_blkbits = PAGE_SHIFT; 1772 inode->i_blocks = 0; 1773 1774 inode->i_op = &empty_dir_inode_operations; 1775 inode->i_opflags &= ~IOP_XATTR; 1776 inode->i_fop = &empty_dir_operations; 1777 } 1778 1779 bool is_empty_dir_inode(struct inode *inode) 1780 { 1781 return (inode->i_fop == &empty_dir_operations) && 1782 (inode->i_op == &empty_dir_inode_operations); 1783 } 1784 1785 #if IS_ENABLED(CONFIG_UNICODE) 1786 /** 1787 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1788 * @dentry: dentry whose name we are checking against 1789 * @len: len of name of dentry 1790 * @str: str pointer to name of dentry 1791 * @name: Name to compare against 1792 * 1793 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1794 */ 1795 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1796 const char *str, const struct qstr *name) 1797 { 1798 const struct dentry *parent; 1799 const struct inode *dir; 1800 char strbuf[DNAME_INLINE_LEN]; 1801 struct qstr qstr; 1802 1803 /* 1804 * Attempt a case-sensitive match first. It is cheaper and 1805 * should cover most lookups, including all the sane 1806 * applications that expect a case-sensitive filesystem. 1807 * 1808 * This comparison is safe under RCU because the caller 1809 * guarantees the consistency between str and len. See 1810 * __d_lookup_rcu_op_compare() for details. 1811 */ 1812 if (len == name->len && !memcmp(str, name->name, len)) 1813 return 0; 1814 1815 parent = READ_ONCE(dentry->d_parent); 1816 dir = READ_ONCE(parent->d_inode); 1817 if (!dir || !IS_CASEFOLDED(dir)) 1818 return 1; 1819 1820 /* 1821 * If the dentry name is stored in-line, then it may be concurrently 1822 * modified by a rename. If this happens, the VFS will eventually retry 1823 * the lookup, so it doesn't matter what ->d_compare() returns. 1824 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1825 * string. Therefore, we have to copy the name into a temporary buffer. 1826 */ 1827 if (len <= DNAME_INLINE_LEN - 1) { 1828 memcpy(strbuf, str, len); 1829 strbuf[len] = 0; 1830 str = strbuf; 1831 /* prevent compiler from optimizing out the temporary buffer */ 1832 barrier(); 1833 } 1834 qstr.len = len; 1835 qstr.name = str; 1836 1837 return utf8_strncasecmp(dentry->d_sb->s_encoding, name, &qstr); 1838 } 1839 1840 /** 1841 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1842 * @dentry: dentry of the parent directory 1843 * @str: qstr of name whose hash we should fill in 1844 * 1845 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1846 */ 1847 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1848 { 1849 const struct inode *dir = READ_ONCE(dentry->d_inode); 1850 struct super_block *sb = dentry->d_sb; 1851 const struct unicode_map *um = sb->s_encoding; 1852 int ret; 1853 1854 if (!dir || !IS_CASEFOLDED(dir)) 1855 return 0; 1856 1857 ret = utf8_casefold_hash(um, dentry, str); 1858 if (ret < 0 && sb_has_strict_encoding(sb)) 1859 return -EINVAL; 1860 return 0; 1861 } 1862 1863 static const struct dentry_operations generic_ci_dentry_ops = { 1864 .d_hash = generic_ci_d_hash, 1865 .d_compare = generic_ci_d_compare, 1866 #ifdef CONFIG_FS_ENCRYPTION 1867 .d_revalidate = fscrypt_d_revalidate, 1868 #endif 1869 }; 1870 1871 /** 1872 * generic_ci_match() - Match a name (case-insensitively) with a dirent. 1873 * This is a filesystem helper for comparison with directory entries. 1874 * generic_ci_d_compare should be used in VFS' ->d_compare instead. 1875 * 1876 * @parent: Inode of the parent of the dirent under comparison 1877 * @name: name under lookup. 1878 * @folded_name: Optional pre-folded name under lookup 1879 * @de_name: Dirent name. 1880 * @de_name_len: dirent name length. 1881 * 1882 * Test whether a case-insensitive directory entry matches the filename 1883 * being searched. If @folded_name is provided, it is used instead of 1884 * recalculating the casefold of @name. 1885 * 1886 * Return: > 0 if the directory entry matches, 0 if it doesn't match, or 1887 * < 0 on error. 1888 */ 1889 int generic_ci_match(const struct inode *parent, 1890 const struct qstr *name, 1891 const struct qstr *folded_name, 1892 const u8 *de_name, u32 de_name_len) 1893 { 1894 const struct super_block *sb = parent->i_sb; 1895 const struct unicode_map *um = sb->s_encoding; 1896 struct fscrypt_str decrypted_name = FSTR_INIT(NULL, de_name_len); 1897 struct qstr dirent = QSTR_INIT(de_name, de_name_len); 1898 int res = 0; 1899 1900 if (IS_ENCRYPTED(parent)) { 1901 const struct fscrypt_str encrypted_name = 1902 FSTR_INIT((u8 *) de_name, de_name_len); 1903 1904 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(parent))) 1905 return -EINVAL; 1906 1907 decrypted_name.name = kmalloc(de_name_len, GFP_KERNEL); 1908 if (!decrypted_name.name) 1909 return -ENOMEM; 1910 res = fscrypt_fname_disk_to_usr(parent, 0, 0, &encrypted_name, 1911 &decrypted_name); 1912 if (res < 0) { 1913 kfree(decrypted_name.name); 1914 return res; 1915 } 1916 dirent.name = decrypted_name.name; 1917 dirent.len = decrypted_name.len; 1918 } 1919 1920 /* 1921 * Attempt a case-sensitive match first. It is cheaper and 1922 * should cover most lookups, including all the sane 1923 * applications that expect a case-sensitive filesystem. 1924 */ 1925 1926 if (dirent.len == name->len && 1927 !memcmp(name->name, dirent.name, dirent.len)) 1928 goto out; 1929 1930 if (folded_name->name) 1931 res = utf8_strncasecmp_folded(um, folded_name, &dirent); 1932 else 1933 res = utf8_strncasecmp(um, name, &dirent); 1934 1935 out: 1936 kfree(decrypted_name.name); 1937 if (res < 0 && sb_has_strict_encoding(sb)) { 1938 pr_err_ratelimited("Directory contains filename that is invalid UTF-8"); 1939 return 0; 1940 } 1941 return !res; 1942 } 1943 EXPORT_SYMBOL(generic_ci_match); 1944 #endif 1945 1946 #ifdef CONFIG_FS_ENCRYPTION 1947 static const struct dentry_operations generic_encrypted_dentry_ops = { 1948 .d_revalidate = fscrypt_d_revalidate, 1949 }; 1950 #endif 1951 1952 /** 1953 * generic_set_sb_d_ops - helper for choosing the set of 1954 * filesystem-wide dentry operations for the enabled features 1955 * @sb: superblock to be configured 1956 * 1957 * Filesystems supporting casefolding and/or fscrypt can call this 1958 * helper at mount-time to configure sb->s_d_op to best set of dentry 1959 * operations required for the enabled features. The helper must be 1960 * called after these have been configured, but before the root dentry 1961 * is created. 1962 */ 1963 void generic_set_sb_d_ops(struct super_block *sb) 1964 { 1965 #if IS_ENABLED(CONFIG_UNICODE) 1966 if (sb->s_encoding) { 1967 sb->s_d_op = &generic_ci_dentry_ops; 1968 return; 1969 } 1970 #endif 1971 #ifdef CONFIG_FS_ENCRYPTION 1972 if (sb->s_cop) { 1973 sb->s_d_op = &generic_encrypted_dentry_ops; 1974 return; 1975 } 1976 #endif 1977 } 1978 EXPORT_SYMBOL(generic_set_sb_d_ops); 1979 1980 /** 1981 * inode_maybe_inc_iversion - increments i_version 1982 * @inode: inode with the i_version that should be updated 1983 * @force: increment the counter even if it's not necessary? 1984 * 1985 * Every time the inode is modified, the i_version field must be seen to have 1986 * changed by any observer. 1987 * 1988 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1989 * the value, and clear the queried flag. 1990 * 1991 * In the common case where neither is set, then we can return "false" without 1992 * updating i_version. 1993 * 1994 * If this function returns false, and no other metadata has changed, then we 1995 * can avoid logging the metadata. 1996 */ 1997 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1998 { 1999 u64 cur, new; 2000 2001 /* 2002 * The i_version field is not strictly ordered with any other inode 2003 * information, but the legacy inode_inc_iversion code used a spinlock 2004 * to serialize increments. 2005 * 2006 * Here, we add full memory barriers to ensure that any de-facto 2007 * ordering with other info is preserved. 2008 * 2009 * This barrier pairs with the barrier in inode_query_iversion() 2010 */ 2011 smp_mb(); 2012 cur = inode_peek_iversion_raw(inode); 2013 do { 2014 /* If flag is clear then we needn't do anything */ 2015 if (!force && !(cur & I_VERSION_QUERIED)) 2016 return false; 2017 2018 /* Since lowest bit is flag, add 2 to avoid it */ 2019 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 2020 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2021 return true; 2022 } 2023 EXPORT_SYMBOL(inode_maybe_inc_iversion); 2024 2025 /** 2026 * inode_query_iversion - read i_version for later use 2027 * @inode: inode from which i_version should be read 2028 * 2029 * Read the inode i_version counter. This should be used by callers that wish 2030 * to store the returned i_version for later comparison. This will guarantee 2031 * that a later query of the i_version will result in a different value if 2032 * anything has changed. 2033 * 2034 * In this implementation, we fetch the current value, set the QUERIED flag and 2035 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 2036 * that fails, we try again with the newly fetched value from the cmpxchg. 2037 */ 2038 u64 inode_query_iversion(struct inode *inode) 2039 { 2040 u64 cur, new; 2041 2042 cur = inode_peek_iversion_raw(inode); 2043 do { 2044 /* If flag is already set, then no need to swap */ 2045 if (cur & I_VERSION_QUERIED) { 2046 /* 2047 * This barrier (and the implicit barrier in the 2048 * cmpxchg below) pairs with the barrier in 2049 * inode_maybe_inc_iversion(). 2050 */ 2051 smp_mb(); 2052 break; 2053 } 2054 2055 new = cur | I_VERSION_QUERIED; 2056 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 2057 return cur >> I_VERSION_QUERIED_SHIFT; 2058 } 2059 EXPORT_SYMBOL(inode_query_iversion); 2060 2061 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 2062 ssize_t direct_written, ssize_t buffered_written) 2063 { 2064 struct address_space *mapping = iocb->ki_filp->f_mapping; 2065 loff_t pos = iocb->ki_pos - buffered_written; 2066 loff_t end = iocb->ki_pos - 1; 2067 int err; 2068 2069 /* 2070 * If the buffered write fallback returned an error, we want to return 2071 * the number of bytes which were written by direct I/O, or the error 2072 * code if that was zero. 2073 * 2074 * Note that this differs from normal direct-io semantics, which will 2075 * return -EFOO even if some bytes were written. 2076 */ 2077 if (unlikely(buffered_written < 0)) { 2078 if (direct_written) 2079 return direct_written; 2080 return buffered_written; 2081 } 2082 2083 /* 2084 * We need to ensure that the page cache pages are written to disk and 2085 * invalidated to preserve the expected O_DIRECT semantics. 2086 */ 2087 err = filemap_write_and_wait_range(mapping, pos, end); 2088 if (err < 0) { 2089 /* 2090 * We don't know how much we wrote, so just return the number of 2091 * bytes which were direct-written 2092 */ 2093 iocb->ki_pos -= buffered_written; 2094 if (direct_written) 2095 return direct_written; 2096 return err; 2097 } 2098 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 2099 return direct_written + buffered_written; 2100 } 2101 EXPORT_SYMBOL_GPL(direct_write_fallback); 2102 2103 /** 2104 * simple_inode_init_ts - initialize the timestamps for a new inode 2105 * @inode: inode to be initialized 2106 * 2107 * When a new inode is created, most filesystems set the timestamps to the 2108 * current time. Add a helper to do this. 2109 */ 2110 struct timespec64 simple_inode_init_ts(struct inode *inode) 2111 { 2112 struct timespec64 ts = inode_set_ctime_current(inode); 2113 2114 inode_set_atime_to_ts(inode, ts); 2115 inode_set_mtime_to_ts(inode, ts); 2116 return ts; 2117 } 2118 EXPORT_SYMBOL(simple_inode_init_ts); 2119 2120 static inline struct dentry *get_stashed_dentry(struct dentry **stashed) 2121 { 2122 struct dentry *dentry; 2123 2124 guard(rcu)(); 2125 dentry = rcu_dereference(*stashed); 2126 if (!dentry) 2127 return NULL; 2128 if (!lockref_get_not_dead(&dentry->d_lockref)) 2129 return NULL; 2130 return dentry; 2131 } 2132 2133 static struct dentry *prepare_anon_dentry(struct dentry **stashed, 2134 struct super_block *sb, 2135 void *data) 2136 { 2137 struct dentry *dentry; 2138 struct inode *inode; 2139 const struct stashed_operations *sops = sb->s_fs_info; 2140 int ret; 2141 2142 inode = new_inode_pseudo(sb); 2143 if (!inode) { 2144 sops->put_data(data); 2145 return ERR_PTR(-ENOMEM); 2146 } 2147 2148 inode->i_flags |= S_IMMUTABLE; 2149 inode->i_mode = S_IFREG; 2150 simple_inode_init_ts(inode); 2151 2152 ret = sops->init_inode(inode, data); 2153 if (ret < 0) { 2154 iput(inode); 2155 return ERR_PTR(ret); 2156 } 2157 2158 /* Notice when this is changed. */ 2159 WARN_ON_ONCE(!S_ISREG(inode->i_mode)); 2160 WARN_ON_ONCE(!IS_IMMUTABLE(inode)); 2161 2162 dentry = d_alloc_anon(sb); 2163 if (!dentry) { 2164 iput(inode); 2165 return ERR_PTR(-ENOMEM); 2166 } 2167 2168 /* Store address of location where dentry's supposed to be stashed. */ 2169 dentry->d_fsdata = stashed; 2170 2171 /* @data is now owned by the fs */ 2172 d_instantiate(dentry, inode); 2173 return dentry; 2174 } 2175 2176 static struct dentry *stash_dentry(struct dentry **stashed, 2177 struct dentry *dentry) 2178 { 2179 guard(rcu)(); 2180 for (;;) { 2181 struct dentry *old; 2182 2183 /* Assume any old dentry was cleared out. */ 2184 old = cmpxchg(stashed, NULL, dentry); 2185 if (likely(!old)) 2186 return dentry; 2187 2188 /* Check if somebody else installed a reusable dentry. */ 2189 if (lockref_get_not_dead(&old->d_lockref)) 2190 return old; 2191 2192 /* There's an old dead dentry there, try to take it over. */ 2193 if (likely(try_cmpxchg(stashed, &old, dentry))) 2194 return dentry; 2195 } 2196 } 2197 2198 /** 2199 * path_from_stashed - create path from stashed or new dentry 2200 * @stashed: where to retrieve or stash dentry 2201 * @mnt: mnt of the filesystems to use 2202 * @data: data to store in inode->i_private 2203 * @path: path to create 2204 * 2205 * The function tries to retrieve a stashed dentry from @stashed. If the dentry 2206 * is still valid then it will be reused. If the dentry isn't able the function 2207 * will allocate a new dentry and inode. It will then check again whether it 2208 * can reuse an existing dentry in case one has been added in the meantime or 2209 * update @stashed with the newly added dentry. 2210 * 2211 * Special-purpose helper for nsfs and pidfs. 2212 * 2213 * Return: On success zero and on failure a negative error is returned. 2214 */ 2215 int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, 2216 struct path *path) 2217 { 2218 struct dentry *dentry; 2219 const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; 2220 2221 /* See if dentry can be reused. */ 2222 path->dentry = get_stashed_dentry(stashed); 2223 if (path->dentry) { 2224 sops->put_data(data); 2225 goto out_path; 2226 } 2227 2228 /* Allocate a new dentry. */ 2229 dentry = prepare_anon_dentry(stashed, mnt->mnt_sb, data); 2230 if (IS_ERR(dentry)) 2231 return PTR_ERR(dentry); 2232 2233 /* Added a new dentry. @data is now owned by the filesystem. */ 2234 path->dentry = stash_dentry(stashed, dentry); 2235 if (path->dentry != dentry) 2236 dput(dentry); 2237 2238 out_path: 2239 WARN_ON_ONCE(path->dentry->d_fsdata != stashed); 2240 WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); 2241 path->mnt = mntget(mnt); 2242 return 0; 2243 } 2244 2245 void stashed_dentry_prune(struct dentry *dentry) 2246 { 2247 struct dentry **stashed = dentry->d_fsdata; 2248 struct inode *inode = d_inode(dentry); 2249 2250 if (WARN_ON_ONCE(!stashed)) 2251 return; 2252 2253 if (!inode) 2254 return; 2255 2256 /* 2257 * Only replace our own @dentry as someone else might've 2258 * already cleared out @dentry and stashed their own 2259 * dentry in there. 2260 */ 2261 cmpxchg(stashed, dentry, NULL); 2262 } 2263
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.