1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/namespace.c 4 * 5 * (C) Copyright Al Viro 2000, 2001 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11 #include <linux/syscalls.h> 12 #include <linux/export.h> 13 #include <linux/capability.h> 14 #include <linux/mnt_namespace.h> 15 #include <linux/user_namespace.h> 16 #include <linux/namei.h> 17 #include <linux/security.h> 18 #include <linux/cred.h> 19 #include <linux/idr.h> 20 #include <linux/init.h> /* init_rootfs */ 21 #include <linux/fs_struct.h> /* get_fs_root et.al. */ 22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 23 #include <linux/file.h> 24 #include <linux/uaccess.h> 25 #include <linux/proc_ns.h> 26 #include <linux/magic.h> 27 #include <linux/memblock.h> 28 #include <linux/proc_fs.h> 29 #include <linux/task_work.h> 30 #include <linux/sched/task.h> 31 #include <uapi/linux/mount.h> 32 #include <linux/fs_context.h> 33 #include <linux/shmem_fs.h> 34 #include <linux/mnt_idmapping.h> 35 #include <linux/nospec.h> 36 37 #include "pnode.h" 38 #include "internal.h" 39 40 /* Maximum number of mounts in a mount namespace */ 41 static unsigned int sysctl_mount_max __read_mostly = 100000; 42 43 static unsigned int m_hash_mask __ro_after_init; 44 static unsigned int m_hash_shift __ro_after_init; 45 static unsigned int mp_hash_mask __ro_after_init; 46 static unsigned int mp_hash_shift __ro_after_init; 47 48 static __initdata unsigned long mhash_entries; 49 static int __init set_mhash_entries(char *str) 50 { 51 if (!str) 52 return 0; 53 mhash_entries = simple_strtoul(str, &str, 0); 54 return 1; 55 } 56 __setup("mhash_entries=", set_mhash_entries); 57 58 static __initdata unsigned long mphash_entries; 59 static int __init set_mphash_entries(char *str) 60 { 61 if (!str) 62 return 0; 63 mphash_entries = simple_strtoul(str, &str, 0); 64 return 1; 65 } 66 __setup("mphash_entries=", set_mphash_entries); 67 68 static u64 event; 69 static DEFINE_IDA(mnt_id_ida); 70 static DEFINE_IDA(mnt_group_ida); 71 72 /* Don't allow confusion with old 32bit mount ID */ 73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31) 74 static atomic64_t mnt_id_ctr = ATOMIC64_INIT(MNT_UNIQUE_ID_OFFSET); 75 76 static struct hlist_head *mount_hashtable __ro_after_init; 77 static struct hlist_head *mountpoint_hashtable __ro_after_init; 78 static struct kmem_cache *mnt_cache __ro_after_init; 79 static DECLARE_RWSEM(namespace_sem); 80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */ 82 static DEFINE_RWLOCK(mnt_ns_tree_lock); 83 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */ 84 85 struct mount_kattr { 86 unsigned int attr_set; 87 unsigned int attr_clr; 88 unsigned int propagation; 89 unsigned int lookup_flags; 90 bool recurse; 91 struct user_namespace *mnt_userns; 92 struct mnt_idmap *mnt_idmap; 93 }; 94 95 /* /sys/fs */ 96 struct kobject *fs_kobj __ro_after_init; 97 EXPORT_SYMBOL_GPL(fs_kobj); 98 99 /* 100 * vfsmount lock may be taken for read to prevent changes to the 101 * vfsmount hash, ie. during mountpoint lookups or walking back 102 * up the tree. 103 * 104 * It should be taken for write in all cases where the vfsmount 105 * tree or hash is modified or when a vfsmount structure is modified. 106 */ 107 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 108 109 static int mnt_ns_cmp(u64 seq, const struct mnt_namespace *ns) 110 { 111 u64 seq_b = ns->seq; 112 113 if (seq < seq_b) 114 return -1; 115 if (seq > seq_b) 116 return 1; 117 return 0; 118 } 119 120 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node) 121 { 122 if (!node) 123 return NULL; 124 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node); 125 } 126 127 static bool mnt_ns_less(struct rb_node *a, const struct rb_node *b) 128 { 129 struct mnt_namespace *ns_a = node_to_mnt_ns(a); 130 struct mnt_namespace *ns_b = node_to_mnt_ns(b); 131 u64 seq_a = ns_a->seq; 132 133 return mnt_ns_cmp(seq_a, ns_b) < 0; 134 } 135 136 static void mnt_ns_tree_add(struct mnt_namespace *ns) 137 { 138 guard(write_lock)(&mnt_ns_tree_lock); 139 rb_add(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_less); 140 } 141 142 static void mnt_ns_release(struct mnt_namespace *ns) 143 { 144 lockdep_assert_not_held(&mnt_ns_tree_lock); 145 146 /* keep alive for {list,stat}mount() */ 147 if (refcount_dec_and_test(&ns->passive)) { 148 put_user_ns(ns->user_ns); 149 kfree(ns); 150 } 151 } 152 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T)) 153 154 static void mnt_ns_tree_remove(struct mnt_namespace *ns) 155 { 156 /* remove from global mount namespace list */ 157 if (!is_anon_ns(ns)) { 158 guard(write_lock)(&mnt_ns_tree_lock); 159 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree); 160 } 161 162 mnt_ns_release(ns); 163 } 164 165 /* 166 * Returns the mount namespace which either has the specified id, or has the 167 * next smallest id afer the specified one. 168 */ 169 static struct mnt_namespace *mnt_ns_find_id_at(u64 mnt_ns_id) 170 { 171 struct rb_node *node = mnt_ns_tree.rb_node; 172 struct mnt_namespace *ret = NULL; 173 174 lockdep_assert_held(&mnt_ns_tree_lock); 175 176 while (node) { 177 struct mnt_namespace *n = node_to_mnt_ns(node); 178 179 if (mnt_ns_id <= n->seq) { 180 ret = node_to_mnt_ns(node); 181 if (mnt_ns_id == n->seq) 182 break; 183 node = node->rb_left; 184 } else { 185 node = node->rb_right; 186 } 187 } 188 return ret; 189 } 190 191 /* 192 * Lookup a mount namespace by id and take a passive reference count. Taking a 193 * passive reference means the mount namespace can be emptied if e.g., the last 194 * task holding an active reference exits. To access the mounts of the 195 * namespace the @namespace_sem must first be acquired. If the namespace has 196 * already shut down before acquiring @namespace_sem, {list,stat}mount() will 197 * see that the mount rbtree of the namespace is empty. 198 */ 199 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id) 200 { 201 struct mnt_namespace *ns; 202 203 guard(read_lock)(&mnt_ns_tree_lock); 204 ns = mnt_ns_find_id_at(mnt_ns_id); 205 if (!ns || ns->seq != mnt_ns_id) 206 return NULL; 207 208 refcount_inc(&ns->passive); 209 return ns; 210 } 211 212 static inline void lock_mount_hash(void) 213 { 214 write_seqlock(&mount_lock); 215 } 216 217 static inline void unlock_mount_hash(void) 218 { 219 write_sequnlock(&mount_lock); 220 } 221 222 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 223 { 224 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 225 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 226 tmp = tmp + (tmp >> m_hash_shift); 227 return &mount_hashtable[tmp & m_hash_mask]; 228 } 229 230 static inline struct hlist_head *mp_hash(struct dentry *dentry) 231 { 232 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 233 tmp = tmp + (tmp >> mp_hash_shift); 234 return &mountpoint_hashtable[tmp & mp_hash_mask]; 235 } 236 237 static int mnt_alloc_id(struct mount *mnt) 238 { 239 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL); 240 241 if (res < 0) 242 return res; 243 mnt->mnt_id = res; 244 mnt->mnt_id_unique = atomic64_inc_return(&mnt_id_ctr); 245 return 0; 246 } 247 248 static void mnt_free_id(struct mount *mnt) 249 { 250 ida_free(&mnt_id_ida, mnt->mnt_id); 251 } 252 253 /* 254 * Allocate a new peer group ID 255 */ 256 static int mnt_alloc_group_id(struct mount *mnt) 257 { 258 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL); 259 260 if (res < 0) 261 return res; 262 mnt->mnt_group_id = res; 263 return 0; 264 } 265 266 /* 267 * Release a peer group ID 268 */ 269 void mnt_release_group_id(struct mount *mnt) 270 { 271 ida_free(&mnt_group_ida, mnt->mnt_group_id); 272 mnt->mnt_group_id = 0; 273 } 274 275 /* 276 * vfsmount lock must be held for read 277 */ 278 static inline void mnt_add_count(struct mount *mnt, int n) 279 { 280 #ifdef CONFIG_SMP 281 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 282 #else 283 preempt_disable(); 284 mnt->mnt_count += n; 285 preempt_enable(); 286 #endif 287 } 288 289 /* 290 * vfsmount lock must be held for write 291 */ 292 int mnt_get_count(struct mount *mnt) 293 { 294 #ifdef CONFIG_SMP 295 int count = 0; 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 300 } 301 302 return count; 303 #else 304 return mnt->mnt_count; 305 #endif 306 } 307 308 static struct mount *alloc_vfsmnt(const char *name) 309 { 310 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 311 if (mnt) { 312 int err; 313 314 err = mnt_alloc_id(mnt); 315 if (err) 316 goto out_free_cache; 317 318 if (name) { 319 mnt->mnt_devname = kstrdup_const(name, 320 GFP_KERNEL_ACCOUNT); 321 if (!mnt->mnt_devname) 322 goto out_free_id; 323 } 324 325 #ifdef CONFIG_SMP 326 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 327 if (!mnt->mnt_pcp) 328 goto out_free_devname; 329 330 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 331 #else 332 mnt->mnt_count = 1; 333 mnt->mnt_writers = 0; 334 #endif 335 336 INIT_HLIST_NODE(&mnt->mnt_hash); 337 INIT_LIST_HEAD(&mnt->mnt_child); 338 INIT_LIST_HEAD(&mnt->mnt_mounts); 339 INIT_LIST_HEAD(&mnt->mnt_list); 340 INIT_LIST_HEAD(&mnt->mnt_expire); 341 INIT_LIST_HEAD(&mnt->mnt_share); 342 INIT_LIST_HEAD(&mnt->mnt_slave_list); 343 INIT_LIST_HEAD(&mnt->mnt_slave); 344 INIT_HLIST_NODE(&mnt->mnt_mp_list); 345 INIT_LIST_HEAD(&mnt->mnt_umounting); 346 INIT_HLIST_HEAD(&mnt->mnt_stuck_children); 347 mnt->mnt.mnt_idmap = &nop_mnt_idmap; 348 } 349 return mnt; 350 351 #ifdef CONFIG_SMP 352 out_free_devname: 353 kfree_const(mnt->mnt_devname); 354 #endif 355 out_free_id: 356 mnt_free_id(mnt); 357 out_free_cache: 358 kmem_cache_free(mnt_cache, mnt); 359 return NULL; 360 } 361 362 /* 363 * Most r/o checks on a fs are for operations that take 364 * discrete amounts of time, like a write() or unlink(). 365 * We must keep track of when those operations start 366 * (for permission checks) and when they end, so that 367 * we can determine when writes are able to occur to 368 * a filesystem. 369 */ 370 /* 371 * __mnt_is_readonly: check whether a mount is read-only 372 * @mnt: the mount to check for its write status 373 * 374 * This shouldn't be used directly ouside of the VFS. 375 * It does not guarantee that the filesystem will stay 376 * r/w, just that it is right *now*. This can not and 377 * should not be used in place of IS_RDONLY(inode). 378 * mnt_want/drop_write() will _keep_ the filesystem 379 * r/w. 380 */ 381 bool __mnt_is_readonly(struct vfsmount *mnt) 382 { 383 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb); 384 } 385 EXPORT_SYMBOL_GPL(__mnt_is_readonly); 386 387 static inline void mnt_inc_writers(struct mount *mnt) 388 { 389 #ifdef CONFIG_SMP 390 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 391 #else 392 mnt->mnt_writers++; 393 #endif 394 } 395 396 static inline void mnt_dec_writers(struct mount *mnt) 397 { 398 #ifdef CONFIG_SMP 399 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 400 #else 401 mnt->mnt_writers--; 402 #endif 403 } 404 405 static unsigned int mnt_get_writers(struct mount *mnt) 406 { 407 #ifdef CONFIG_SMP 408 unsigned int count = 0; 409 int cpu; 410 411 for_each_possible_cpu(cpu) { 412 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 413 } 414 415 return count; 416 #else 417 return mnt->mnt_writers; 418 #endif 419 } 420 421 static int mnt_is_readonly(struct vfsmount *mnt) 422 { 423 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount)) 424 return 1; 425 /* 426 * The barrier pairs with the barrier in sb_start_ro_state_change() 427 * making sure if we don't see s_readonly_remount set yet, we also will 428 * not see any superblock / mount flag changes done by remount. 429 * It also pairs with the barrier in sb_end_ro_state_change() 430 * assuring that if we see s_readonly_remount already cleared, we will 431 * see the values of superblock / mount flags updated by remount. 432 */ 433 smp_rmb(); 434 return __mnt_is_readonly(mnt); 435 } 436 437 /* 438 * Most r/o & frozen checks on a fs are for operations that take discrete 439 * amounts of time, like a write() or unlink(). We must keep track of when 440 * those operations start (for permission checks) and when they end, so that we 441 * can determine when writes are able to occur to a filesystem. 442 */ 443 /** 444 * mnt_get_write_access - get write access to a mount without freeze protection 445 * @m: the mount on which to take a write 446 * 447 * This tells the low-level filesystem that a write is about to be performed to 448 * it, and makes sure that writes are allowed (mnt it read-write) before 449 * returning success. This operation does not protect against filesystem being 450 * frozen. When the write operation is finished, mnt_put_write_access() must be 451 * called. This is effectively a refcount. 452 */ 453 int mnt_get_write_access(struct vfsmount *m) 454 { 455 struct mount *mnt = real_mount(m); 456 int ret = 0; 457 458 preempt_disable(); 459 mnt_inc_writers(mnt); 460 /* 461 * The store to mnt_inc_writers must be visible before we pass 462 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 463 * incremented count after it has set MNT_WRITE_HOLD. 464 */ 465 smp_mb(); 466 might_lock(&mount_lock.lock); 467 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) { 468 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 469 cpu_relax(); 470 } else { 471 /* 472 * This prevents priority inversion, if the task 473 * setting MNT_WRITE_HOLD got preempted on a remote 474 * CPU, and it prevents life lock if the task setting 475 * MNT_WRITE_HOLD has a lower priority and is bound to 476 * the same CPU as the task that is spinning here. 477 */ 478 preempt_enable(); 479 lock_mount_hash(); 480 unlock_mount_hash(); 481 preempt_disable(); 482 } 483 } 484 /* 485 * The barrier pairs with the barrier sb_start_ro_state_change() making 486 * sure that if we see MNT_WRITE_HOLD cleared, we will also see 487 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in 488 * mnt_is_readonly() and bail in case we are racing with remount 489 * read-only. 490 */ 491 smp_rmb(); 492 if (mnt_is_readonly(m)) { 493 mnt_dec_writers(mnt); 494 ret = -EROFS; 495 } 496 preempt_enable(); 497 498 return ret; 499 } 500 EXPORT_SYMBOL_GPL(mnt_get_write_access); 501 502 /** 503 * mnt_want_write - get write access to a mount 504 * @m: the mount on which to take a write 505 * 506 * This tells the low-level filesystem that a write is about to be performed to 507 * it, and makes sure that writes are allowed (mount is read-write, filesystem 508 * is not frozen) before returning success. When the write operation is 509 * finished, mnt_drop_write() must be called. This is effectively a refcount. 510 */ 511 int mnt_want_write(struct vfsmount *m) 512 { 513 int ret; 514 515 sb_start_write(m->mnt_sb); 516 ret = mnt_get_write_access(m); 517 if (ret) 518 sb_end_write(m->mnt_sb); 519 return ret; 520 } 521 EXPORT_SYMBOL_GPL(mnt_want_write); 522 523 /** 524 * mnt_get_write_access_file - get write access to a file's mount 525 * @file: the file who's mount on which to take a write 526 * 527 * This is like mnt_get_write_access, but if @file is already open for write it 528 * skips incrementing mnt_writers (since the open file already has a reference) 529 * and instead only does the check for emergency r/o remounts. This must be 530 * paired with mnt_put_write_access_file. 531 */ 532 int mnt_get_write_access_file(struct file *file) 533 { 534 if (file->f_mode & FMODE_WRITER) { 535 /* 536 * Superblock may have become readonly while there are still 537 * writable fd's, e.g. due to a fs error with errors=remount-ro 538 */ 539 if (__mnt_is_readonly(file->f_path.mnt)) 540 return -EROFS; 541 return 0; 542 } 543 return mnt_get_write_access(file->f_path.mnt); 544 } 545 546 /** 547 * mnt_want_write_file - get write access to a file's mount 548 * @file: the file who's mount on which to take a write 549 * 550 * This is like mnt_want_write, but if the file is already open for writing it 551 * skips incrementing mnt_writers (since the open file already has a reference) 552 * and instead only does the freeze protection and the check for emergency r/o 553 * remounts. This must be paired with mnt_drop_write_file. 554 */ 555 int mnt_want_write_file(struct file *file) 556 { 557 int ret; 558 559 sb_start_write(file_inode(file)->i_sb); 560 ret = mnt_get_write_access_file(file); 561 if (ret) 562 sb_end_write(file_inode(file)->i_sb); 563 return ret; 564 } 565 EXPORT_SYMBOL_GPL(mnt_want_write_file); 566 567 /** 568 * mnt_put_write_access - give up write access to a mount 569 * @mnt: the mount on which to give up write access 570 * 571 * Tells the low-level filesystem that we are done 572 * performing writes to it. Must be matched with 573 * mnt_get_write_access() call above. 574 */ 575 void mnt_put_write_access(struct vfsmount *mnt) 576 { 577 preempt_disable(); 578 mnt_dec_writers(real_mount(mnt)); 579 preempt_enable(); 580 } 581 EXPORT_SYMBOL_GPL(mnt_put_write_access); 582 583 /** 584 * mnt_drop_write - give up write access to a mount 585 * @mnt: the mount on which to give up write access 586 * 587 * Tells the low-level filesystem that we are done performing writes to it and 588 * also allows filesystem to be frozen again. Must be matched with 589 * mnt_want_write() call above. 590 */ 591 void mnt_drop_write(struct vfsmount *mnt) 592 { 593 mnt_put_write_access(mnt); 594 sb_end_write(mnt->mnt_sb); 595 } 596 EXPORT_SYMBOL_GPL(mnt_drop_write); 597 598 void mnt_put_write_access_file(struct file *file) 599 { 600 if (!(file->f_mode & FMODE_WRITER)) 601 mnt_put_write_access(file->f_path.mnt); 602 } 603 604 void mnt_drop_write_file(struct file *file) 605 { 606 mnt_put_write_access_file(file); 607 sb_end_write(file_inode(file)->i_sb); 608 } 609 EXPORT_SYMBOL(mnt_drop_write_file); 610 611 /** 612 * mnt_hold_writers - prevent write access to the given mount 613 * @mnt: mnt to prevent write access to 614 * 615 * Prevents write access to @mnt if there are no active writers for @mnt. 616 * This function needs to be called and return successfully before changing 617 * properties of @mnt that need to remain stable for callers with write access 618 * to @mnt. 619 * 620 * After this functions has been called successfully callers must pair it with 621 * a call to mnt_unhold_writers() in order to stop preventing write access to 622 * @mnt. 623 * 624 * Context: This function expects lock_mount_hash() to be held serializing 625 * setting MNT_WRITE_HOLD. 626 * Return: On success 0 is returned. 627 * On error, -EBUSY is returned. 628 */ 629 static inline int mnt_hold_writers(struct mount *mnt) 630 { 631 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 632 /* 633 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 634 * should be visible before we do. 635 */ 636 smp_mb(); 637 638 /* 639 * With writers on hold, if this value is zero, then there are 640 * definitely no active writers (although held writers may subsequently 641 * increment the count, they'll have to wait, and decrement it after 642 * seeing MNT_READONLY). 643 * 644 * It is OK to have counter incremented on one CPU and decremented on 645 * another: the sum will add up correctly. The danger would be when we 646 * sum up each counter, if we read a counter before it is incremented, 647 * but then read another CPU's count which it has been subsequently 648 * decremented from -- we would see more decrements than we should. 649 * MNT_WRITE_HOLD protects against this scenario, because 650 * mnt_want_write first increments count, then smp_mb, then spins on 651 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 652 * we're counting up here. 653 */ 654 if (mnt_get_writers(mnt) > 0) 655 return -EBUSY; 656 657 return 0; 658 } 659 660 /** 661 * mnt_unhold_writers - stop preventing write access to the given mount 662 * @mnt: mnt to stop preventing write access to 663 * 664 * Stop preventing write access to @mnt allowing callers to gain write access 665 * to @mnt again. 666 * 667 * This function can only be called after a successful call to 668 * mnt_hold_writers(). 669 * 670 * Context: This function expects lock_mount_hash() to be held. 671 */ 672 static inline void mnt_unhold_writers(struct mount *mnt) 673 { 674 /* 675 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 676 * that become unheld will see MNT_READONLY. 677 */ 678 smp_wmb(); 679 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 680 } 681 682 static int mnt_make_readonly(struct mount *mnt) 683 { 684 int ret; 685 686 ret = mnt_hold_writers(mnt); 687 if (!ret) 688 mnt->mnt.mnt_flags |= MNT_READONLY; 689 mnt_unhold_writers(mnt); 690 return ret; 691 } 692 693 int sb_prepare_remount_readonly(struct super_block *sb) 694 { 695 struct mount *mnt; 696 int err = 0; 697 698 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 699 if (atomic_long_read(&sb->s_remove_count)) 700 return -EBUSY; 701 702 lock_mount_hash(); 703 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 704 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 705 err = mnt_hold_writers(mnt); 706 if (err) 707 break; 708 } 709 } 710 if (!err && atomic_long_read(&sb->s_remove_count)) 711 err = -EBUSY; 712 713 if (!err) 714 sb_start_ro_state_change(sb); 715 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 716 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 717 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 718 } 719 unlock_mount_hash(); 720 721 return err; 722 } 723 724 static void free_vfsmnt(struct mount *mnt) 725 { 726 mnt_idmap_put(mnt_idmap(&mnt->mnt)); 727 kfree_const(mnt->mnt_devname); 728 #ifdef CONFIG_SMP 729 free_percpu(mnt->mnt_pcp); 730 #endif 731 kmem_cache_free(mnt_cache, mnt); 732 } 733 734 static void delayed_free_vfsmnt(struct rcu_head *head) 735 { 736 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 737 } 738 739 /* call under rcu_read_lock */ 740 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq) 741 { 742 struct mount *mnt; 743 if (read_seqretry(&mount_lock, seq)) 744 return 1; 745 if (bastard == NULL) 746 return 0; 747 mnt = real_mount(bastard); 748 mnt_add_count(mnt, 1); 749 smp_mb(); // see mntput_no_expire() 750 if (likely(!read_seqretry(&mount_lock, seq))) 751 return 0; 752 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 753 mnt_add_count(mnt, -1); 754 return 1; 755 } 756 lock_mount_hash(); 757 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) { 758 mnt_add_count(mnt, -1); 759 unlock_mount_hash(); 760 return 1; 761 } 762 unlock_mount_hash(); 763 /* caller will mntput() */ 764 return -1; 765 } 766 767 /* call under rcu_read_lock */ 768 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 769 { 770 int res = __legitimize_mnt(bastard, seq); 771 if (likely(!res)) 772 return true; 773 if (unlikely(res < 0)) { 774 rcu_read_unlock(); 775 mntput(bastard); 776 rcu_read_lock(); 777 } 778 return false; 779 } 780 781 /** 782 * __lookup_mnt - find first child mount 783 * @mnt: parent mount 784 * @dentry: mountpoint 785 * 786 * If @mnt has a child mount @c mounted @dentry find and return it. 787 * 788 * Note that the child mount @c need not be unique. There are cases 789 * where shadow mounts are created. For example, during mount 790 * propagation when a source mount @mnt whose root got overmounted by a 791 * mount @o after path lookup but before @namespace_sem could be 792 * acquired gets copied and propagated. So @mnt gets copied including 793 * @o. When @mnt is propagated to a destination mount @d that already 794 * has another mount @n mounted at the same mountpoint then the source 795 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on 796 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt 797 * on @dentry. 798 * 799 * Return: The first child of @mnt mounted @dentry or NULL. 800 */ 801 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 802 { 803 struct hlist_head *head = m_hash(mnt, dentry); 804 struct mount *p; 805 806 hlist_for_each_entry_rcu(p, head, mnt_hash) 807 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 808 return p; 809 return NULL; 810 } 811 812 /* 813 * lookup_mnt - Return the first child mount mounted at path 814 * 815 * "First" means first mounted chronologically. If you create the 816 * following mounts: 817 * 818 * mount /dev/sda1 /mnt 819 * mount /dev/sda2 /mnt 820 * mount /dev/sda3 /mnt 821 * 822 * Then lookup_mnt() on the base /mnt dentry in the root mount will 823 * return successively the root dentry and vfsmount of /dev/sda1, then 824 * /dev/sda2, then /dev/sda3, then NULL. 825 * 826 * lookup_mnt takes a reference to the found vfsmount. 827 */ 828 struct vfsmount *lookup_mnt(const struct path *path) 829 { 830 struct mount *child_mnt; 831 struct vfsmount *m; 832 unsigned seq; 833 834 rcu_read_lock(); 835 do { 836 seq = read_seqbegin(&mount_lock); 837 child_mnt = __lookup_mnt(path->mnt, path->dentry); 838 m = child_mnt ? &child_mnt->mnt : NULL; 839 } while (!legitimize_mnt(m, seq)); 840 rcu_read_unlock(); 841 return m; 842 } 843 844 /* 845 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 846 * current mount namespace. 847 * 848 * The common case is dentries are not mountpoints at all and that 849 * test is handled inline. For the slow case when we are actually 850 * dealing with a mountpoint of some kind, walk through all of the 851 * mounts in the current mount namespace and test to see if the dentry 852 * is a mountpoint. 853 * 854 * The mount_hashtable is not usable in the context because we 855 * need to identify all mounts that may be in the current mount 856 * namespace not just a mount that happens to have some specified 857 * parent mount. 858 */ 859 bool __is_local_mountpoint(struct dentry *dentry) 860 { 861 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 862 struct mount *mnt, *n; 863 bool is_covered = false; 864 865 down_read(&namespace_sem); 866 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 867 is_covered = (mnt->mnt_mountpoint == dentry); 868 if (is_covered) 869 break; 870 } 871 up_read(&namespace_sem); 872 873 return is_covered; 874 } 875 876 static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 877 { 878 struct hlist_head *chain = mp_hash(dentry); 879 struct mountpoint *mp; 880 881 hlist_for_each_entry(mp, chain, m_hash) { 882 if (mp->m_dentry == dentry) { 883 mp->m_count++; 884 return mp; 885 } 886 } 887 return NULL; 888 } 889 890 static struct mountpoint *get_mountpoint(struct dentry *dentry) 891 { 892 struct mountpoint *mp, *new = NULL; 893 int ret; 894 895 if (d_mountpoint(dentry)) { 896 /* might be worth a WARN_ON() */ 897 if (d_unlinked(dentry)) 898 return ERR_PTR(-ENOENT); 899 mountpoint: 900 read_seqlock_excl(&mount_lock); 901 mp = lookup_mountpoint(dentry); 902 read_sequnlock_excl(&mount_lock); 903 if (mp) 904 goto done; 905 } 906 907 if (!new) 908 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 909 if (!new) 910 return ERR_PTR(-ENOMEM); 911 912 913 /* Exactly one processes may set d_mounted */ 914 ret = d_set_mounted(dentry); 915 916 /* Someone else set d_mounted? */ 917 if (ret == -EBUSY) 918 goto mountpoint; 919 920 /* The dentry is not available as a mountpoint? */ 921 mp = ERR_PTR(ret); 922 if (ret) 923 goto done; 924 925 /* Add the new mountpoint to the hash table */ 926 read_seqlock_excl(&mount_lock); 927 new->m_dentry = dget(dentry); 928 new->m_count = 1; 929 hlist_add_head(&new->m_hash, mp_hash(dentry)); 930 INIT_HLIST_HEAD(&new->m_list); 931 read_sequnlock_excl(&mount_lock); 932 933 mp = new; 934 new = NULL; 935 done: 936 kfree(new); 937 return mp; 938 } 939 940 /* 941 * vfsmount lock must be held. Additionally, the caller is responsible 942 * for serializing calls for given disposal list. 943 */ 944 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list) 945 { 946 if (!--mp->m_count) { 947 struct dentry *dentry = mp->m_dentry; 948 BUG_ON(!hlist_empty(&mp->m_list)); 949 spin_lock(&dentry->d_lock); 950 dentry->d_flags &= ~DCACHE_MOUNTED; 951 spin_unlock(&dentry->d_lock); 952 dput_to_list(dentry, list); 953 hlist_del(&mp->m_hash); 954 kfree(mp); 955 } 956 } 957 958 /* called with namespace_lock and vfsmount lock */ 959 static void put_mountpoint(struct mountpoint *mp) 960 { 961 __put_mountpoint(mp, &ex_mountpoints); 962 } 963 964 static inline int check_mnt(struct mount *mnt) 965 { 966 return mnt->mnt_ns == current->nsproxy->mnt_ns; 967 } 968 969 /* 970 * vfsmount lock must be held for write 971 */ 972 static void touch_mnt_namespace(struct mnt_namespace *ns) 973 { 974 if (ns) { 975 ns->event = ++event; 976 wake_up_interruptible(&ns->poll); 977 } 978 } 979 980 /* 981 * vfsmount lock must be held for write 982 */ 983 static void __touch_mnt_namespace(struct mnt_namespace *ns) 984 { 985 if (ns && ns->event != event) { 986 ns->event = event; 987 wake_up_interruptible(&ns->poll); 988 } 989 } 990 991 /* 992 * vfsmount lock must be held for write 993 */ 994 static struct mountpoint *unhash_mnt(struct mount *mnt) 995 { 996 struct mountpoint *mp; 997 mnt->mnt_parent = mnt; 998 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 999 list_del_init(&mnt->mnt_child); 1000 hlist_del_init_rcu(&mnt->mnt_hash); 1001 hlist_del_init(&mnt->mnt_mp_list); 1002 mp = mnt->mnt_mp; 1003 mnt->mnt_mp = NULL; 1004 return mp; 1005 } 1006 1007 /* 1008 * vfsmount lock must be held for write 1009 */ 1010 static void umount_mnt(struct mount *mnt) 1011 { 1012 put_mountpoint(unhash_mnt(mnt)); 1013 } 1014 1015 /* 1016 * vfsmount lock must be held for write 1017 */ 1018 void mnt_set_mountpoint(struct mount *mnt, 1019 struct mountpoint *mp, 1020 struct mount *child_mnt) 1021 { 1022 mp->m_count++; 1023 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 1024 child_mnt->mnt_mountpoint = mp->m_dentry; 1025 child_mnt->mnt_parent = mnt; 1026 child_mnt->mnt_mp = mp; 1027 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 1028 } 1029 1030 /** 1031 * mnt_set_mountpoint_beneath - mount a mount beneath another one 1032 * 1033 * @new_parent: the source mount 1034 * @top_mnt: the mount beneath which @new_parent is mounted 1035 * @new_mp: the new mountpoint of @top_mnt on @new_parent 1036 * 1037 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and 1038 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at 1039 * @new_mp. And mount @new_parent on the old parent and old 1040 * mountpoint of @top_mnt. 1041 * 1042 * Context: This function expects namespace_lock() and lock_mount_hash() 1043 * to have been acquired in that order. 1044 */ 1045 static void mnt_set_mountpoint_beneath(struct mount *new_parent, 1046 struct mount *top_mnt, 1047 struct mountpoint *new_mp) 1048 { 1049 struct mount *old_top_parent = top_mnt->mnt_parent; 1050 struct mountpoint *old_top_mp = top_mnt->mnt_mp; 1051 1052 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent); 1053 mnt_change_mountpoint(new_parent, new_mp, top_mnt); 1054 } 1055 1056 1057 static void __attach_mnt(struct mount *mnt, struct mount *parent) 1058 { 1059 hlist_add_head_rcu(&mnt->mnt_hash, 1060 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 1061 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 1062 } 1063 1064 /** 1065 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's 1066 * list of child mounts 1067 * @parent: the parent 1068 * @mnt: the new mount 1069 * @mp: the new mountpoint 1070 * @beneath: whether to mount @mnt beneath or on top of @parent 1071 * 1072 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt 1073 * to @parent's child mount list and to @mount_hashtable. 1074 * 1075 * If @beneath is true, remove @mnt from its current parent and 1076 * mountpoint and mount it on @mp on @parent, and mount @parent on the 1077 * old parent and old mountpoint of @mnt. Finally, attach @parent to 1078 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts. 1079 * 1080 * Note, when __attach_mnt() is called @mnt->mnt_parent already points 1081 * to the correct parent. 1082 * 1083 * Context: This function expects namespace_lock() and lock_mount_hash() 1084 * to have been acquired in that order. 1085 */ 1086 static void attach_mnt(struct mount *mnt, struct mount *parent, 1087 struct mountpoint *mp, bool beneath) 1088 { 1089 if (beneath) 1090 mnt_set_mountpoint_beneath(mnt, parent, mp); 1091 else 1092 mnt_set_mountpoint(parent, mp, mnt); 1093 /* 1094 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted 1095 * beneath @parent then @mnt will need to be attached to 1096 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent 1097 * isn't the same mount as @parent. 1098 */ 1099 __attach_mnt(mnt, mnt->mnt_parent); 1100 } 1101 1102 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt) 1103 { 1104 struct mountpoint *old_mp = mnt->mnt_mp; 1105 struct mount *old_parent = mnt->mnt_parent; 1106 1107 list_del_init(&mnt->mnt_child); 1108 hlist_del_init(&mnt->mnt_mp_list); 1109 hlist_del_init_rcu(&mnt->mnt_hash); 1110 1111 attach_mnt(mnt, parent, mp, false); 1112 1113 put_mountpoint(old_mp); 1114 mnt_add_count(old_parent, -1); 1115 } 1116 1117 static inline struct mount *node_to_mount(struct rb_node *node) 1118 { 1119 return node ? rb_entry(node, struct mount, mnt_node) : NULL; 1120 } 1121 1122 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt) 1123 { 1124 struct rb_node **link = &ns->mounts.rb_node; 1125 struct rb_node *parent = NULL; 1126 1127 WARN_ON(mnt->mnt.mnt_flags & MNT_ONRB); 1128 mnt->mnt_ns = ns; 1129 while (*link) { 1130 parent = *link; 1131 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) 1132 link = &parent->rb_left; 1133 else 1134 link = &parent->rb_right; 1135 } 1136 rb_link_node(&mnt->mnt_node, parent, link); 1137 rb_insert_color(&mnt->mnt_node, &ns->mounts); 1138 mnt->mnt.mnt_flags |= MNT_ONRB; 1139 } 1140 1141 /* 1142 * vfsmount lock must be held for write 1143 */ 1144 static void commit_tree(struct mount *mnt) 1145 { 1146 struct mount *parent = mnt->mnt_parent; 1147 struct mount *m; 1148 LIST_HEAD(head); 1149 struct mnt_namespace *n = parent->mnt_ns; 1150 1151 BUG_ON(parent == mnt); 1152 1153 list_add_tail(&head, &mnt->mnt_list); 1154 while (!list_empty(&head)) { 1155 m = list_first_entry(&head, typeof(*m), mnt_list); 1156 list_del(&m->mnt_list); 1157 1158 mnt_add_to_ns(n, m); 1159 } 1160 n->nr_mounts += n->pending_mounts; 1161 n->pending_mounts = 0; 1162 1163 __attach_mnt(mnt, parent); 1164 touch_mnt_namespace(n); 1165 } 1166 1167 static struct mount *next_mnt(struct mount *p, struct mount *root) 1168 { 1169 struct list_head *next = p->mnt_mounts.next; 1170 if (next == &p->mnt_mounts) { 1171 while (1) { 1172 if (p == root) 1173 return NULL; 1174 next = p->mnt_child.next; 1175 if (next != &p->mnt_parent->mnt_mounts) 1176 break; 1177 p = p->mnt_parent; 1178 } 1179 } 1180 return list_entry(next, struct mount, mnt_child); 1181 } 1182 1183 static struct mount *skip_mnt_tree(struct mount *p) 1184 { 1185 struct list_head *prev = p->mnt_mounts.prev; 1186 while (prev != &p->mnt_mounts) { 1187 p = list_entry(prev, struct mount, mnt_child); 1188 prev = p->mnt_mounts.prev; 1189 } 1190 return p; 1191 } 1192 1193 /** 1194 * vfs_create_mount - Create a mount for a configured superblock 1195 * @fc: The configuration context with the superblock attached 1196 * 1197 * Create a mount to an already configured superblock. If necessary, the 1198 * caller should invoke vfs_get_tree() before calling this. 1199 * 1200 * Note that this does not attach the mount to anything. 1201 */ 1202 struct vfsmount *vfs_create_mount(struct fs_context *fc) 1203 { 1204 struct mount *mnt; 1205 1206 if (!fc->root) 1207 return ERR_PTR(-EINVAL); 1208 1209 mnt = alloc_vfsmnt(fc->source ?: "none"); 1210 if (!mnt) 1211 return ERR_PTR(-ENOMEM); 1212 1213 if (fc->sb_flags & SB_KERNMOUNT) 1214 mnt->mnt.mnt_flags = MNT_INTERNAL; 1215 1216 atomic_inc(&fc->root->d_sb->s_active); 1217 mnt->mnt.mnt_sb = fc->root->d_sb; 1218 mnt->mnt.mnt_root = dget(fc->root); 1219 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1220 mnt->mnt_parent = mnt; 1221 1222 lock_mount_hash(); 1223 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts); 1224 unlock_mount_hash(); 1225 return &mnt->mnt; 1226 } 1227 EXPORT_SYMBOL(vfs_create_mount); 1228 1229 struct vfsmount *fc_mount(struct fs_context *fc) 1230 { 1231 int err = vfs_get_tree(fc); 1232 if (!err) { 1233 up_write(&fc->root->d_sb->s_umount); 1234 return vfs_create_mount(fc); 1235 } 1236 return ERR_PTR(err); 1237 } 1238 EXPORT_SYMBOL(fc_mount); 1239 1240 struct vfsmount *vfs_kern_mount(struct file_system_type *type, 1241 int flags, const char *name, 1242 void *data) 1243 { 1244 struct fs_context *fc; 1245 struct vfsmount *mnt; 1246 int ret = 0; 1247 1248 if (!type) 1249 return ERR_PTR(-EINVAL); 1250 1251 fc = fs_context_for_mount(type, flags); 1252 if (IS_ERR(fc)) 1253 return ERR_CAST(fc); 1254 1255 if (name) 1256 ret = vfs_parse_fs_string(fc, "source", 1257 name, strlen(name)); 1258 if (!ret) 1259 ret = parse_monolithic_mount_data(fc, data); 1260 if (!ret) 1261 mnt = fc_mount(fc); 1262 else 1263 mnt = ERR_PTR(ret); 1264 1265 put_fs_context(fc); 1266 return mnt; 1267 } 1268 EXPORT_SYMBOL_GPL(vfs_kern_mount); 1269 1270 struct vfsmount * 1271 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type, 1272 const char *name, void *data) 1273 { 1274 /* Until it is worked out how to pass the user namespace 1275 * through from the parent mount to the submount don't support 1276 * unprivileged mounts with submounts. 1277 */ 1278 if (mountpoint->d_sb->s_user_ns != &init_user_ns) 1279 return ERR_PTR(-EPERM); 1280 1281 return vfs_kern_mount(type, SB_SUBMOUNT, name, data); 1282 } 1283 EXPORT_SYMBOL_GPL(vfs_submount); 1284 1285 static struct mount *clone_mnt(struct mount *old, struct dentry *root, 1286 int flag) 1287 { 1288 struct super_block *sb = old->mnt.mnt_sb; 1289 struct mount *mnt; 1290 int err; 1291 1292 mnt = alloc_vfsmnt(old->mnt_devname); 1293 if (!mnt) 1294 return ERR_PTR(-ENOMEM); 1295 1296 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 1297 mnt->mnt_group_id = 0; /* not a peer of original */ 1298 else 1299 mnt->mnt_group_id = old->mnt_group_id; 1300 1301 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 1302 err = mnt_alloc_group_id(mnt); 1303 if (err) 1304 goto out_free; 1305 } 1306 1307 mnt->mnt.mnt_flags = old->mnt.mnt_flags; 1308 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL|MNT_ONRB); 1309 1310 atomic_inc(&sb->s_active); 1311 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt)); 1312 1313 mnt->mnt.mnt_sb = sb; 1314 mnt->mnt.mnt_root = dget(root); 1315 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1316 mnt->mnt_parent = mnt; 1317 lock_mount_hash(); 1318 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1319 unlock_mount_hash(); 1320 1321 if ((flag & CL_SLAVE) || 1322 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1323 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1324 mnt->mnt_master = old; 1325 CLEAR_MNT_SHARED(mnt); 1326 } else if (!(flag & CL_PRIVATE)) { 1327 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1328 list_add(&mnt->mnt_share, &old->mnt_share); 1329 if (IS_MNT_SLAVE(old)) 1330 list_add(&mnt->mnt_slave, &old->mnt_slave); 1331 mnt->mnt_master = old->mnt_master; 1332 } else { 1333 CLEAR_MNT_SHARED(mnt); 1334 } 1335 if (flag & CL_MAKE_SHARED) 1336 set_mnt_shared(mnt); 1337 1338 /* stick the duplicate mount on the same expiry list 1339 * as the original if that was on one */ 1340 if (flag & CL_EXPIRE) { 1341 if (!list_empty(&old->mnt_expire)) 1342 list_add(&mnt->mnt_expire, &old->mnt_expire); 1343 } 1344 1345 return mnt; 1346 1347 out_free: 1348 mnt_free_id(mnt); 1349 free_vfsmnt(mnt); 1350 return ERR_PTR(err); 1351 } 1352 1353 static void cleanup_mnt(struct mount *mnt) 1354 { 1355 struct hlist_node *p; 1356 struct mount *m; 1357 /* 1358 * The warning here probably indicates that somebody messed 1359 * up a mnt_want/drop_write() pair. If this happens, the 1360 * filesystem was probably unable to make r/w->r/o transitions. 1361 * The locking used to deal with mnt_count decrement provides barriers, 1362 * so mnt_get_writers() below is safe. 1363 */ 1364 WARN_ON(mnt_get_writers(mnt)); 1365 if (unlikely(mnt->mnt_pins.first)) 1366 mnt_pin_kill(mnt); 1367 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) { 1368 hlist_del(&m->mnt_umount); 1369 mntput(&m->mnt); 1370 } 1371 fsnotify_vfsmount_delete(&mnt->mnt); 1372 dput(mnt->mnt.mnt_root); 1373 deactivate_super(mnt->mnt.mnt_sb); 1374 mnt_free_id(mnt); 1375 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1376 } 1377 1378 static void __cleanup_mnt(struct rcu_head *head) 1379 { 1380 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1381 } 1382 1383 static LLIST_HEAD(delayed_mntput_list); 1384 static void delayed_mntput(struct work_struct *unused) 1385 { 1386 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1387 struct mount *m, *t; 1388 1389 llist_for_each_entry_safe(m, t, node, mnt_llist) 1390 cleanup_mnt(m); 1391 } 1392 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1393 1394 static void mntput_no_expire(struct mount *mnt) 1395 { 1396 LIST_HEAD(list); 1397 int count; 1398 1399 rcu_read_lock(); 1400 if (likely(READ_ONCE(mnt->mnt_ns))) { 1401 /* 1402 * Since we don't do lock_mount_hash() here, 1403 * ->mnt_ns can change under us. However, if it's 1404 * non-NULL, then there's a reference that won't 1405 * be dropped until after an RCU delay done after 1406 * turning ->mnt_ns NULL. So if we observe it 1407 * non-NULL under rcu_read_lock(), the reference 1408 * we are dropping is not the final one. 1409 */ 1410 mnt_add_count(mnt, -1); 1411 rcu_read_unlock(); 1412 return; 1413 } 1414 lock_mount_hash(); 1415 /* 1416 * make sure that if __legitimize_mnt() has not seen us grab 1417 * mount_lock, we'll see their refcount increment here. 1418 */ 1419 smp_mb(); 1420 mnt_add_count(mnt, -1); 1421 count = mnt_get_count(mnt); 1422 if (count != 0) { 1423 WARN_ON(count < 0); 1424 rcu_read_unlock(); 1425 unlock_mount_hash(); 1426 return; 1427 } 1428 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1429 rcu_read_unlock(); 1430 unlock_mount_hash(); 1431 return; 1432 } 1433 mnt->mnt.mnt_flags |= MNT_DOOMED; 1434 rcu_read_unlock(); 1435 1436 list_del(&mnt->mnt_instance); 1437 1438 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1439 struct mount *p, *tmp; 1440 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1441 __put_mountpoint(unhash_mnt(p), &list); 1442 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children); 1443 } 1444 } 1445 unlock_mount_hash(); 1446 shrink_dentry_list(&list); 1447 1448 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1449 struct task_struct *task = current; 1450 if (likely(!(task->flags & PF_KTHREAD))) { 1451 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1452 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME)) 1453 return; 1454 } 1455 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1456 schedule_delayed_work(&delayed_mntput_work, 1); 1457 return; 1458 } 1459 cleanup_mnt(mnt); 1460 } 1461 1462 void mntput(struct vfsmount *mnt) 1463 { 1464 if (mnt) { 1465 struct mount *m = real_mount(mnt); 1466 /* avoid cacheline pingpong */ 1467 if (unlikely(m->mnt_expiry_mark)) 1468 WRITE_ONCE(m->mnt_expiry_mark, 0); 1469 mntput_no_expire(m); 1470 } 1471 } 1472 EXPORT_SYMBOL(mntput); 1473 1474 struct vfsmount *mntget(struct vfsmount *mnt) 1475 { 1476 if (mnt) 1477 mnt_add_count(real_mount(mnt), 1); 1478 return mnt; 1479 } 1480 EXPORT_SYMBOL(mntget); 1481 1482 /* 1483 * Make a mount point inaccessible to new lookups. 1484 * Because there may still be current users, the caller MUST WAIT 1485 * for an RCU grace period before destroying the mount point. 1486 */ 1487 void mnt_make_shortterm(struct vfsmount *mnt) 1488 { 1489 if (mnt) 1490 real_mount(mnt)->mnt_ns = NULL; 1491 } 1492 1493 /** 1494 * path_is_mountpoint() - Check if path is a mount in the current namespace. 1495 * @path: path to check 1496 * 1497 * d_mountpoint() can only be used reliably to establish if a dentry is 1498 * not mounted in any namespace and that common case is handled inline. 1499 * d_mountpoint() isn't aware of the possibility there may be multiple 1500 * mounts using a given dentry in a different namespace. This function 1501 * checks if the passed in path is a mountpoint rather than the dentry 1502 * alone. 1503 */ 1504 bool path_is_mountpoint(const struct path *path) 1505 { 1506 unsigned seq; 1507 bool res; 1508 1509 if (!d_mountpoint(path->dentry)) 1510 return false; 1511 1512 rcu_read_lock(); 1513 do { 1514 seq = read_seqbegin(&mount_lock); 1515 res = __path_is_mountpoint(path); 1516 } while (read_seqretry(&mount_lock, seq)); 1517 rcu_read_unlock(); 1518 1519 return res; 1520 } 1521 EXPORT_SYMBOL(path_is_mountpoint); 1522 1523 struct vfsmount *mnt_clone_internal(const struct path *path) 1524 { 1525 struct mount *p; 1526 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1527 if (IS_ERR(p)) 1528 return ERR_CAST(p); 1529 p->mnt.mnt_flags |= MNT_INTERNAL; 1530 return &p->mnt; 1531 } 1532 1533 /* 1534 * Returns the mount which either has the specified mnt_id, or has the next 1535 * smallest id afer the specified one. 1536 */ 1537 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id) 1538 { 1539 struct rb_node *node = ns->mounts.rb_node; 1540 struct mount *ret = NULL; 1541 1542 while (node) { 1543 struct mount *m = node_to_mount(node); 1544 1545 if (mnt_id <= m->mnt_id_unique) { 1546 ret = node_to_mount(node); 1547 if (mnt_id == m->mnt_id_unique) 1548 break; 1549 node = node->rb_left; 1550 } else { 1551 node = node->rb_right; 1552 } 1553 } 1554 return ret; 1555 } 1556 1557 /* 1558 * Returns the mount which either has the specified mnt_id, or has the next 1559 * greater id before the specified one. 1560 */ 1561 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id) 1562 { 1563 struct rb_node *node = ns->mounts.rb_node; 1564 struct mount *ret = NULL; 1565 1566 while (node) { 1567 struct mount *m = node_to_mount(node); 1568 1569 if (mnt_id >= m->mnt_id_unique) { 1570 ret = node_to_mount(node); 1571 if (mnt_id == m->mnt_id_unique) 1572 break; 1573 node = node->rb_right; 1574 } else { 1575 node = node->rb_left; 1576 } 1577 } 1578 return ret; 1579 } 1580 1581 #ifdef CONFIG_PROC_FS 1582 1583 /* iterator; we want it to have access to namespace_sem, thus here... */ 1584 static void *m_start(struct seq_file *m, loff_t *pos) 1585 { 1586 struct proc_mounts *p = m->private; 1587 1588 down_read(&namespace_sem); 1589 1590 return mnt_find_id_at(p->ns, *pos); 1591 } 1592 1593 static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1594 { 1595 struct mount *next = NULL, *mnt = v; 1596 struct rb_node *node = rb_next(&mnt->mnt_node); 1597 1598 ++*pos; 1599 if (node) { 1600 next = node_to_mount(node); 1601 *pos = next->mnt_id_unique; 1602 } 1603 return next; 1604 } 1605 1606 static void m_stop(struct seq_file *m, void *v) 1607 { 1608 up_read(&namespace_sem); 1609 } 1610 1611 static int m_show(struct seq_file *m, void *v) 1612 { 1613 struct proc_mounts *p = m->private; 1614 struct mount *r = v; 1615 return p->show(m, &r->mnt); 1616 } 1617 1618 const struct seq_operations mounts_op = { 1619 .start = m_start, 1620 .next = m_next, 1621 .stop = m_stop, 1622 .show = m_show, 1623 }; 1624 1625 #endif /* CONFIG_PROC_FS */ 1626 1627 /** 1628 * may_umount_tree - check if a mount tree is busy 1629 * @m: root of mount tree 1630 * 1631 * This is called to check if a tree of mounts has any 1632 * open files, pwds, chroots or sub mounts that are 1633 * busy. 1634 */ 1635 int may_umount_tree(struct vfsmount *m) 1636 { 1637 struct mount *mnt = real_mount(m); 1638 int actual_refs = 0; 1639 int minimum_refs = 0; 1640 struct mount *p; 1641 BUG_ON(!m); 1642 1643 /* write lock needed for mnt_get_count */ 1644 lock_mount_hash(); 1645 for (p = mnt; p; p = next_mnt(p, mnt)) { 1646 actual_refs += mnt_get_count(p); 1647 minimum_refs += 2; 1648 } 1649 unlock_mount_hash(); 1650 1651 if (actual_refs > minimum_refs) 1652 return 0; 1653 1654 return 1; 1655 } 1656 1657 EXPORT_SYMBOL(may_umount_tree); 1658 1659 /** 1660 * may_umount - check if a mount point is busy 1661 * @mnt: root of mount 1662 * 1663 * This is called to check if a mount point has any 1664 * open files, pwds, chroots or sub mounts. If the 1665 * mount has sub mounts this will return busy 1666 * regardless of whether the sub mounts are busy. 1667 * 1668 * Doesn't take quota and stuff into account. IOW, in some cases it will 1669 * give false negatives. The main reason why it's here is that we need 1670 * a non-destructive way to look for easily umountable filesystems. 1671 */ 1672 int may_umount(struct vfsmount *mnt) 1673 { 1674 int ret = 1; 1675 down_read(&namespace_sem); 1676 lock_mount_hash(); 1677 if (propagate_mount_busy(real_mount(mnt), 2)) 1678 ret = 0; 1679 unlock_mount_hash(); 1680 up_read(&namespace_sem); 1681 return ret; 1682 } 1683 1684 EXPORT_SYMBOL(may_umount); 1685 1686 static void namespace_unlock(void) 1687 { 1688 struct hlist_head head; 1689 struct hlist_node *p; 1690 struct mount *m; 1691 LIST_HEAD(list); 1692 1693 hlist_move_list(&unmounted, &head); 1694 list_splice_init(&ex_mountpoints, &list); 1695 1696 up_write(&namespace_sem); 1697 1698 shrink_dentry_list(&list); 1699 1700 if (likely(hlist_empty(&head))) 1701 return; 1702 1703 synchronize_rcu_expedited(); 1704 1705 hlist_for_each_entry_safe(m, p, &head, mnt_umount) { 1706 hlist_del(&m->mnt_umount); 1707 mntput(&m->mnt); 1708 } 1709 } 1710 1711 static inline void namespace_lock(void) 1712 { 1713 down_write(&namespace_sem); 1714 } 1715 1716 enum umount_tree_flags { 1717 UMOUNT_SYNC = 1, 1718 UMOUNT_PROPAGATE = 2, 1719 UMOUNT_CONNECTED = 4, 1720 }; 1721 1722 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1723 { 1724 /* Leaving mounts connected is only valid for lazy umounts */ 1725 if (how & UMOUNT_SYNC) 1726 return true; 1727 1728 /* A mount without a parent has nothing to be connected to */ 1729 if (!mnt_has_parent(mnt)) 1730 return true; 1731 1732 /* Because the reference counting rules change when mounts are 1733 * unmounted and connected, umounted mounts may not be 1734 * connected to mounted mounts. 1735 */ 1736 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1737 return true; 1738 1739 /* Has it been requested that the mount remain connected? */ 1740 if (how & UMOUNT_CONNECTED) 1741 return false; 1742 1743 /* Is the mount locked such that it needs to remain connected? */ 1744 if (IS_MNT_LOCKED(mnt)) 1745 return false; 1746 1747 /* By default disconnect the mount */ 1748 return true; 1749 } 1750 1751 /* 1752 * mount_lock must be held 1753 * namespace_sem must be held for write 1754 */ 1755 static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1756 { 1757 LIST_HEAD(tmp_list); 1758 struct mount *p; 1759 1760 if (how & UMOUNT_PROPAGATE) 1761 propagate_mount_unlock(mnt); 1762 1763 /* Gather the mounts to umount */ 1764 for (p = mnt; p; p = next_mnt(p, mnt)) { 1765 p->mnt.mnt_flags |= MNT_UMOUNT; 1766 if (p->mnt.mnt_flags & MNT_ONRB) 1767 move_from_ns(p, &tmp_list); 1768 else 1769 list_move(&p->mnt_list, &tmp_list); 1770 } 1771 1772 /* Hide the mounts from mnt_mounts */ 1773 list_for_each_entry(p, &tmp_list, mnt_list) { 1774 list_del_init(&p->mnt_child); 1775 } 1776 1777 /* Add propogated mounts to the tmp_list */ 1778 if (how & UMOUNT_PROPAGATE) 1779 propagate_umount(&tmp_list); 1780 1781 while (!list_empty(&tmp_list)) { 1782 struct mnt_namespace *ns; 1783 bool disconnect; 1784 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1785 list_del_init(&p->mnt_expire); 1786 list_del_init(&p->mnt_list); 1787 ns = p->mnt_ns; 1788 if (ns) { 1789 ns->nr_mounts--; 1790 __touch_mnt_namespace(ns); 1791 } 1792 p->mnt_ns = NULL; 1793 if (how & UMOUNT_SYNC) 1794 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1795 1796 disconnect = disconnect_mount(p, how); 1797 if (mnt_has_parent(p)) { 1798 mnt_add_count(p->mnt_parent, -1); 1799 if (!disconnect) { 1800 /* Don't forget about p */ 1801 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1802 } else { 1803 umount_mnt(p); 1804 } 1805 } 1806 change_mnt_propagation(p, MS_PRIVATE); 1807 if (disconnect) 1808 hlist_add_head(&p->mnt_umount, &unmounted); 1809 } 1810 } 1811 1812 static void shrink_submounts(struct mount *mnt); 1813 1814 static int do_umount_root(struct super_block *sb) 1815 { 1816 int ret = 0; 1817 1818 down_write(&sb->s_umount); 1819 if (!sb_rdonly(sb)) { 1820 struct fs_context *fc; 1821 1822 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY, 1823 SB_RDONLY); 1824 if (IS_ERR(fc)) { 1825 ret = PTR_ERR(fc); 1826 } else { 1827 ret = parse_monolithic_mount_data(fc, NULL); 1828 if (!ret) 1829 ret = reconfigure_super(fc); 1830 put_fs_context(fc); 1831 } 1832 } 1833 up_write(&sb->s_umount); 1834 return ret; 1835 } 1836 1837 static int do_umount(struct mount *mnt, int flags) 1838 { 1839 struct super_block *sb = mnt->mnt.mnt_sb; 1840 int retval; 1841 1842 retval = security_sb_umount(&mnt->mnt, flags); 1843 if (retval) 1844 return retval; 1845 1846 /* 1847 * Allow userspace to request a mountpoint be expired rather than 1848 * unmounting unconditionally. Unmount only happens if: 1849 * (1) the mark is already set (the mark is cleared by mntput()) 1850 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1851 */ 1852 if (flags & MNT_EXPIRE) { 1853 if (&mnt->mnt == current->fs->root.mnt || 1854 flags & (MNT_FORCE | MNT_DETACH)) 1855 return -EINVAL; 1856 1857 /* 1858 * probably don't strictly need the lock here if we examined 1859 * all race cases, but it's a slowpath. 1860 */ 1861 lock_mount_hash(); 1862 if (mnt_get_count(mnt) != 2) { 1863 unlock_mount_hash(); 1864 return -EBUSY; 1865 } 1866 unlock_mount_hash(); 1867 1868 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1869 return -EAGAIN; 1870 } 1871 1872 /* 1873 * If we may have to abort operations to get out of this 1874 * mount, and they will themselves hold resources we must 1875 * allow the fs to do things. In the Unix tradition of 1876 * 'Gee thats tricky lets do it in userspace' the umount_begin 1877 * might fail to complete on the first run through as other tasks 1878 * must return, and the like. Thats for the mount program to worry 1879 * about for the moment. 1880 */ 1881 1882 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1883 sb->s_op->umount_begin(sb); 1884 } 1885 1886 /* 1887 * No sense to grab the lock for this test, but test itself looks 1888 * somewhat bogus. Suggestions for better replacement? 1889 * Ho-hum... In principle, we might treat that as umount + switch 1890 * to rootfs. GC would eventually take care of the old vfsmount. 1891 * Actually it makes sense, especially if rootfs would contain a 1892 * /reboot - static binary that would close all descriptors and 1893 * call reboot(9). Then init(8) could umount root and exec /reboot. 1894 */ 1895 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1896 /* 1897 * Special case for "unmounting" root ... 1898 * we just try to remount it readonly. 1899 */ 1900 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) 1901 return -EPERM; 1902 return do_umount_root(sb); 1903 } 1904 1905 namespace_lock(); 1906 lock_mount_hash(); 1907 1908 /* Recheck MNT_LOCKED with the locks held */ 1909 retval = -EINVAL; 1910 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1911 goto out; 1912 1913 event++; 1914 if (flags & MNT_DETACH) { 1915 if (mnt->mnt.mnt_flags & MNT_ONRB || 1916 !list_empty(&mnt->mnt_list)) 1917 umount_tree(mnt, UMOUNT_PROPAGATE); 1918 retval = 0; 1919 } else { 1920 shrink_submounts(mnt); 1921 retval = -EBUSY; 1922 if (!propagate_mount_busy(mnt, 2)) { 1923 if (mnt->mnt.mnt_flags & MNT_ONRB || 1924 !list_empty(&mnt->mnt_list)) 1925 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1926 retval = 0; 1927 } 1928 } 1929 out: 1930 unlock_mount_hash(); 1931 namespace_unlock(); 1932 return retval; 1933 } 1934 1935 /* 1936 * __detach_mounts - lazily unmount all mounts on the specified dentry 1937 * 1938 * During unlink, rmdir, and d_drop it is possible to loose the path 1939 * to an existing mountpoint, and wind up leaking the mount. 1940 * detach_mounts allows lazily unmounting those mounts instead of 1941 * leaking them. 1942 * 1943 * The caller may hold dentry->d_inode->i_mutex. 1944 */ 1945 void __detach_mounts(struct dentry *dentry) 1946 { 1947 struct mountpoint *mp; 1948 struct mount *mnt; 1949 1950 namespace_lock(); 1951 lock_mount_hash(); 1952 mp = lookup_mountpoint(dentry); 1953 if (!mp) 1954 goto out_unlock; 1955 1956 event++; 1957 while (!hlist_empty(&mp->m_list)) { 1958 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1959 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1960 umount_mnt(mnt); 1961 hlist_add_head(&mnt->mnt_umount, &unmounted); 1962 } 1963 else umount_tree(mnt, UMOUNT_CONNECTED); 1964 } 1965 put_mountpoint(mp); 1966 out_unlock: 1967 unlock_mount_hash(); 1968 namespace_unlock(); 1969 } 1970 1971 /* 1972 * Is the caller allowed to modify his namespace? 1973 */ 1974 bool may_mount(void) 1975 { 1976 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1977 } 1978 1979 static void warn_mandlock(void) 1980 { 1981 pr_warn_once("=======================================================\n" 1982 "WARNING: The mand mount option has been deprecated and\n" 1983 " and is ignored by this kernel. Remove the mand\n" 1984 " option from the mount to silence this warning.\n" 1985 "=======================================================\n"); 1986 } 1987 1988 static int can_umount(const struct path *path, int flags) 1989 { 1990 struct mount *mnt = real_mount(path->mnt); 1991 1992 if (!may_mount()) 1993 return -EPERM; 1994 if (!path_mounted(path)) 1995 return -EINVAL; 1996 if (!check_mnt(mnt)) 1997 return -EINVAL; 1998 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */ 1999 return -EINVAL; 2000 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 2001 return -EPERM; 2002 return 0; 2003 } 2004 2005 // caller is responsible for flags being sane 2006 int path_umount(struct path *path, int flags) 2007 { 2008 struct mount *mnt = real_mount(path->mnt); 2009 int ret; 2010 2011 ret = can_umount(path, flags); 2012 if (!ret) 2013 ret = do_umount(mnt, flags); 2014 2015 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 2016 dput(path->dentry); 2017 mntput_no_expire(mnt); 2018 return ret; 2019 } 2020 2021 static int ksys_umount(char __user *name, int flags) 2022 { 2023 int lookup_flags = LOOKUP_MOUNTPOINT; 2024 struct path path; 2025 int ret; 2026 2027 // basic validity checks done first 2028 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 2029 return -EINVAL; 2030 2031 if (!(flags & UMOUNT_NOFOLLOW)) 2032 lookup_flags |= LOOKUP_FOLLOW; 2033 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path); 2034 if (ret) 2035 return ret; 2036 return path_umount(&path, flags); 2037 } 2038 2039 SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 2040 { 2041 return ksys_umount(name, flags); 2042 } 2043 2044 #ifdef __ARCH_WANT_SYS_OLDUMOUNT 2045 2046 /* 2047 * The 2.0 compatible umount. No flags. 2048 */ 2049 SYSCALL_DEFINE1(oldumount, char __user *, name) 2050 { 2051 return ksys_umount(name, 0); 2052 } 2053 2054 #endif 2055 2056 static bool is_mnt_ns_file(struct dentry *dentry) 2057 { 2058 /* Is this a proxy for a mount namespace? */ 2059 return dentry->d_op == &ns_dentry_operations && 2060 dentry->d_fsdata == &mntns_operations; 2061 } 2062 2063 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 2064 { 2065 return container_of(ns, struct mnt_namespace, ns); 2066 } 2067 2068 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt) 2069 { 2070 return &mnt->ns; 2071 } 2072 2073 static bool mnt_ns_loop(struct dentry *dentry) 2074 { 2075 /* Could bind mounting the mount namespace inode cause a 2076 * mount namespace loop? 2077 */ 2078 struct mnt_namespace *mnt_ns; 2079 if (!is_mnt_ns_file(dentry)) 2080 return false; 2081 2082 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 2083 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 2084 } 2085 2086 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry, 2087 int flag) 2088 { 2089 struct mount *res, *src_parent, *src_root_child, *src_mnt, 2090 *dst_parent, *dst_mnt; 2091 2092 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root)) 2093 return ERR_PTR(-EINVAL); 2094 2095 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 2096 return ERR_PTR(-EINVAL); 2097 2098 res = dst_mnt = clone_mnt(src_root, dentry, flag); 2099 if (IS_ERR(dst_mnt)) 2100 return dst_mnt; 2101 2102 src_parent = src_root; 2103 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint; 2104 2105 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) { 2106 if (!is_subdir(src_root_child->mnt_mountpoint, dentry)) 2107 continue; 2108 2109 for (src_mnt = src_root_child; src_mnt; 2110 src_mnt = next_mnt(src_mnt, src_root_child)) { 2111 if (!(flag & CL_COPY_UNBINDABLE) && 2112 IS_MNT_UNBINDABLE(src_mnt)) { 2113 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) { 2114 /* Both unbindable and locked. */ 2115 dst_mnt = ERR_PTR(-EPERM); 2116 goto out; 2117 } else { 2118 src_mnt = skip_mnt_tree(src_mnt); 2119 continue; 2120 } 2121 } 2122 if (!(flag & CL_COPY_MNT_NS_FILE) && 2123 is_mnt_ns_file(src_mnt->mnt.mnt_root)) { 2124 src_mnt = skip_mnt_tree(src_mnt); 2125 continue; 2126 } 2127 while (src_parent != src_mnt->mnt_parent) { 2128 src_parent = src_parent->mnt_parent; 2129 dst_mnt = dst_mnt->mnt_parent; 2130 } 2131 2132 src_parent = src_mnt; 2133 dst_parent = dst_mnt; 2134 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag); 2135 if (IS_ERR(dst_mnt)) 2136 goto out; 2137 lock_mount_hash(); 2138 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list); 2139 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false); 2140 unlock_mount_hash(); 2141 } 2142 } 2143 return res; 2144 2145 out: 2146 if (res) { 2147 lock_mount_hash(); 2148 umount_tree(res, UMOUNT_SYNC); 2149 unlock_mount_hash(); 2150 } 2151 return dst_mnt; 2152 } 2153 2154 /* Caller should check returned pointer for errors */ 2155 2156 struct vfsmount *collect_mounts(const struct path *path) 2157 { 2158 struct mount *tree; 2159 namespace_lock(); 2160 if (!check_mnt(real_mount(path->mnt))) 2161 tree = ERR_PTR(-EINVAL); 2162 else 2163 tree = copy_tree(real_mount(path->mnt), path->dentry, 2164 CL_COPY_ALL | CL_PRIVATE); 2165 namespace_unlock(); 2166 if (IS_ERR(tree)) 2167 return ERR_CAST(tree); 2168 return &tree->mnt; 2169 } 2170 2171 static void free_mnt_ns(struct mnt_namespace *); 2172 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool); 2173 2174 void dissolve_on_fput(struct vfsmount *mnt) 2175 { 2176 struct mnt_namespace *ns; 2177 namespace_lock(); 2178 lock_mount_hash(); 2179 ns = real_mount(mnt)->mnt_ns; 2180 if (ns) { 2181 if (is_anon_ns(ns)) 2182 umount_tree(real_mount(mnt), UMOUNT_CONNECTED); 2183 else 2184 ns = NULL; 2185 } 2186 unlock_mount_hash(); 2187 namespace_unlock(); 2188 if (ns) 2189 free_mnt_ns(ns); 2190 } 2191 2192 void drop_collected_mounts(struct vfsmount *mnt) 2193 { 2194 namespace_lock(); 2195 lock_mount_hash(); 2196 umount_tree(real_mount(mnt), 0); 2197 unlock_mount_hash(); 2198 namespace_unlock(); 2199 } 2200 2201 bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2202 { 2203 struct mount *child; 2204 2205 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2206 if (!is_subdir(child->mnt_mountpoint, dentry)) 2207 continue; 2208 2209 if (child->mnt.mnt_flags & MNT_LOCKED) 2210 return true; 2211 } 2212 return false; 2213 } 2214 2215 /** 2216 * clone_private_mount - create a private clone of a path 2217 * @path: path to clone 2218 * 2219 * This creates a new vfsmount, which will be the clone of @path. The new mount 2220 * will not be attached anywhere in the namespace and will be private (i.e. 2221 * changes to the originating mount won't be propagated into this). 2222 * 2223 * Release with mntput(). 2224 */ 2225 struct vfsmount *clone_private_mount(const struct path *path) 2226 { 2227 struct mount *old_mnt = real_mount(path->mnt); 2228 struct mount *new_mnt; 2229 2230 down_read(&namespace_sem); 2231 if (IS_MNT_UNBINDABLE(old_mnt)) 2232 goto invalid; 2233 2234 if (!check_mnt(old_mnt)) 2235 goto invalid; 2236 2237 if (has_locked_children(old_mnt, path->dentry)) 2238 goto invalid; 2239 2240 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 2241 up_read(&namespace_sem); 2242 2243 if (IS_ERR(new_mnt)) 2244 return ERR_CAST(new_mnt); 2245 2246 /* Longterm mount to be removed by kern_unmount*() */ 2247 new_mnt->mnt_ns = MNT_NS_INTERNAL; 2248 2249 return &new_mnt->mnt; 2250 2251 invalid: 2252 up_read(&namespace_sem); 2253 return ERR_PTR(-EINVAL); 2254 } 2255 EXPORT_SYMBOL_GPL(clone_private_mount); 2256 2257 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 2258 struct vfsmount *root) 2259 { 2260 struct mount *mnt; 2261 int res = f(root, arg); 2262 if (res) 2263 return res; 2264 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 2265 res = f(&mnt->mnt, arg); 2266 if (res) 2267 return res; 2268 } 2269 return 0; 2270 } 2271 2272 static void lock_mnt_tree(struct mount *mnt) 2273 { 2274 struct mount *p; 2275 2276 for (p = mnt; p; p = next_mnt(p, mnt)) { 2277 int flags = p->mnt.mnt_flags; 2278 /* Don't allow unprivileged users to change mount flags */ 2279 flags |= MNT_LOCK_ATIME; 2280 2281 if (flags & MNT_READONLY) 2282 flags |= MNT_LOCK_READONLY; 2283 2284 if (flags & MNT_NODEV) 2285 flags |= MNT_LOCK_NODEV; 2286 2287 if (flags & MNT_NOSUID) 2288 flags |= MNT_LOCK_NOSUID; 2289 2290 if (flags & MNT_NOEXEC) 2291 flags |= MNT_LOCK_NOEXEC; 2292 /* Don't allow unprivileged users to reveal what is under a mount */ 2293 if (list_empty(&p->mnt_expire)) 2294 flags |= MNT_LOCKED; 2295 p->mnt.mnt_flags = flags; 2296 } 2297 } 2298 2299 static void cleanup_group_ids(struct mount *mnt, struct mount *end) 2300 { 2301 struct mount *p; 2302 2303 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 2304 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 2305 mnt_release_group_id(p); 2306 } 2307 } 2308 2309 static int invent_group_ids(struct mount *mnt, bool recurse) 2310 { 2311 struct mount *p; 2312 2313 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 2314 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 2315 int err = mnt_alloc_group_id(p); 2316 if (err) { 2317 cleanup_group_ids(mnt, p); 2318 return err; 2319 } 2320 } 2321 } 2322 2323 return 0; 2324 } 2325 2326 int count_mounts(struct mnt_namespace *ns, struct mount *mnt) 2327 { 2328 unsigned int max = READ_ONCE(sysctl_mount_max); 2329 unsigned int mounts = 0; 2330 struct mount *p; 2331 2332 if (ns->nr_mounts >= max) 2333 return -ENOSPC; 2334 max -= ns->nr_mounts; 2335 if (ns->pending_mounts >= max) 2336 return -ENOSPC; 2337 max -= ns->pending_mounts; 2338 2339 for (p = mnt; p; p = next_mnt(p, mnt)) 2340 mounts++; 2341 2342 if (mounts > max) 2343 return -ENOSPC; 2344 2345 ns->pending_mounts += mounts; 2346 return 0; 2347 } 2348 2349 enum mnt_tree_flags_t { 2350 MNT_TREE_MOVE = BIT(0), 2351 MNT_TREE_BENEATH = BIT(1), 2352 }; 2353 2354 /** 2355 * attach_recursive_mnt - attach a source mount tree 2356 * @source_mnt: mount tree to be attached 2357 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath 2358 * @dest_mp: the mountpoint @source_mnt will be mounted at 2359 * @flags: modify how @source_mnt is supposed to be attached 2360 * 2361 * NOTE: in the table below explains the semantics when a source mount 2362 * of a given type is attached to a destination mount of a given type. 2363 * --------------------------------------------------------------------------- 2364 * | BIND MOUNT OPERATION | 2365 * |************************************************************************** 2366 * | source-->| shared | private | slave | unbindable | 2367 * | dest | | | | | 2368 * | | | | | | | 2369 * | v | | | | | 2370 * |************************************************************************** 2371 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 2372 * | | | | | | 2373 * |non-shared| shared (+) | private | slave (*) | invalid | 2374 * *************************************************************************** 2375 * A bind operation clones the source mount and mounts the clone on the 2376 * destination mount. 2377 * 2378 * (++) the cloned mount is propagated to all the mounts in the propagation 2379 * tree of the destination mount and the cloned mount is added to 2380 * the peer group of the source mount. 2381 * (+) the cloned mount is created under the destination mount and is marked 2382 * as shared. The cloned mount is added to the peer group of the source 2383 * mount. 2384 * (+++) the mount is propagated to all the mounts in the propagation tree 2385 * of the destination mount and the cloned mount is made slave 2386 * of the same master as that of the source mount. The cloned mount 2387 * is marked as 'shared and slave'. 2388 * (*) the cloned mount is made a slave of the same master as that of the 2389 * source mount. 2390 * 2391 * --------------------------------------------------------------------------- 2392 * | MOVE MOUNT OPERATION | 2393 * |************************************************************************** 2394 * | source-->| shared | private | slave | unbindable | 2395 * | dest | | | | | 2396 * | | | | | | | 2397 * | v | | | | | 2398 * |************************************************************************** 2399 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 2400 * | | | | | | 2401 * |non-shared| shared (+*) | private | slave (*) | unbindable | 2402 * *************************************************************************** 2403 * 2404 * (+) the mount is moved to the destination. And is then propagated to 2405 * all the mounts in the propagation tree of the destination mount. 2406 * (+*) the mount is moved to the destination. 2407 * (+++) the mount is moved to the destination and is then propagated to 2408 * all the mounts belonging to the destination mount's propagation tree. 2409 * the mount is marked as 'shared and slave'. 2410 * (*) the mount continues to be a slave at the new location. 2411 * 2412 * if the source mount is a tree, the operations explained above is 2413 * applied to each mount in the tree. 2414 * Must be called without spinlocks held, since this function can sleep 2415 * in allocations. 2416 * 2417 * Context: The function expects namespace_lock() to be held. 2418 * Return: If @source_mnt was successfully attached 0 is returned. 2419 * Otherwise a negative error code is returned. 2420 */ 2421 static int attach_recursive_mnt(struct mount *source_mnt, 2422 struct mount *top_mnt, 2423 struct mountpoint *dest_mp, 2424 enum mnt_tree_flags_t flags) 2425 { 2426 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2427 HLIST_HEAD(tree_list); 2428 struct mnt_namespace *ns = top_mnt->mnt_ns; 2429 struct mountpoint *smp; 2430 struct mount *child, *dest_mnt, *p; 2431 struct hlist_node *n; 2432 int err = 0; 2433 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH; 2434 2435 /* 2436 * Preallocate a mountpoint in case the new mounts need to be 2437 * mounted beneath mounts on the same mountpoint. 2438 */ 2439 smp = get_mountpoint(source_mnt->mnt.mnt_root); 2440 if (IS_ERR(smp)) 2441 return PTR_ERR(smp); 2442 2443 /* Is there space to add these mounts to the mount namespace? */ 2444 if (!moving) { 2445 err = count_mounts(ns, source_mnt); 2446 if (err) 2447 goto out; 2448 } 2449 2450 if (beneath) 2451 dest_mnt = top_mnt->mnt_parent; 2452 else 2453 dest_mnt = top_mnt; 2454 2455 if (IS_MNT_SHARED(dest_mnt)) { 2456 err = invent_group_ids(source_mnt, true); 2457 if (err) 2458 goto out; 2459 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 2460 } 2461 lock_mount_hash(); 2462 if (err) 2463 goto out_cleanup_ids; 2464 2465 if (IS_MNT_SHARED(dest_mnt)) { 2466 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2467 set_mnt_shared(p); 2468 } 2469 2470 if (moving) { 2471 if (beneath) 2472 dest_mp = smp; 2473 unhash_mnt(source_mnt); 2474 attach_mnt(source_mnt, top_mnt, dest_mp, beneath); 2475 touch_mnt_namespace(source_mnt->mnt_ns); 2476 } else { 2477 if (source_mnt->mnt_ns) { 2478 LIST_HEAD(head); 2479 2480 /* move from anon - the caller will destroy */ 2481 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 2482 move_from_ns(p, &head); 2483 list_del_init(&head); 2484 } 2485 if (beneath) 2486 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp); 2487 else 2488 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 2489 commit_tree(source_mnt); 2490 } 2491 2492 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 2493 struct mount *q; 2494 hlist_del_init(&child->mnt_hash); 2495 q = __lookup_mnt(&child->mnt_parent->mnt, 2496 child->mnt_mountpoint); 2497 if (q) 2498 mnt_change_mountpoint(child, smp, q); 2499 /* Notice when we are propagating across user namespaces */ 2500 if (child->mnt_parent->mnt_ns->user_ns != user_ns) 2501 lock_mnt_tree(child); 2502 child->mnt.mnt_flags &= ~MNT_LOCKED; 2503 commit_tree(child); 2504 } 2505 put_mountpoint(smp); 2506 unlock_mount_hash(); 2507 2508 return 0; 2509 2510 out_cleanup_ids: 2511 while (!hlist_empty(&tree_list)) { 2512 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 2513 child->mnt_parent->mnt_ns->pending_mounts = 0; 2514 umount_tree(child, UMOUNT_SYNC); 2515 } 2516 unlock_mount_hash(); 2517 cleanup_group_ids(source_mnt, NULL); 2518 out: 2519 ns->pending_mounts = 0; 2520 2521 read_seqlock_excl(&mount_lock); 2522 put_mountpoint(smp); 2523 read_sequnlock_excl(&mount_lock); 2524 2525 return err; 2526 } 2527 2528 /** 2529 * do_lock_mount - lock mount and mountpoint 2530 * @path: target path 2531 * @beneath: whether the intention is to mount beneath @path 2532 * 2533 * Follow the mount stack on @path until the top mount @mnt is found. If 2534 * the initial @path->{mnt,dentry} is a mountpoint lookup the first 2535 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root} 2536 * until nothing is stacked on top of it anymore. 2537 * 2538 * Acquire the inode_lock() on the top mount's ->mnt_root to protect 2539 * against concurrent removal of the new mountpoint from another mount 2540 * namespace. 2541 * 2542 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint 2543 * @mp on @mnt->mnt_parent must be acquired. This protects against a 2544 * concurrent unlink of @mp->mnt_dentry from another mount namespace 2545 * where @mnt doesn't have a child mount mounted @mp. A concurrent 2546 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted 2547 * on top of it for @beneath. 2548 * 2549 * In addition, @beneath needs to make sure that @mnt hasn't been 2550 * unmounted or moved from its current mountpoint in between dropping 2551 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt 2552 * being unmounted would be detected later by e.g., calling 2553 * check_mnt(mnt) in the function it's called from. For the @beneath 2554 * case however, it's useful to detect it directly in do_lock_mount(). 2555 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points 2556 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will 2557 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL. 2558 * 2559 * Return: Either the target mountpoint on the top mount or the top 2560 * mount's mountpoint. 2561 */ 2562 static struct mountpoint *do_lock_mount(struct path *path, bool beneath) 2563 { 2564 struct vfsmount *mnt = path->mnt; 2565 struct dentry *dentry; 2566 struct mountpoint *mp = ERR_PTR(-ENOENT); 2567 2568 for (;;) { 2569 struct mount *m; 2570 2571 if (beneath) { 2572 m = real_mount(mnt); 2573 read_seqlock_excl(&mount_lock); 2574 dentry = dget(m->mnt_mountpoint); 2575 read_sequnlock_excl(&mount_lock); 2576 } else { 2577 dentry = path->dentry; 2578 } 2579 2580 inode_lock(dentry->d_inode); 2581 if (unlikely(cant_mount(dentry))) { 2582 inode_unlock(dentry->d_inode); 2583 goto out; 2584 } 2585 2586 namespace_lock(); 2587 2588 if (beneath && (!is_mounted(mnt) || m->mnt_mountpoint != dentry)) { 2589 namespace_unlock(); 2590 inode_unlock(dentry->d_inode); 2591 goto out; 2592 } 2593 2594 mnt = lookup_mnt(path); 2595 if (likely(!mnt)) 2596 break; 2597 2598 namespace_unlock(); 2599 inode_unlock(dentry->d_inode); 2600 if (beneath) 2601 dput(dentry); 2602 path_put(path); 2603 path->mnt = mnt; 2604 path->dentry = dget(mnt->mnt_root); 2605 } 2606 2607 mp = get_mountpoint(dentry); 2608 if (IS_ERR(mp)) { 2609 namespace_unlock(); 2610 inode_unlock(dentry->d_inode); 2611 } 2612 2613 out: 2614 if (beneath) 2615 dput(dentry); 2616 2617 return mp; 2618 } 2619 2620 static inline struct mountpoint *lock_mount(struct path *path) 2621 { 2622 return do_lock_mount(path, false); 2623 } 2624 2625 static void unlock_mount(struct mountpoint *where) 2626 { 2627 struct dentry *dentry = where->m_dentry; 2628 2629 read_seqlock_excl(&mount_lock); 2630 put_mountpoint(where); 2631 read_sequnlock_excl(&mount_lock); 2632 2633 namespace_unlock(); 2634 inode_unlock(dentry->d_inode); 2635 } 2636 2637 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 2638 { 2639 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER) 2640 return -EINVAL; 2641 2642 if (d_is_dir(mp->m_dentry) != 2643 d_is_dir(mnt->mnt.mnt_root)) 2644 return -ENOTDIR; 2645 2646 return attach_recursive_mnt(mnt, p, mp, 0); 2647 } 2648 2649 /* 2650 * Sanity check the flags to change_mnt_propagation. 2651 */ 2652 2653 static int flags_to_propagation_type(int ms_flags) 2654 { 2655 int type = ms_flags & ~(MS_REC | MS_SILENT); 2656 2657 /* Fail if any non-propagation flags are set */ 2658 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2659 return 0; 2660 /* Only one propagation flag should be set */ 2661 if (!is_power_of_2(type)) 2662 return 0; 2663 return type; 2664 } 2665 2666 /* 2667 * recursively change the type of the mountpoint. 2668 */ 2669 static int do_change_type(struct path *path, int ms_flags) 2670 { 2671 struct mount *m; 2672 struct mount *mnt = real_mount(path->mnt); 2673 int recurse = ms_flags & MS_REC; 2674 int type; 2675 int err = 0; 2676 2677 if (!path_mounted(path)) 2678 return -EINVAL; 2679 2680 type = flags_to_propagation_type(ms_flags); 2681 if (!type) 2682 return -EINVAL; 2683 2684 namespace_lock(); 2685 if (type == MS_SHARED) { 2686 err = invent_group_ids(mnt, recurse); 2687 if (err) 2688 goto out_unlock; 2689 } 2690 2691 lock_mount_hash(); 2692 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2693 change_mnt_propagation(m, type); 2694 unlock_mount_hash(); 2695 2696 out_unlock: 2697 namespace_unlock(); 2698 return err; 2699 } 2700 2701 static struct mount *__do_loopback(struct path *old_path, int recurse) 2702 { 2703 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt); 2704 2705 if (IS_MNT_UNBINDABLE(old)) 2706 return mnt; 2707 2708 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations) 2709 return mnt; 2710 2711 if (!recurse && has_locked_children(old, old_path->dentry)) 2712 return mnt; 2713 2714 if (recurse) 2715 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE); 2716 else 2717 mnt = clone_mnt(old, old_path->dentry, 0); 2718 2719 if (!IS_ERR(mnt)) 2720 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2721 2722 return mnt; 2723 } 2724 2725 /* 2726 * do loopback mount. 2727 */ 2728 static int do_loopback(struct path *path, const char *old_name, 2729 int recurse) 2730 { 2731 struct path old_path; 2732 struct mount *mnt = NULL, *parent; 2733 struct mountpoint *mp; 2734 int err; 2735 if (!old_name || !*old_name) 2736 return -EINVAL; 2737 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2738 if (err) 2739 return err; 2740 2741 err = -EINVAL; 2742 if (mnt_ns_loop(old_path.dentry)) 2743 goto out; 2744 2745 mp = lock_mount(path); 2746 if (IS_ERR(mp)) { 2747 err = PTR_ERR(mp); 2748 goto out; 2749 } 2750 2751 parent = real_mount(path->mnt); 2752 if (!check_mnt(parent)) 2753 goto out2; 2754 2755 mnt = __do_loopback(&old_path, recurse); 2756 if (IS_ERR(mnt)) { 2757 err = PTR_ERR(mnt); 2758 goto out2; 2759 } 2760 2761 err = graft_tree(mnt, parent, mp); 2762 if (err) { 2763 lock_mount_hash(); 2764 umount_tree(mnt, UMOUNT_SYNC); 2765 unlock_mount_hash(); 2766 } 2767 out2: 2768 unlock_mount(mp); 2769 out: 2770 path_put(&old_path); 2771 return err; 2772 } 2773 2774 static struct file *open_detached_copy(struct path *path, bool recursive) 2775 { 2776 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2777 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true); 2778 struct mount *mnt, *p; 2779 struct file *file; 2780 2781 if (IS_ERR(ns)) 2782 return ERR_CAST(ns); 2783 2784 namespace_lock(); 2785 mnt = __do_loopback(path, recursive); 2786 if (IS_ERR(mnt)) { 2787 namespace_unlock(); 2788 free_mnt_ns(ns); 2789 return ERR_CAST(mnt); 2790 } 2791 2792 lock_mount_hash(); 2793 for (p = mnt; p; p = next_mnt(p, mnt)) { 2794 mnt_add_to_ns(ns, p); 2795 ns->nr_mounts++; 2796 } 2797 ns->root = mnt; 2798 mntget(&mnt->mnt); 2799 unlock_mount_hash(); 2800 namespace_unlock(); 2801 2802 mntput(path->mnt); 2803 path->mnt = &mnt->mnt; 2804 file = dentry_open(path, O_PATH, current_cred()); 2805 if (IS_ERR(file)) 2806 dissolve_on_fput(path->mnt); 2807 else 2808 file->f_mode |= FMODE_NEED_UNMOUNT; 2809 return file; 2810 } 2811 2812 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags) 2813 { 2814 struct file *file; 2815 struct path path; 2816 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 2817 bool detached = flags & OPEN_TREE_CLONE; 2818 int error; 2819 int fd; 2820 2821 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC); 2822 2823 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE | 2824 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE | 2825 OPEN_TREE_CLOEXEC)) 2826 return -EINVAL; 2827 2828 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE) 2829 return -EINVAL; 2830 2831 if (flags & AT_NO_AUTOMOUNT) 2832 lookup_flags &= ~LOOKUP_AUTOMOUNT; 2833 if (flags & AT_SYMLINK_NOFOLLOW) 2834 lookup_flags &= ~LOOKUP_FOLLOW; 2835 if (flags & AT_EMPTY_PATH) 2836 lookup_flags |= LOOKUP_EMPTY; 2837 2838 if (detached && !may_mount()) 2839 return -EPERM; 2840 2841 fd = get_unused_fd_flags(flags & O_CLOEXEC); 2842 if (fd < 0) 2843 return fd; 2844 2845 error = user_path_at(dfd, filename, lookup_flags, &path); 2846 if (unlikely(error)) { 2847 file = ERR_PTR(error); 2848 } else { 2849 if (detached) 2850 file = open_detached_copy(&path, flags & AT_RECURSIVE); 2851 else 2852 file = dentry_open(&path, O_PATH, current_cred()); 2853 path_put(&path); 2854 } 2855 if (IS_ERR(file)) { 2856 put_unused_fd(fd); 2857 return PTR_ERR(file); 2858 } 2859 fd_install(fd, file); 2860 return fd; 2861 } 2862 2863 /* 2864 * Don't allow locked mount flags to be cleared. 2865 * 2866 * No locks need to be held here while testing the various MNT_LOCK 2867 * flags because those flags can never be cleared once they are set. 2868 */ 2869 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags) 2870 { 2871 unsigned int fl = mnt->mnt.mnt_flags; 2872 2873 if ((fl & MNT_LOCK_READONLY) && 2874 !(mnt_flags & MNT_READONLY)) 2875 return false; 2876 2877 if ((fl & MNT_LOCK_NODEV) && 2878 !(mnt_flags & MNT_NODEV)) 2879 return false; 2880 2881 if ((fl & MNT_LOCK_NOSUID) && 2882 !(mnt_flags & MNT_NOSUID)) 2883 return false; 2884 2885 if ((fl & MNT_LOCK_NOEXEC) && 2886 !(mnt_flags & MNT_NOEXEC)) 2887 return false; 2888 2889 if ((fl & MNT_LOCK_ATIME) && 2890 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) 2891 return false; 2892 2893 return true; 2894 } 2895 2896 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags) 2897 { 2898 bool readonly_request = (mnt_flags & MNT_READONLY); 2899 2900 if (readonly_request == __mnt_is_readonly(&mnt->mnt)) 2901 return 0; 2902 2903 if (readonly_request) 2904 return mnt_make_readonly(mnt); 2905 2906 mnt->mnt.mnt_flags &= ~MNT_READONLY; 2907 return 0; 2908 } 2909 2910 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags) 2911 { 2912 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2913 mnt->mnt.mnt_flags = mnt_flags; 2914 touch_mnt_namespace(mnt->mnt_ns); 2915 } 2916 2917 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt) 2918 { 2919 struct super_block *sb = mnt->mnt_sb; 2920 2921 if (!__mnt_is_readonly(mnt) && 2922 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) && 2923 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) { 2924 char *buf, *mntpath; 2925 2926 buf = (char *)__get_free_page(GFP_KERNEL); 2927 if (buf) 2928 mntpath = d_path(mountpoint, buf, PAGE_SIZE); 2929 else 2930 mntpath = ERR_PTR(-ENOMEM); 2931 if (IS_ERR(mntpath)) 2932 mntpath = "(unknown)"; 2933 2934 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n", 2935 sb->s_type->name, 2936 is_mounted(mnt) ? "remounted" : "mounted", 2937 mntpath, &sb->s_time_max, 2938 (unsigned long long)sb->s_time_max); 2939 2940 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED; 2941 if (buf) 2942 free_page((unsigned long)buf); 2943 } 2944 } 2945 2946 /* 2947 * Handle reconfiguration of the mountpoint only without alteration of the 2948 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND 2949 * to mount(2). 2950 */ 2951 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags) 2952 { 2953 struct super_block *sb = path->mnt->mnt_sb; 2954 struct mount *mnt = real_mount(path->mnt); 2955 int ret; 2956 2957 if (!check_mnt(mnt)) 2958 return -EINVAL; 2959 2960 if (!path_mounted(path)) 2961 return -EINVAL; 2962 2963 if (!can_change_locked_flags(mnt, mnt_flags)) 2964 return -EPERM; 2965 2966 /* 2967 * We're only checking whether the superblock is read-only not 2968 * changing it, so only take down_read(&sb->s_umount). 2969 */ 2970 down_read(&sb->s_umount); 2971 lock_mount_hash(); 2972 ret = change_mount_ro_state(mnt, mnt_flags); 2973 if (ret == 0) 2974 set_mount_attributes(mnt, mnt_flags); 2975 unlock_mount_hash(); 2976 up_read(&sb->s_umount); 2977 2978 mnt_warn_timestamp_expiry(path, &mnt->mnt); 2979 2980 return ret; 2981 } 2982 2983 /* 2984 * change filesystem flags. dir should be a physical root of filesystem. 2985 * If you've mounted a non-root directory somewhere and want to do remount 2986 * on it - tough luck. 2987 */ 2988 static int do_remount(struct path *path, int ms_flags, int sb_flags, 2989 int mnt_flags, void *data) 2990 { 2991 int err; 2992 struct super_block *sb = path->mnt->mnt_sb; 2993 struct mount *mnt = real_mount(path->mnt); 2994 struct fs_context *fc; 2995 2996 if (!check_mnt(mnt)) 2997 return -EINVAL; 2998 2999 if (!path_mounted(path)) 3000 return -EINVAL; 3001 3002 if (!can_change_locked_flags(mnt, mnt_flags)) 3003 return -EPERM; 3004 3005 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK); 3006 if (IS_ERR(fc)) 3007 return PTR_ERR(fc); 3008 3009 /* 3010 * Indicate to the filesystem that the remount request is coming 3011 * from the legacy mount system call. 3012 */ 3013 fc->oldapi = true; 3014 3015 err = parse_monolithic_mount_data(fc, data); 3016 if (!err) { 3017 down_write(&sb->s_umount); 3018 err = -EPERM; 3019 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) { 3020 err = reconfigure_super(fc); 3021 if (!err) { 3022 lock_mount_hash(); 3023 set_mount_attributes(mnt, mnt_flags); 3024 unlock_mount_hash(); 3025 } 3026 } 3027 up_write(&sb->s_umount); 3028 } 3029 3030 mnt_warn_timestamp_expiry(path, &mnt->mnt); 3031 3032 put_fs_context(fc); 3033 return err; 3034 } 3035 3036 static inline int tree_contains_unbindable(struct mount *mnt) 3037 { 3038 struct mount *p; 3039 for (p = mnt; p; p = next_mnt(p, mnt)) { 3040 if (IS_MNT_UNBINDABLE(p)) 3041 return 1; 3042 } 3043 return 0; 3044 } 3045 3046 /* 3047 * Check that there aren't references to earlier/same mount namespaces in the 3048 * specified subtree. Such references can act as pins for mount namespaces 3049 * that aren't checked by the mount-cycle checking code, thereby allowing 3050 * cycles to be made. 3051 */ 3052 static bool check_for_nsfs_mounts(struct mount *subtree) 3053 { 3054 struct mount *p; 3055 bool ret = false; 3056 3057 lock_mount_hash(); 3058 for (p = subtree; p; p = next_mnt(p, subtree)) 3059 if (mnt_ns_loop(p->mnt.mnt_root)) 3060 goto out; 3061 3062 ret = true; 3063 out: 3064 unlock_mount_hash(); 3065 return ret; 3066 } 3067 3068 static int do_set_group(struct path *from_path, struct path *to_path) 3069 { 3070 struct mount *from, *to; 3071 int err; 3072 3073 from = real_mount(from_path->mnt); 3074 to = real_mount(to_path->mnt); 3075 3076 namespace_lock(); 3077 3078 err = -EINVAL; 3079 /* To and From must be mounted */ 3080 if (!is_mounted(&from->mnt)) 3081 goto out; 3082 if (!is_mounted(&to->mnt)) 3083 goto out; 3084 3085 err = -EPERM; 3086 /* We should be allowed to modify mount namespaces of both mounts */ 3087 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3088 goto out; 3089 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN)) 3090 goto out; 3091 3092 err = -EINVAL; 3093 /* To and From paths should be mount roots */ 3094 if (!path_mounted(from_path)) 3095 goto out; 3096 if (!path_mounted(to_path)) 3097 goto out; 3098 3099 /* Setting sharing groups is only allowed across same superblock */ 3100 if (from->mnt.mnt_sb != to->mnt.mnt_sb) 3101 goto out; 3102 3103 /* From mount root should be wider than To mount root */ 3104 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root)) 3105 goto out; 3106 3107 /* From mount should not have locked children in place of To's root */ 3108 if (has_locked_children(from, to->mnt.mnt_root)) 3109 goto out; 3110 3111 /* Setting sharing groups is only allowed on private mounts */ 3112 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to)) 3113 goto out; 3114 3115 /* From should not be private */ 3116 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from)) 3117 goto out; 3118 3119 if (IS_MNT_SLAVE(from)) { 3120 struct mount *m = from->mnt_master; 3121 3122 list_add(&to->mnt_slave, &m->mnt_slave_list); 3123 to->mnt_master = m; 3124 } 3125 3126 if (IS_MNT_SHARED(from)) { 3127 to->mnt_group_id = from->mnt_group_id; 3128 list_add(&to->mnt_share, &from->mnt_share); 3129 lock_mount_hash(); 3130 set_mnt_shared(to); 3131 unlock_mount_hash(); 3132 } 3133 3134 err = 0; 3135 out: 3136 namespace_unlock(); 3137 return err; 3138 } 3139 3140 /** 3141 * path_overmounted - check if path is overmounted 3142 * @path: path to check 3143 * 3144 * Check if path is overmounted, i.e., if there's a mount on top of 3145 * @path->mnt with @path->dentry as mountpoint. 3146 * 3147 * Context: This function expects namespace_lock() to be held. 3148 * Return: If path is overmounted true is returned, false if not. 3149 */ 3150 static inline bool path_overmounted(const struct path *path) 3151 { 3152 rcu_read_lock(); 3153 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) { 3154 rcu_read_unlock(); 3155 return true; 3156 } 3157 rcu_read_unlock(); 3158 return false; 3159 } 3160 3161 /** 3162 * can_move_mount_beneath - check that we can mount beneath the top mount 3163 * @from: mount to mount beneath 3164 * @to: mount under which to mount 3165 * @mp: mountpoint of @to 3166 * 3167 * - Make sure that @to->dentry is actually the root of a mount under 3168 * which we can mount another mount. 3169 * - Make sure that nothing can be mounted beneath the caller's current 3170 * root or the rootfs of the namespace. 3171 * - Make sure that the caller can unmount the topmost mount ensuring 3172 * that the caller could reveal the underlying mountpoint. 3173 * - Ensure that nothing has been mounted on top of @from before we 3174 * grabbed @namespace_sem to avoid creating pointless shadow mounts. 3175 * - Prevent mounting beneath a mount if the propagation relationship 3176 * between the source mount, parent mount, and top mount would lead to 3177 * nonsensical mount trees. 3178 * 3179 * Context: This function expects namespace_lock() to be held. 3180 * Return: On success 0, and on error a negative error code is returned. 3181 */ 3182 static int can_move_mount_beneath(const struct path *from, 3183 const struct path *to, 3184 const struct mountpoint *mp) 3185 { 3186 struct mount *mnt_from = real_mount(from->mnt), 3187 *mnt_to = real_mount(to->mnt), 3188 *parent_mnt_to = mnt_to->mnt_parent; 3189 3190 if (!mnt_has_parent(mnt_to)) 3191 return -EINVAL; 3192 3193 if (!path_mounted(to)) 3194 return -EINVAL; 3195 3196 if (IS_MNT_LOCKED(mnt_to)) 3197 return -EINVAL; 3198 3199 /* Avoid creating shadow mounts during mount propagation. */ 3200 if (path_overmounted(from)) 3201 return -EINVAL; 3202 3203 /* 3204 * Mounting beneath the rootfs only makes sense when the 3205 * semantics of pivot_root(".", ".") are used. 3206 */ 3207 if (&mnt_to->mnt == current->fs->root.mnt) 3208 return -EINVAL; 3209 if (parent_mnt_to == current->nsproxy->mnt_ns->root) 3210 return -EINVAL; 3211 3212 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent) 3213 if (p == mnt_to) 3214 return -EINVAL; 3215 3216 /* 3217 * If the parent mount propagates to the child mount this would 3218 * mean mounting @mnt_from on @mnt_to->mnt_parent and then 3219 * propagating a copy @c of @mnt_from on top of @mnt_to. This 3220 * defeats the whole purpose of mounting beneath another mount. 3221 */ 3222 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp)) 3223 return -EINVAL; 3224 3225 /* 3226 * If @mnt_to->mnt_parent propagates to @mnt_from this would 3227 * mean propagating a copy @c of @mnt_from on top of @mnt_from. 3228 * Afterwards @mnt_from would be mounted on top of 3229 * @mnt_to->mnt_parent and @mnt_to would be unmounted from 3230 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is 3231 * already mounted on @mnt_from, @mnt_to would ultimately be 3232 * remounted on top of @c. Afterwards, @mnt_from would be 3233 * covered by a copy @c of @mnt_from and @c would be covered by 3234 * @mnt_from itself. This defeats the whole purpose of mounting 3235 * @mnt_from beneath @mnt_to. 3236 */ 3237 if (propagation_would_overmount(parent_mnt_to, mnt_from, mp)) 3238 return -EINVAL; 3239 3240 return 0; 3241 } 3242 3243 static int do_move_mount(struct path *old_path, struct path *new_path, 3244 bool beneath) 3245 { 3246 struct mnt_namespace *ns; 3247 struct mount *p; 3248 struct mount *old; 3249 struct mount *parent; 3250 struct mountpoint *mp, *old_mp; 3251 int err; 3252 bool attached; 3253 enum mnt_tree_flags_t flags = 0; 3254 3255 mp = do_lock_mount(new_path, beneath); 3256 if (IS_ERR(mp)) 3257 return PTR_ERR(mp); 3258 3259 old = real_mount(old_path->mnt); 3260 p = real_mount(new_path->mnt); 3261 parent = old->mnt_parent; 3262 attached = mnt_has_parent(old); 3263 if (attached) 3264 flags |= MNT_TREE_MOVE; 3265 old_mp = old->mnt_mp; 3266 ns = old->mnt_ns; 3267 3268 err = -EINVAL; 3269 /* The mountpoint must be in our namespace. */ 3270 if (!check_mnt(p)) 3271 goto out; 3272 3273 /* The thing moved must be mounted... */ 3274 if (!is_mounted(&old->mnt)) 3275 goto out; 3276 3277 /* ... and either ours or the root of anon namespace */ 3278 if (!(attached ? check_mnt(old) : is_anon_ns(ns))) 3279 goto out; 3280 3281 if (old->mnt.mnt_flags & MNT_LOCKED) 3282 goto out; 3283 3284 if (!path_mounted(old_path)) 3285 goto out; 3286 3287 if (d_is_dir(new_path->dentry) != 3288 d_is_dir(old_path->dentry)) 3289 goto out; 3290 /* 3291 * Don't move a mount residing in a shared parent. 3292 */ 3293 if (attached && IS_MNT_SHARED(parent)) 3294 goto out; 3295 3296 if (beneath) { 3297 err = can_move_mount_beneath(old_path, new_path, mp); 3298 if (err) 3299 goto out; 3300 3301 err = -EINVAL; 3302 p = p->mnt_parent; 3303 flags |= MNT_TREE_BENEATH; 3304 } 3305 3306 /* 3307 * Don't move a mount tree containing unbindable mounts to a destination 3308 * mount which is shared. 3309 */ 3310 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 3311 goto out; 3312 err = -ELOOP; 3313 if (!check_for_nsfs_mounts(old)) 3314 goto out; 3315 for (; mnt_has_parent(p); p = p->mnt_parent) 3316 if (p == old) 3317 goto out; 3318 3319 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags); 3320 if (err) 3321 goto out; 3322 3323 /* if the mount is moved, it should no longer be expire 3324 * automatically */ 3325 list_del_init(&old->mnt_expire); 3326 if (attached) 3327 put_mountpoint(old_mp); 3328 out: 3329 unlock_mount(mp); 3330 if (!err) { 3331 if (attached) 3332 mntput_no_expire(parent); 3333 else 3334 free_mnt_ns(ns); 3335 } 3336 return err; 3337 } 3338 3339 static int do_move_mount_old(struct path *path, const char *old_name) 3340 { 3341 struct path old_path; 3342 int err; 3343 3344 if (!old_name || !*old_name) 3345 return -EINVAL; 3346 3347 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 3348 if (err) 3349 return err; 3350 3351 err = do_move_mount(&old_path, path, false); 3352 path_put(&old_path); 3353 return err; 3354 } 3355 3356 /* 3357 * add a mount into a namespace's mount tree 3358 */ 3359 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp, 3360 const struct path *path, int mnt_flags) 3361 { 3362 struct mount *parent = real_mount(path->mnt); 3363 3364 mnt_flags &= ~MNT_INTERNAL_FLAGS; 3365 3366 if (unlikely(!check_mnt(parent))) { 3367 /* that's acceptable only for automounts done in private ns */ 3368 if (!(mnt_flags & MNT_SHRINKABLE)) 3369 return -EINVAL; 3370 /* ... and for those we'd better have mountpoint still alive */ 3371 if (!parent->mnt_ns) 3372 return -EINVAL; 3373 } 3374 3375 /* Refuse the same filesystem on the same mount point */ 3376 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path)) 3377 return -EBUSY; 3378 3379 if (d_is_symlink(newmnt->mnt.mnt_root)) 3380 return -EINVAL; 3381 3382 newmnt->mnt.mnt_flags = mnt_flags; 3383 return graft_tree(newmnt, parent, mp); 3384 } 3385 3386 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags); 3387 3388 /* 3389 * Create a new mount using a superblock configuration and request it 3390 * be added to the namespace tree. 3391 */ 3392 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint, 3393 unsigned int mnt_flags) 3394 { 3395 struct vfsmount *mnt; 3396 struct mountpoint *mp; 3397 struct super_block *sb = fc->root->d_sb; 3398 int error; 3399 3400 error = security_sb_kern_mount(sb); 3401 if (!error && mount_too_revealing(sb, &mnt_flags)) 3402 error = -EPERM; 3403 3404 if (unlikely(error)) { 3405 fc_drop_locked(fc); 3406 return error; 3407 } 3408 3409 up_write(&sb->s_umount); 3410 3411 mnt = vfs_create_mount(fc); 3412 if (IS_ERR(mnt)) 3413 return PTR_ERR(mnt); 3414 3415 mnt_warn_timestamp_expiry(mountpoint, mnt); 3416 3417 mp = lock_mount(mountpoint); 3418 if (IS_ERR(mp)) { 3419 mntput(mnt); 3420 return PTR_ERR(mp); 3421 } 3422 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags); 3423 unlock_mount(mp); 3424 if (error < 0) 3425 mntput(mnt); 3426 return error; 3427 } 3428 3429 /* 3430 * create a new mount for userspace and request it to be added into the 3431 * namespace's tree 3432 */ 3433 static int do_new_mount(struct path *path, const char *fstype, int sb_flags, 3434 int mnt_flags, const char *name, void *data) 3435 { 3436 struct file_system_type *type; 3437 struct fs_context *fc; 3438 const char *subtype = NULL; 3439 int err = 0; 3440 3441 if (!fstype) 3442 return -EINVAL; 3443 3444 type = get_fs_type(fstype); 3445 if (!type) 3446 return -ENODEV; 3447 3448 if (type->fs_flags & FS_HAS_SUBTYPE) { 3449 subtype = strchr(fstype, '.'); 3450 if (subtype) { 3451 subtype++; 3452 if (!*subtype) { 3453 put_filesystem(type); 3454 return -EINVAL; 3455 } 3456 } 3457 } 3458 3459 fc = fs_context_for_mount(type, sb_flags); 3460 put_filesystem(type); 3461 if (IS_ERR(fc)) 3462 return PTR_ERR(fc); 3463 3464 /* 3465 * Indicate to the filesystem that the mount request is coming 3466 * from the legacy mount system call. 3467 */ 3468 fc->oldapi = true; 3469 3470 if (subtype) 3471 err = vfs_parse_fs_string(fc, "subtype", 3472 subtype, strlen(subtype)); 3473 if (!err && name) 3474 err = vfs_parse_fs_string(fc, "source", name, strlen(name)); 3475 if (!err) 3476 err = parse_monolithic_mount_data(fc, data); 3477 if (!err && !mount_capable(fc)) 3478 err = -EPERM; 3479 if (!err) 3480 err = vfs_get_tree(fc); 3481 if (!err) 3482 err = do_new_mount_fc(fc, path, mnt_flags); 3483 3484 put_fs_context(fc); 3485 return err; 3486 } 3487 3488 int finish_automount(struct vfsmount *m, const struct path *path) 3489 { 3490 struct dentry *dentry = path->dentry; 3491 struct mountpoint *mp; 3492 struct mount *mnt; 3493 int err; 3494 3495 if (!m) 3496 return 0; 3497 if (IS_ERR(m)) 3498 return PTR_ERR(m); 3499 3500 mnt = real_mount(m); 3501 /* The new mount record should have at least 2 refs to prevent it being 3502 * expired before we get a chance to add it 3503 */ 3504 BUG_ON(mnt_get_count(mnt) < 2); 3505 3506 if (m->mnt_sb == path->mnt->mnt_sb && 3507 m->mnt_root == dentry) { 3508 err = -ELOOP; 3509 goto discard; 3510 } 3511 3512 /* 3513 * we don't want to use lock_mount() - in this case finding something 3514 * that overmounts our mountpoint to be means "quitely drop what we've 3515 * got", not "try to mount it on top". 3516 */ 3517 inode_lock(dentry->d_inode); 3518 namespace_lock(); 3519 if (unlikely(cant_mount(dentry))) { 3520 err = -ENOENT; 3521 goto discard_locked; 3522 } 3523 if (path_overmounted(path)) { 3524 err = 0; 3525 goto discard_locked; 3526 } 3527 mp = get_mountpoint(dentry); 3528 if (IS_ERR(mp)) { 3529 err = PTR_ERR(mp); 3530 goto discard_locked; 3531 } 3532 3533 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 3534 unlock_mount(mp); 3535 if (unlikely(err)) 3536 goto discard; 3537 mntput(m); 3538 return 0; 3539 3540 discard_locked: 3541 namespace_unlock(); 3542 inode_unlock(dentry->d_inode); 3543 discard: 3544 /* remove m from any expiration list it may be on */ 3545 if (!list_empty(&mnt->mnt_expire)) { 3546 namespace_lock(); 3547 list_del_init(&mnt->mnt_expire); 3548 namespace_unlock(); 3549 } 3550 mntput(m); 3551 mntput(m); 3552 return err; 3553 } 3554 3555 /** 3556 * mnt_set_expiry - Put a mount on an expiration list 3557 * @mnt: The mount to list. 3558 * @expiry_list: The list to add the mount to. 3559 */ 3560 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 3561 { 3562 namespace_lock(); 3563 3564 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 3565 3566 namespace_unlock(); 3567 } 3568 EXPORT_SYMBOL(mnt_set_expiry); 3569 3570 /* 3571 * process a list of expirable mountpoints with the intent of discarding any 3572 * mountpoints that aren't in use and haven't been touched since last we came 3573 * here 3574 */ 3575 void mark_mounts_for_expiry(struct list_head *mounts) 3576 { 3577 struct mount *mnt, *next; 3578 LIST_HEAD(graveyard); 3579 3580 if (list_empty(mounts)) 3581 return; 3582 3583 namespace_lock(); 3584 lock_mount_hash(); 3585 3586 /* extract from the expiration list every vfsmount that matches the 3587 * following criteria: 3588 * - only referenced by its parent vfsmount 3589 * - still marked for expiry (marked on the last call here; marks are 3590 * cleared by mntput()) 3591 */ 3592 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 3593 if (!xchg(&mnt->mnt_expiry_mark, 1) || 3594 propagate_mount_busy(mnt, 1)) 3595 continue; 3596 list_move(&mnt->mnt_expire, &graveyard); 3597 } 3598 while (!list_empty(&graveyard)) { 3599 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 3600 touch_mnt_namespace(mnt->mnt_ns); 3601 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3602 } 3603 unlock_mount_hash(); 3604 namespace_unlock(); 3605 } 3606 3607 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 3608 3609 /* 3610 * Ripoff of 'select_parent()' 3611 * 3612 * search the list of submounts for a given mountpoint, and move any 3613 * shrinkable submounts to the 'graveyard' list. 3614 */ 3615 static int select_submounts(struct mount *parent, struct list_head *graveyard) 3616 { 3617 struct mount *this_parent = parent; 3618 struct list_head *next; 3619 int found = 0; 3620 3621 repeat: 3622 next = this_parent->mnt_mounts.next; 3623 resume: 3624 while (next != &this_parent->mnt_mounts) { 3625 struct list_head *tmp = next; 3626 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 3627 3628 next = tmp->next; 3629 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 3630 continue; 3631 /* 3632 * Descend a level if the d_mounts list is non-empty. 3633 */ 3634 if (!list_empty(&mnt->mnt_mounts)) { 3635 this_parent = mnt; 3636 goto repeat; 3637 } 3638 3639 if (!propagate_mount_busy(mnt, 1)) { 3640 list_move_tail(&mnt->mnt_expire, graveyard); 3641 found++; 3642 } 3643 } 3644 /* 3645 * All done at this level ... ascend and resume the search 3646 */ 3647 if (this_parent != parent) { 3648 next = this_parent->mnt_child.next; 3649 this_parent = this_parent->mnt_parent; 3650 goto resume; 3651 } 3652 return found; 3653 } 3654 3655 /* 3656 * process a list of expirable mountpoints with the intent of discarding any 3657 * submounts of a specific parent mountpoint 3658 * 3659 * mount_lock must be held for write 3660 */ 3661 static void shrink_submounts(struct mount *mnt) 3662 { 3663 LIST_HEAD(graveyard); 3664 struct mount *m; 3665 3666 /* extract submounts of 'mountpoint' from the expiration list */ 3667 while (select_submounts(mnt, &graveyard)) { 3668 while (!list_empty(&graveyard)) { 3669 m = list_first_entry(&graveyard, struct mount, 3670 mnt_expire); 3671 touch_mnt_namespace(m->mnt_ns); 3672 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 3673 } 3674 } 3675 } 3676 3677 static void *copy_mount_options(const void __user * data) 3678 { 3679 char *copy; 3680 unsigned left, offset; 3681 3682 if (!data) 3683 return NULL; 3684 3685 copy = kmalloc(PAGE_SIZE, GFP_KERNEL); 3686 if (!copy) 3687 return ERR_PTR(-ENOMEM); 3688 3689 left = copy_from_user(copy, data, PAGE_SIZE); 3690 3691 /* 3692 * Not all architectures have an exact copy_from_user(). Resort to 3693 * byte at a time. 3694 */ 3695 offset = PAGE_SIZE - left; 3696 while (left) { 3697 char c; 3698 if (get_user(c, (const char __user *)data + offset)) 3699 break; 3700 copy[offset] = c; 3701 left--; 3702 offset++; 3703 } 3704 3705 if (left == PAGE_SIZE) { 3706 kfree(copy); 3707 return ERR_PTR(-EFAULT); 3708 } 3709 3710 return copy; 3711 } 3712 3713 static char *copy_mount_string(const void __user *data) 3714 { 3715 return data ? strndup_user(data, PATH_MAX) : NULL; 3716 } 3717 3718 /* 3719 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 3720 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 3721 * 3722 * data is a (void *) that can point to any structure up to 3723 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 3724 * information (or be NULL). 3725 * 3726 * Pre-0.97 versions of mount() didn't have a flags word. 3727 * When the flags word was introduced its top half was required 3728 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 3729 * Therefore, if this magic number is present, it carries no information 3730 * and must be discarded. 3731 */ 3732 int path_mount(const char *dev_name, struct path *path, 3733 const char *type_page, unsigned long flags, void *data_page) 3734 { 3735 unsigned int mnt_flags = 0, sb_flags; 3736 int ret; 3737 3738 /* Discard magic */ 3739 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 3740 flags &= ~MS_MGC_MSK; 3741 3742 /* Basic sanity checks */ 3743 if (data_page) 3744 ((char *)data_page)[PAGE_SIZE - 1] = 0; 3745 3746 if (flags & MS_NOUSER) 3747 return -EINVAL; 3748 3749 ret = security_sb_mount(dev_name, path, type_page, flags, data_page); 3750 if (ret) 3751 return ret; 3752 if (!may_mount()) 3753 return -EPERM; 3754 if (flags & SB_MANDLOCK) 3755 warn_mandlock(); 3756 3757 /* Default to relatime unless overriden */ 3758 if (!(flags & MS_NOATIME)) 3759 mnt_flags |= MNT_RELATIME; 3760 3761 /* Separate the per-mountpoint flags */ 3762 if (flags & MS_NOSUID) 3763 mnt_flags |= MNT_NOSUID; 3764 if (flags & MS_NODEV) 3765 mnt_flags |= MNT_NODEV; 3766 if (flags & MS_NOEXEC) 3767 mnt_flags |= MNT_NOEXEC; 3768 if (flags & MS_NOATIME) 3769 mnt_flags |= MNT_NOATIME; 3770 if (flags & MS_NODIRATIME) 3771 mnt_flags |= MNT_NODIRATIME; 3772 if (flags & MS_STRICTATIME) 3773 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 3774 if (flags & MS_RDONLY) 3775 mnt_flags |= MNT_READONLY; 3776 if (flags & MS_NOSYMFOLLOW) 3777 mnt_flags |= MNT_NOSYMFOLLOW; 3778 3779 /* The default atime for remount is preservation */ 3780 if ((flags & MS_REMOUNT) && 3781 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 3782 MS_STRICTATIME)) == 0)) { 3783 mnt_flags &= ~MNT_ATIME_MASK; 3784 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK; 3785 } 3786 3787 sb_flags = flags & (SB_RDONLY | 3788 SB_SYNCHRONOUS | 3789 SB_MANDLOCK | 3790 SB_DIRSYNC | 3791 SB_SILENT | 3792 SB_POSIXACL | 3793 SB_LAZYTIME | 3794 SB_I_VERSION); 3795 3796 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND)) 3797 return do_reconfigure_mnt(path, mnt_flags); 3798 if (flags & MS_REMOUNT) 3799 return do_remount(path, flags, sb_flags, mnt_flags, data_page); 3800 if (flags & MS_BIND) 3801 return do_loopback(path, dev_name, flags & MS_REC); 3802 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 3803 return do_change_type(path, flags); 3804 if (flags & MS_MOVE) 3805 return do_move_mount_old(path, dev_name); 3806 3807 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name, 3808 data_page); 3809 } 3810 3811 long do_mount(const char *dev_name, const char __user *dir_name, 3812 const char *type_page, unsigned long flags, void *data_page) 3813 { 3814 struct path path; 3815 int ret; 3816 3817 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path); 3818 if (ret) 3819 return ret; 3820 ret = path_mount(dev_name, &path, type_page, flags, data_page); 3821 path_put(&path); 3822 return ret; 3823 } 3824 3825 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns) 3826 { 3827 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES); 3828 } 3829 3830 static void dec_mnt_namespaces(struct ucounts *ucounts) 3831 { 3832 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES); 3833 } 3834 3835 static void free_mnt_ns(struct mnt_namespace *ns) 3836 { 3837 if (!is_anon_ns(ns)) 3838 ns_free_inum(&ns->ns); 3839 dec_mnt_namespaces(ns->ucounts); 3840 mnt_ns_tree_remove(ns); 3841 } 3842 3843 /* 3844 * Assign a sequence number so we can detect when we attempt to bind 3845 * mount a reference to an older mount namespace into the current 3846 * mount namespace, preventing reference counting loops. A 64bit 3847 * number incrementing at 10Ghz will take 12,427 years to wrap which 3848 * is effectively never, so we can ignore the possibility. 3849 */ 3850 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 3851 3852 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon) 3853 { 3854 struct mnt_namespace *new_ns; 3855 struct ucounts *ucounts; 3856 int ret; 3857 3858 ucounts = inc_mnt_namespaces(user_ns); 3859 if (!ucounts) 3860 return ERR_PTR(-ENOSPC); 3861 3862 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT); 3863 if (!new_ns) { 3864 dec_mnt_namespaces(ucounts); 3865 return ERR_PTR(-ENOMEM); 3866 } 3867 if (!anon) { 3868 ret = ns_alloc_inum(&new_ns->ns); 3869 if (ret) { 3870 kfree(new_ns); 3871 dec_mnt_namespaces(ucounts); 3872 return ERR_PTR(ret); 3873 } 3874 } 3875 new_ns->ns.ops = &mntns_operations; 3876 if (!anon) 3877 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 3878 refcount_set(&new_ns->ns.count, 1); 3879 refcount_set(&new_ns->passive, 1); 3880 new_ns->mounts = RB_ROOT; 3881 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node); 3882 init_waitqueue_head(&new_ns->poll); 3883 new_ns->user_ns = get_user_ns(user_ns); 3884 new_ns->ucounts = ucounts; 3885 return new_ns; 3886 } 3887 3888 __latent_entropy 3889 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 3890 struct user_namespace *user_ns, struct fs_struct *new_fs) 3891 { 3892 struct mnt_namespace *new_ns; 3893 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 3894 struct mount *p, *q; 3895 struct mount *old; 3896 struct mount *new; 3897 int copy_flags; 3898 3899 BUG_ON(!ns); 3900 3901 if (likely(!(flags & CLONE_NEWNS))) { 3902 get_mnt_ns(ns); 3903 return ns; 3904 } 3905 3906 old = ns->root; 3907 3908 new_ns = alloc_mnt_ns(user_ns, false); 3909 if (IS_ERR(new_ns)) 3910 return new_ns; 3911 3912 namespace_lock(); 3913 /* First pass: copy the tree topology */ 3914 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 3915 if (user_ns != ns->user_ns) 3916 copy_flags |= CL_SHARED_TO_SLAVE; 3917 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 3918 if (IS_ERR(new)) { 3919 namespace_unlock(); 3920 free_mnt_ns(new_ns); 3921 return ERR_CAST(new); 3922 } 3923 if (user_ns != ns->user_ns) { 3924 lock_mount_hash(); 3925 lock_mnt_tree(new); 3926 unlock_mount_hash(); 3927 } 3928 new_ns->root = new; 3929 3930 /* 3931 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 3932 * as belonging to new namespace. We have already acquired a private 3933 * fs_struct, so tsk->fs->lock is not needed. 3934 */ 3935 p = old; 3936 q = new; 3937 while (p) { 3938 mnt_add_to_ns(new_ns, q); 3939 new_ns->nr_mounts++; 3940 if (new_fs) { 3941 if (&p->mnt == new_fs->root.mnt) { 3942 new_fs->root.mnt = mntget(&q->mnt); 3943 rootmnt = &p->mnt; 3944 } 3945 if (&p->mnt == new_fs->pwd.mnt) { 3946 new_fs->pwd.mnt = mntget(&q->mnt); 3947 pwdmnt = &p->mnt; 3948 } 3949 } 3950 p = next_mnt(p, old); 3951 q = next_mnt(q, new); 3952 if (!q) 3953 break; 3954 // an mntns binding we'd skipped? 3955 while (p->mnt.mnt_root != q->mnt.mnt_root) 3956 p = next_mnt(skip_mnt_tree(p), old); 3957 } 3958 mnt_ns_tree_add(new_ns); 3959 namespace_unlock(); 3960 3961 if (rootmnt) 3962 mntput(rootmnt); 3963 if (pwdmnt) 3964 mntput(pwdmnt); 3965 3966 return new_ns; 3967 } 3968 3969 struct dentry *mount_subtree(struct vfsmount *m, const char *name) 3970 { 3971 struct mount *mnt = real_mount(m); 3972 struct mnt_namespace *ns; 3973 struct super_block *s; 3974 struct path path; 3975 int err; 3976 3977 ns = alloc_mnt_ns(&init_user_ns, true); 3978 if (IS_ERR(ns)) { 3979 mntput(m); 3980 return ERR_CAST(ns); 3981 } 3982 ns->root = mnt; 3983 ns->nr_mounts++; 3984 mnt_add_to_ns(ns, mnt); 3985 3986 err = vfs_path_lookup(m->mnt_root, m, 3987 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 3988 3989 put_mnt_ns(ns); 3990 3991 if (err) 3992 return ERR_PTR(err); 3993 3994 /* trade a vfsmount reference for active sb one */ 3995 s = path.mnt->mnt_sb; 3996 atomic_inc(&s->s_active); 3997 mntput(path.mnt); 3998 /* lock the sucker */ 3999 down_write(&s->s_umount); 4000 /* ... and return the root of (sub)tree on it */ 4001 return path.dentry; 4002 } 4003 EXPORT_SYMBOL(mount_subtree); 4004 4005 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 4006 char __user *, type, unsigned long, flags, void __user *, data) 4007 { 4008 int ret; 4009 char *kernel_type; 4010 char *kernel_dev; 4011 void *options; 4012 4013 kernel_type = copy_mount_string(type); 4014 ret = PTR_ERR(kernel_type); 4015 if (IS_ERR(kernel_type)) 4016 goto out_type; 4017 4018 kernel_dev = copy_mount_string(dev_name); 4019 ret = PTR_ERR(kernel_dev); 4020 if (IS_ERR(kernel_dev)) 4021 goto out_dev; 4022 4023 options = copy_mount_options(data); 4024 ret = PTR_ERR(options); 4025 if (IS_ERR(options)) 4026 goto out_data; 4027 4028 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options); 4029 4030 kfree(options); 4031 out_data: 4032 kfree(kernel_dev); 4033 out_dev: 4034 kfree(kernel_type); 4035 out_type: 4036 return ret; 4037 } 4038 4039 #define FSMOUNT_VALID_FLAGS \ 4040 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \ 4041 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \ 4042 MOUNT_ATTR_NOSYMFOLLOW) 4043 4044 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP) 4045 4046 #define MOUNT_SETATTR_PROPAGATION_FLAGS \ 4047 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED) 4048 4049 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags) 4050 { 4051 unsigned int mnt_flags = 0; 4052 4053 if (attr_flags & MOUNT_ATTR_RDONLY) 4054 mnt_flags |= MNT_READONLY; 4055 if (attr_flags & MOUNT_ATTR_NOSUID) 4056 mnt_flags |= MNT_NOSUID; 4057 if (attr_flags & MOUNT_ATTR_NODEV) 4058 mnt_flags |= MNT_NODEV; 4059 if (attr_flags & MOUNT_ATTR_NOEXEC) 4060 mnt_flags |= MNT_NOEXEC; 4061 if (attr_flags & MOUNT_ATTR_NODIRATIME) 4062 mnt_flags |= MNT_NODIRATIME; 4063 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW) 4064 mnt_flags |= MNT_NOSYMFOLLOW; 4065 4066 return mnt_flags; 4067 } 4068 4069 /* 4070 * Create a kernel mount representation for a new, prepared superblock 4071 * (specified by fs_fd) and attach to an open_tree-like file descriptor. 4072 */ 4073 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags, 4074 unsigned int, attr_flags) 4075 { 4076 struct mnt_namespace *ns; 4077 struct fs_context *fc; 4078 struct file *file; 4079 struct path newmount; 4080 struct mount *mnt; 4081 struct fd f; 4082 unsigned int mnt_flags = 0; 4083 long ret; 4084 4085 if (!may_mount()) 4086 return -EPERM; 4087 4088 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0) 4089 return -EINVAL; 4090 4091 if (attr_flags & ~FSMOUNT_VALID_FLAGS) 4092 return -EINVAL; 4093 4094 mnt_flags = attr_flags_to_mnt_flags(attr_flags); 4095 4096 switch (attr_flags & MOUNT_ATTR__ATIME) { 4097 case MOUNT_ATTR_STRICTATIME: 4098 break; 4099 case MOUNT_ATTR_NOATIME: 4100 mnt_flags |= MNT_NOATIME; 4101 break; 4102 case MOUNT_ATTR_RELATIME: 4103 mnt_flags |= MNT_RELATIME; 4104 break; 4105 default: 4106 return -EINVAL; 4107 } 4108 4109 f = fdget(fs_fd); 4110 if (!f.file) 4111 return -EBADF; 4112 4113 ret = -EINVAL; 4114 if (f.file->f_op != &fscontext_fops) 4115 goto err_fsfd; 4116 4117 fc = f.file->private_data; 4118 4119 ret = mutex_lock_interruptible(&fc->uapi_mutex); 4120 if (ret < 0) 4121 goto err_fsfd; 4122 4123 /* There must be a valid superblock or we can't mount it */ 4124 ret = -EINVAL; 4125 if (!fc->root) 4126 goto err_unlock; 4127 4128 ret = -EPERM; 4129 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) { 4130 pr_warn("VFS: Mount too revealing\n"); 4131 goto err_unlock; 4132 } 4133 4134 ret = -EBUSY; 4135 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT) 4136 goto err_unlock; 4137 4138 if (fc->sb_flags & SB_MANDLOCK) 4139 warn_mandlock(); 4140 4141 newmount.mnt = vfs_create_mount(fc); 4142 if (IS_ERR(newmount.mnt)) { 4143 ret = PTR_ERR(newmount.mnt); 4144 goto err_unlock; 4145 } 4146 newmount.dentry = dget(fc->root); 4147 newmount.mnt->mnt_flags = mnt_flags; 4148 4149 /* We've done the mount bit - now move the file context into more or 4150 * less the same state as if we'd done an fspick(). We don't want to 4151 * do any memory allocation or anything like that at this point as we 4152 * don't want to have to handle any errors incurred. 4153 */ 4154 vfs_clean_context(fc); 4155 4156 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true); 4157 if (IS_ERR(ns)) { 4158 ret = PTR_ERR(ns); 4159 goto err_path; 4160 } 4161 mnt = real_mount(newmount.mnt); 4162 ns->root = mnt; 4163 ns->nr_mounts = 1; 4164 mnt_add_to_ns(ns, mnt); 4165 mntget(newmount.mnt); 4166 4167 /* Attach to an apparent O_PATH fd with a note that we need to unmount 4168 * it, not just simply put it. 4169 */ 4170 file = dentry_open(&newmount, O_PATH, fc->cred); 4171 if (IS_ERR(file)) { 4172 dissolve_on_fput(newmount.mnt); 4173 ret = PTR_ERR(file); 4174 goto err_path; 4175 } 4176 file->f_mode |= FMODE_NEED_UNMOUNT; 4177 4178 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0); 4179 if (ret >= 0) 4180 fd_install(ret, file); 4181 else 4182 fput(file); 4183 4184 err_path: 4185 path_put(&newmount); 4186 err_unlock: 4187 mutex_unlock(&fc->uapi_mutex); 4188 err_fsfd: 4189 fdput(f); 4190 return ret; 4191 } 4192 4193 /* 4194 * Move a mount from one place to another. In combination with 4195 * fsopen()/fsmount() this is used to install a new mount and in combination 4196 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy 4197 * a mount subtree. 4198 * 4199 * Note the flags value is a combination of MOVE_MOUNT_* flags. 4200 */ 4201 SYSCALL_DEFINE5(move_mount, 4202 int, from_dfd, const char __user *, from_pathname, 4203 int, to_dfd, const char __user *, to_pathname, 4204 unsigned int, flags) 4205 { 4206 struct path from_path, to_path; 4207 unsigned int lflags; 4208 int ret = 0; 4209 4210 if (!may_mount()) 4211 return -EPERM; 4212 4213 if (flags & ~MOVE_MOUNT__MASK) 4214 return -EINVAL; 4215 4216 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) == 4217 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) 4218 return -EINVAL; 4219 4220 /* If someone gives a pathname, they aren't permitted to move 4221 * from an fd that requires unmount as we can't get at the flag 4222 * to clear it afterwards. 4223 */ 4224 lflags = 0; 4225 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4226 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4227 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4228 4229 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path); 4230 if (ret < 0) 4231 return ret; 4232 4233 lflags = 0; 4234 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW; 4235 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT; 4236 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY; 4237 4238 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path); 4239 if (ret < 0) 4240 goto out_from; 4241 4242 ret = security_move_mount(&from_path, &to_path); 4243 if (ret < 0) 4244 goto out_to; 4245 4246 if (flags & MOVE_MOUNT_SET_GROUP) 4247 ret = do_set_group(&from_path, &to_path); 4248 else 4249 ret = do_move_mount(&from_path, &to_path, 4250 (flags & MOVE_MOUNT_BENEATH)); 4251 4252 out_to: 4253 path_put(&to_path); 4254 out_from: 4255 path_put(&from_path); 4256 return ret; 4257 } 4258 4259 /* 4260 * Return true if path is reachable from root 4261 * 4262 * namespace_sem or mount_lock is held 4263 */ 4264 bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 4265 const struct path *root) 4266 { 4267 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 4268 dentry = mnt->mnt_mountpoint; 4269 mnt = mnt->mnt_parent; 4270 } 4271 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 4272 } 4273 4274 bool path_is_under(const struct path *path1, const struct path *path2) 4275 { 4276 bool res; 4277 read_seqlock_excl(&mount_lock); 4278 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 4279 read_sequnlock_excl(&mount_lock); 4280 return res; 4281 } 4282 EXPORT_SYMBOL(path_is_under); 4283 4284 /* 4285 * pivot_root Semantics: 4286 * Moves the root file system of the current process to the directory put_old, 4287 * makes new_root as the new root file system of the current process, and sets 4288 * root/cwd of all processes which had them on the current root to new_root. 4289 * 4290 * Restrictions: 4291 * The new_root and put_old must be directories, and must not be on the 4292 * same file system as the current process root. The put_old must be 4293 * underneath new_root, i.e. adding a non-zero number of /.. to the string 4294 * pointed to by put_old must yield the same directory as new_root. No other 4295 * file system may be mounted on put_old. After all, new_root is a mountpoint. 4296 * 4297 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 4298 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives 4299 * in this situation. 4300 * 4301 * Notes: 4302 * - we don't move root/cwd if they are not at the root (reason: if something 4303 * cared enough to change them, it's probably wrong to force them elsewhere) 4304 * - it's okay to pick a root that isn't the root of a file system, e.g. 4305 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 4306 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 4307 * first. 4308 */ 4309 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 4310 const char __user *, put_old) 4311 { 4312 struct path new, old, root; 4313 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent; 4314 struct mountpoint *old_mp, *root_mp; 4315 int error; 4316 4317 if (!may_mount()) 4318 return -EPERM; 4319 4320 error = user_path_at(AT_FDCWD, new_root, 4321 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new); 4322 if (error) 4323 goto out0; 4324 4325 error = user_path_at(AT_FDCWD, put_old, 4326 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old); 4327 if (error) 4328 goto out1; 4329 4330 error = security_sb_pivotroot(&old, &new); 4331 if (error) 4332 goto out2; 4333 4334 get_fs_root(current->fs, &root); 4335 old_mp = lock_mount(&old); 4336 error = PTR_ERR(old_mp); 4337 if (IS_ERR(old_mp)) 4338 goto out3; 4339 4340 error = -EINVAL; 4341 new_mnt = real_mount(new.mnt); 4342 root_mnt = real_mount(root.mnt); 4343 old_mnt = real_mount(old.mnt); 4344 ex_parent = new_mnt->mnt_parent; 4345 root_parent = root_mnt->mnt_parent; 4346 if (IS_MNT_SHARED(old_mnt) || 4347 IS_MNT_SHARED(ex_parent) || 4348 IS_MNT_SHARED(root_parent)) 4349 goto out4; 4350 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 4351 goto out4; 4352 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 4353 goto out4; 4354 error = -ENOENT; 4355 if (d_unlinked(new.dentry)) 4356 goto out4; 4357 error = -EBUSY; 4358 if (new_mnt == root_mnt || old_mnt == root_mnt) 4359 goto out4; /* loop, on the same file system */ 4360 error = -EINVAL; 4361 if (!path_mounted(&root)) 4362 goto out4; /* not a mountpoint */ 4363 if (!mnt_has_parent(root_mnt)) 4364 goto out4; /* not attached */ 4365 if (!path_mounted(&new)) 4366 goto out4; /* not a mountpoint */ 4367 if (!mnt_has_parent(new_mnt)) 4368 goto out4; /* not attached */ 4369 /* make sure we can reach put_old from new_root */ 4370 if (!is_path_reachable(old_mnt, old.dentry, &new)) 4371 goto out4; 4372 /* make certain new is below the root */ 4373 if (!is_path_reachable(new_mnt, new.dentry, &root)) 4374 goto out4; 4375 lock_mount_hash(); 4376 umount_mnt(new_mnt); 4377 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */ 4378 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 4379 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 4380 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 4381 } 4382 /* mount old root on put_old */ 4383 attach_mnt(root_mnt, old_mnt, old_mp, false); 4384 /* mount new_root on / */ 4385 attach_mnt(new_mnt, root_parent, root_mp, false); 4386 mnt_add_count(root_parent, -1); 4387 touch_mnt_namespace(current->nsproxy->mnt_ns); 4388 /* A moved mount should not expire automatically */ 4389 list_del_init(&new_mnt->mnt_expire); 4390 put_mountpoint(root_mp); 4391 unlock_mount_hash(); 4392 chroot_fs_refs(&root, &new); 4393 error = 0; 4394 out4: 4395 unlock_mount(old_mp); 4396 if (!error) 4397 mntput_no_expire(ex_parent); 4398 out3: 4399 path_put(&root); 4400 out2: 4401 path_put(&old); 4402 out1: 4403 path_put(&new); 4404 out0: 4405 return error; 4406 } 4407 4408 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt) 4409 { 4410 unsigned int flags = mnt->mnt.mnt_flags; 4411 4412 /* flags to clear */ 4413 flags &= ~kattr->attr_clr; 4414 /* flags to raise */ 4415 flags |= kattr->attr_set; 4416 4417 return flags; 4418 } 4419 4420 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4421 { 4422 struct vfsmount *m = &mnt->mnt; 4423 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns; 4424 4425 if (!kattr->mnt_idmap) 4426 return 0; 4427 4428 /* 4429 * Creating an idmapped mount with the filesystem wide idmapping 4430 * doesn't make sense so block that. We don't allow mushy semantics. 4431 */ 4432 if (kattr->mnt_userns == m->mnt_sb->s_user_ns) 4433 return -EINVAL; 4434 4435 /* 4436 * Once a mount has been idmapped we don't allow it to change its 4437 * mapping. It makes things simpler and callers can just create 4438 * another bind-mount they can idmap if they want to. 4439 */ 4440 if (is_idmapped_mnt(m)) 4441 return -EPERM; 4442 4443 /* The underlying filesystem doesn't support idmapped mounts yet. */ 4444 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP)) 4445 return -EINVAL; 4446 4447 /* We're not controlling the superblock. */ 4448 if (!ns_capable(fs_userns, CAP_SYS_ADMIN)) 4449 return -EPERM; 4450 4451 /* Mount has already been visible in the filesystem hierarchy. */ 4452 if (!is_anon_ns(mnt->mnt_ns)) 4453 return -EINVAL; 4454 4455 return 0; 4456 } 4457 4458 /** 4459 * mnt_allow_writers() - check whether the attribute change allows writers 4460 * @kattr: the new mount attributes 4461 * @mnt: the mount to which @kattr will be applied 4462 * 4463 * Check whether thew new mount attributes in @kattr allow concurrent writers. 4464 * 4465 * Return: true if writers need to be held, false if not 4466 */ 4467 static inline bool mnt_allow_writers(const struct mount_kattr *kattr, 4468 const struct mount *mnt) 4469 { 4470 return (!(kattr->attr_set & MNT_READONLY) || 4471 (mnt->mnt.mnt_flags & MNT_READONLY)) && 4472 !kattr->mnt_idmap; 4473 } 4474 4475 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt) 4476 { 4477 struct mount *m; 4478 int err; 4479 4480 for (m = mnt; m; m = next_mnt(m, mnt)) { 4481 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) { 4482 err = -EPERM; 4483 break; 4484 } 4485 4486 err = can_idmap_mount(kattr, m); 4487 if (err) 4488 break; 4489 4490 if (!mnt_allow_writers(kattr, m)) { 4491 err = mnt_hold_writers(m); 4492 if (err) 4493 break; 4494 } 4495 4496 if (!kattr->recurse) 4497 return 0; 4498 } 4499 4500 if (err) { 4501 struct mount *p; 4502 4503 /* 4504 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will 4505 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all 4506 * mounts and needs to take care to include the first mount. 4507 */ 4508 for (p = mnt; p; p = next_mnt(p, mnt)) { 4509 /* If we had to hold writers unblock them. */ 4510 if (p->mnt.mnt_flags & MNT_WRITE_HOLD) 4511 mnt_unhold_writers(p); 4512 4513 /* 4514 * We're done once the first mount we changed got 4515 * MNT_WRITE_HOLD unset. 4516 */ 4517 if (p == m) 4518 break; 4519 } 4520 } 4521 return err; 4522 } 4523 4524 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt) 4525 { 4526 if (!kattr->mnt_idmap) 4527 return; 4528 4529 /* 4530 * Pairs with smp_load_acquire() in mnt_idmap(). 4531 * 4532 * Since we only allow a mount to change the idmapping once and 4533 * verified this in can_idmap_mount() we know that the mount has 4534 * @nop_mnt_idmap attached to it. So there's no need to drop any 4535 * references. 4536 */ 4537 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap)); 4538 } 4539 4540 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt) 4541 { 4542 struct mount *m; 4543 4544 for (m = mnt; m; m = next_mnt(m, mnt)) { 4545 unsigned int flags; 4546 4547 do_idmap_mount(kattr, m); 4548 flags = recalc_flags(kattr, m); 4549 WRITE_ONCE(m->mnt.mnt_flags, flags); 4550 4551 /* If we had to hold writers unblock them. */ 4552 if (m->mnt.mnt_flags & MNT_WRITE_HOLD) 4553 mnt_unhold_writers(m); 4554 4555 if (kattr->propagation) 4556 change_mnt_propagation(m, kattr->propagation); 4557 if (!kattr->recurse) 4558 break; 4559 } 4560 touch_mnt_namespace(mnt->mnt_ns); 4561 } 4562 4563 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr) 4564 { 4565 struct mount *mnt = real_mount(path->mnt); 4566 int err = 0; 4567 4568 if (!path_mounted(path)) 4569 return -EINVAL; 4570 4571 if (kattr->mnt_userns) { 4572 struct mnt_idmap *mnt_idmap; 4573 4574 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns); 4575 if (IS_ERR(mnt_idmap)) 4576 return PTR_ERR(mnt_idmap); 4577 kattr->mnt_idmap = mnt_idmap; 4578 } 4579 4580 if (kattr->propagation) { 4581 /* 4582 * Only take namespace_lock() if we're actually changing 4583 * propagation. 4584 */ 4585 namespace_lock(); 4586 if (kattr->propagation == MS_SHARED) { 4587 err = invent_group_ids(mnt, kattr->recurse); 4588 if (err) { 4589 namespace_unlock(); 4590 return err; 4591 } 4592 } 4593 } 4594 4595 err = -EINVAL; 4596 lock_mount_hash(); 4597 4598 /* Ensure that this isn't anything purely vfs internal. */ 4599 if (!is_mounted(&mnt->mnt)) 4600 goto out; 4601 4602 /* 4603 * If this is an attached mount make sure it's located in the callers 4604 * mount namespace. If it's not don't let the caller interact with it. 4605 * 4606 * If this mount doesn't have a parent it's most often simply a 4607 * detached mount with an anonymous mount namespace. IOW, something 4608 * that's simply not attached yet. But there are apparently also users 4609 * that do change mount properties on the rootfs itself. That obviously 4610 * neither has a parent nor is it a detached mount so we cannot 4611 * unconditionally check for detached mounts. 4612 */ 4613 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt)) 4614 goto out; 4615 4616 /* 4617 * First, we get the mount tree in a shape where we can change mount 4618 * properties without failure. If we succeeded to do so we commit all 4619 * changes and if we failed we clean up. 4620 */ 4621 err = mount_setattr_prepare(kattr, mnt); 4622 if (!err) 4623 mount_setattr_commit(kattr, mnt); 4624 4625 out: 4626 unlock_mount_hash(); 4627 4628 if (kattr->propagation) { 4629 if (err) 4630 cleanup_group_ids(mnt, NULL); 4631 namespace_unlock(); 4632 } 4633 4634 return err; 4635 } 4636 4637 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize, 4638 struct mount_kattr *kattr, unsigned int flags) 4639 { 4640 int err = 0; 4641 struct ns_common *ns; 4642 struct user_namespace *mnt_userns; 4643 struct fd f; 4644 4645 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP)) 4646 return 0; 4647 4648 /* 4649 * We currently do not support clearing an idmapped mount. If this ever 4650 * is a use-case we can revisit this but for now let's keep it simple 4651 * and not allow it. 4652 */ 4653 if (attr->attr_clr & MOUNT_ATTR_IDMAP) 4654 return -EINVAL; 4655 4656 if (attr->userns_fd > INT_MAX) 4657 return -EINVAL; 4658 4659 f = fdget(attr->userns_fd); 4660 if (!f.file) 4661 return -EBADF; 4662 4663 if (!proc_ns_file(f.file)) { 4664 err = -EINVAL; 4665 goto out_fput; 4666 } 4667 4668 ns = get_proc_ns(file_inode(f.file)); 4669 if (ns->ops->type != CLONE_NEWUSER) { 4670 err = -EINVAL; 4671 goto out_fput; 4672 } 4673 4674 /* 4675 * The initial idmapping cannot be used to create an idmapped 4676 * mount. We use the initial idmapping as an indicator of a mount 4677 * that is not idmapped. It can simply be passed into helpers that 4678 * are aware of idmapped mounts as a convenient shortcut. A user 4679 * can just create a dedicated identity mapping to achieve the same 4680 * result. 4681 */ 4682 mnt_userns = container_of(ns, struct user_namespace, ns); 4683 if (mnt_userns == &init_user_ns) { 4684 err = -EPERM; 4685 goto out_fput; 4686 } 4687 4688 /* We're not controlling the target namespace. */ 4689 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN)) { 4690 err = -EPERM; 4691 goto out_fput; 4692 } 4693 4694 kattr->mnt_userns = get_user_ns(mnt_userns); 4695 4696 out_fput: 4697 fdput(f); 4698 return err; 4699 } 4700 4701 static int build_mount_kattr(const struct mount_attr *attr, size_t usize, 4702 struct mount_kattr *kattr, unsigned int flags) 4703 { 4704 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW; 4705 4706 if (flags & AT_NO_AUTOMOUNT) 4707 lookup_flags &= ~LOOKUP_AUTOMOUNT; 4708 if (flags & AT_SYMLINK_NOFOLLOW) 4709 lookup_flags &= ~LOOKUP_FOLLOW; 4710 if (flags & AT_EMPTY_PATH) 4711 lookup_flags |= LOOKUP_EMPTY; 4712 4713 *kattr = (struct mount_kattr) { 4714 .lookup_flags = lookup_flags, 4715 .recurse = !!(flags & AT_RECURSIVE), 4716 }; 4717 4718 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS) 4719 return -EINVAL; 4720 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1) 4721 return -EINVAL; 4722 kattr->propagation = attr->propagation; 4723 4724 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS) 4725 return -EINVAL; 4726 4727 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set); 4728 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr); 4729 4730 /* 4731 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap, 4732 * users wanting to transition to a different atime setting cannot 4733 * simply specify the atime setting in @attr_set, but must also 4734 * specify MOUNT_ATTR__ATIME in the @attr_clr field. 4735 * So ensure that MOUNT_ATTR__ATIME can't be partially set in 4736 * @attr_clr and that @attr_set can't have any atime bits set if 4737 * MOUNT_ATTR__ATIME isn't set in @attr_clr. 4738 */ 4739 if (attr->attr_clr & MOUNT_ATTR__ATIME) { 4740 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME) 4741 return -EINVAL; 4742 4743 /* 4744 * Clear all previous time settings as they are mutually 4745 * exclusive. 4746 */ 4747 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME; 4748 switch (attr->attr_set & MOUNT_ATTR__ATIME) { 4749 case MOUNT_ATTR_RELATIME: 4750 kattr->attr_set |= MNT_RELATIME; 4751 break; 4752 case MOUNT_ATTR_NOATIME: 4753 kattr->attr_set |= MNT_NOATIME; 4754 break; 4755 case MOUNT_ATTR_STRICTATIME: 4756 break; 4757 default: 4758 return -EINVAL; 4759 } 4760 } else { 4761 if (attr->attr_set & MOUNT_ATTR__ATIME) 4762 return -EINVAL; 4763 } 4764 4765 return build_mount_idmapped(attr, usize, kattr, flags); 4766 } 4767 4768 static void finish_mount_kattr(struct mount_kattr *kattr) 4769 { 4770 put_user_ns(kattr->mnt_userns); 4771 kattr->mnt_userns = NULL; 4772 4773 if (kattr->mnt_idmap) 4774 mnt_idmap_put(kattr->mnt_idmap); 4775 } 4776 4777 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path, 4778 unsigned int, flags, struct mount_attr __user *, uattr, 4779 size_t, usize) 4780 { 4781 int err; 4782 struct path target; 4783 struct mount_attr attr; 4784 struct mount_kattr kattr; 4785 4786 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0); 4787 4788 if (flags & ~(AT_EMPTY_PATH | 4789 AT_RECURSIVE | 4790 AT_SYMLINK_NOFOLLOW | 4791 AT_NO_AUTOMOUNT)) 4792 return -EINVAL; 4793 4794 if (unlikely(usize > PAGE_SIZE)) 4795 return -E2BIG; 4796 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0)) 4797 return -EINVAL; 4798 4799 if (!may_mount()) 4800 return -EPERM; 4801 4802 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize); 4803 if (err) 4804 return err; 4805 4806 /* Don't bother walking through the mounts if this is a nop. */ 4807 if (attr.attr_set == 0 && 4808 attr.attr_clr == 0 && 4809 attr.propagation == 0) 4810 return 0; 4811 4812 err = build_mount_kattr(&attr, usize, &kattr, flags); 4813 if (err) 4814 return err; 4815 4816 err = user_path_at(dfd, path, kattr.lookup_flags, &target); 4817 if (!err) { 4818 err = do_mount_setattr(&target, &kattr); 4819 path_put(&target); 4820 } 4821 finish_mount_kattr(&kattr); 4822 return err; 4823 } 4824 4825 int show_path(struct seq_file *m, struct dentry *root) 4826 { 4827 if (root->d_sb->s_op->show_path) 4828 return root->d_sb->s_op->show_path(m, root); 4829 4830 seq_dentry(m, root, " \t\n\\"); 4831 return 0; 4832 } 4833 4834 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns) 4835 { 4836 struct mount *mnt = mnt_find_id_at(ns, id); 4837 4838 if (!mnt || mnt->mnt_id_unique != id) 4839 return NULL; 4840 4841 return &mnt->mnt; 4842 } 4843 4844 struct kstatmount { 4845 struct statmount __user *buf; 4846 size_t bufsize; 4847 struct vfsmount *mnt; 4848 u64 mask; 4849 struct path root; 4850 struct statmount sm; 4851 struct seq_file seq; 4852 }; 4853 4854 static u64 mnt_to_attr_flags(struct vfsmount *mnt) 4855 { 4856 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags); 4857 u64 attr_flags = 0; 4858 4859 if (mnt_flags & MNT_READONLY) 4860 attr_flags |= MOUNT_ATTR_RDONLY; 4861 if (mnt_flags & MNT_NOSUID) 4862 attr_flags |= MOUNT_ATTR_NOSUID; 4863 if (mnt_flags & MNT_NODEV) 4864 attr_flags |= MOUNT_ATTR_NODEV; 4865 if (mnt_flags & MNT_NOEXEC) 4866 attr_flags |= MOUNT_ATTR_NOEXEC; 4867 if (mnt_flags & MNT_NODIRATIME) 4868 attr_flags |= MOUNT_ATTR_NODIRATIME; 4869 if (mnt_flags & MNT_NOSYMFOLLOW) 4870 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW; 4871 4872 if (mnt_flags & MNT_NOATIME) 4873 attr_flags |= MOUNT_ATTR_NOATIME; 4874 else if (mnt_flags & MNT_RELATIME) 4875 attr_flags |= MOUNT_ATTR_RELATIME; 4876 else 4877 attr_flags |= MOUNT_ATTR_STRICTATIME; 4878 4879 if (is_idmapped_mnt(mnt)) 4880 attr_flags |= MOUNT_ATTR_IDMAP; 4881 4882 return attr_flags; 4883 } 4884 4885 static u64 mnt_to_propagation_flags(struct mount *m) 4886 { 4887 u64 propagation = 0; 4888 4889 if (IS_MNT_SHARED(m)) 4890 propagation |= MS_SHARED; 4891 if (IS_MNT_SLAVE(m)) 4892 propagation |= MS_SLAVE; 4893 if (IS_MNT_UNBINDABLE(m)) 4894 propagation |= MS_UNBINDABLE; 4895 if (!propagation) 4896 propagation |= MS_PRIVATE; 4897 4898 return propagation; 4899 } 4900 4901 static void statmount_sb_basic(struct kstatmount *s) 4902 { 4903 struct super_block *sb = s->mnt->mnt_sb; 4904 4905 s->sm.mask |= STATMOUNT_SB_BASIC; 4906 s->sm.sb_dev_major = MAJOR(sb->s_dev); 4907 s->sm.sb_dev_minor = MINOR(sb->s_dev); 4908 s->sm.sb_magic = sb->s_magic; 4909 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME); 4910 } 4911 4912 static void statmount_mnt_basic(struct kstatmount *s) 4913 { 4914 struct mount *m = real_mount(s->mnt); 4915 4916 s->sm.mask |= STATMOUNT_MNT_BASIC; 4917 s->sm.mnt_id = m->mnt_id_unique; 4918 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique; 4919 s->sm.mnt_id_old = m->mnt_id; 4920 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id; 4921 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt); 4922 s->sm.mnt_propagation = mnt_to_propagation_flags(m); 4923 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0; 4924 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0; 4925 } 4926 4927 static void statmount_propagate_from(struct kstatmount *s) 4928 { 4929 struct mount *m = real_mount(s->mnt); 4930 4931 s->sm.mask |= STATMOUNT_PROPAGATE_FROM; 4932 if (IS_MNT_SLAVE(m)) 4933 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root); 4934 } 4935 4936 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq) 4937 { 4938 int ret; 4939 size_t start = seq->count; 4940 4941 ret = show_path(seq, s->mnt->mnt_root); 4942 if (ret) 4943 return ret; 4944 4945 if (unlikely(seq_has_overflowed(seq))) 4946 return -EAGAIN; 4947 4948 /* 4949 * Unescape the result. It would be better if supplied string was not 4950 * escaped in the first place, but that's a pretty invasive change. 4951 */ 4952 seq->buf[seq->count] = '\0'; 4953 seq->count = start; 4954 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL)); 4955 return 0; 4956 } 4957 4958 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq) 4959 { 4960 struct vfsmount *mnt = s->mnt; 4961 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt }; 4962 int err; 4963 4964 err = seq_path_root(seq, &mnt_path, &s->root, ""); 4965 return err == SEQ_SKIP ? 0 : err; 4966 } 4967 4968 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq) 4969 { 4970 struct super_block *sb = s->mnt->mnt_sb; 4971 4972 seq_puts(seq, sb->s_type->name); 4973 return 0; 4974 } 4975 4976 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns) 4977 { 4978 s->sm.mask |= STATMOUNT_MNT_NS_ID; 4979 s->sm.mnt_ns_id = ns->seq; 4980 } 4981 4982 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq) 4983 { 4984 struct vfsmount *mnt = s->mnt; 4985 struct super_block *sb = mnt->mnt_sb; 4986 int err; 4987 4988 if (sb->s_op->show_options) { 4989 size_t start = seq->count; 4990 4991 err = sb->s_op->show_options(seq, mnt->mnt_root); 4992 if (err) 4993 return err; 4994 4995 if (unlikely(seq_has_overflowed(seq))) 4996 return -EAGAIN; 4997 4998 if (seq->count == start) 4999 return 0; 5000 5001 /* skip leading comma */ 5002 memmove(seq->buf + start, seq->buf + start + 1, 5003 seq->count - start - 1); 5004 seq->count--; 5005 } 5006 5007 return 0; 5008 } 5009 5010 static int statmount_string(struct kstatmount *s, u64 flag) 5011 { 5012 int ret; 5013 size_t kbufsize; 5014 struct seq_file *seq = &s->seq; 5015 struct statmount *sm = &s->sm; 5016 5017 switch (flag) { 5018 case STATMOUNT_FS_TYPE: 5019 sm->fs_type = seq->count; 5020 ret = statmount_fs_type(s, seq); 5021 break; 5022 case STATMOUNT_MNT_ROOT: 5023 sm->mnt_root = seq->count; 5024 ret = statmount_mnt_root(s, seq); 5025 break; 5026 case STATMOUNT_MNT_POINT: 5027 sm->mnt_point = seq->count; 5028 ret = statmount_mnt_point(s, seq); 5029 break; 5030 case STATMOUNT_MNT_OPTS: 5031 sm->mnt_opts = seq->count; 5032 ret = statmount_mnt_opts(s, seq); 5033 break; 5034 default: 5035 WARN_ON_ONCE(true); 5036 return -EINVAL; 5037 } 5038 5039 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize))) 5040 return -EOVERFLOW; 5041 if (kbufsize >= s->bufsize) 5042 return -EOVERFLOW; 5043 5044 /* signal a retry */ 5045 if (unlikely(seq_has_overflowed(seq))) 5046 return -EAGAIN; 5047 5048 if (ret) 5049 return ret; 5050 5051 seq->buf[seq->count++] = '\0'; 5052 sm->mask |= flag; 5053 return 0; 5054 } 5055 5056 static int copy_statmount_to_user(struct kstatmount *s) 5057 { 5058 struct statmount *sm = &s->sm; 5059 struct seq_file *seq = &s->seq; 5060 char __user *str = ((char __user *)s->buf) + sizeof(*sm); 5061 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm)); 5062 5063 if (seq->count && copy_to_user(str, seq->buf, seq->count)) 5064 return -EFAULT; 5065 5066 /* Return the number of bytes copied to the buffer */ 5067 sm->size = copysize + seq->count; 5068 if (copy_to_user(s->buf, sm, copysize)) 5069 return -EFAULT; 5070 5071 return 0; 5072 } 5073 5074 static struct mount *listmnt_next(struct mount *curr, bool reverse) 5075 { 5076 struct rb_node *node; 5077 5078 if (reverse) 5079 node = rb_prev(&curr->mnt_node); 5080 else 5081 node = rb_next(&curr->mnt_node); 5082 5083 return node_to_mount(node); 5084 } 5085 5086 static int grab_requested_root(struct mnt_namespace *ns, struct path *root) 5087 { 5088 struct mount *first, *child; 5089 5090 rwsem_assert_held(&namespace_sem); 5091 5092 /* We're looking at our own ns, just use get_fs_root. */ 5093 if (ns == current->nsproxy->mnt_ns) { 5094 get_fs_root(current->fs, root); 5095 return 0; 5096 } 5097 5098 /* 5099 * We have to find the first mount in our ns and use that, however it 5100 * may not exist, so handle that properly. 5101 */ 5102 if (RB_EMPTY_ROOT(&ns->mounts)) 5103 return -ENOENT; 5104 5105 first = child = ns->root; 5106 for (;;) { 5107 child = listmnt_next(child, false); 5108 if (!child) 5109 return -ENOENT; 5110 if (child->mnt_parent == first) 5111 break; 5112 } 5113 5114 root->mnt = mntget(&child->mnt); 5115 root->dentry = dget(root->mnt->mnt_root); 5116 return 0; 5117 } 5118 5119 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id, 5120 struct mnt_namespace *ns) 5121 { 5122 struct path root __free(path_put) = {}; 5123 struct mount *m; 5124 int err; 5125 5126 /* Has the namespace already been emptied? */ 5127 if (mnt_ns_id && RB_EMPTY_ROOT(&ns->mounts)) 5128 return -ENOENT; 5129 5130 s->mnt = lookup_mnt_in_ns(mnt_id, ns); 5131 if (!s->mnt) 5132 return -ENOENT; 5133 5134 err = grab_requested_root(ns, &root); 5135 if (err) 5136 return err; 5137 5138 /* 5139 * Don't trigger audit denials. We just want to determine what 5140 * mounts to show users. 5141 */ 5142 m = real_mount(s->mnt); 5143 if (!is_path_reachable(m, m->mnt.mnt_root, &root) && 5144 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5145 return -EPERM; 5146 5147 err = security_sb_statfs(s->mnt->mnt_root); 5148 if (err) 5149 return err; 5150 5151 s->root = root; 5152 if (s->mask & STATMOUNT_SB_BASIC) 5153 statmount_sb_basic(s); 5154 5155 if (s->mask & STATMOUNT_MNT_BASIC) 5156 statmount_mnt_basic(s); 5157 5158 if (s->mask & STATMOUNT_PROPAGATE_FROM) 5159 statmount_propagate_from(s); 5160 5161 if (s->mask & STATMOUNT_FS_TYPE) 5162 err = statmount_string(s, STATMOUNT_FS_TYPE); 5163 5164 if (!err && s->mask & STATMOUNT_MNT_ROOT) 5165 err = statmount_string(s, STATMOUNT_MNT_ROOT); 5166 5167 if (!err && s->mask & STATMOUNT_MNT_POINT) 5168 err = statmount_string(s, STATMOUNT_MNT_POINT); 5169 5170 if (!err && s->mask & STATMOUNT_MNT_OPTS) 5171 err = statmount_string(s, STATMOUNT_MNT_OPTS); 5172 5173 if (!err && s->mask & STATMOUNT_MNT_NS_ID) 5174 statmount_mnt_ns_id(s, ns); 5175 5176 if (err) 5177 return err; 5178 5179 return 0; 5180 } 5181 5182 static inline bool retry_statmount(const long ret, size_t *seq_size) 5183 { 5184 if (likely(ret != -EAGAIN)) 5185 return false; 5186 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size))) 5187 return false; 5188 if (unlikely(*seq_size > MAX_RW_COUNT)) 5189 return false; 5190 return true; 5191 } 5192 5193 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \ 5194 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS) 5195 5196 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq, 5197 struct statmount __user *buf, size_t bufsize, 5198 size_t seq_size) 5199 { 5200 if (!access_ok(buf, bufsize)) 5201 return -EFAULT; 5202 5203 memset(ks, 0, sizeof(*ks)); 5204 ks->mask = kreq->param; 5205 ks->buf = buf; 5206 ks->bufsize = bufsize; 5207 5208 if (ks->mask & STATMOUNT_STRING_REQ) { 5209 if (bufsize == sizeof(ks->sm)) 5210 return -EOVERFLOW; 5211 5212 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT); 5213 if (!ks->seq.buf) 5214 return -ENOMEM; 5215 5216 ks->seq.size = seq_size; 5217 } 5218 5219 return 0; 5220 } 5221 5222 static int copy_mnt_id_req(const struct mnt_id_req __user *req, 5223 struct mnt_id_req *kreq) 5224 { 5225 int ret; 5226 size_t usize; 5227 5228 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1); 5229 5230 ret = get_user(usize, &req->size); 5231 if (ret) 5232 return -EFAULT; 5233 if (unlikely(usize > PAGE_SIZE)) 5234 return -E2BIG; 5235 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0)) 5236 return -EINVAL; 5237 memset(kreq, 0, sizeof(*kreq)); 5238 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize); 5239 if (ret) 5240 return ret; 5241 if (kreq->spare != 0) 5242 return -EINVAL; 5243 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5244 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET) 5245 return -EINVAL; 5246 return 0; 5247 } 5248 5249 /* 5250 * If the user requested a specific mount namespace id, look that up and return 5251 * that, or if not simply grab a passive reference on our mount namespace and 5252 * return that. 5253 */ 5254 static struct mnt_namespace *grab_requested_mnt_ns(u64 mnt_ns_id) 5255 { 5256 if (mnt_ns_id) 5257 return lookup_mnt_ns(mnt_ns_id); 5258 refcount_inc(¤t->nsproxy->mnt_ns->passive); 5259 return current->nsproxy->mnt_ns; 5260 } 5261 5262 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req, 5263 struct statmount __user *, buf, size_t, bufsize, 5264 unsigned int, flags) 5265 { 5266 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5267 struct kstatmount *ks __free(kfree) = NULL; 5268 struct mnt_id_req kreq; 5269 /* We currently support retrieval of 3 strings. */ 5270 size_t seq_size = 3 * PATH_MAX; 5271 int ret; 5272 5273 if (flags) 5274 return -EINVAL; 5275 5276 ret = copy_mnt_id_req(req, &kreq); 5277 if (ret) 5278 return ret; 5279 5280 ns = grab_requested_mnt_ns(kreq.mnt_ns_id); 5281 if (!ns) 5282 return -ENOENT; 5283 5284 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5285 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5286 return -ENOENT; 5287 5288 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT); 5289 if (!ks) 5290 return -ENOMEM; 5291 5292 retry: 5293 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size); 5294 if (ret) 5295 return ret; 5296 5297 scoped_guard(rwsem_read, &namespace_sem) 5298 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns); 5299 5300 if (!ret) 5301 ret = copy_statmount_to_user(ks); 5302 kvfree(ks->seq.buf); 5303 if (retry_statmount(ret, &seq_size)) 5304 goto retry; 5305 return ret; 5306 } 5307 5308 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id, 5309 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids, 5310 bool reverse) 5311 { 5312 struct path root __free(path_put) = {}; 5313 struct path orig; 5314 struct mount *r, *first; 5315 ssize_t ret; 5316 5317 rwsem_assert_held(&namespace_sem); 5318 5319 ret = grab_requested_root(ns, &root); 5320 if (ret) 5321 return ret; 5322 5323 if (mnt_parent_id == LSMT_ROOT) { 5324 orig = root; 5325 } else { 5326 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns); 5327 if (!orig.mnt) 5328 return -ENOENT; 5329 orig.dentry = orig.mnt->mnt_root; 5330 } 5331 5332 /* 5333 * Don't trigger audit denials. We just want to determine what 5334 * mounts to show users. 5335 */ 5336 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) && 5337 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5338 return -EPERM; 5339 5340 ret = security_sb_statfs(orig.dentry); 5341 if (ret) 5342 return ret; 5343 5344 if (!last_mnt_id) { 5345 if (reverse) 5346 first = node_to_mount(rb_last(&ns->mounts)); 5347 else 5348 first = node_to_mount(rb_first(&ns->mounts)); 5349 } else { 5350 if (reverse) 5351 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1); 5352 else 5353 first = mnt_find_id_at(ns, last_mnt_id + 1); 5354 } 5355 5356 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) { 5357 if (r->mnt_id_unique == mnt_parent_id) 5358 continue; 5359 if (!is_path_reachable(r, r->mnt.mnt_root, &orig)) 5360 continue; 5361 *mnt_ids = r->mnt_id_unique; 5362 mnt_ids++; 5363 nr_mnt_ids--; 5364 ret++; 5365 } 5366 return ret; 5367 } 5368 5369 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req, 5370 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags) 5371 { 5372 u64 *kmnt_ids __free(kvfree) = NULL; 5373 const size_t maxcount = 1000000; 5374 struct mnt_namespace *ns __free(mnt_ns_release) = NULL; 5375 struct mnt_id_req kreq; 5376 u64 last_mnt_id; 5377 ssize_t ret; 5378 5379 if (flags & ~LISTMOUNT_REVERSE) 5380 return -EINVAL; 5381 5382 /* 5383 * If the mount namespace really has more than 1 million mounts the 5384 * caller must iterate over the mount namespace (and reconsider their 5385 * system design...). 5386 */ 5387 if (unlikely(nr_mnt_ids > maxcount)) 5388 return -EOVERFLOW; 5389 5390 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids))) 5391 return -EFAULT; 5392 5393 ret = copy_mnt_id_req(req, &kreq); 5394 if (ret) 5395 return ret; 5396 5397 last_mnt_id = kreq.param; 5398 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */ 5399 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET) 5400 return -EINVAL; 5401 5402 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids), 5403 GFP_KERNEL_ACCOUNT); 5404 if (!kmnt_ids) 5405 return -ENOMEM; 5406 5407 ns = grab_requested_mnt_ns(kreq.mnt_ns_id); 5408 if (!ns) 5409 return -ENOENT; 5410 5411 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) && 5412 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN)) 5413 return -ENOENT; 5414 5415 scoped_guard(rwsem_read, &namespace_sem) 5416 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids, 5417 nr_mnt_ids, (flags & LISTMOUNT_REVERSE)); 5418 if (ret <= 0) 5419 return ret; 5420 5421 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids))) 5422 return -EFAULT; 5423 5424 return ret; 5425 } 5426 5427 static void __init init_mount_tree(void) 5428 { 5429 struct vfsmount *mnt; 5430 struct mount *m; 5431 struct mnt_namespace *ns; 5432 struct path root; 5433 5434 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL); 5435 if (IS_ERR(mnt)) 5436 panic("Can't create rootfs"); 5437 5438 ns = alloc_mnt_ns(&init_user_ns, false); 5439 if (IS_ERR(ns)) 5440 panic("Can't allocate initial namespace"); 5441 m = real_mount(mnt); 5442 ns->root = m; 5443 ns->nr_mounts = 1; 5444 mnt_add_to_ns(ns, m); 5445 init_task.nsproxy->mnt_ns = ns; 5446 get_mnt_ns(ns); 5447 5448 root.mnt = mnt; 5449 root.dentry = mnt->mnt_root; 5450 mnt->mnt_flags |= MNT_LOCKED; 5451 5452 set_fs_pwd(current->fs, &root); 5453 set_fs_root(current->fs, &root); 5454 5455 mnt_ns_tree_add(ns); 5456 } 5457 5458 void __init mnt_init(void) 5459 { 5460 int err; 5461 5462 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 5463 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL); 5464 5465 mount_hashtable = alloc_large_system_hash("Mount-cache", 5466 sizeof(struct hlist_head), 5467 mhash_entries, 19, 5468 HASH_ZERO, 5469 &m_hash_shift, &m_hash_mask, 0, 0); 5470 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 5471 sizeof(struct hlist_head), 5472 mphash_entries, 19, 5473 HASH_ZERO, 5474 &mp_hash_shift, &mp_hash_mask, 0, 0); 5475 5476 if (!mount_hashtable || !mountpoint_hashtable) 5477 panic("Failed to allocate mount hash table\n"); 5478 5479 kernfs_init(); 5480 5481 err = sysfs_init(); 5482 if (err) 5483 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 5484 __func__, err); 5485 fs_kobj = kobject_create_and_add("fs", NULL); 5486 if (!fs_kobj) 5487 printk(KERN_WARNING "%s: kobj create error\n", __func__); 5488 shmem_init(); 5489 init_rootfs(); 5490 init_mount_tree(); 5491 } 5492 5493 void put_mnt_ns(struct mnt_namespace *ns) 5494 { 5495 if (!refcount_dec_and_test(&ns->ns.count)) 5496 return; 5497 drop_collected_mounts(&ns->root->mnt); 5498 free_mnt_ns(ns); 5499 } 5500 5501 struct vfsmount *kern_mount(struct file_system_type *type) 5502 { 5503 struct vfsmount *mnt; 5504 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 5505 if (!IS_ERR(mnt)) { 5506 /* 5507 * it is a longterm mount, don't release mnt until 5508 * we unmount before file sys is unregistered 5509 */ 5510 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 5511 } 5512 return mnt; 5513 } 5514 EXPORT_SYMBOL_GPL(kern_mount); 5515 5516 void kern_unmount(struct vfsmount *mnt) 5517 { 5518 /* release long term mount so mount point can be released */ 5519 if (!IS_ERR(mnt)) { 5520 mnt_make_shortterm(mnt); 5521 synchronize_rcu(); /* yecchhh... */ 5522 mntput(mnt); 5523 } 5524 } 5525 EXPORT_SYMBOL(kern_unmount); 5526 5527 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num) 5528 { 5529 unsigned int i; 5530 5531 for (i = 0; i < num; i++) 5532 mnt_make_shortterm(mnt[i]); 5533 synchronize_rcu_expedited(); 5534 for (i = 0; i < num; i++) 5535 mntput(mnt[i]); 5536 } 5537 EXPORT_SYMBOL(kern_unmount_array); 5538 5539 bool our_mnt(struct vfsmount *mnt) 5540 { 5541 return check_mnt(real_mount(mnt)); 5542 } 5543 5544 bool current_chrooted(void) 5545 { 5546 /* Does the current process have a non-standard root */ 5547 struct path ns_root; 5548 struct path fs_root; 5549 bool chrooted; 5550 5551 /* Find the namespace root */ 5552 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 5553 ns_root.dentry = ns_root.mnt->mnt_root; 5554 path_get(&ns_root); 5555 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 5556 ; 5557 5558 get_fs_root(current->fs, &fs_root); 5559 5560 chrooted = !path_equal(&fs_root, &ns_root); 5561 5562 path_put(&fs_root); 5563 path_put(&ns_root); 5564 5565 return chrooted; 5566 } 5567 5568 static bool mnt_already_visible(struct mnt_namespace *ns, 5569 const struct super_block *sb, 5570 int *new_mnt_flags) 5571 { 5572 int new_flags = *new_mnt_flags; 5573 struct mount *mnt, *n; 5574 bool visible = false; 5575 5576 down_read(&namespace_sem); 5577 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) { 5578 struct mount *child; 5579 int mnt_flags; 5580 5581 if (mnt->mnt.mnt_sb->s_type != sb->s_type) 5582 continue; 5583 5584 /* This mount is not fully visible if it's root directory 5585 * is not the root directory of the filesystem. 5586 */ 5587 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 5588 continue; 5589 5590 /* A local view of the mount flags */ 5591 mnt_flags = mnt->mnt.mnt_flags; 5592 5593 /* Don't miss readonly hidden in the superblock flags */ 5594 if (sb_rdonly(mnt->mnt.mnt_sb)) 5595 mnt_flags |= MNT_LOCK_READONLY; 5596 5597 /* Verify the mount flags are equal to or more permissive 5598 * than the proposed new mount. 5599 */ 5600 if ((mnt_flags & MNT_LOCK_READONLY) && 5601 !(new_flags & MNT_READONLY)) 5602 continue; 5603 if ((mnt_flags & MNT_LOCK_ATIME) && 5604 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 5605 continue; 5606 5607 /* This mount is not fully visible if there are any 5608 * locked child mounts that cover anything except for 5609 * empty directories. 5610 */ 5611 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 5612 struct inode *inode = child->mnt_mountpoint->d_inode; 5613 /* Only worry about locked mounts */ 5614 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 5615 continue; 5616 /* Is the directory permanetly empty? */ 5617 if (!is_empty_dir_inode(inode)) 5618 goto next; 5619 } 5620 /* Preserve the locked attributes */ 5621 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \ 5622 MNT_LOCK_ATIME); 5623 visible = true; 5624 goto found; 5625 next: ; 5626 } 5627 found: 5628 up_read(&namespace_sem); 5629 return visible; 5630 } 5631 5632 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags) 5633 { 5634 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV; 5635 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 5636 unsigned long s_iflags; 5637 5638 if (ns->user_ns == &init_user_ns) 5639 return false; 5640 5641 /* Can this filesystem be too revealing? */ 5642 s_iflags = sb->s_iflags; 5643 if (!(s_iflags & SB_I_USERNS_VISIBLE)) 5644 return false; 5645 5646 if ((s_iflags & required_iflags) != required_iflags) { 5647 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n", 5648 required_iflags); 5649 return true; 5650 } 5651 5652 return !mnt_already_visible(ns, sb, new_mnt_flags); 5653 } 5654 5655 bool mnt_may_suid(struct vfsmount *mnt) 5656 { 5657 /* 5658 * Foreign mounts (accessed via fchdir or through /proc 5659 * symlinks) are always treated as if they are nosuid. This 5660 * prevents namespaces from trusting potentially unsafe 5661 * suid/sgid bits, file caps, or security labels that originate 5662 * in other namespaces. 5663 */ 5664 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) && 5665 current_in_userns(mnt->mnt_sb->s_user_ns); 5666 } 5667 5668 static struct ns_common *mntns_get(struct task_struct *task) 5669 { 5670 struct ns_common *ns = NULL; 5671 struct nsproxy *nsproxy; 5672 5673 task_lock(task); 5674 nsproxy = task->nsproxy; 5675 if (nsproxy) { 5676 ns = &nsproxy->mnt_ns->ns; 5677 get_mnt_ns(to_mnt_ns(ns)); 5678 } 5679 task_unlock(task); 5680 5681 return ns; 5682 } 5683 5684 static void mntns_put(struct ns_common *ns) 5685 { 5686 put_mnt_ns(to_mnt_ns(ns)); 5687 } 5688 5689 static int mntns_install(struct nsset *nsset, struct ns_common *ns) 5690 { 5691 struct nsproxy *nsproxy = nsset->nsproxy; 5692 struct fs_struct *fs = nsset->fs; 5693 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns; 5694 struct user_namespace *user_ns = nsset->cred->user_ns; 5695 struct path root; 5696 int err; 5697 5698 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 5699 !ns_capable(user_ns, CAP_SYS_CHROOT) || 5700 !ns_capable(user_ns, CAP_SYS_ADMIN)) 5701 return -EPERM; 5702 5703 if (is_anon_ns(mnt_ns)) 5704 return -EINVAL; 5705 5706 if (fs->users != 1) 5707 return -EINVAL; 5708 5709 get_mnt_ns(mnt_ns); 5710 old_mnt_ns = nsproxy->mnt_ns; 5711 nsproxy->mnt_ns = mnt_ns; 5712 5713 /* Find the root */ 5714 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt, 5715 "/", LOOKUP_DOWN, &root); 5716 if (err) { 5717 /* revert to old namespace */ 5718 nsproxy->mnt_ns = old_mnt_ns; 5719 put_mnt_ns(mnt_ns); 5720 return err; 5721 } 5722 5723 put_mnt_ns(old_mnt_ns); 5724 5725 /* Update the pwd and root */ 5726 set_fs_pwd(fs, &root); 5727 set_fs_root(fs, &root); 5728 5729 path_put(&root); 5730 return 0; 5731 } 5732 5733 static struct user_namespace *mntns_owner(struct ns_common *ns) 5734 { 5735 return to_mnt_ns(ns)->user_ns; 5736 } 5737 5738 const struct proc_ns_operations mntns_operations = { 5739 .name = "mnt", 5740 .type = CLONE_NEWNS, 5741 .get = mntns_get, 5742 .put = mntns_put, 5743 .install = mntns_install, 5744 .owner = mntns_owner, 5745 }; 5746 5747 #ifdef CONFIG_SYSCTL 5748 static struct ctl_table fs_namespace_sysctls[] = { 5749 { 5750 .procname = "mount-max", 5751 .data = &sysctl_mount_max, 5752 .maxlen = sizeof(unsigned int), 5753 .mode = 0644, 5754 .proc_handler = proc_dointvec_minmax, 5755 .extra1 = SYSCTL_ONE, 5756 }, 5757 }; 5758 5759 static int __init init_fs_namespace_sysctls(void) 5760 { 5761 register_sysctl_init("fs", fs_namespace_sysctls); 5762 return 0; 5763 } 5764 fs_initcall(init_fs_namespace_sysctls); 5765 5766 #endif /* CONFIG_SYSCTL */ 5767
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.