~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/netfs/io.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /* Network filesystem high-level read support.
  3  *
  4  * Copyright (C) 2021 Red Hat, Inc. All Rights Reserved.
  5  * Written by David Howells (dhowells@redhat.com)
  6  */
  7 
  8 #include <linux/module.h>
  9 #include <linux/export.h>
 10 #include <linux/fs.h>
 11 #include <linux/mm.h>
 12 #include <linux/pagemap.h>
 13 #include <linux/slab.h>
 14 #include <linux/uio.h>
 15 #include <linux/sched/mm.h>
 16 #include <linux/task_io_accounting_ops.h>
 17 #include "internal.h"
 18 
 19 /*
 20  * Clear the unread part of an I/O request.
 21  */
 22 static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
 23 {
 24         iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
 25 }
 26 
 27 static void netfs_cache_read_terminated(void *priv, ssize_t transferred_or_error,
 28                                         bool was_async)
 29 {
 30         struct netfs_io_subrequest *subreq = priv;
 31 
 32         netfs_subreq_terminated(subreq, transferred_or_error, was_async);
 33 }
 34 
 35 /*
 36  * Issue a read against the cache.
 37  * - Eats the caller's ref on subreq.
 38  */
 39 static void netfs_read_from_cache(struct netfs_io_request *rreq,
 40                                   struct netfs_io_subrequest *subreq,
 41                                   enum netfs_read_from_hole read_hole)
 42 {
 43         struct netfs_cache_resources *cres = &rreq->cache_resources;
 44 
 45         netfs_stat(&netfs_n_rh_read);
 46         cres->ops->read(cres, subreq->start, &subreq->io_iter, read_hole,
 47                         netfs_cache_read_terminated, subreq);
 48 }
 49 
 50 /*
 51  * Fill a subrequest region with zeroes.
 52  */
 53 static void netfs_fill_with_zeroes(struct netfs_io_request *rreq,
 54                                    struct netfs_io_subrequest *subreq)
 55 {
 56         netfs_stat(&netfs_n_rh_zero);
 57         __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
 58         netfs_subreq_terminated(subreq, 0, false);
 59 }
 60 
 61 /*
 62  * Ask the netfs to issue a read request to the server for us.
 63  *
 64  * The netfs is expected to read from subreq->pos + subreq->transferred to
 65  * subreq->pos + subreq->len - 1.  It may not backtrack and write data into the
 66  * buffer prior to the transferred point as it might clobber dirty data
 67  * obtained from the cache.
 68  *
 69  * Alternatively, the netfs is allowed to indicate one of two things:
 70  *
 71  * - NETFS_SREQ_SHORT_READ: A short read - it will get called again to try and
 72  *   make progress.
 73  *
 74  * - NETFS_SREQ_CLEAR_TAIL: A short read - the rest of the buffer will be
 75  *   cleared.
 76  */
 77 static void netfs_read_from_server(struct netfs_io_request *rreq,
 78                                    struct netfs_io_subrequest *subreq)
 79 {
 80         netfs_stat(&netfs_n_rh_download);
 81 
 82         if (rreq->origin != NETFS_DIO_READ &&
 83             iov_iter_count(&subreq->io_iter) != subreq->len - subreq->transferred)
 84                 pr_warn("R=%08x[%u] ITER PRE-MISMATCH %zx != %zx-%zx %lx\n",
 85                         rreq->debug_id, subreq->debug_index,
 86                         iov_iter_count(&subreq->io_iter), subreq->len,
 87                         subreq->transferred, subreq->flags);
 88         rreq->netfs_ops->issue_read(subreq);
 89 }
 90 
 91 /*
 92  * Release those waiting.
 93  */
 94 static void netfs_rreq_completed(struct netfs_io_request *rreq, bool was_async)
 95 {
 96         trace_netfs_rreq(rreq, netfs_rreq_trace_done);
 97         netfs_clear_subrequests(rreq, was_async);
 98         netfs_put_request(rreq, was_async, netfs_rreq_trace_put_complete);
 99 }
100 
101 /*
102  * [DEPRECATED] Deal with the completion of writing the data to the cache.  We
103  * have to clear the PG_fscache bits on the folios involved and release the
104  * caller's ref.
105  *
106  * May be called in softirq mode and we inherit a ref from the caller.
107  */
108 static void netfs_rreq_unmark_after_write(struct netfs_io_request *rreq,
109                                           bool was_async)
110 {
111         struct netfs_io_subrequest *subreq;
112         struct folio *folio;
113         pgoff_t unlocked = 0;
114         bool have_unlocked = false;
115 
116         rcu_read_lock();
117 
118         list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
119                 XA_STATE(xas, &rreq->mapping->i_pages, subreq->start / PAGE_SIZE);
120 
121                 xas_for_each(&xas, folio, (subreq->start + subreq->len - 1) / PAGE_SIZE) {
122                         if (xas_retry(&xas, folio))
123                                 continue;
124 
125                         /* We might have multiple writes from the same huge
126                          * folio, but we mustn't unlock a folio more than once.
127                          */
128                         if (have_unlocked && folio->index <= unlocked)
129                                 continue;
130                         unlocked = folio_next_index(folio) - 1;
131                         trace_netfs_folio(folio, netfs_folio_trace_end_copy);
132                         folio_end_private_2(folio);
133                         have_unlocked = true;
134                 }
135         }
136 
137         rcu_read_unlock();
138         netfs_rreq_completed(rreq, was_async);
139 }
140 
141 static void netfs_rreq_copy_terminated(void *priv, ssize_t transferred_or_error,
142                                        bool was_async) /* [DEPRECATED] */
143 {
144         struct netfs_io_subrequest *subreq = priv;
145         struct netfs_io_request *rreq = subreq->rreq;
146 
147         if (IS_ERR_VALUE(transferred_or_error)) {
148                 netfs_stat(&netfs_n_rh_write_failed);
149                 trace_netfs_failure(rreq, subreq, transferred_or_error,
150                                     netfs_fail_copy_to_cache);
151         } else {
152                 netfs_stat(&netfs_n_rh_write_done);
153         }
154 
155         trace_netfs_sreq(subreq, netfs_sreq_trace_write_term);
156 
157         /* If we decrement nr_copy_ops to 0, the ref belongs to us. */
158         if (atomic_dec_and_test(&rreq->nr_copy_ops))
159                 netfs_rreq_unmark_after_write(rreq, was_async);
160 
161         netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
162 }
163 
164 /*
165  * [DEPRECATED] Perform any outstanding writes to the cache.  We inherit a ref
166  * from the caller.
167  */
168 static void netfs_rreq_do_write_to_cache(struct netfs_io_request *rreq)
169 {
170         struct netfs_cache_resources *cres = &rreq->cache_resources;
171         struct netfs_io_subrequest *subreq, *next, *p;
172         struct iov_iter iter;
173         int ret;
174 
175         trace_netfs_rreq(rreq, netfs_rreq_trace_copy);
176 
177         /* We don't want terminating writes trying to wake us up whilst we're
178          * still going through the list.
179          */
180         atomic_inc(&rreq->nr_copy_ops);
181 
182         list_for_each_entry_safe(subreq, p, &rreq->subrequests, rreq_link) {
183                 if (!test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
184                         list_del_init(&subreq->rreq_link);
185                         netfs_put_subrequest(subreq, false,
186                                              netfs_sreq_trace_put_no_copy);
187                 }
188         }
189 
190         list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
191                 /* Amalgamate adjacent writes */
192                 while (!list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
193                         next = list_next_entry(subreq, rreq_link);
194                         if (next->start != subreq->start + subreq->len)
195                                 break;
196                         subreq->len += next->len;
197                         list_del_init(&next->rreq_link);
198                         netfs_put_subrequest(next, false,
199                                              netfs_sreq_trace_put_merged);
200                 }
201 
202                 ret = cres->ops->prepare_write(cres, &subreq->start, &subreq->len,
203                                                subreq->len, rreq->i_size, true);
204                 if (ret < 0) {
205                         trace_netfs_failure(rreq, subreq, ret, netfs_fail_prepare_write);
206                         trace_netfs_sreq(subreq, netfs_sreq_trace_write_skip);
207                         continue;
208                 }
209 
210                 iov_iter_xarray(&iter, ITER_SOURCE, &rreq->mapping->i_pages,
211                                 subreq->start, subreq->len);
212 
213                 atomic_inc(&rreq->nr_copy_ops);
214                 netfs_stat(&netfs_n_rh_write);
215                 netfs_get_subrequest(subreq, netfs_sreq_trace_get_copy_to_cache);
216                 trace_netfs_sreq(subreq, netfs_sreq_trace_write);
217                 cres->ops->write(cres, subreq->start, &iter,
218                                  netfs_rreq_copy_terminated, subreq);
219         }
220 
221         /* If we decrement nr_copy_ops to 0, the usage ref belongs to us. */
222         if (atomic_dec_and_test(&rreq->nr_copy_ops))
223                 netfs_rreq_unmark_after_write(rreq, false);
224 }
225 
226 static void netfs_rreq_write_to_cache_work(struct work_struct *work) /* [DEPRECATED] */
227 {
228         struct netfs_io_request *rreq =
229                 container_of(work, struct netfs_io_request, work);
230 
231         netfs_rreq_do_write_to_cache(rreq);
232 }
233 
234 static void netfs_rreq_write_to_cache(struct netfs_io_request *rreq) /* [DEPRECATED] */
235 {
236         rreq->work.func = netfs_rreq_write_to_cache_work;
237         if (!queue_work(system_unbound_wq, &rreq->work))
238                 BUG();
239 }
240 
241 /*
242  * Handle a short read.
243  */
244 static void netfs_rreq_short_read(struct netfs_io_request *rreq,
245                                   struct netfs_io_subrequest *subreq)
246 {
247         __clear_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
248         __set_bit(NETFS_SREQ_SEEK_DATA_READ, &subreq->flags);
249 
250         netfs_stat(&netfs_n_rh_short_read);
251         trace_netfs_sreq(subreq, netfs_sreq_trace_resubmit_short);
252 
253         netfs_get_subrequest(subreq, netfs_sreq_trace_get_short_read);
254         atomic_inc(&rreq->nr_outstanding);
255         if (subreq->source == NETFS_READ_FROM_CACHE)
256                 netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_CLEAR);
257         else
258                 netfs_read_from_server(rreq, subreq);
259 }
260 
261 /*
262  * Reset the subrequest iterator prior to resubmission.
263  */
264 static void netfs_reset_subreq_iter(struct netfs_io_request *rreq,
265                                     struct netfs_io_subrequest *subreq)
266 {
267         size_t remaining = subreq->len - subreq->transferred;
268         size_t count = iov_iter_count(&subreq->io_iter);
269 
270         if (count == remaining)
271                 return;
272 
273         _debug("R=%08x[%u] ITER RESUB-MISMATCH %zx != %zx-%zx-%llx %x",
274                rreq->debug_id, subreq->debug_index,
275                iov_iter_count(&subreq->io_iter), subreq->transferred,
276                subreq->len, rreq->i_size,
277                subreq->io_iter.iter_type);
278 
279         if (count < remaining)
280                 iov_iter_revert(&subreq->io_iter, remaining - count);
281         else
282                 iov_iter_advance(&subreq->io_iter, count - remaining);
283 }
284 
285 /*
286  * Resubmit any short or failed operations.  Returns true if we got the rreq
287  * ref back.
288  */
289 static bool netfs_rreq_perform_resubmissions(struct netfs_io_request *rreq)
290 {
291         struct netfs_io_subrequest *subreq;
292 
293         WARN_ON(in_interrupt());
294 
295         trace_netfs_rreq(rreq, netfs_rreq_trace_resubmit);
296 
297         /* We don't want terminating submissions trying to wake us up whilst
298          * we're still going through the list.
299          */
300         atomic_inc(&rreq->nr_outstanding);
301 
302         __clear_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
303         list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
304                 if (subreq->error) {
305                         if (subreq->source != NETFS_READ_FROM_CACHE)
306                                 break;
307                         subreq->source = NETFS_DOWNLOAD_FROM_SERVER;
308                         subreq->error = 0;
309                         __set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
310                         netfs_stat(&netfs_n_rh_download_instead);
311                         trace_netfs_sreq(subreq, netfs_sreq_trace_download_instead);
312                         netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit);
313                         atomic_inc(&rreq->nr_outstanding);
314                         netfs_reset_subreq_iter(rreq, subreq);
315                         netfs_read_from_server(rreq, subreq);
316                 } else if (test_bit(NETFS_SREQ_SHORT_IO, &subreq->flags)) {
317                         __set_bit(NETFS_SREQ_RETRYING, &subreq->flags);
318                         netfs_reset_subreq_iter(rreq, subreq);
319                         netfs_rreq_short_read(rreq, subreq);
320                 }
321         }
322 
323         /* If we decrement nr_outstanding to 0, the usage ref belongs to us. */
324         if (atomic_dec_and_test(&rreq->nr_outstanding))
325                 return true;
326 
327         wake_up_var(&rreq->nr_outstanding);
328         return false;
329 }
330 
331 /*
332  * Check to see if the data read is still valid.
333  */
334 static void netfs_rreq_is_still_valid(struct netfs_io_request *rreq)
335 {
336         struct netfs_io_subrequest *subreq;
337 
338         if (!rreq->netfs_ops->is_still_valid ||
339             rreq->netfs_ops->is_still_valid(rreq))
340                 return;
341 
342         list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
343                 if (subreq->source == NETFS_READ_FROM_CACHE) {
344                         subreq->error = -ESTALE;
345                         __set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
346                 }
347         }
348 }
349 
350 /*
351  * Determine how much we can admit to having read from a DIO read.
352  */
353 static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
354 {
355         struct netfs_io_subrequest *subreq;
356         unsigned int i;
357         size_t transferred = 0;
358 
359         for (i = 0; i < rreq->direct_bv_count; i++) {
360                 flush_dcache_page(rreq->direct_bv[i].bv_page);
361                 // TODO: cifs marks pages in the destination buffer
362                 // dirty under some circumstances after a read.  Do we
363                 // need to do that too?
364                 set_page_dirty(rreq->direct_bv[i].bv_page);
365         }
366 
367         list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
368                 if (subreq->error || subreq->transferred == 0)
369                         break;
370                 transferred += subreq->transferred;
371                 if (subreq->transferred < subreq->len ||
372                     test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags))
373                         break;
374         }
375 
376         for (i = 0; i < rreq->direct_bv_count; i++)
377                 flush_dcache_page(rreq->direct_bv[i].bv_page);
378 
379         rreq->transferred = transferred;
380         task_io_account_read(transferred);
381 
382         if (rreq->iocb) {
383                 rreq->iocb->ki_pos += transferred;
384                 if (rreq->iocb->ki_complete)
385                         rreq->iocb->ki_complete(
386                                 rreq->iocb, rreq->error ? rreq->error : transferred);
387         }
388         if (rreq->netfs_ops->done)
389                 rreq->netfs_ops->done(rreq);
390         inode_dio_end(rreq->inode);
391 }
392 
393 /*
394  * Assess the state of a read request and decide what to do next.
395  *
396  * Note that we could be in an ordinary kernel thread, on a workqueue or in
397  * softirq context at this point.  We inherit a ref from the caller.
398  */
399 static void netfs_rreq_assess(struct netfs_io_request *rreq, bool was_async)
400 {
401         trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
402 
403 again:
404         netfs_rreq_is_still_valid(rreq);
405 
406         if (!test_bit(NETFS_RREQ_FAILED, &rreq->flags) &&
407             test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags)) {
408                 if (netfs_rreq_perform_resubmissions(rreq))
409                         goto again;
410                 return;
411         }
412 
413         if (rreq->origin != NETFS_DIO_READ)
414                 netfs_rreq_unlock_folios(rreq);
415         else
416                 netfs_rreq_assess_dio(rreq);
417 
418         trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
419         clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
420         wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
421 
422         if (test_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags) &&
423             test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags))
424                 return netfs_rreq_write_to_cache(rreq);
425 
426         netfs_rreq_completed(rreq, was_async);
427 }
428 
429 static void netfs_rreq_work(struct work_struct *work)
430 {
431         struct netfs_io_request *rreq =
432                 container_of(work, struct netfs_io_request, work);
433         netfs_rreq_assess(rreq, false);
434 }
435 
436 /*
437  * Handle the completion of all outstanding I/O operations on a read request.
438  * We inherit a ref from the caller.
439  */
440 static void netfs_rreq_terminated(struct netfs_io_request *rreq,
441                                   bool was_async)
442 {
443         if (test_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags) &&
444             was_async) {
445                 if (!queue_work(system_unbound_wq, &rreq->work))
446                         BUG();
447         } else {
448                 netfs_rreq_assess(rreq, was_async);
449         }
450 }
451 
452 /**
453  * netfs_subreq_terminated - Note the termination of an I/O operation.
454  * @subreq: The I/O request that has terminated.
455  * @transferred_or_error: The amount of data transferred or an error code.
456  * @was_async: The termination was asynchronous
457  *
458  * This tells the read helper that a contributory I/O operation has terminated,
459  * one way or another, and that it should integrate the results.
460  *
461  * The caller indicates in @transferred_or_error the outcome of the operation,
462  * supplying a positive value to indicate the number of bytes transferred, 0 to
463  * indicate a failure to transfer anything that should be retried or a negative
464  * error code.  The helper will look after reissuing I/O operations as
465  * appropriate and writing downloaded data to the cache.
466  *
467  * If @was_async is true, the caller might be running in softirq or interrupt
468  * context and we can't sleep.
469  */
470 void netfs_subreq_terminated(struct netfs_io_subrequest *subreq,
471                              ssize_t transferred_or_error,
472                              bool was_async)
473 {
474         struct netfs_io_request *rreq = subreq->rreq;
475         int u;
476 
477         _enter("R=%x[%x]{%llx,%lx},%zd",
478                rreq->debug_id, subreq->debug_index,
479                subreq->start, subreq->flags, transferred_or_error);
480 
481         switch (subreq->source) {
482         case NETFS_READ_FROM_CACHE:
483                 netfs_stat(&netfs_n_rh_read_done);
484                 break;
485         case NETFS_DOWNLOAD_FROM_SERVER:
486                 netfs_stat(&netfs_n_rh_download_done);
487                 break;
488         default:
489                 break;
490         }
491 
492         if (IS_ERR_VALUE(transferred_or_error)) {
493                 subreq->error = transferred_or_error;
494                 trace_netfs_failure(rreq, subreq, transferred_or_error,
495                                     netfs_fail_read);
496                 goto failed;
497         }
498 
499         if (WARN(transferred_or_error > subreq->len - subreq->transferred,
500                  "Subreq overread: R%x[%x] %zd > %zu - %zu",
501                  rreq->debug_id, subreq->debug_index,
502                  transferred_or_error, subreq->len, subreq->transferred))
503                 transferred_or_error = subreq->len - subreq->transferred;
504 
505         subreq->error = 0;
506         subreq->transferred += transferred_or_error;
507         if (subreq->transferred < subreq->len &&
508             !test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags))
509                 goto incomplete;
510 
511 complete:
512         __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
513         if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
514                 set_bit(NETFS_RREQ_COPY_TO_CACHE, &rreq->flags);
515 
516 out:
517         trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
518 
519         /* If we decrement nr_outstanding to 0, the ref belongs to us. */
520         u = atomic_dec_return(&rreq->nr_outstanding);
521         if (u == 0)
522                 netfs_rreq_terminated(rreq, was_async);
523         else if (u == 1)
524                 wake_up_var(&rreq->nr_outstanding);
525 
526         netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
527         return;
528 
529 incomplete:
530         if (test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags)) {
531                 netfs_clear_unread(subreq);
532                 subreq->transferred = subreq->len;
533                 goto complete;
534         }
535 
536         if (transferred_or_error == 0) {
537                 if (__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
538                         if (rreq->origin != NETFS_DIO_READ)
539                                 subreq->error = -ENODATA;
540                         goto failed;
541                 }
542         } else {
543                 __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
544         }
545 
546         __set_bit(NETFS_SREQ_SHORT_IO, &subreq->flags);
547         set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
548         goto out;
549 
550 failed:
551         if (subreq->source == NETFS_READ_FROM_CACHE) {
552                 netfs_stat(&netfs_n_rh_read_failed);
553                 set_bit(NETFS_RREQ_INCOMPLETE_IO, &rreq->flags);
554         } else {
555                 netfs_stat(&netfs_n_rh_download_failed);
556                 set_bit(NETFS_RREQ_FAILED, &rreq->flags);
557                 rreq->error = subreq->error;
558         }
559         goto out;
560 }
561 EXPORT_SYMBOL(netfs_subreq_terminated);
562 
563 static enum netfs_io_source netfs_cache_prepare_read(struct netfs_io_subrequest *subreq,
564                                                        loff_t i_size)
565 {
566         struct netfs_io_request *rreq = subreq->rreq;
567         struct netfs_cache_resources *cres = &rreq->cache_resources;
568 
569         if (cres->ops)
570                 return cres->ops->prepare_read(subreq, i_size);
571         if (subreq->start >= rreq->i_size)
572                 return NETFS_FILL_WITH_ZEROES;
573         return NETFS_DOWNLOAD_FROM_SERVER;
574 }
575 
576 /*
577  * Work out what sort of subrequest the next one will be.
578  */
579 static enum netfs_io_source
580 netfs_rreq_prepare_read(struct netfs_io_request *rreq,
581                         struct netfs_io_subrequest *subreq,
582                         struct iov_iter *io_iter)
583 {
584         enum netfs_io_source source = NETFS_DOWNLOAD_FROM_SERVER;
585         struct netfs_inode *ictx = netfs_inode(rreq->inode);
586         size_t lsize;
587 
588         _enter("%llx-%llx,%llx", subreq->start, subreq->start + subreq->len, rreq->i_size);
589 
590         if (rreq->origin != NETFS_DIO_READ) {
591                 source = netfs_cache_prepare_read(subreq, rreq->i_size);
592                 if (source == NETFS_INVALID_READ)
593                         goto out;
594         }
595 
596         if (source == NETFS_DOWNLOAD_FROM_SERVER) {
597                 /* Call out to the netfs to let it shrink the request to fit
598                  * its own I/O sizes and boundaries.  If it shinks it here, it
599                  * will be called again to make simultaneous calls; if it wants
600                  * to make serial calls, it can indicate a short read and then
601                  * we will call it again.
602                  */
603                 if (rreq->origin != NETFS_DIO_READ) {
604                         if (subreq->start >= ictx->zero_point) {
605                                 source = NETFS_FILL_WITH_ZEROES;
606                                 goto set;
607                         }
608                         if (subreq->len > ictx->zero_point - subreq->start)
609                                 subreq->len = ictx->zero_point - subreq->start;
610 
611                         /* We limit buffered reads to the EOF, but let the
612                          * server deal with larger-than-EOF DIO/unbuffered
613                          * reads.
614                          */
615                         if (subreq->len > rreq->i_size - subreq->start)
616                                 subreq->len = rreq->i_size - subreq->start;
617                 }
618                 if (rreq->rsize && subreq->len > rreq->rsize)
619                         subreq->len = rreq->rsize;
620 
621                 if (rreq->netfs_ops->clamp_length &&
622                     !rreq->netfs_ops->clamp_length(subreq)) {
623                         source = NETFS_INVALID_READ;
624                         goto out;
625                 }
626 
627                 if (subreq->max_nr_segs) {
628                         lsize = netfs_limit_iter(io_iter, 0, subreq->len,
629                                                  subreq->max_nr_segs);
630                         if (subreq->len > lsize) {
631                                 subreq->len = lsize;
632                                 trace_netfs_sreq(subreq, netfs_sreq_trace_limited);
633                         }
634                 }
635         }
636 
637 set:
638         if (subreq->len > rreq->len)
639                 pr_warn("R=%08x[%u] SREQ>RREQ %zx > %llx\n",
640                         rreq->debug_id, subreq->debug_index,
641                         subreq->len, rreq->len);
642 
643         if (WARN_ON(subreq->len == 0)) {
644                 source = NETFS_INVALID_READ;
645                 goto out;
646         }
647 
648         subreq->source = source;
649         trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
650 
651         subreq->io_iter = *io_iter;
652         iov_iter_truncate(&subreq->io_iter, subreq->len);
653         iov_iter_advance(io_iter, subreq->len);
654 out:
655         subreq->source = source;
656         trace_netfs_sreq(subreq, netfs_sreq_trace_prepare);
657         return source;
658 }
659 
660 /*
661  * Slice off a piece of a read request and submit an I/O request for it.
662  */
663 static bool netfs_rreq_submit_slice(struct netfs_io_request *rreq,
664                                     struct iov_iter *io_iter)
665 {
666         struct netfs_io_subrequest *subreq;
667         enum netfs_io_source source;
668 
669         subreq = netfs_alloc_subrequest(rreq);
670         if (!subreq)
671                 return false;
672 
673         subreq->start           = rreq->start + rreq->submitted;
674         subreq->len             = io_iter->count;
675 
676         _debug("slice %llx,%zx,%llx", subreq->start, subreq->len, rreq->submitted);
677         list_add_tail(&subreq->rreq_link, &rreq->subrequests);
678 
679         /* Call out to the cache to find out what it can do with the remaining
680          * subset.  It tells us in subreq->flags what it decided should be done
681          * and adjusts subreq->len down if the subset crosses a cache boundary.
682          *
683          * Then when we hand the subset, it can choose to take a subset of that
684          * (the starts must coincide), in which case, we go around the loop
685          * again and ask it to download the next piece.
686          */
687         source = netfs_rreq_prepare_read(rreq, subreq, io_iter);
688         if (source == NETFS_INVALID_READ)
689                 goto subreq_failed;
690 
691         atomic_inc(&rreq->nr_outstanding);
692 
693         rreq->submitted += subreq->len;
694 
695         trace_netfs_sreq(subreq, netfs_sreq_trace_submit);
696         switch (source) {
697         case NETFS_FILL_WITH_ZEROES:
698                 netfs_fill_with_zeroes(rreq, subreq);
699                 break;
700         case NETFS_DOWNLOAD_FROM_SERVER:
701                 netfs_read_from_server(rreq, subreq);
702                 break;
703         case NETFS_READ_FROM_CACHE:
704                 netfs_read_from_cache(rreq, subreq, NETFS_READ_HOLE_IGNORE);
705                 break;
706         default:
707                 BUG();
708         }
709 
710         return true;
711 
712 subreq_failed:
713         rreq->error = subreq->error;
714         netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_failed);
715         return false;
716 }
717 
718 /*
719  * Begin the process of reading in a chunk of data, where that data may be
720  * stitched together from multiple sources, including multiple servers and the
721  * local cache.
722  */
723 int netfs_begin_read(struct netfs_io_request *rreq, bool sync)
724 {
725         struct iov_iter io_iter;
726         int ret;
727 
728         _enter("R=%x %llx-%llx",
729                rreq->debug_id, rreq->start, rreq->start + rreq->len - 1);
730 
731         if (rreq->len == 0) {
732                 pr_err("Zero-sized read [R=%x]\n", rreq->debug_id);
733                 return -EIO;
734         }
735 
736         if (rreq->origin == NETFS_DIO_READ)
737                 inode_dio_begin(rreq->inode);
738 
739         // TODO: Use bounce buffer if requested
740         rreq->io_iter = rreq->iter;
741 
742         INIT_WORK(&rreq->work, netfs_rreq_work);
743 
744         /* Chop the read into slices according to what the cache and the netfs
745          * want and submit each one.
746          */
747         netfs_get_request(rreq, netfs_rreq_trace_get_for_outstanding);
748         atomic_set(&rreq->nr_outstanding, 1);
749         io_iter = rreq->io_iter;
750         do {
751                 _debug("submit %llx + %llx >= %llx",
752                        rreq->start, rreq->submitted, rreq->i_size);
753                 if (!netfs_rreq_submit_slice(rreq, &io_iter))
754                         break;
755                 if (test_bit(NETFS_SREQ_NO_PROGRESS, &rreq->flags))
756                         break;
757                 if (test_bit(NETFS_RREQ_BLOCKED, &rreq->flags) &&
758                     test_bit(NETFS_RREQ_NONBLOCK, &rreq->flags))
759                         break;
760 
761         } while (rreq->submitted < rreq->len);
762 
763         if (!rreq->submitted) {
764                 netfs_put_request(rreq, false, netfs_rreq_trace_put_no_submit);
765                 if (rreq->origin == NETFS_DIO_READ)
766                         inode_dio_end(rreq->inode);
767                 ret = 0;
768                 goto out;
769         }
770 
771         if (sync) {
772                 /* Keep nr_outstanding incremented so that the ref always
773                  * belongs to us, and the service code isn't punted off to a
774                  * random thread pool to process.  Note that this might start
775                  * further work, such as writing to the cache.
776                  */
777                 wait_var_event(&rreq->nr_outstanding,
778                                atomic_read(&rreq->nr_outstanding) == 1);
779                 if (atomic_dec_and_test(&rreq->nr_outstanding))
780                         netfs_rreq_assess(rreq, false);
781 
782                 trace_netfs_rreq(rreq, netfs_rreq_trace_wait_ip);
783                 wait_on_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS,
784                             TASK_UNINTERRUPTIBLE);
785 
786                 ret = rreq->error;
787                 if (ret == 0) {
788                         if (rreq->origin == NETFS_DIO_READ) {
789                                 ret = rreq->transferred;
790                         } else if (rreq->submitted < rreq->len) {
791                                 trace_netfs_failure(rreq, NULL, ret, netfs_fail_short_read);
792                                 ret = -EIO;
793                         }
794                 }
795         } else {
796                 /* If we decrement nr_outstanding to 0, the ref belongs to us. */
797                 if (atomic_dec_and_test(&rreq->nr_outstanding))
798                         netfs_rreq_assess(rreq, false);
799                 ret = -EIOCBQUEUED;
800         }
801 
802 out:
803         return ret;
804 }
805 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php