1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/locks.c 4 * 5 * We implement four types of file locks: BSD locks, posix locks, open 6 * file description locks, and leases. For details about BSD locks, 7 * see the flock(2) man page; for details about the other three, see 8 * fcntl(2). 9 * 10 * 11 * Locking conflicts and dependencies: 12 * If multiple threads attempt to lock the same byte (or flock the same file) 13 * only one can be granted the lock, and other must wait their turn. 14 * The first lock has been "applied" or "granted", the others are "waiting" 15 * and are "blocked" by the "applied" lock.. 16 * 17 * Waiting and applied locks are all kept in trees whose properties are: 18 * 19 * - the root of a tree may be an applied or waiting lock. 20 * - every other node in the tree is a waiting lock that 21 * conflicts with every ancestor of that node. 22 * 23 * Every such tree begins life as a waiting singleton which obviously 24 * satisfies the above properties. 25 * 26 * The only ways we modify trees preserve these properties: 27 * 28 * 1. We may add a new leaf node, but only after first verifying that it 29 * conflicts with all of its ancestors. 30 * 2. We may remove the root of a tree, creating a new singleton 31 * tree from the root and N new trees rooted in the immediate 32 * children. 33 * 3. If the root of a tree is not currently an applied lock, we may 34 * apply it (if possible). 35 * 4. We may upgrade the root of the tree (either extend its range, 36 * or upgrade its entire range from read to write). 37 * 38 * When an applied lock is modified in a way that reduces or downgrades any 39 * part of its range, we remove all its children (2 above). This particularly 40 * happens when a lock is unlocked. 41 * 42 * For each of those child trees we "wake up" the thread which is 43 * waiting for the lock so it can continue handling as follows: if the 44 * root of the tree applies, we do so (3). If it doesn't, it must 45 * conflict with some applied lock. We remove (wake up) all of its children 46 * (2), and add it is a new leaf to the tree rooted in the applied 47 * lock (1). We then repeat the process recursively with those 48 * children. 49 * 50 */ 51 #include <linux/capability.h> 52 #include <linux/file.h> 53 #include <linux/fdtable.h> 54 #include <linux/filelock.h> 55 #include <linux/fs.h> 56 #include <linux/init.h> 57 #include <linux/security.h> 58 #include <linux/slab.h> 59 #include <linux/syscalls.h> 60 #include <linux/time.h> 61 #include <linux/rcupdate.h> 62 #include <linux/pid_namespace.h> 63 #include <linux/hashtable.h> 64 #include <linux/percpu.h> 65 #include <linux/sysctl.h> 66 67 #define CREATE_TRACE_POINTS 68 #include <trace/events/filelock.h> 69 70 #include <linux/uaccess.h> 71 72 static struct file_lock *file_lock(struct file_lock_core *flc) 73 { 74 return container_of(flc, struct file_lock, c); 75 } 76 77 static struct file_lease *file_lease(struct file_lock_core *flc) 78 { 79 return container_of(flc, struct file_lease, c); 80 } 81 82 static bool lease_breaking(struct file_lease *fl) 83 { 84 return fl->c.flc_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 85 } 86 87 static int target_leasetype(struct file_lease *fl) 88 { 89 if (fl->c.flc_flags & FL_UNLOCK_PENDING) 90 return F_UNLCK; 91 if (fl->c.flc_flags & FL_DOWNGRADE_PENDING) 92 return F_RDLCK; 93 return fl->c.flc_type; 94 } 95 96 static int leases_enable = 1; 97 static int lease_break_time = 45; 98 99 #ifdef CONFIG_SYSCTL 100 static struct ctl_table locks_sysctls[] = { 101 { 102 .procname = "leases-enable", 103 .data = &leases_enable, 104 .maxlen = sizeof(int), 105 .mode = 0644, 106 .proc_handler = proc_dointvec, 107 }, 108 #ifdef CONFIG_MMU 109 { 110 .procname = "lease-break-time", 111 .data = &lease_break_time, 112 .maxlen = sizeof(int), 113 .mode = 0644, 114 .proc_handler = proc_dointvec, 115 }, 116 #endif /* CONFIG_MMU */ 117 }; 118 119 static int __init init_fs_locks_sysctls(void) 120 { 121 register_sysctl_init("fs", locks_sysctls); 122 return 0; 123 } 124 early_initcall(init_fs_locks_sysctls); 125 #endif /* CONFIG_SYSCTL */ 126 127 /* 128 * The global file_lock_list is only used for displaying /proc/locks, so we 129 * keep a list on each CPU, with each list protected by its own spinlock. 130 * Global serialization is done using file_rwsem. 131 * 132 * Note that alterations to the list also require that the relevant flc_lock is 133 * held. 134 */ 135 struct file_lock_list_struct { 136 spinlock_t lock; 137 struct hlist_head hlist; 138 }; 139 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 140 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 141 142 143 /* 144 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 145 * It is protected by blocked_lock_lock. 146 * 147 * We hash locks by lockowner in order to optimize searching for the lock a 148 * particular lockowner is waiting on. 149 * 150 * FIXME: make this value scale via some heuristic? We generally will want more 151 * buckets when we have more lockowners holding locks, but that's a little 152 * difficult to determine without knowing what the workload will look like. 153 */ 154 #define BLOCKED_HASH_BITS 7 155 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 156 157 /* 158 * This lock protects the blocked_hash. Generally, if you're accessing it, you 159 * want to be holding this lock. 160 * 161 * In addition, it also protects the fl->fl_blocked_requests list, and the 162 * fl->fl_blocker pointer for file_lock structures that are acting as lock 163 * requests (in contrast to those that are acting as records of acquired locks). 164 * 165 * Note that when we acquire this lock in order to change the above fields, 166 * we often hold the flc_lock as well. In certain cases, when reading the fields 167 * protected by this lock, we can skip acquiring it iff we already hold the 168 * flc_lock. 169 */ 170 static DEFINE_SPINLOCK(blocked_lock_lock); 171 172 static struct kmem_cache *flctx_cache __ro_after_init; 173 static struct kmem_cache *filelock_cache __ro_after_init; 174 static struct kmem_cache *filelease_cache __ro_after_init; 175 176 static struct file_lock_context * 177 locks_get_lock_context(struct inode *inode, int type) 178 { 179 struct file_lock_context *ctx; 180 181 /* paired with cmpxchg() below */ 182 ctx = locks_inode_context(inode); 183 if (likely(ctx) || type == F_UNLCK) 184 goto out; 185 186 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 187 if (!ctx) 188 goto out; 189 190 spin_lock_init(&ctx->flc_lock); 191 INIT_LIST_HEAD(&ctx->flc_flock); 192 INIT_LIST_HEAD(&ctx->flc_posix); 193 INIT_LIST_HEAD(&ctx->flc_lease); 194 195 /* 196 * Assign the pointer if it's not already assigned. If it is, then 197 * free the context we just allocated. 198 */ 199 if (cmpxchg(&inode->i_flctx, NULL, ctx)) { 200 kmem_cache_free(flctx_cache, ctx); 201 ctx = locks_inode_context(inode); 202 } 203 out: 204 trace_locks_get_lock_context(inode, type, ctx); 205 return ctx; 206 } 207 208 static void 209 locks_dump_ctx_list(struct list_head *list, char *list_type) 210 { 211 struct file_lock_core *flc; 212 213 list_for_each_entry(flc, list, flc_list) 214 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 215 list_type, flc->flc_owner, flc->flc_flags, 216 flc->flc_type, flc->flc_pid); 217 } 218 219 static void 220 locks_check_ctx_lists(struct inode *inode) 221 { 222 struct file_lock_context *ctx = inode->i_flctx; 223 224 if (unlikely(!list_empty(&ctx->flc_flock) || 225 !list_empty(&ctx->flc_posix) || 226 !list_empty(&ctx->flc_lease))) { 227 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 228 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 229 inode->i_ino); 230 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 231 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 232 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 233 } 234 } 235 236 static void 237 locks_check_ctx_file_list(struct file *filp, struct list_head *list, char *list_type) 238 { 239 struct file_lock_core *flc; 240 struct inode *inode = file_inode(filp); 241 242 list_for_each_entry(flc, list, flc_list) 243 if (flc->flc_file == filp) 244 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 245 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 246 list_type, MAJOR(inode->i_sb->s_dev), 247 MINOR(inode->i_sb->s_dev), inode->i_ino, 248 flc->flc_owner, flc->flc_flags, 249 flc->flc_type, flc->flc_pid); 250 } 251 252 void 253 locks_free_lock_context(struct inode *inode) 254 { 255 struct file_lock_context *ctx = locks_inode_context(inode); 256 257 if (unlikely(ctx)) { 258 locks_check_ctx_lists(inode); 259 kmem_cache_free(flctx_cache, ctx); 260 } 261 } 262 263 static void locks_init_lock_heads(struct file_lock_core *flc) 264 { 265 INIT_HLIST_NODE(&flc->flc_link); 266 INIT_LIST_HEAD(&flc->flc_list); 267 INIT_LIST_HEAD(&flc->flc_blocked_requests); 268 INIT_LIST_HEAD(&flc->flc_blocked_member); 269 init_waitqueue_head(&flc->flc_wait); 270 } 271 272 /* Allocate an empty lock structure. */ 273 struct file_lock *locks_alloc_lock(void) 274 { 275 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 276 277 if (fl) 278 locks_init_lock_heads(&fl->c); 279 280 return fl; 281 } 282 EXPORT_SYMBOL_GPL(locks_alloc_lock); 283 284 /* Allocate an empty lock structure. */ 285 struct file_lease *locks_alloc_lease(void) 286 { 287 struct file_lease *fl = kmem_cache_zalloc(filelease_cache, GFP_KERNEL); 288 289 if (fl) 290 locks_init_lock_heads(&fl->c); 291 292 return fl; 293 } 294 EXPORT_SYMBOL_GPL(locks_alloc_lease); 295 296 void locks_release_private(struct file_lock *fl) 297 { 298 struct file_lock_core *flc = &fl->c; 299 300 BUG_ON(waitqueue_active(&flc->flc_wait)); 301 BUG_ON(!list_empty(&flc->flc_list)); 302 BUG_ON(!list_empty(&flc->flc_blocked_requests)); 303 BUG_ON(!list_empty(&flc->flc_blocked_member)); 304 BUG_ON(!hlist_unhashed(&flc->flc_link)); 305 306 if (fl->fl_ops) { 307 if (fl->fl_ops->fl_release_private) 308 fl->fl_ops->fl_release_private(fl); 309 fl->fl_ops = NULL; 310 } 311 312 if (fl->fl_lmops) { 313 if (fl->fl_lmops->lm_put_owner) { 314 fl->fl_lmops->lm_put_owner(flc->flc_owner); 315 flc->flc_owner = NULL; 316 } 317 fl->fl_lmops = NULL; 318 } 319 } 320 EXPORT_SYMBOL_GPL(locks_release_private); 321 322 /** 323 * locks_owner_has_blockers - Check for blocking lock requests 324 * @flctx: file lock context 325 * @owner: lock owner 326 * 327 * Return values: 328 * %true: @owner has at least one blocker 329 * %false: @owner has no blockers 330 */ 331 bool locks_owner_has_blockers(struct file_lock_context *flctx, fl_owner_t owner) 332 { 333 struct file_lock_core *flc; 334 335 spin_lock(&flctx->flc_lock); 336 list_for_each_entry(flc, &flctx->flc_posix, flc_list) { 337 if (flc->flc_owner != owner) 338 continue; 339 if (!list_empty(&flc->flc_blocked_requests)) { 340 spin_unlock(&flctx->flc_lock); 341 return true; 342 } 343 } 344 spin_unlock(&flctx->flc_lock); 345 return false; 346 } 347 EXPORT_SYMBOL_GPL(locks_owner_has_blockers); 348 349 /* Free a lock which is not in use. */ 350 void locks_free_lock(struct file_lock *fl) 351 { 352 locks_release_private(fl); 353 kmem_cache_free(filelock_cache, fl); 354 } 355 EXPORT_SYMBOL(locks_free_lock); 356 357 /* Free a lease which is not in use. */ 358 void locks_free_lease(struct file_lease *fl) 359 { 360 kmem_cache_free(filelease_cache, fl); 361 } 362 EXPORT_SYMBOL(locks_free_lease); 363 364 static void 365 locks_dispose_list(struct list_head *dispose) 366 { 367 struct file_lock_core *flc; 368 369 while (!list_empty(dispose)) { 370 flc = list_first_entry(dispose, struct file_lock_core, flc_list); 371 list_del_init(&flc->flc_list); 372 if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) 373 locks_free_lease(file_lease(flc)); 374 else 375 locks_free_lock(file_lock(flc)); 376 } 377 } 378 379 void locks_init_lock(struct file_lock *fl) 380 { 381 memset(fl, 0, sizeof(struct file_lock)); 382 locks_init_lock_heads(&fl->c); 383 } 384 EXPORT_SYMBOL(locks_init_lock); 385 386 void locks_init_lease(struct file_lease *fl) 387 { 388 memset(fl, 0, sizeof(*fl)); 389 locks_init_lock_heads(&fl->c); 390 } 391 EXPORT_SYMBOL(locks_init_lease); 392 393 /* 394 * Initialize a new lock from an existing file_lock structure. 395 */ 396 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 397 { 398 new->c.flc_owner = fl->c.flc_owner; 399 new->c.flc_pid = fl->c.flc_pid; 400 new->c.flc_file = NULL; 401 new->c.flc_flags = fl->c.flc_flags; 402 new->c.flc_type = fl->c.flc_type; 403 new->fl_start = fl->fl_start; 404 new->fl_end = fl->fl_end; 405 new->fl_lmops = fl->fl_lmops; 406 new->fl_ops = NULL; 407 408 if (fl->fl_lmops) { 409 if (fl->fl_lmops->lm_get_owner) 410 fl->fl_lmops->lm_get_owner(fl->c.flc_owner); 411 } 412 } 413 EXPORT_SYMBOL(locks_copy_conflock); 414 415 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 416 { 417 /* "new" must be a freshly-initialized lock */ 418 WARN_ON_ONCE(new->fl_ops); 419 420 locks_copy_conflock(new, fl); 421 422 new->c.flc_file = fl->c.flc_file; 423 new->fl_ops = fl->fl_ops; 424 425 if (fl->fl_ops) { 426 if (fl->fl_ops->fl_copy_lock) 427 fl->fl_ops->fl_copy_lock(new, fl); 428 } 429 } 430 EXPORT_SYMBOL(locks_copy_lock); 431 432 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 433 { 434 struct file_lock *f; 435 436 /* 437 * As ctx->flc_lock is held, new requests cannot be added to 438 * ->flc_blocked_requests, so we don't need a lock to check if it 439 * is empty. 440 */ 441 if (list_empty(&fl->c.flc_blocked_requests)) 442 return; 443 spin_lock(&blocked_lock_lock); 444 list_splice_init(&fl->c.flc_blocked_requests, 445 &new->c.flc_blocked_requests); 446 list_for_each_entry(f, &new->c.flc_blocked_requests, 447 c.flc_blocked_member) 448 f->c.flc_blocker = &new->c; 449 spin_unlock(&blocked_lock_lock); 450 } 451 452 static inline int flock_translate_cmd(int cmd) { 453 switch (cmd) { 454 case LOCK_SH: 455 return F_RDLCK; 456 case LOCK_EX: 457 return F_WRLCK; 458 case LOCK_UN: 459 return F_UNLCK; 460 } 461 return -EINVAL; 462 } 463 464 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 465 static void flock_make_lock(struct file *filp, struct file_lock *fl, int type) 466 { 467 locks_init_lock(fl); 468 469 fl->c.flc_file = filp; 470 fl->c.flc_owner = filp; 471 fl->c.flc_pid = current->tgid; 472 fl->c.flc_flags = FL_FLOCK; 473 fl->c.flc_type = type; 474 fl->fl_end = OFFSET_MAX; 475 } 476 477 static int assign_type(struct file_lock_core *flc, int type) 478 { 479 switch (type) { 480 case F_RDLCK: 481 case F_WRLCK: 482 case F_UNLCK: 483 flc->flc_type = type; 484 break; 485 default: 486 return -EINVAL; 487 } 488 return 0; 489 } 490 491 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 492 struct flock64 *l) 493 { 494 switch (l->l_whence) { 495 case SEEK_SET: 496 fl->fl_start = 0; 497 break; 498 case SEEK_CUR: 499 fl->fl_start = filp->f_pos; 500 break; 501 case SEEK_END: 502 fl->fl_start = i_size_read(file_inode(filp)); 503 break; 504 default: 505 return -EINVAL; 506 } 507 if (l->l_start > OFFSET_MAX - fl->fl_start) 508 return -EOVERFLOW; 509 fl->fl_start += l->l_start; 510 if (fl->fl_start < 0) 511 return -EINVAL; 512 513 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 514 POSIX-2001 defines it. */ 515 if (l->l_len > 0) { 516 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 517 return -EOVERFLOW; 518 fl->fl_end = fl->fl_start + (l->l_len - 1); 519 520 } else if (l->l_len < 0) { 521 if (fl->fl_start + l->l_len < 0) 522 return -EINVAL; 523 fl->fl_end = fl->fl_start - 1; 524 fl->fl_start += l->l_len; 525 } else 526 fl->fl_end = OFFSET_MAX; 527 528 fl->c.flc_owner = current->files; 529 fl->c.flc_pid = current->tgid; 530 fl->c.flc_file = filp; 531 fl->c.flc_flags = FL_POSIX; 532 fl->fl_ops = NULL; 533 fl->fl_lmops = NULL; 534 535 return assign_type(&fl->c, l->l_type); 536 } 537 538 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 539 * style lock. 540 */ 541 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 542 struct flock *l) 543 { 544 struct flock64 ll = { 545 .l_type = l->l_type, 546 .l_whence = l->l_whence, 547 .l_start = l->l_start, 548 .l_len = l->l_len, 549 }; 550 551 return flock64_to_posix_lock(filp, fl, &ll); 552 } 553 554 /* default lease lock manager operations */ 555 static bool 556 lease_break_callback(struct file_lease *fl) 557 { 558 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 559 return false; 560 } 561 562 static void 563 lease_setup(struct file_lease *fl, void **priv) 564 { 565 struct file *filp = fl->c.flc_file; 566 struct fasync_struct *fa = *priv; 567 568 /* 569 * fasync_insert_entry() returns the old entry if any. If there was no 570 * old entry, then it used "priv" and inserted it into the fasync list. 571 * Clear the pointer to indicate that it shouldn't be freed. 572 */ 573 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 574 *priv = NULL; 575 576 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 577 } 578 579 static const struct lease_manager_operations lease_manager_ops = { 580 .lm_break = lease_break_callback, 581 .lm_change = lease_modify, 582 .lm_setup = lease_setup, 583 }; 584 585 /* 586 * Initialize a lease, use the default lock manager operations 587 */ 588 static int lease_init(struct file *filp, int type, struct file_lease *fl) 589 { 590 if (assign_type(&fl->c, type) != 0) 591 return -EINVAL; 592 593 fl->c.flc_owner = filp; 594 fl->c.flc_pid = current->tgid; 595 596 fl->c.flc_file = filp; 597 fl->c.flc_flags = FL_LEASE; 598 fl->fl_lmops = &lease_manager_ops; 599 return 0; 600 } 601 602 /* Allocate a file_lock initialised to this type of lease */ 603 static struct file_lease *lease_alloc(struct file *filp, int type) 604 { 605 struct file_lease *fl = locks_alloc_lease(); 606 int error = -ENOMEM; 607 608 if (fl == NULL) 609 return ERR_PTR(error); 610 611 error = lease_init(filp, type, fl); 612 if (error) { 613 locks_free_lease(fl); 614 return ERR_PTR(error); 615 } 616 return fl; 617 } 618 619 /* Check if two locks overlap each other. 620 */ 621 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 622 { 623 return ((fl1->fl_end >= fl2->fl_start) && 624 (fl2->fl_end >= fl1->fl_start)); 625 } 626 627 /* 628 * Check whether two locks have the same owner. 629 */ 630 static int posix_same_owner(struct file_lock_core *fl1, struct file_lock_core *fl2) 631 { 632 return fl1->flc_owner == fl2->flc_owner; 633 } 634 635 /* Must be called with the flc_lock held! */ 636 static void locks_insert_global_locks(struct file_lock_core *flc) 637 { 638 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 639 640 percpu_rwsem_assert_held(&file_rwsem); 641 642 spin_lock(&fll->lock); 643 flc->flc_link_cpu = smp_processor_id(); 644 hlist_add_head(&flc->flc_link, &fll->hlist); 645 spin_unlock(&fll->lock); 646 } 647 648 /* Must be called with the flc_lock held! */ 649 static void locks_delete_global_locks(struct file_lock_core *flc) 650 { 651 struct file_lock_list_struct *fll; 652 653 percpu_rwsem_assert_held(&file_rwsem); 654 655 /* 656 * Avoid taking lock if already unhashed. This is safe since this check 657 * is done while holding the flc_lock, and new insertions into the list 658 * also require that it be held. 659 */ 660 if (hlist_unhashed(&flc->flc_link)) 661 return; 662 663 fll = per_cpu_ptr(&file_lock_list, flc->flc_link_cpu); 664 spin_lock(&fll->lock); 665 hlist_del_init(&flc->flc_link); 666 spin_unlock(&fll->lock); 667 } 668 669 static unsigned long 670 posix_owner_key(struct file_lock_core *flc) 671 { 672 return (unsigned long) flc->flc_owner; 673 } 674 675 static void locks_insert_global_blocked(struct file_lock_core *waiter) 676 { 677 lockdep_assert_held(&blocked_lock_lock); 678 679 hash_add(blocked_hash, &waiter->flc_link, posix_owner_key(waiter)); 680 } 681 682 static void locks_delete_global_blocked(struct file_lock_core *waiter) 683 { 684 lockdep_assert_held(&blocked_lock_lock); 685 686 hash_del(&waiter->flc_link); 687 } 688 689 /* Remove waiter from blocker's block list. 690 * When blocker ends up pointing to itself then the list is empty. 691 * 692 * Must be called with blocked_lock_lock held. 693 */ 694 static void __locks_unlink_block(struct file_lock_core *waiter) 695 { 696 locks_delete_global_blocked(waiter); 697 list_del_init(&waiter->flc_blocked_member); 698 } 699 700 static void __locks_wake_up_blocks(struct file_lock_core *blocker) 701 { 702 while (!list_empty(&blocker->flc_blocked_requests)) { 703 struct file_lock_core *waiter; 704 struct file_lock *fl; 705 706 waiter = list_first_entry(&blocker->flc_blocked_requests, 707 struct file_lock_core, flc_blocked_member); 708 709 fl = file_lock(waiter); 710 __locks_unlink_block(waiter); 711 if ((waiter->flc_flags & (FL_POSIX | FL_FLOCK)) && 712 fl->fl_lmops && fl->fl_lmops->lm_notify) 713 fl->fl_lmops->lm_notify(fl); 714 else 715 locks_wake_up(fl); 716 717 /* 718 * The setting of flc_blocker to NULL marks the "done" 719 * point in deleting a block. Paired with acquire at the top 720 * of locks_delete_block(). 721 */ 722 smp_store_release(&waiter->flc_blocker, NULL); 723 } 724 } 725 726 static int __locks_delete_block(struct file_lock_core *waiter) 727 { 728 int status = -ENOENT; 729 730 /* 731 * If fl_blocker is NULL, it won't be set again as this thread "owns" 732 * the lock and is the only one that might try to claim the lock. 733 * 734 * We use acquire/release to manage fl_blocker so that we can 735 * optimize away taking the blocked_lock_lock in many cases. 736 * 737 * The smp_load_acquire guarantees two things: 738 * 739 * 1/ that fl_blocked_requests can be tested locklessly. If something 740 * was recently added to that list it must have been in a locked region 741 * *before* the locked region when fl_blocker was set to NULL. 742 * 743 * 2/ that no other thread is accessing 'waiter', so it is safe to free 744 * it. __locks_wake_up_blocks is careful not to touch waiter after 745 * fl_blocker is released. 746 * 747 * If a lockless check of fl_blocker shows it to be NULL, we know that 748 * no new locks can be inserted into its fl_blocked_requests list, and 749 * can avoid doing anything further if the list is empty. 750 */ 751 if (!smp_load_acquire(&waiter->flc_blocker) && 752 list_empty(&waiter->flc_blocked_requests)) 753 return status; 754 755 spin_lock(&blocked_lock_lock); 756 if (waiter->flc_blocker) 757 status = 0; 758 __locks_wake_up_blocks(waiter); 759 __locks_unlink_block(waiter); 760 761 /* 762 * The setting of fl_blocker to NULL marks the "done" point in deleting 763 * a block. Paired with acquire at the top of this function. 764 */ 765 smp_store_release(&waiter->flc_blocker, NULL); 766 spin_unlock(&blocked_lock_lock); 767 return status; 768 } 769 770 /** 771 * locks_delete_block - stop waiting for a file lock 772 * @waiter: the lock which was waiting 773 * 774 * lockd/nfsd need to disconnect the lock while working on it. 775 */ 776 int locks_delete_block(struct file_lock *waiter) 777 { 778 return __locks_delete_block(&waiter->c); 779 } 780 EXPORT_SYMBOL(locks_delete_block); 781 782 /* Insert waiter into blocker's block list. 783 * We use a circular list so that processes can be easily woken up in 784 * the order they blocked. The documentation doesn't require this but 785 * it seems like the reasonable thing to do. 786 * 787 * Must be called with both the flc_lock and blocked_lock_lock held. The 788 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 789 * but by ensuring that the flc_lock is also held on insertions we can avoid 790 * taking the blocked_lock_lock in some cases when we see that the 791 * fl_blocked_requests list is empty. 792 * 793 * Rather than just adding to the list, we check for conflicts with any existing 794 * waiters, and add beneath any waiter that blocks the new waiter. 795 * Thus wakeups don't happen until needed. 796 */ 797 static void __locks_insert_block(struct file_lock_core *blocker, 798 struct file_lock_core *waiter, 799 bool conflict(struct file_lock_core *, 800 struct file_lock_core *)) 801 { 802 struct file_lock_core *flc; 803 804 BUG_ON(!list_empty(&waiter->flc_blocked_member)); 805 new_blocker: 806 list_for_each_entry(flc, &blocker->flc_blocked_requests, flc_blocked_member) 807 if (conflict(flc, waiter)) { 808 blocker = flc; 809 goto new_blocker; 810 } 811 waiter->flc_blocker = blocker; 812 list_add_tail(&waiter->flc_blocked_member, 813 &blocker->flc_blocked_requests); 814 815 if ((blocker->flc_flags & (FL_POSIX|FL_OFDLCK)) == FL_POSIX) 816 locks_insert_global_blocked(waiter); 817 818 /* The requests in waiter->flc_blocked are known to conflict with 819 * waiter, but might not conflict with blocker, or the requests 820 * and lock which block it. So they all need to be woken. 821 */ 822 __locks_wake_up_blocks(waiter); 823 } 824 825 /* Must be called with flc_lock held. */ 826 static void locks_insert_block(struct file_lock_core *blocker, 827 struct file_lock_core *waiter, 828 bool conflict(struct file_lock_core *, 829 struct file_lock_core *)) 830 { 831 spin_lock(&blocked_lock_lock); 832 __locks_insert_block(blocker, waiter, conflict); 833 spin_unlock(&blocked_lock_lock); 834 } 835 836 /* 837 * Wake up processes blocked waiting for blocker. 838 * 839 * Must be called with the inode->flc_lock held! 840 */ 841 static void locks_wake_up_blocks(struct file_lock_core *blocker) 842 { 843 /* 844 * Avoid taking global lock if list is empty. This is safe since new 845 * blocked requests are only added to the list under the flc_lock, and 846 * the flc_lock is always held here. Note that removal from the 847 * fl_blocked_requests list does not require the flc_lock, so we must 848 * recheck list_empty() after acquiring the blocked_lock_lock. 849 */ 850 if (list_empty(&blocker->flc_blocked_requests)) 851 return; 852 853 spin_lock(&blocked_lock_lock); 854 __locks_wake_up_blocks(blocker); 855 spin_unlock(&blocked_lock_lock); 856 } 857 858 static void 859 locks_insert_lock_ctx(struct file_lock_core *fl, struct list_head *before) 860 { 861 list_add_tail(&fl->flc_list, before); 862 locks_insert_global_locks(fl); 863 } 864 865 static void 866 locks_unlink_lock_ctx(struct file_lock_core *fl) 867 { 868 locks_delete_global_locks(fl); 869 list_del_init(&fl->flc_list); 870 locks_wake_up_blocks(fl); 871 } 872 873 static void 874 locks_delete_lock_ctx(struct file_lock_core *fl, struct list_head *dispose) 875 { 876 locks_unlink_lock_ctx(fl); 877 if (dispose) 878 list_add(&fl->flc_list, dispose); 879 else 880 locks_free_lock(file_lock(fl)); 881 } 882 883 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 884 * checks for shared/exclusive status of overlapping locks. 885 */ 886 static bool locks_conflict(struct file_lock_core *caller_flc, 887 struct file_lock_core *sys_flc) 888 { 889 if (sys_flc->flc_type == F_WRLCK) 890 return true; 891 if (caller_flc->flc_type == F_WRLCK) 892 return true; 893 return false; 894 } 895 896 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 897 * checking before calling the locks_conflict(). 898 */ 899 static bool posix_locks_conflict(struct file_lock_core *caller_flc, 900 struct file_lock_core *sys_flc) 901 { 902 struct file_lock *caller_fl = file_lock(caller_flc); 903 struct file_lock *sys_fl = file_lock(sys_flc); 904 905 /* POSIX locks owned by the same process do not conflict with 906 * each other. 907 */ 908 if (posix_same_owner(caller_flc, sys_flc)) 909 return false; 910 911 /* Check whether they overlap */ 912 if (!locks_overlap(caller_fl, sys_fl)) 913 return false; 914 915 return locks_conflict(caller_flc, sys_flc); 916 } 917 918 /* Determine if lock sys_fl blocks lock caller_fl. Used on xx_GETLK 919 * path so checks for additional GETLK-specific things like F_UNLCK. 920 */ 921 static bool posix_test_locks_conflict(struct file_lock *caller_fl, 922 struct file_lock *sys_fl) 923 { 924 struct file_lock_core *caller = &caller_fl->c; 925 struct file_lock_core *sys = &sys_fl->c; 926 927 /* F_UNLCK checks any locks on the same fd. */ 928 if (lock_is_unlock(caller_fl)) { 929 if (!posix_same_owner(caller, sys)) 930 return false; 931 return locks_overlap(caller_fl, sys_fl); 932 } 933 return posix_locks_conflict(caller, sys); 934 } 935 936 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 937 * checking before calling the locks_conflict(). 938 */ 939 static bool flock_locks_conflict(struct file_lock_core *caller_flc, 940 struct file_lock_core *sys_flc) 941 { 942 /* FLOCK locks referring to the same filp do not conflict with 943 * each other. 944 */ 945 if (caller_flc->flc_file == sys_flc->flc_file) 946 return false; 947 948 return locks_conflict(caller_flc, sys_flc); 949 } 950 951 void 952 posix_test_lock(struct file *filp, struct file_lock *fl) 953 { 954 struct file_lock *cfl; 955 struct file_lock_context *ctx; 956 struct inode *inode = file_inode(filp); 957 void *owner; 958 void (*func)(void); 959 960 ctx = locks_inode_context(inode); 961 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 962 fl->c.flc_type = F_UNLCK; 963 return; 964 } 965 966 retry: 967 spin_lock(&ctx->flc_lock); 968 list_for_each_entry(cfl, &ctx->flc_posix, c.flc_list) { 969 if (!posix_test_locks_conflict(fl, cfl)) 970 continue; 971 if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable 972 && (*cfl->fl_lmops->lm_lock_expirable)(cfl)) { 973 owner = cfl->fl_lmops->lm_mod_owner; 974 func = cfl->fl_lmops->lm_expire_lock; 975 __module_get(owner); 976 spin_unlock(&ctx->flc_lock); 977 (*func)(); 978 module_put(owner); 979 goto retry; 980 } 981 locks_copy_conflock(fl, cfl); 982 goto out; 983 } 984 fl->c.flc_type = F_UNLCK; 985 out: 986 spin_unlock(&ctx->flc_lock); 987 return; 988 } 989 EXPORT_SYMBOL(posix_test_lock); 990 991 /* 992 * Deadlock detection: 993 * 994 * We attempt to detect deadlocks that are due purely to posix file 995 * locks. 996 * 997 * We assume that a task can be waiting for at most one lock at a time. 998 * So for any acquired lock, the process holding that lock may be 999 * waiting on at most one other lock. That lock in turns may be held by 1000 * someone waiting for at most one other lock. Given a requested lock 1001 * caller_fl which is about to wait for a conflicting lock block_fl, we 1002 * follow this chain of waiters to ensure we are not about to create a 1003 * cycle. 1004 * 1005 * Since we do this before we ever put a process to sleep on a lock, we 1006 * are ensured that there is never a cycle; that is what guarantees that 1007 * the while() loop in posix_locks_deadlock() eventually completes. 1008 * 1009 * Note: the above assumption may not be true when handling lock 1010 * requests from a broken NFS client. It may also fail in the presence 1011 * of tasks (such as posix threads) sharing the same open file table. 1012 * To handle those cases, we just bail out after a few iterations. 1013 * 1014 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 1015 * Because the owner is not even nominally tied to a thread of 1016 * execution, the deadlock detection below can't reasonably work well. Just 1017 * skip it for those. 1018 * 1019 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 1020 * locks that just checks for the case where two tasks are attempting to 1021 * upgrade from read to write locks on the same inode. 1022 */ 1023 1024 #define MAX_DEADLK_ITERATIONS 10 1025 1026 /* Find a lock that the owner of the given @blocker is blocking on. */ 1027 static struct file_lock_core *what_owner_is_waiting_for(struct file_lock_core *blocker) 1028 { 1029 struct file_lock_core *flc; 1030 1031 hash_for_each_possible(blocked_hash, flc, flc_link, posix_owner_key(blocker)) { 1032 if (posix_same_owner(flc, blocker)) { 1033 while (flc->flc_blocker) 1034 flc = flc->flc_blocker; 1035 return flc; 1036 } 1037 } 1038 return NULL; 1039 } 1040 1041 /* Must be called with the blocked_lock_lock held! */ 1042 static bool posix_locks_deadlock(struct file_lock *caller_fl, 1043 struct file_lock *block_fl) 1044 { 1045 struct file_lock_core *caller = &caller_fl->c; 1046 struct file_lock_core *blocker = &block_fl->c; 1047 int i = 0; 1048 1049 lockdep_assert_held(&blocked_lock_lock); 1050 1051 /* 1052 * This deadlock detector can't reasonably detect deadlocks with 1053 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 1054 */ 1055 if (caller->flc_flags & FL_OFDLCK) 1056 return false; 1057 1058 while ((blocker = what_owner_is_waiting_for(blocker))) { 1059 if (i++ > MAX_DEADLK_ITERATIONS) 1060 return false; 1061 if (posix_same_owner(caller, blocker)) 1062 return true; 1063 } 1064 return false; 1065 } 1066 1067 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 1068 * after any leases, but before any posix locks. 1069 * 1070 * Note that if called with an FL_EXISTS argument, the caller may determine 1071 * whether or not a lock was successfully freed by testing the return 1072 * value for -ENOENT. 1073 */ 1074 static int flock_lock_inode(struct inode *inode, struct file_lock *request) 1075 { 1076 struct file_lock *new_fl = NULL; 1077 struct file_lock *fl; 1078 struct file_lock_context *ctx; 1079 int error = 0; 1080 bool found = false; 1081 LIST_HEAD(dispose); 1082 1083 ctx = locks_get_lock_context(inode, request->c.flc_type); 1084 if (!ctx) { 1085 if (request->c.flc_type != F_UNLCK) 1086 return -ENOMEM; 1087 return (request->c.flc_flags & FL_EXISTS) ? -ENOENT : 0; 1088 } 1089 1090 if (!(request->c.flc_flags & FL_ACCESS) && (request->c.flc_type != F_UNLCK)) { 1091 new_fl = locks_alloc_lock(); 1092 if (!new_fl) 1093 return -ENOMEM; 1094 } 1095 1096 percpu_down_read(&file_rwsem); 1097 spin_lock(&ctx->flc_lock); 1098 if (request->c.flc_flags & FL_ACCESS) 1099 goto find_conflict; 1100 1101 list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) { 1102 if (request->c.flc_file != fl->c.flc_file) 1103 continue; 1104 if (request->c.flc_type == fl->c.flc_type) 1105 goto out; 1106 found = true; 1107 locks_delete_lock_ctx(&fl->c, &dispose); 1108 break; 1109 } 1110 1111 if (lock_is_unlock(request)) { 1112 if ((request->c.flc_flags & FL_EXISTS) && !found) 1113 error = -ENOENT; 1114 goto out; 1115 } 1116 1117 find_conflict: 1118 list_for_each_entry(fl, &ctx->flc_flock, c.flc_list) { 1119 if (!flock_locks_conflict(&request->c, &fl->c)) 1120 continue; 1121 error = -EAGAIN; 1122 if (!(request->c.flc_flags & FL_SLEEP)) 1123 goto out; 1124 error = FILE_LOCK_DEFERRED; 1125 locks_insert_block(&fl->c, &request->c, flock_locks_conflict); 1126 goto out; 1127 } 1128 if (request->c.flc_flags & FL_ACCESS) 1129 goto out; 1130 locks_copy_lock(new_fl, request); 1131 locks_move_blocks(new_fl, request); 1132 locks_insert_lock_ctx(&new_fl->c, &ctx->flc_flock); 1133 new_fl = NULL; 1134 error = 0; 1135 1136 out: 1137 spin_unlock(&ctx->flc_lock); 1138 percpu_up_read(&file_rwsem); 1139 if (new_fl) 1140 locks_free_lock(new_fl); 1141 locks_dispose_list(&dispose); 1142 trace_flock_lock_inode(inode, request, error); 1143 return error; 1144 } 1145 1146 static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1147 struct file_lock *conflock) 1148 { 1149 struct file_lock *fl, *tmp; 1150 struct file_lock *new_fl = NULL; 1151 struct file_lock *new_fl2 = NULL; 1152 struct file_lock *left = NULL; 1153 struct file_lock *right = NULL; 1154 struct file_lock_context *ctx; 1155 int error; 1156 bool added = false; 1157 LIST_HEAD(dispose); 1158 void *owner; 1159 void (*func)(void); 1160 1161 ctx = locks_get_lock_context(inode, request->c.flc_type); 1162 if (!ctx) 1163 return lock_is_unlock(request) ? 0 : -ENOMEM; 1164 1165 /* 1166 * We may need two file_lock structures for this operation, 1167 * so we get them in advance to avoid races. 1168 * 1169 * In some cases we can be sure, that no new locks will be needed 1170 */ 1171 if (!(request->c.flc_flags & FL_ACCESS) && 1172 (request->c.flc_type != F_UNLCK || 1173 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1174 new_fl = locks_alloc_lock(); 1175 new_fl2 = locks_alloc_lock(); 1176 } 1177 1178 retry: 1179 percpu_down_read(&file_rwsem); 1180 spin_lock(&ctx->flc_lock); 1181 /* 1182 * New lock request. Walk all POSIX locks and look for conflicts. If 1183 * there are any, either return error or put the request on the 1184 * blocker's list of waiters and the global blocked_hash. 1185 */ 1186 if (request->c.flc_type != F_UNLCK) { 1187 list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) { 1188 if (!posix_locks_conflict(&request->c, &fl->c)) 1189 continue; 1190 if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable 1191 && (*fl->fl_lmops->lm_lock_expirable)(fl)) { 1192 owner = fl->fl_lmops->lm_mod_owner; 1193 func = fl->fl_lmops->lm_expire_lock; 1194 __module_get(owner); 1195 spin_unlock(&ctx->flc_lock); 1196 percpu_up_read(&file_rwsem); 1197 (*func)(); 1198 module_put(owner); 1199 goto retry; 1200 } 1201 if (conflock) 1202 locks_copy_conflock(conflock, fl); 1203 error = -EAGAIN; 1204 if (!(request->c.flc_flags & FL_SLEEP)) 1205 goto out; 1206 /* 1207 * Deadlock detection and insertion into the blocked 1208 * locks list must be done while holding the same lock! 1209 */ 1210 error = -EDEADLK; 1211 spin_lock(&blocked_lock_lock); 1212 /* 1213 * Ensure that we don't find any locks blocked on this 1214 * request during deadlock detection. 1215 */ 1216 __locks_wake_up_blocks(&request->c); 1217 if (likely(!posix_locks_deadlock(request, fl))) { 1218 error = FILE_LOCK_DEFERRED; 1219 __locks_insert_block(&fl->c, &request->c, 1220 posix_locks_conflict); 1221 } 1222 spin_unlock(&blocked_lock_lock); 1223 goto out; 1224 } 1225 } 1226 1227 /* If we're just looking for a conflict, we're done. */ 1228 error = 0; 1229 if (request->c.flc_flags & FL_ACCESS) 1230 goto out; 1231 1232 /* Find the first old lock with the same owner as the new lock */ 1233 list_for_each_entry(fl, &ctx->flc_posix, c.flc_list) { 1234 if (posix_same_owner(&request->c, &fl->c)) 1235 break; 1236 } 1237 1238 /* Process locks with this owner. */ 1239 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, c.flc_list) { 1240 if (!posix_same_owner(&request->c, &fl->c)) 1241 break; 1242 1243 /* Detect adjacent or overlapping regions (if same lock type) */ 1244 if (request->c.flc_type == fl->c.flc_type) { 1245 /* In all comparisons of start vs end, use 1246 * "start - 1" rather than "end + 1". If end 1247 * is OFFSET_MAX, end + 1 will become negative. 1248 */ 1249 if (fl->fl_end < request->fl_start - 1) 1250 continue; 1251 /* If the next lock in the list has entirely bigger 1252 * addresses than the new one, insert the lock here. 1253 */ 1254 if (fl->fl_start - 1 > request->fl_end) 1255 break; 1256 1257 /* If we come here, the new and old lock are of the 1258 * same type and adjacent or overlapping. Make one 1259 * lock yielding from the lower start address of both 1260 * locks to the higher end address. 1261 */ 1262 if (fl->fl_start > request->fl_start) 1263 fl->fl_start = request->fl_start; 1264 else 1265 request->fl_start = fl->fl_start; 1266 if (fl->fl_end < request->fl_end) 1267 fl->fl_end = request->fl_end; 1268 else 1269 request->fl_end = fl->fl_end; 1270 if (added) { 1271 locks_delete_lock_ctx(&fl->c, &dispose); 1272 continue; 1273 } 1274 request = fl; 1275 added = true; 1276 } else { 1277 /* Processing for different lock types is a bit 1278 * more complex. 1279 */ 1280 if (fl->fl_end < request->fl_start) 1281 continue; 1282 if (fl->fl_start > request->fl_end) 1283 break; 1284 if (lock_is_unlock(request)) 1285 added = true; 1286 if (fl->fl_start < request->fl_start) 1287 left = fl; 1288 /* If the next lock in the list has a higher end 1289 * address than the new one, insert the new one here. 1290 */ 1291 if (fl->fl_end > request->fl_end) { 1292 right = fl; 1293 break; 1294 } 1295 if (fl->fl_start >= request->fl_start) { 1296 /* The new lock completely replaces an old 1297 * one (This may happen several times). 1298 */ 1299 if (added) { 1300 locks_delete_lock_ctx(&fl->c, &dispose); 1301 continue; 1302 } 1303 /* 1304 * Replace the old lock with new_fl, and 1305 * remove the old one. It's safe to do the 1306 * insert here since we know that we won't be 1307 * using new_fl later, and that the lock is 1308 * just replacing an existing lock. 1309 */ 1310 error = -ENOLCK; 1311 if (!new_fl) 1312 goto out; 1313 locks_copy_lock(new_fl, request); 1314 locks_move_blocks(new_fl, request); 1315 request = new_fl; 1316 new_fl = NULL; 1317 locks_insert_lock_ctx(&request->c, 1318 &fl->c.flc_list); 1319 locks_delete_lock_ctx(&fl->c, &dispose); 1320 added = true; 1321 } 1322 } 1323 } 1324 1325 /* 1326 * The above code only modifies existing locks in case of merging or 1327 * replacing. If new lock(s) need to be inserted all modifications are 1328 * done below this, so it's safe yet to bail out. 1329 */ 1330 error = -ENOLCK; /* "no luck" */ 1331 if (right && left == right && !new_fl2) 1332 goto out; 1333 1334 error = 0; 1335 if (!added) { 1336 if (lock_is_unlock(request)) { 1337 if (request->c.flc_flags & FL_EXISTS) 1338 error = -ENOENT; 1339 goto out; 1340 } 1341 1342 if (!new_fl) { 1343 error = -ENOLCK; 1344 goto out; 1345 } 1346 locks_copy_lock(new_fl, request); 1347 locks_move_blocks(new_fl, request); 1348 locks_insert_lock_ctx(&new_fl->c, &fl->c.flc_list); 1349 fl = new_fl; 1350 new_fl = NULL; 1351 } 1352 if (right) { 1353 if (left == right) { 1354 /* The new lock breaks the old one in two pieces, 1355 * so we have to use the second new lock. 1356 */ 1357 left = new_fl2; 1358 new_fl2 = NULL; 1359 locks_copy_lock(left, right); 1360 locks_insert_lock_ctx(&left->c, &fl->c.flc_list); 1361 } 1362 right->fl_start = request->fl_end + 1; 1363 locks_wake_up_blocks(&right->c); 1364 } 1365 if (left) { 1366 left->fl_end = request->fl_start - 1; 1367 locks_wake_up_blocks(&left->c); 1368 } 1369 out: 1370 trace_posix_lock_inode(inode, request, error); 1371 spin_unlock(&ctx->flc_lock); 1372 percpu_up_read(&file_rwsem); 1373 /* 1374 * Free any unused locks. 1375 */ 1376 if (new_fl) 1377 locks_free_lock(new_fl); 1378 if (new_fl2) 1379 locks_free_lock(new_fl2); 1380 locks_dispose_list(&dispose); 1381 1382 return error; 1383 } 1384 1385 /** 1386 * posix_lock_file - Apply a POSIX-style lock to a file 1387 * @filp: The file to apply the lock to 1388 * @fl: The lock to be applied 1389 * @conflock: Place to return a copy of the conflicting lock, if found. 1390 * 1391 * Add a POSIX style lock to a file. 1392 * We merge adjacent & overlapping locks whenever possible. 1393 * POSIX locks are sorted by owner task, then by starting address 1394 * 1395 * Note that if called with an FL_EXISTS argument, the caller may determine 1396 * whether or not a lock was successfully freed by testing the return 1397 * value for -ENOENT. 1398 */ 1399 int posix_lock_file(struct file *filp, struct file_lock *fl, 1400 struct file_lock *conflock) 1401 { 1402 return posix_lock_inode(file_inode(filp), fl, conflock); 1403 } 1404 EXPORT_SYMBOL(posix_lock_file); 1405 1406 /** 1407 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1408 * @inode: inode of file to which lock request should be applied 1409 * @fl: The lock to be applied 1410 * 1411 * Apply a POSIX style lock request to an inode. 1412 */ 1413 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1414 { 1415 int error; 1416 might_sleep (); 1417 for (;;) { 1418 error = posix_lock_inode(inode, fl, NULL); 1419 if (error != FILE_LOCK_DEFERRED) 1420 break; 1421 error = wait_event_interruptible(fl->c.flc_wait, 1422 list_empty(&fl->c.flc_blocked_member)); 1423 if (error) 1424 break; 1425 } 1426 locks_delete_block(fl); 1427 return error; 1428 } 1429 1430 static void lease_clear_pending(struct file_lease *fl, int arg) 1431 { 1432 switch (arg) { 1433 case F_UNLCK: 1434 fl->c.flc_flags &= ~FL_UNLOCK_PENDING; 1435 fallthrough; 1436 case F_RDLCK: 1437 fl->c.flc_flags &= ~FL_DOWNGRADE_PENDING; 1438 } 1439 } 1440 1441 /* We already had a lease on this file; just change its type */ 1442 int lease_modify(struct file_lease *fl, int arg, struct list_head *dispose) 1443 { 1444 int error = assign_type(&fl->c, arg); 1445 1446 if (error) 1447 return error; 1448 lease_clear_pending(fl, arg); 1449 locks_wake_up_blocks(&fl->c); 1450 if (arg == F_UNLCK) { 1451 struct file *filp = fl->c.flc_file; 1452 1453 f_delown(filp); 1454 filp->f_owner.signum = 0; 1455 fasync_helper(0, fl->c.flc_file, 0, &fl->fl_fasync); 1456 if (fl->fl_fasync != NULL) { 1457 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1458 fl->fl_fasync = NULL; 1459 } 1460 locks_delete_lock_ctx(&fl->c, dispose); 1461 } 1462 return 0; 1463 } 1464 EXPORT_SYMBOL(lease_modify); 1465 1466 static bool past_time(unsigned long then) 1467 { 1468 if (!then) 1469 /* 0 is a special value meaning "this never expires": */ 1470 return false; 1471 return time_after(jiffies, then); 1472 } 1473 1474 static void time_out_leases(struct inode *inode, struct list_head *dispose) 1475 { 1476 struct file_lock_context *ctx = inode->i_flctx; 1477 struct file_lease *fl, *tmp; 1478 1479 lockdep_assert_held(&ctx->flc_lock); 1480 1481 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) { 1482 trace_time_out_leases(inode, fl); 1483 if (past_time(fl->fl_downgrade_time)) 1484 lease_modify(fl, F_RDLCK, dispose); 1485 if (past_time(fl->fl_break_time)) 1486 lease_modify(fl, F_UNLCK, dispose); 1487 } 1488 } 1489 1490 static bool leases_conflict(struct file_lock_core *lc, struct file_lock_core *bc) 1491 { 1492 bool rc; 1493 struct file_lease *lease = file_lease(lc); 1494 struct file_lease *breaker = file_lease(bc); 1495 1496 if (lease->fl_lmops->lm_breaker_owns_lease 1497 && lease->fl_lmops->lm_breaker_owns_lease(lease)) 1498 return false; 1499 if ((bc->flc_flags & FL_LAYOUT) != (lc->flc_flags & FL_LAYOUT)) { 1500 rc = false; 1501 goto trace; 1502 } 1503 if ((bc->flc_flags & FL_DELEG) && (lc->flc_flags & FL_LEASE)) { 1504 rc = false; 1505 goto trace; 1506 } 1507 1508 rc = locks_conflict(bc, lc); 1509 trace: 1510 trace_leases_conflict(rc, lease, breaker); 1511 return rc; 1512 } 1513 1514 static bool 1515 any_leases_conflict(struct inode *inode, struct file_lease *breaker) 1516 { 1517 struct file_lock_context *ctx = inode->i_flctx; 1518 struct file_lock_core *flc; 1519 1520 lockdep_assert_held(&ctx->flc_lock); 1521 1522 list_for_each_entry(flc, &ctx->flc_lease, flc_list) { 1523 if (leases_conflict(flc, &breaker->c)) 1524 return true; 1525 } 1526 return false; 1527 } 1528 1529 /** 1530 * __break_lease - revoke all outstanding leases on file 1531 * @inode: the inode of the file to return 1532 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: 1533 * break all leases 1534 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break 1535 * only delegations 1536 * 1537 * break_lease (inlined for speed) has checked there already is at least 1538 * some kind of lock (maybe a lease) on this file. Leases are broken on 1539 * a call to open() or truncate(). This function can sleep unless you 1540 * specified %O_NONBLOCK to your open(). 1541 */ 1542 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) 1543 { 1544 int error = 0; 1545 struct file_lock_context *ctx; 1546 struct file_lease *new_fl, *fl, *tmp; 1547 unsigned long break_time; 1548 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1549 LIST_HEAD(dispose); 1550 1551 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1552 if (IS_ERR(new_fl)) 1553 return PTR_ERR(new_fl); 1554 new_fl->c.flc_flags = type; 1555 1556 /* typically we will check that ctx is non-NULL before calling */ 1557 ctx = locks_inode_context(inode); 1558 if (!ctx) { 1559 WARN_ON_ONCE(1); 1560 goto free_lock; 1561 } 1562 1563 percpu_down_read(&file_rwsem); 1564 spin_lock(&ctx->flc_lock); 1565 1566 time_out_leases(inode, &dispose); 1567 1568 if (!any_leases_conflict(inode, new_fl)) 1569 goto out; 1570 1571 break_time = 0; 1572 if (lease_break_time > 0) { 1573 break_time = jiffies + lease_break_time * HZ; 1574 if (break_time == 0) 1575 break_time++; /* so that 0 means no break time */ 1576 } 1577 1578 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) { 1579 if (!leases_conflict(&fl->c, &new_fl->c)) 1580 continue; 1581 if (want_write) { 1582 if (fl->c.flc_flags & FL_UNLOCK_PENDING) 1583 continue; 1584 fl->c.flc_flags |= FL_UNLOCK_PENDING; 1585 fl->fl_break_time = break_time; 1586 } else { 1587 if (lease_breaking(fl)) 1588 continue; 1589 fl->c.flc_flags |= FL_DOWNGRADE_PENDING; 1590 fl->fl_downgrade_time = break_time; 1591 } 1592 if (fl->fl_lmops->lm_break(fl)) 1593 locks_delete_lock_ctx(&fl->c, &dispose); 1594 } 1595 1596 if (list_empty(&ctx->flc_lease)) 1597 goto out; 1598 1599 if (mode & O_NONBLOCK) { 1600 trace_break_lease_noblock(inode, new_fl); 1601 error = -EWOULDBLOCK; 1602 goto out; 1603 } 1604 1605 restart: 1606 fl = list_first_entry(&ctx->flc_lease, struct file_lease, c.flc_list); 1607 break_time = fl->fl_break_time; 1608 if (break_time != 0) 1609 break_time -= jiffies; 1610 if (break_time == 0) 1611 break_time++; 1612 locks_insert_block(&fl->c, &new_fl->c, leases_conflict); 1613 trace_break_lease_block(inode, new_fl); 1614 spin_unlock(&ctx->flc_lock); 1615 percpu_up_read(&file_rwsem); 1616 1617 locks_dispose_list(&dispose); 1618 error = wait_event_interruptible_timeout(new_fl->c.flc_wait, 1619 list_empty(&new_fl->c.flc_blocked_member), 1620 break_time); 1621 1622 percpu_down_read(&file_rwsem); 1623 spin_lock(&ctx->flc_lock); 1624 trace_break_lease_unblock(inode, new_fl); 1625 __locks_delete_block(&new_fl->c); 1626 if (error >= 0) { 1627 /* 1628 * Wait for the next conflicting lease that has not been 1629 * broken yet 1630 */ 1631 if (error == 0) 1632 time_out_leases(inode, &dispose); 1633 if (any_leases_conflict(inode, new_fl)) 1634 goto restart; 1635 error = 0; 1636 } 1637 out: 1638 spin_unlock(&ctx->flc_lock); 1639 percpu_up_read(&file_rwsem); 1640 locks_dispose_list(&dispose); 1641 free_lock: 1642 locks_free_lease(new_fl); 1643 return error; 1644 } 1645 EXPORT_SYMBOL(__break_lease); 1646 1647 /** 1648 * lease_get_mtime - update modified time of an inode with exclusive lease 1649 * @inode: the inode 1650 * @time: pointer to a timespec which contains the last modified time 1651 * 1652 * This is to force NFS clients to flush their caches for files with 1653 * exclusive leases. The justification is that if someone has an 1654 * exclusive lease, then they could be modifying it. 1655 */ 1656 void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1657 { 1658 bool has_lease = false; 1659 struct file_lock_context *ctx; 1660 struct file_lock_core *flc; 1661 1662 ctx = locks_inode_context(inode); 1663 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1664 spin_lock(&ctx->flc_lock); 1665 flc = list_first_entry_or_null(&ctx->flc_lease, 1666 struct file_lock_core, flc_list); 1667 if (flc && flc->flc_type == F_WRLCK) 1668 has_lease = true; 1669 spin_unlock(&ctx->flc_lock); 1670 } 1671 1672 if (has_lease) 1673 *time = current_time(inode); 1674 } 1675 EXPORT_SYMBOL(lease_get_mtime); 1676 1677 /** 1678 * fcntl_getlease - Enquire what lease is currently active 1679 * @filp: the file 1680 * 1681 * The value returned by this function will be one of 1682 * (if no lease break is pending): 1683 * 1684 * %F_RDLCK to indicate a shared lease is held. 1685 * 1686 * %F_WRLCK to indicate an exclusive lease is held. 1687 * 1688 * %F_UNLCK to indicate no lease is held. 1689 * 1690 * (if a lease break is pending): 1691 * 1692 * %F_RDLCK to indicate an exclusive lease needs to be 1693 * changed to a shared lease (or removed). 1694 * 1695 * %F_UNLCK to indicate the lease needs to be removed. 1696 * 1697 * XXX: sfr & willy disagree over whether F_INPROGRESS 1698 * should be returned to userspace. 1699 */ 1700 int fcntl_getlease(struct file *filp) 1701 { 1702 struct file_lease *fl; 1703 struct inode *inode = file_inode(filp); 1704 struct file_lock_context *ctx; 1705 int type = F_UNLCK; 1706 LIST_HEAD(dispose); 1707 1708 ctx = locks_inode_context(inode); 1709 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1710 percpu_down_read(&file_rwsem); 1711 spin_lock(&ctx->flc_lock); 1712 time_out_leases(inode, &dispose); 1713 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { 1714 if (fl->c.flc_file != filp) 1715 continue; 1716 type = target_leasetype(fl); 1717 break; 1718 } 1719 spin_unlock(&ctx->flc_lock); 1720 percpu_up_read(&file_rwsem); 1721 1722 locks_dispose_list(&dispose); 1723 } 1724 return type; 1725 } 1726 1727 /** 1728 * check_conflicting_open - see if the given file points to an inode that has 1729 * an existing open that would conflict with the 1730 * desired lease. 1731 * @filp: file to check 1732 * @arg: type of lease that we're trying to acquire 1733 * @flags: current lock flags 1734 * 1735 * Check to see if there's an existing open fd on this file that would 1736 * conflict with the lease we're trying to set. 1737 */ 1738 static int 1739 check_conflicting_open(struct file *filp, const int arg, int flags) 1740 { 1741 struct inode *inode = file_inode(filp); 1742 int self_wcount = 0, self_rcount = 0; 1743 1744 if (flags & FL_LAYOUT) 1745 return 0; 1746 if (flags & FL_DELEG) 1747 /* We leave these checks to the caller */ 1748 return 0; 1749 1750 if (arg == F_RDLCK) 1751 return inode_is_open_for_write(inode) ? -EAGAIN : 0; 1752 else if (arg != F_WRLCK) 1753 return 0; 1754 1755 /* 1756 * Make sure that only read/write count is from lease requestor. 1757 * Note that this will result in denying write leases when i_writecount 1758 * is negative, which is what we want. (We shouldn't grant write leases 1759 * on files open for execution.) 1760 */ 1761 if (filp->f_mode & FMODE_WRITE) 1762 self_wcount = 1; 1763 else if (filp->f_mode & FMODE_READ) 1764 self_rcount = 1; 1765 1766 if (atomic_read(&inode->i_writecount) != self_wcount || 1767 atomic_read(&inode->i_readcount) != self_rcount) 1768 return -EAGAIN; 1769 1770 return 0; 1771 } 1772 1773 static int 1774 generic_add_lease(struct file *filp, int arg, struct file_lease **flp, void **priv) 1775 { 1776 struct file_lease *fl, *my_fl = NULL, *lease; 1777 struct inode *inode = file_inode(filp); 1778 struct file_lock_context *ctx; 1779 bool is_deleg = (*flp)->c.flc_flags & FL_DELEG; 1780 int error; 1781 LIST_HEAD(dispose); 1782 1783 lease = *flp; 1784 trace_generic_add_lease(inode, lease); 1785 1786 /* Note that arg is never F_UNLCK here */ 1787 ctx = locks_get_lock_context(inode, arg); 1788 if (!ctx) 1789 return -ENOMEM; 1790 1791 /* 1792 * In the delegation case we need mutual exclusion with 1793 * a number of operations that take the i_mutex. We trylock 1794 * because delegations are an optional optimization, and if 1795 * there's some chance of a conflict--we'd rather not 1796 * bother, maybe that's a sign this just isn't a good file to 1797 * hand out a delegation on. 1798 */ 1799 if (is_deleg && !inode_trylock(inode)) 1800 return -EAGAIN; 1801 1802 percpu_down_read(&file_rwsem); 1803 spin_lock(&ctx->flc_lock); 1804 time_out_leases(inode, &dispose); 1805 error = check_conflicting_open(filp, arg, lease->c.flc_flags); 1806 if (error) 1807 goto out; 1808 1809 /* 1810 * At this point, we know that if there is an exclusive 1811 * lease on this file, then we hold it on this filp 1812 * (otherwise our open of this file would have blocked). 1813 * And if we are trying to acquire an exclusive lease, 1814 * then the file is not open by anyone (including us) 1815 * except for this filp. 1816 */ 1817 error = -EAGAIN; 1818 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { 1819 if (fl->c.flc_file == filp && 1820 fl->c.flc_owner == lease->c.flc_owner) { 1821 my_fl = fl; 1822 continue; 1823 } 1824 1825 /* 1826 * No exclusive leases if someone else has a lease on 1827 * this file: 1828 */ 1829 if (arg == F_WRLCK) 1830 goto out; 1831 /* 1832 * Modifying our existing lease is OK, but no getting a 1833 * new lease if someone else is opening for write: 1834 */ 1835 if (fl->c.flc_flags & FL_UNLOCK_PENDING) 1836 goto out; 1837 } 1838 1839 if (my_fl != NULL) { 1840 lease = my_fl; 1841 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1842 if (error) 1843 goto out; 1844 goto out_setup; 1845 } 1846 1847 error = -EINVAL; 1848 if (!leases_enable) 1849 goto out; 1850 1851 locks_insert_lock_ctx(&lease->c, &ctx->flc_lease); 1852 /* 1853 * The check in break_lease() is lockless. It's possible for another 1854 * open to race in after we did the earlier check for a conflicting 1855 * open but before the lease was inserted. Check again for a 1856 * conflicting open and cancel the lease if there is one. 1857 * 1858 * We also add a barrier here to ensure that the insertion of the lock 1859 * precedes these checks. 1860 */ 1861 smp_mb(); 1862 error = check_conflicting_open(filp, arg, lease->c.flc_flags); 1863 if (error) { 1864 locks_unlink_lock_ctx(&lease->c); 1865 goto out; 1866 } 1867 1868 out_setup: 1869 if (lease->fl_lmops->lm_setup) 1870 lease->fl_lmops->lm_setup(lease, priv); 1871 out: 1872 spin_unlock(&ctx->flc_lock); 1873 percpu_up_read(&file_rwsem); 1874 locks_dispose_list(&dispose); 1875 if (is_deleg) 1876 inode_unlock(inode); 1877 if (!error && !my_fl) 1878 *flp = NULL; 1879 return error; 1880 } 1881 1882 static int generic_delete_lease(struct file *filp, void *owner) 1883 { 1884 int error = -EAGAIN; 1885 struct file_lease *fl, *victim = NULL; 1886 struct inode *inode = file_inode(filp); 1887 struct file_lock_context *ctx; 1888 LIST_HEAD(dispose); 1889 1890 ctx = locks_inode_context(inode); 1891 if (!ctx) { 1892 trace_generic_delete_lease(inode, NULL); 1893 return error; 1894 } 1895 1896 percpu_down_read(&file_rwsem); 1897 spin_lock(&ctx->flc_lock); 1898 list_for_each_entry(fl, &ctx->flc_lease, c.flc_list) { 1899 if (fl->c.flc_file == filp && 1900 fl->c.flc_owner == owner) { 1901 victim = fl; 1902 break; 1903 } 1904 } 1905 trace_generic_delete_lease(inode, victim); 1906 if (victim) 1907 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1908 spin_unlock(&ctx->flc_lock); 1909 percpu_up_read(&file_rwsem); 1910 locks_dispose_list(&dispose); 1911 return error; 1912 } 1913 1914 /** 1915 * generic_setlease - sets a lease on an open file 1916 * @filp: file pointer 1917 * @arg: type of lease to obtain 1918 * @flp: input - file_lock to use, output - file_lock inserted 1919 * @priv: private data for lm_setup (may be NULL if lm_setup 1920 * doesn't require it) 1921 * 1922 * The (input) flp->fl_lmops->lm_break function is required 1923 * by break_lease(). 1924 */ 1925 int generic_setlease(struct file *filp, int arg, struct file_lease **flp, 1926 void **priv) 1927 { 1928 switch (arg) { 1929 case F_UNLCK: 1930 return generic_delete_lease(filp, *priv); 1931 case F_RDLCK: 1932 case F_WRLCK: 1933 if (!(*flp)->fl_lmops->lm_break) { 1934 WARN_ON_ONCE(1); 1935 return -ENOLCK; 1936 } 1937 1938 return generic_add_lease(filp, arg, flp, priv); 1939 default: 1940 return -EINVAL; 1941 } 1942 } 1943 EXPORT_SYMBOL(generic_setlease); 1944 1945 /* 1946 * Kernel subsystems can register to be notified on any attempt to set 1947 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd 1948 * to close files that it may have cached when there is an attempt to set a 1949 * conflicting lease. 1950 */ 1951 static struct srcu_notifier_head lease_notifier_chain; 1952 1953 static inline void 1954 lease_notifier_chain_init(void) 1955 { 1956 srcu_init_notifier_head(&lease_notifier_chain); 1957 } 1958 1959 static inline void 1960 setlease_notifier(int arg, struct file_lease *lease) 1961 { 1962 if (arg != F_UNLCK) 1963 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); 1964 } 1965 1966 int lease_register_notifier(struct notifier_block *nb) 1967 { 1968 return srcu_notifier_chain_register(&lease_notifier_chain, nb); 1969 } 1970 EXPORT_SYMBOL_GPL(lease_register_notifier); 1971 1972 void lease_unregister_notifier(struct notifier_block *nb) 1973 { 1974 srcu_notifier_chain_unregister(&lease_notifier_chain, nb); 1975 } 1976 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1977 1978 1979 int 1980 kernel_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv) 1981 { 1982 if (lease) 1983 setlease_notifier(arg, *lease); 1984 if (filp->f_op->setlease) 1985 return filp->f_op->setlease(filp, arg, lease, priv); 1986 else 1987 return generic_setlease(filp, arg, lease, priv); 1988 } 1989 EXPORT_SYMBOL_GPL(kernel_setlease); 1990 1991 /** 1992 * vfs_setlease - sets a lease on an open file 1993 * @filp: file pointer 1994 * @arg: type of lease to obtain 1995 * @lease: file_lock to use when adding a lease 1996 * @priv: private info for lm_setup when adding a lease (may be 1997 * NULL if lm_setup doesn't require it) 1998 * 1999 * Call this to establish a lease on the file. The "lease" argument is not 2000 * used for F_UNLCK requests and may be NULL. For commands that set or alter 2001 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 2002 * set; if not, this function will return -ENOLCK (and generate a scary-looking 2003 * stack trace). 2004 * 2005 * The "priv" pointer is passed directly to the lm_setup function as-is. It 2006 * may be NULL if the lm_setup operation doesn't require it. 2007 */ 2008 int 2009 vfs_setlease(struct file *filp, int arg, struct file_lease **lease, void **priv) 2010 { 2011 struct inode *inode = file_inode(filp); 2012 vfsuid_t vfsuid = i_uid_into_vfsuid(file_mnt_idmap(filp), inode); 2013 int error; 2014 2015 if ((!vfsuid_eq_kuid(vfsuid, current_fsuid())) && !capable(CAP_LEASE)) 2016 return -EACCES; 2017 if (!S_ISREG(inode->i_mode)) 2018 return -EINVAL; 2019 error = security_file_lock(filp, arg); 2020 if (error) 2021 return error; 2022 return kernel_setlease(filp, arg, lease, priv); 2023 } 2024 EXPORT_SYMBOL_GPL(vfs_setlease); 2025 2026 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, int arg) 2027 { 2028 struct file_lease *fl; 2029 struct fasync_struct *new; 2030 int error; 2031 2032 fl = lease_alloc(filp, arg); 2033 if (IS_ERR(fl)) 2034 return PTR_ERR(fl); 2035 2036 new = fasync_alloc(); 2037 if (!new) { 2038 locks_free_lease(fl); 2039 return -ENOMEM; 2040 } 2041 new->fa_fd = fd; 2042 2043 error = vfs_setlease(filp, arg, &fl, (void **)&new); 2044 if (fl) 2045 locks_free_lease(fl); 2046 if (new) 2047 fasync_free(new); 2048 return error; 2049 } 2050 2051 /** 2052 * fcntl_setlease - sets a lease on an open file 2053 * @fd: open file descriptor 2054 * @filp: file pointer 2055 * @arg: type of lease to obtain 2056 * 2057 * Call this fcntl to establish a lease on the file. 2058 * Note that you also need to call %F_SETSIG to 2059 * receive a signal when the lease is broken. 2060 */ 2061 int fcntl_setlease(unsigned int fd, struct file *filp, int arg) 2062 { 2063 if (arg == F_UNLCK) 2064 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2065 return do_fcntl_add_lease(fd, filp, arg); 2066 } 2067 2068 /** 2069 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 2070 * @inode: inode of the file to apply to 2071 * @fl: The lock to be applied 2072 * 2073 * Apply a FLOCK style lock request to an inode. 2074 */ 2075 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2076 { 2077 int error; 2078 might_sleep(); 2079 for (;;) { 2080 error = flock_lock_inode(inode, fl); 2081 if (error != FILE_LOCK_DEFERRED) 2082 break; 2083 error = wait_event_interruptible(fl->c.flc_wait, 2084 list_empty(&fl->c.flc_blocked_member)); 2085 if (error) 2086 break; 2087 } 2088 locks_delete_block(fl); 2089 return error; 2090 } 2091 2092 /** 2093 * locks_lock_inode_wait - Apply a lock to an inode 2094 * @inode: inode of the file to apply to 2095 * @fl: The lock to be applied 2096 * 2097 * Apply a POSIX or FLOCK style lock request to an inode. 2098 */ 2099 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2100 { 2101 int res = 0; 2102 switch (fl->c.flc_flags & (FL_POSIX|FL_FLOCK)) { 2103 case FL_POSIX: 2104 res = posix_lock_inode_wait(inode, fl); 2105 break; 2106 case FL_FLOCK: 2107 res = flock_lock_inode_wait(inode, fl); 2108 break; 2109 default: 2110 BUG(); 2111 } 2112 return res; 2113 } 2114 EXPORT_SYMBOL(locks_lock_inode_wait); 2115 2116 /** 2117 * sys_flock: - flock() system call. 2118 * @fd: the file descriptor to lock. 2119 * @cmd: the type of lock to apply. 2120 * 2121 * Apply a %FL_FLOCK style lock to an open file descriptor. 2122 * The @cmd can be one of: 2123 * 2124 * - %LOCK_SH -- a shared lock. 2125 * - %LOCK_EX -- an exclusive lock. 2126 * - %LOCK_UN -- remove an existing lock. 2127 * - %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED) 2128 * 2129 * %LOCK_MAND support has been removed from the kernel. 2130 */ 2131 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2132 { 2133 int can_sleep, error, type; 2134 struct file_lock fl; 2135 struct fd f; 2136 2137 /* 2138 * LOCK_MAND locks were broken for a long time in that they never 2139 * conflicted with one another and didn't prevent any sort of open, 2140 * read or write activity. 2141 * 2142 * Just ignore these requests now, to preserve legacy behavior, but 2143 * throw a warning to let people know that they don't actually work. 2144 */ 2145 if (cmd & LOCK_MAND) { 2146 pr_warn_once("%s(%d): Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n", current->comm, current->pid); 2147 return 0; 2148 } 2149 2150 type = flock_translate_cmd(cmd & ~LOCK_NB); 2151 if (type < 0) 2152 return type; 2153 2154 error = -EBADF; 2155 f = fdget(fd); 2156 if (!f.file) 2157 return error; 2158 2159 if (type != F_UNLCK && !(f.file->f_mode & (FMODE_READ | FMODE_WRITE))) 2160 goto out_putf; 2161 2162 flock_make_lock(f.file, &fl, type); 2163 2164 error = security_file_lock(f.file, fl.c.flc_type); 2165 if (error) 2166 goto out_putf; 2167 2168 can_sleep = !(cmd & LOCK_NB); 2169 if (can_sleep) 2170 fl.c.flc_flags |= FL_SLEEP; 2171 2172 if (f.file->f_op->flock) 2173 error = f.file->f_op->flock(f.file, 2174 (can_sleep) ? F_SETLKW : F_SETLK, 2175 &fl); 2176 else 2177 error = locks_lock_file_wait(f.file, &fl); 2178 2179 locks_release_private(&fl); 2180 out_putf: 2181 fdput(f); 2182 2183 return error; 2184 } 2185 2186 /** 2187 * vfs_test_lock - test file byte range lock 2188 * @filp: The file to test lock for 2189 * @fl: The lock to test; also used to hold result 2190 * 2191 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2192 * setting conf->fl_type to something other than F_UNLCK. 2193 */ 2194 int vfs_test_lock(struct file *filp, struct file_lock *fl) 2195 { 2196 WARN_ON_ONCE(filp != fl->c.flc_file); 2197 if (filp->f_op->lock) 2198 return filp->f_op->lock(filp, F_GETLK, fl); 2199 posix_test_lock(filp, fl); 2200 return 0; 2201 } 2202 EXPORT_SYMBOL_GPL(vfs_test_lock); 2203 2204 /** 2205 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2206 * @fl: The file_lock who's fl_pid should be translated 2207 * @ns: The namespace into which the pid should be translated 2208 * 2209 * Used to translate a fl_pid into a namespace virtual pid number 2210 */ 2211 static pid_t locks_translate_pid(struct file_lock_core *fl, struct pid_namespace *ns) 2212 { 2213 pid_t vnr; 2214 struct pid *pid; 2215 2216 if (fl->flc_flags & FL_OFDLCK) 2217 return -1; 2218 2219 /* Remote locks report a negative pid value */ 2220 if (fl->flc_pid <= 0) 2221 return fl->flc_pid; 2222 2223 /* 2224 * If the flock owner process is dead and its pid has been already 2225 * freed, the translation below won't work, but we still want to show 2226 * flock owner pid number in init pidns. 2227 */ 2228 if (ns == &init_pid_ns) 2229 return (pid_t) fl->flc_pid; 2230 2231 rcu_read_lock(); 2232 pid = find_pid_ns(fl->flc_pid, &init_pid_ns); 2233 vnr = pid_nr_ns(pid, ns); 2234 rcu_read_unlock(); 2235 return vnr; 2236 } 2237 2238 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2239 { 2240 flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current)); 2241 #if BITS_PER_LONG == 32 2242 /* 2243 * Make sure we can represent the posix lock via 2244 * legacy 32bit flock. 2245 */ 2246 if (fl->fl_start > OFFT_OFFSET_MAX) 2247 return -EOVERFLOW; 2248 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2249 return -EOVERFLOW; 2250 #endif 2251 flock->l_start = fl->fl_start; 2252 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2253 fl->fl_end - fl->fl_start + 1; 2254 flock->l_whence = 0; 2255 flock->l_type = fl->c.flc_type; 2256 return 0; 2257 } 2258 2259 #if BITS_PER_LONG == 32 2260 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2261 { 2262 flock->l_pid = locks_translate_pid(&fl->c, task_active_pid_ns(current)); 2263 flock->l_start = fl->fl_start; 2264 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2265 fl->fl_end - fl->fl_start + 1; 2266 flock->l_whence = 0; 2267 flock->l_type = fl->c.flc_type; 2268 } 2269 #endif 2270 2271 /* Report the first existing lock that would conflict with l. 2272 * This implements the F_GETLK command of fcntl(). 2273 */ 2274 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2275 { 2276 struct file_lock *fl; 2277 int error; 2278 2279 fl = locks_alloc_lock(); 2280 if (fl == NULL) 2281 return -ENOMEM; 2282 error = -EINVAL; 2283 if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK 2284 && flock->l_type != F_WRLCK) 2285 goto out; 2286 2287 error = flock_to_posix_lock(filp, fl, flock); 2288 if (error) 2289 goto out; 2290 2291 if (cmd == F_OFD_GETLK) { 2292 error = -EINVAL; 2293 if (flock->l_pid != 0) 2294 goto out; 2295 2296 fl->c.flc_flags |= FL_OFDLCK; 2297 fl->c.flc_owner = filp; 2298 } 2299 2300 error = vfs_test_lock(filp, fl); 2301 if (error) 2302 goto out; 2303 2304 flock->l_type = fl->c.flc_type; 2305 if (fl->c.flc_type != F_UNLCK) { 2306 error = posix_lock_to_flock(flock, fl); 2307 if (error) 2308 goto out; 2309 } 2310 out: 2311 locks_free_lock(fl); 2312 return error; 2313 } 2314 2315 /** 2316 * vfs_lock_file - file byte range lock 2317 * @filp: The file to apply the lock to 2318 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2319 * @fl: The lock to be applied 2320 * @conf: Place to return a copy of the conflicting lock, if found. 2321 * 2322 * A caller that doesn't care about the conflicting lock may pass NULL 2323 * as the final argument. 2324 * 2325 * If the filesystem defines a private ->lock() method, then @conf will 2326 * be left unchanged; so a caller that cares should initialize it to 2327 * some acceptable default. 2328 * 2329 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2330 * locks, the ->lock() interface may return asynchronously, before the lock has 2331 * been granted or denied by the underlying filesystem, if (and only if) 2332 * lm_grant is set. Additionally EXPORT_OP_ASYNC_LOCK in export_operations 2333 * flags need to be set. 2334 * 2335 * Callers expecting ->lock() to return asynchronously will only use F_SETLK, 2336 * not F_SETLKW; they will set FL_SLEEP if (and only if) the request is for a 2337 * blocking lock. When ->lock() does return asynchronously, it must return 2338 * FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock request completes. 2339 * If the request is for non-blocking lock the file system should return 2340 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2341 * with the result. If the request timed out the callback routine will return a 2342 * nonzero return code and the file system should release the lock. The file 2343 * system is also responsible to keep a corresponding posix lock when it 2344 * grants a lock so the VFS can find out which locks are locally held and do 2345 * the correct lock cleanup when required. 2346 * The underlying filesystem must not drop the kernel lock or call 2347 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2348 * return code. 2349 */ 2350 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2351 { 2352 WARN_ON_ONCE(filp != fl->c.flc_file); 2353 if (filp->f_op->lock) 2354 return filp->f_op->lock(filp, cmd, fl); 2355 else 2356 return posix_lock_file(filp, fl, conf); 2357 } 2358 EXPORT_SYMBOL_GPL(vfs_lock_file); 2359 2360 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2361 struct file_lock *fl) 2362 { 2363 int error; 2364 2365 error = security_file_lock(filp, fl->c.flc_type); 2366 if (error) 2367 return error; 2368 2369 for (;;) { 2370 error = vfs_lock_file(filp, cmd, fl, NULL); 2371 if (error != FILE_LOCK_DEFERRED) 2372 break; 2373 error = wait_event_interruptible(fl->c.flc_wait, 2374 list_empty(&fl->c.flc_blocked_member)); 2375 if (error) 2376 break; 2377 } 2378 locks_delete_block(fl); 2379 2380 return error; 2381 } 2382 2383 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2384 static int 2385 check_fmode_for_setlk(struct file_lock *fl) 2386 { 2387 switch (fl->c.flc_type) { 2388 case F_RDLCK: 2389 if (!(fl->c.flc_file->f_mode & FMODE_READ)) 2390 return -EBADF; 2391 break; 2392 case F_WRLCK: 2393 if (!(fl->c.flc_file->f_mode & FMODE_WRITE)) 2394 return -EBADF; 2395 } 2396 return 0; 2397 } 2398 2399 /* Apply the lock described by l to an open file descriptor. 2400 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2401 */ 2402 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2403 struct flock *flock) 2404 { 2405 struct file_lock *file_lock = locks_alloc_lock(); 2406 struct inode *inode = file_inode(filp); 2407 struct file *f; 2408 int error; 2409 2410 if (file_lock == NULL) 2411 return -ENOLCK; 2412 2413 error = flock_to_posix_lock(filp, file_lock, flock); 2414 if (error) 2415 goto out; 2416 2417 error = check_fmode_for_setlk(file_lock); 2418 if (error) 2419 goto out; 2420 2421 /* 2422 * If the cmd is requesting file-private locks, then set the 2423 * FL_OFDLCK flag and override the owner. 2424 */ 2425 switch (cmd) { 2426 case F_OFD_SETLK: 2427 error = -EINVAL; 2428 if (flock->l_pid != 0) 2429 goto out; 2430 2431 cmd = F_SETLK; 2432 file_lock->c.flc_flags |= FL_OFDLCK; 2433 file_lock->c.flc_owner = filp; 2434 break; 2435 case F_OFD_SETLKW: 2436 error = -EINVAL; 2437 if (flock->l_pid != 0) 2438 goto out; 2439 2440 cmd = F_SETLKW; 2441 file_lock->c.flc_flags |= FL_OFDLCK; 2442 file_lock->c.flc_owner = filp; 2443 fallthrough; 2444 case F_SETLKW: 2445 file_lock->c.flc_flags |= FL_SLEEP; 2446 } 2447 2448 error = do_lock_file_wait(filp, cmd, file_lock); 2449 2450 /* 2451 * Detect close/fcntl races and recover by zapping all POSIX locks 2452 * associated with this file and our files_struct, just like on 2453 * filp_flush(). There is no need to do that when we're 2454 * unlocking though, or for OFD locks. 2455 */ 2456 if (!error && file_lock->c.flc_type != F_UNLCK && 2457 !(file_lock->c.flc_flags & FL_OFDLCK)) { 2458 struct files_struct *files = current->files; 2459 /* 2460 * We need that spin_lock here - it prevents reordering between 2461 * update of i_flctx->flc_posix and check for it done in 2462 * close(). rcu_read_lock() wouldn't do. 2463 */ 2464 spin_lock(&files->file_lock); 2465 f = files_lookup_fd_locked(files, fd); 2466 spin_unlock(&files->file_lock); 2467 if (f != filp) { 2468 locks_remove_posix(filp, files); 2469 error = -EBADF; 2470 } 2471 } 2472 out: 2473 trace_fcntl_setlk(inode, file_lock, error); 2474 locks_free_lock(file_lock); 2475 return error; 2476 } 2477 2478 #if BITS_PER_LONG == 32 2479 /* Report the first existing lock that would conflict with l. 2480 * This implements the F_GETLK command of fcntl(). 2481 */ 2482 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2483 { 2484 struct file_lock *fl; 2485 int error; 2486 2487 fl = locks_alloc_lock(); 2488 if (fl == NULL) 2489 return -ENOMEM; 2490 2491 error = -EINVAL; 2492 if (cmd != F_OFD_GETLK && flock->l_type != F_RDLCK 2493 && flock->l_type != F_WRLCK) 2494 goto out; 2495 2496 error = flock64_to_posix_lock(filp, fl, flock); 2497 if (error) 2498 goto out; 2499 2500 if (cmd == F_OFD_GETLK) { 2501 error = -EINVAL; 2502 if (flock->l_pid != 0) 2503 goto out; 2504 2505 fl->c.flc_flags |= FL_OFDLCK; 2506 fl->c.flc_owner = filp; 2507 } 2508 2509 error = vfs_test_lock(filp, fl); 2510 if (error) 2511 goto out; 2512 2513 flock->l_type = fl->c.flc_type; 2514 if (fl->c.flc_type != F_UNLCK) 2515 posix_lock_to_flock64(flock, fl); 2516 2517 out: 2518 locks_free_lock(fl); 2519 return error; 2520 } 2521 2522 /* Apply the lock described by l to an open file descriptor. 2523 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2524 */ 2525 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2526 struct flock64 *flock) 2527 { 2528 struct file_lock *file_lock = locks_alloc_lock(); 2529 struct file *f; 2530 int error; 2531 2532 if (file_lock == NULL) 2533 return -ENOLCK; 2534 2535 error = flock64_to_posix_lock(filp, file_lock, flock); 2536 if (error) 2537 goto out; 2538 2539 error = check_fmode_for_setlk(file_lock); 2540 if (error) 2541 goto out; 2542 2543 /* 2544 * If the cmd is requesting file-private locks, then set the 2545 * FL_OFDLCK flag and override the owner. 2546 */ 2547 switch (cmd) { 2548 case F_OFD_SETLK: 2549 error = -EINVAL; 2550 if (flock->l_pid != 0) 2551 goto out; 2552 2553 cmd = F_SETLK64; 2554 file_lock->c.flc_flags |= FL_OFDLCK; 2555 file_lock->c.flc_owner = filp; 2556 break; 2557 case F_OFD_SETLKW: 2558 error = -EINVAL; 2559 if (flock->l_pid != 0) 2560 goto out; 2561 2562 cmd = F_SETLKW64; 2563 file_lock->c.flc_flags |= FL_OFDLCK; 2564 file_lock->c.flc_owner = filp; 2565 fallthrough; 2566 case F_SETLKW64: 2567 file_lock->c.flc_flags |= FL_SLEEP; 2568 } 2569 2570 error = do_lock_file_wait(filp, cmd, file_lock); 2571 2572 /* 2573 * Detect close/fcntl races and recover by zapping all POSIX locks 2574 * associated with this file and our files_struct, just like on 2575 * filp_flush(). There is no need to do that when we're 2576 * unlocking though, or for OFD locks. 2577 */ 2578 if (!error && file_lock->c.flc_type != F_UNLCK && 2579 !(file_lock->c.flc_flags & FL_OFDLCK)) { 2580 struct files_struct *files = current->files; 2581 /* 2582 * We need that spin_lock here - it prevents reordering between 2583 * update of i_flctx->flc_posix and check for it done in 2584 * close(). rcu_read_lock() wouldn't do. 2585 */ 2586 spin_lock(&files->file_lock); 2587 f = files_lookup_fd_locked(files, fd); 2588 spin_unlock(&files->file_lock); 2589 if (f != filp) { 2590 locks_remove_posix(filp, files); 2591 error = -EBADF; 2592 } 2593 } 2594 out: 2595 locks_free_lock(file_lock); 2596 return error; 2597 } 2598 #endif /* BITS_PER_LONG == 32 */ 2599 2600 /* 2601 * This function is called when the file is being removed 2602 * from the task's fd array. POSIX locks belonging to this task 2603 * are deleted at this time. 2604 */ 2605 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2606 { 2607 int error; 2608 struct inode *inode = file_inode(filp); 2609 struct file_lock lock; 2610 struct file_lock_context *ctx; 2611 2612 /* 2613 * If there are no locks held on this file, we don't need to call 2614 * posix_lock_file(). Another process could be setting a lock on this 2615 * file at the same time, but we wouldn't remove that lock anyway. 2616 */ 2617 ctx = locks_inode_context(inode); 2618 if (!ctx || list_empty(&ctx->flc_posix)) 2619 return; 2620 2621 locks_init_lock(&lock); 2622 lock.c.flc_type = F_UNLCK; 2623 lock.c.flc_flags = FL_POSIX | FL_CLOSE; 2624 lock.fl_start = 0; 2625 lock.fl_end = OFFSET_MAX; 2626 lock.c.flc_owner = owner; 2627 lock.c.flc_pid = current->tgid; 2628 lock.c.flc_file = filp; 2629 lock.fl_ops = NULL; 2630 lock.fl_lmops = NULL; 2631 2632 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2633 2634 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2635 lock.fl_ops->fl_release_private(&lock); 2636 trace_locks_remove_posix(inode, &lock, error); 2637 } 2638 EXPORT_SYMBOL(locks_remove_posix); 2639 2640 /* The i_flctx must be valid when calling into here */ 2641 static void 2642 locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2643 { 2644 struct file_lock fl; 2645 struct inode *inode = file_inode(filp); 2646 2647 if (list_empty(&flctx->flc_flock)) 2648 return; 2649 2650 flock_make_lock(filp, &fl, F_UNLCK); 2651 fl.c.flc_flags |= FL_CLOSE; 2652 2653 if (filp->f_op->flock) 2654 filp->f_op->flock(filp, F_SETLKW, &fl); 2655 else 2656 flock_lock_inode(inode, &fl); 2657 2658 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2659 fl.fl_ops->fl_release_private(&fl); 2660 } 2661 2662 /* The i_flctx must be valid when calling into here */ 2663 static void 2664 locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2665 { 2666 struct file_lease *fl, *tmp; 2667 LIST_HEAD(dispose); 2668 2669 if (list_empty(&ctx->flc_lease)) 2670 return; 2671 2672 percpu_down_read(&file_rwsem); 2673 spin_lock(&ctx->flc_lock); 2674 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, c.flc_list) 2675 if (filp == fl->c.flc_file) 2676 lease_modify(fl, F_UNLCK, &dispose); 2677 spin_unlock(&ctx->flc_lock); 2678 percpu_up_read(&file_rwsem); 2679 2680 locks_dispose_list(&dispose); 2681 } 2682 2683 /* 2684 * This function is called on the last close of an open file. 2685 */ 2686 void locks_remove_file(struct file *filp) 2687 { 2688 struct file_lock_context *ctx; 2689 2690 ctx = locks_inode_context(file_inode(filp)); 2691 if (!ctx) 2692 return; 2693 2694 /* remove any OFD locks */ 2695 locks_remove_posix(filp, filp); 2696 2697 /* remove flock locks */ 2698 locks_remove_flock(filp, ctx); 2699 2700 /* remove any leases */ 2701 locks_remove_lease(filp, ctx); 2702 2703 spin_lock(&ctx->flc_lock); 2704 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2705 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2706 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2707 spin_unlock(&ctx->flc_lock); 2708 } 2709 2710 /** 2711 * vfs_cancel_lock - file byte range unblock lock 2712 * @filp: The file to apply the unblock to 2713 * @fl: The lock to be unblocked 2714 * 2715 * Used by lock managers to cancel blocked requests 2716 */ 2717 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2718 { 2719 WARN_ON_ONCE(filp != fl->c.flc_file); 2720 if (filp->f_op->lock) 2721 return filp->f_op->lock(filp, F_CANCELLK, fl); 2722 return 0; 2723 } 2724 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2725 2726 /** 2727 * vfs_inode_has_locks - are any file locks held on @inode? 2728 * @inode: inode to check for locks 2729 * 2730 * Return true if there are any FL_POSIX or FL_FLOCK locks currently 2731 * set on @inode. 2732 */ 2733 bool vfs_inode_has_locks(struct inode *inode) 2734 { 2735 struct file_lock_context *ctx; 2736 bool ret; 2737 2738 ctx = locks_inode_context(inode); 2739 if (!ctx) 2740 return false; 2741 2742 spin_lock(&ctx->flc_lock); 2743 ret = !list_empty(&ctx->flc_posix) || !list_empty(&ctx->flc_flock); 2744 spin_unlock(&ctx->flc_lock); 2745 return ret; 2746 } 2747 EXPORT_SYMBOL_GPL(vfs_inode_has_locks); 2748 2749 #ifdef CONFIG_PROC_FS 2750 #include <linux/proc_fs.h> 2751 #include <linux/seq_file.h> 2752 2753 struct locks_iterator { 2754 int li_cpu; 2755 loff_t li_pos; 2756 }; 2757 2758 static void lock_get_status(struct seq_file *f, struct file_lock_core *flc, 2759 loff_t id, char *pfx, int repeat) 2760 { 2761 struct inode *inode = NULL; 2762 unsigned int pid; 2763 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2764 int type = flc->flc_type; 2765 struct file_lock *fl = file_lock(flc); 2766 2767 pid = locks_translate_pid(flc, proc_pidns); 2768 2769 /* 2770 * If lock owner is dead (and pid is freed) or not visible in current 2771 * pidns, zero is shown as a pid value. Check lock info from 2772 * init_pid_ns to get saved lock pid value. 2773 */ 2774 if (flc->flc_file != NULL) 2775 inode = file_inode(flc->flc_file); 2776 2777 seq_printf(f, "%lld: ", id); 2778 2779 if (repeat) 2780 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx); 2781 2782 if (flc->flc_flags & FL_POSIX) { 2783 if (flc->flc_flags & FL_ACCESS) 2784 seq_puts(f, "ACCESS"); 2785 else if (flc->flc_flags & FL_OFDLCK) 2786 seq_puts(f, "OFDLCK"); 2787 else 2788 seq_puts(f, "POSIX "); 2789 2790 seq_printf(f, " %s ", 2791 (inode == NULL) ? "*NOINODE*" : "ADVISORY "); 2792 } else if (flc->flc_flags & FL_FLOCK) { 2793 seq_puts(f, "FLOCK ADVISORY "); 2794 } else if (flc->flc_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) { 2795 struct file_lease *lease = file_lease(flc); 2796 2797 type = target_leasetype(lease); 2798 2799 if (flc->flc_flags & FL_DELEG) 2800 seq_puts(f, "DELEG "); 2801 else 2802 seq_puts(f, "LEASE "); 2803 2804 if (lease_breaking(lease)) 2805 seq_puts(f, "BREAKING "); 2806 else if (flc->flc_file) 2807 seq_puts(f, "ACTIVE "); 2808 else 2809 seq_puts(f, "BREAKER "); 2810 } else { 2811 seq_puts(f, "UNKNOWN UNKNOWN "); 2812 } 2813 2814 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : 2815 (type == F_RDLCK) ? "READ" : "UNLCK"); 2816 if (inode) { 2817 /* userspace relies on this representation of dev_t */ 2818 seq_printf(f, "%d %02x:%02x:%lu ", pid, 2819 MAJOR(inode->i_sb->s_dev), 2820 MINOR(inode->i_sb->s_dev), inode->i_ino); 2821 } else { 2822 seq_printf(f, "%d <none>:0 ", pid); 2823 } 2824 if (flc->flc_flags & FL_POSIX) { 2825 if (fl->fl_end == OFFSET_MAX) 2826 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2827 else 2828 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2829 } else { 2830 seq_puts(f, "0 EOF\n"); 2831 } 2832 } 2833 2834 static struct file_lock_core *get_next_blocked_member(struct file_lock_core *node) 2835 { 2836 struct file_lock_core *tmp; 2837 2838 /* NULL node or root node */ 2839 if (node == NULL || node->flc_blocker == NULL) 2840 return NULL; 2841 2842 /* Next member in the linked list could be itself */ 2843 tmp = list_next_entry(node, flc_blocked_member); 2844 if (list_entry_is_head(tmp, &node->flc_blocker->flc_blocked_requests, 2845 flc_blocked_member) 2846 || tmp == node) { 2847 return NULL; 2848 } 2849 2850 return tmp; 2851 } 2852 2853 static int locks_show(struct seq_file *f, void *v) 2854 { 2855 struct locks_iterator *iter = f->private; 2856 struct file_lock_core *cur, *tmp; 2857 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2858 int level = 0; 2859 2860 cur = hlist_entry(v, struct file_lock_core, flc_link); 2861 2862 if (locks_translate_pid(cur, proc_pidns) == 0) 2863 return 0; 2864 2865 /* View this crossed linked list as a binary tree, the first member of flc_blocked_requests 2866 * is the left child of current node, the next silibing in flc_blocked_member is the 2867 * right child, we can alse get the parent of current node from flc_blocker, so this 2868 * question becomes traversal of a binary tree 2869 */ 2870 while (cur != NULL) { 2871 if (level) 2872 lock_get_status(f, cur, iter->li_pos, "-> ", level); 2873 else 2874 lock_get_status(f, cur, iter->li_pos, "", level); 2875 2876 if (!list_empty(&cur->flc_blocked_requests)) { 2877 /* Turn left */ 2878 cur = list_first_entry_or_null(&cur->flc_blocked_requests, 2879 struct file_lock_core, 2880 flc_blocked_member); 2881 level++; 2882 } else { 2883 /* Turn right */ 2884 tmp = get_next_blocked_member(cur); 2885 /* Fall back to parent node */ 2886 while (tmp == NULL && cur->flc_blocker != NULL) { 2887 cur = cur->flc_blocker; 2888 level--; 2889 tmp = get_next_blocked_member(cur); 2890 } 2891 cur = tmp; 2892 } 2893 } 2894 2895 return 0; 2896 } 2897 2898 static void __show_fd_locks(struct seq_file *f, 2899 struct list_head *head, int *id, 2900 struct file *filp, struct files_struct *files) 2901 { 2902 struct file_lock_core *fl; 2903 2904 list_for_each_entry(fl, head, flc_list) { 2905 2906 if (filp != fl->flc_file) 2907 continue; 2908 if (fl->flc_owner != files && fl->flc_owner != filp) 2909 continue; 2910 2911 (*id)++; 2912 seq_puts(f, "lock:\t"); 2913 lock_get_status(f, fl, *id, "", 0); 2914 } 2915 } 2916 2917 void show_fd_locks(struct seq_file *f, 2918 struct file *filp, struct files_struct *files) 2919 { 2920 struct inode *inode = file_inode(filp); 2921 struct file_lock_context *ctx; 2922 int id = 0; 2923 2924 ctx = locks_inode_context(inode); 2925 if (!ctx) 2926 return; 2927 2928 spin_lock(&ctx->flc_lock); 2929 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 2930 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 2931 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 2932 spin_unlock(&ctx->flc_lock); 2933 } 2934 2935 static void *locks_start(struct seq_file *f, loff_t *pos) 2936 __acquires(&blocked_lock_lock) 2937 { 2938 struct locks_iterator *iter = f->private; 2939 2940 iter->li_pos = *pos + 1; 2941 percpu_down_write(&file_rwsem); 2942 spin_lock(&blocked_lock_lock); 2943 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 2944 } 2945 2946 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2947 { 2948 struct locks_iterator *iter = f->private; 2949 2950 ++iter->li_pos; 2951 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 2952 } 2953 2954 static void locks_stop(struct seq_file *f, void *v) 2955 __releases(&blocked_lock_lock) 2956 { 2957 spin_unlock(&blocked_lock_lock); 2958 percpu_up_write(&file_rwsem); 2959 } 2960 2961 static const struct seq_operations locks_seq_operations = { 2962 .start = locks_start, 2963 .next = locks_next, 2964 .stop = locks_stop, 2965 .show = locks_show, 2966 }; 2967 2968 static int __init proc_locks_init(void) 2969 { 2970 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 2971 sizeof(struct locks_iterator), NULL); 2972 return 0; 2973 } 2974 fs_initcall(proc_locks_init); 2975 #endif 2976 2977 static int __init filelock_init(void) 2978 { 2979 int i; 2980 2981 flctx_cache = kmem_cache_create("file_lock_ctx", 2982 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 2983 2984 filelock_cache = kmem_cache_create("file_lock_cache", 2985 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 2986 2987 filelease_cache = kmem_cache_create("file_lease_cache", 2988 sizeof(struct file_lease), 0, SLAB_PANIC, NULL); 2989 2990 for_each_possible_cpu(i) { 2991 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 2992 2993 spin_lock_init(&fll->lock); 2994 INIT_HLIST_HEAD(&fll->hlist); 2995 } 2996 2997 lease_notifier_chain_init(); 2998 return 0; 2999 } 3000 core_initcall(filelock_init); 3001
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.