~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/netfs/read_collect.c

Version: ~ [ linux-6.12-rc7 ] ~ [ linux-6.11.7 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.60 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.116 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.171 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.229 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.285 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.323 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.12 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /* Network filesystem read subrequest result collection, assessment and
  3  * retrying.
  4  *
  5  * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved.
  6  * Written by David Howells (dhowells@redhat.com)
  7  */
  8 
  9 #include <linux/export.h>
 10 #include <linux/fs.h>
 11 #include <linux/mm.h>
 12 #include <linux/pagemap.h>
 13 #include <linux/slab.h>
 14 #include <linux/task_io_accounting_ops.h>
 15 #include "internal.h"
 16 
 17 /*
 18  * Clear the unread part of an I/O request.
 19  */
 20 static void netfs_clear_unread(struct netfs_io_subrequest *subreq)
 21 {
 22         netfs_reset_iter(subreq);
 23         WARN_ON_ONCE(subreq->len - subreq->transferred != iov_iter_count(&subreq->io_iter));
 24         iov_iter_zero(iov_iter_count(&subreq->io_iter), &subreq->io_iter);
 25         if (subreq->start + subreq->transferred >= subreq->rreq->i_size)
 26                 __set_bit(NETFS_SREQ_HIT_EOF, &subreq->flags);
 27 }
 28 
 29 /*
 30  * Flush, mark and unlock a folio that's now completely read.  If we want to
 31  * cache the folio, we set the group to NETFS_FOLIO_COPY_TO_CACHE, mark it
 32  * dirty and let writeback handle it.
 33  */
 34 static void netfs_unlock_read_folio(struct netfs_io_subrequest *subreq,
 35                                     struct netfs_io_request *rreq,
 36                                     struct folio_queue *folioq,
 37                                     int slot)
 38 {
 39         struct netfs_folio *finfo;
 40         struct folio *folio = folioq_folio(folioq, slot);
 41 
 42         flush_dcache_folio(folio);
 43         folio_mark_uptodate(folio);
 44 
 45         if (!test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)) {
 46                 finfo = netfs_folio_info(folio);
 47                 if (finfo) {
 48                         trace_netfs_folio(folio, netfs_folio_trace_filled_gaps);
 49                         if (finfo->netfs_group)
 50                                 folio_change_private(folio, finfo->netfs_group);
 51                         else
 52                                 folio_detach_private(folio);
 53                         kfree(finfo);
 54                 }
 55 
 56                 if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags)) {
 57                         if (!WARN_ON_ONCE(folio_get_private(folio) != NULL)) {
 58                                 trace_netfs_folio(folio, netfs_folio_trace_copy_to_cache);
 59                                 folio_attach_private(folio, NETFS_FOLIO_COPY_TO_CACHE);
 60                                 folio_mark_dirty(folio);
 61                         }
 62                 } else {
 63                         trace_netfs_folio(folio, netfs_folio_trace_read_done);
 64                 }
 65         } else {
 66                 // TODO: Use of PG_private_2 is deprecated.
 67                 if (test_bit(NETFS_SREQ_COPY_TO_CACHE, &subreq->flags))
 68                         netfs_pgpriv2_mark_copy_to_cache(subreq, rreq, folioq, slot);
 69         }
 70 
 71         if (!test_bit(NETFS_RREQ_DONT_UNLOCK_FOLIOS, &rreq->flags)) {
 72                 if (folio->index == rreq->no_unlock_folio &&
 73                     test_bit(NETFS_RREQ_NO_UNLOCK_FOLIO, &rreq->flags)) {
 74                         _debug("no unlock");
 75                 } else {
 76                         trace_netfs_folio(folio, netfs_folio_trace_read_unlock);
 77                         folio_unlock(folio);
 78                 }
 79         }
 80 
 81         folioq_clear(folioq, slot);
 82 }
 83 
 84 /*
 85  * Unlock any folios that are now completely read.  Returns true if the
 86  * subrequest is removed from the list.
 87  */
 88 static bool netfs_consume_read_data(struct netfs_io_subrequest *subreq, bool was_async)
 89 {
 90         struct netfs_io_subrequest *prev, *next;
 91         struct netfs_io_request *rreq = subreq->rreq;
 92         struct folio_queue *folioq = subreq->curr_folioq;
 93         size_t avail, prev_donated, next_donated, fsize, part, excess;
 94         loff_t fpos, start;
 95         loff_t fend;
 96         int slot = subreq->curr_folioq_slot;
 97 
 98         if (WARN(subreq->transferred > subreq->len,
 99                  "Subreq overread: R%x[%x] %zu > %zu",
100                  rreq->debug_id, subreq->debug_index,
101                  subreq->transferred, subreq->len))
102                 subreq->transferred = subreq->len;
103 
104 next_folio:
105         fsize = PAGE_SIZE << subreq->curr_folio_order;
106         fpos = round_down(subreq->start + subreq->consumed, fsize);
107         fend = fpos + fsize;
108 
109         if (WARN_ON_ONCE(!folioq) ||
110             WARN_ON_ONCE(!folioq_folio(folioq, slot)) ||
111             WARN_ON_ONCE(folioq_folio(folioq, slot)->index != fpos / PAGE_SIZE)) {
112                 pr_err("R=%08x[%x] s=%llx-%llx ctl=%zx/%zx/%zx sl=%u\n",
113                        rreq->debug_id, subreq->debug_index,
114                        subreq->start, subreq->start + subreq->transferred - 1,
115                        subreq->consumed, subreq->transferred, subreq->len,
116                        slot);
117                 if (folioq) {
118                         struct folio *folio = folioq_folio(folioq, slot);
119 
120                         pr_err("folioq: orders=%02x%02x%02x%02x\n",
121                                folioq->orders[0], folioq->orders[1],
122                                folioq->orders[2], folioq->orders[3]);
123                         if (folio)
124                                 pr_err("folio: %llx-%llx ix=%llx o=%u qo=%u\n",
125                                        fpos, fend - 1, folio_pos(folio), folio_order(folio),
126                                        folioq_folio_order(folioq, slot));
127                 }
128         }
129 
130 donation_changed:
131         /* Try to consume the current folio if we've hit or passed the end of
132          * it.  There's a possibility that this subreq doesn't start at the
133          * beginning of the folio, in which case we need to donate to/from the
134          * preceding subreq.
135          *
136          * We also need to include any potential donation back from the
137          * following subreq.
138          */
139         prev_donated = READ_ONCE(subreq->prev_donated);
140         next_donated =  READ_ONCE(subreq->next_donated);
141         if (prev_donated || next_donated) {
142                 spin_lock_bh(&rreq->lock);
143                 prev_donated = subreq->prev_donated;
144                 next_donated =  subreq->next_donated;
145                 subreq->start -= prev_donated;
146                 subreq->len += prev_donated;
147                 subreq->transferred += prev_donated;
148                 prev_donated = subreq->prev_donated = 0;
149                 if (subreq->transferred == subreq->len) {
150                         subreq->len += next_donated;
151                         subreq->transferred += next_donated;
152                         next_donated = subreq->next_donated = 0;
153                 }
154                 trace_netfs_sreq(subreq, netfs_sreq_trace_add_donations);
155                 spin_unlock_bh(&rreq->lock);
156         }
157 
158         avail = subreq->transferred;
159         if (avail == subreq->len)
160                 avail += next_donated;
161         start = subreq->start;
162         if (subreq->consumed == 0) {
163                 start -= prev_donated;
164                 avail += prev_donated;
165         } else {
166                 start += subreq->consumed;
167                 avail -= subreq->consumed;
168         }
169         part = umin(avail, fsize);
170 
171         trace_netfs_progress(subreq, start, avail, part);
172 
173         if (start + avail >= fend) {
174                 if (fpos == start) {
175                         /* Flush, unlock and mark for caching any folio we've just read. */
176                         subreq->consumed = fend - subreq->start;
177                         netfs_unlock_read_folio(subreq, rreq, folioq, slot);
178                         folioq_mark2(folioq, slot);
179                         if (subreq->consumed >= subreq->len)
180                                 goto remove_subreq;
181                 } else if (fpos < start) {
182                         excess = fend - subreq->start;
183 
184                         spin_lock_bh(&rreq->lock);
185                         /* If we complete first on a folio split with the
186                          * preceding subreq, donate to that subreq - otherwise
187                          * we get the responsibility.
188                          */
189                         if (subreq->prev_donated != prev_donated) {
190                                 spin_unlock_bh(&rreq->lock);
191                                 goto donation_changed;
192                         }
193 
194                         if (list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
195                                 spin_unlock_bh(&rreq->lock);
196                                 pr_err("Can't donate prior to front\n");
197                                 goto bad;
198                         }
199 
200                         prev = list_prev_entry(subreq, rreq_link);
201                         WRITE_ONCE(prev->next_donated, prev->next_donated + excess);
202                         subreq->start += excess;
203                         subreq->len -= excess;
204                         subreq->transferred -= excess;
205                         trace_netfs_donate(rreq, subreq, prev, excess,
206                                            netfs_trace_donate_tail_to_prev);
207                         trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
208 
209                         if (subreq->consumed >= subreq->len)
210                                 goto remove_subreq_locked;
211                         spin_unlock_bh(&rreq->lock);
212                 } else {
213                         pr_err("fpos > start\n");
214                         goto bad;
215                 }
216 
217                 /* Advance the rolling buffer to the next folio. */
218                 slot++;
219                 if (slot >= folioq_nr_slots(folioq)) {
220                         slot = 0;
221                         folioq = folioq->next;
222                         subreq->curr_folioq = folioq;
223                 }
224                 subreq->curr_folioq_slot = slot;
225                 if (folioq && folioq_folio(folioq, slot))
226                         subreq->curr_folio_order = folioq->orders[slot];
227                 if (!was_async)
228                         cond_resched();
229                 goto next_folio;
230         }
231 
232         /* Deal with partial progress. */
233         if (subreq->transferred < subreq->len)
234                 return false;
235 
236         /* Donate the remaining downloaded data to one of the neighbouring
237          * subrequests.  Note that we may race with them doing the same thing.
238          */
239         spin_lock_bh(&rreq->lock);
240 
241         if (subreq->prev_donated != prev_donated ||
242             subreq->next_donated != next_donated) {
243                 spin_unlock_bh(&rreq->lock);
244                 cond_resched();
245                 goto donation_changed;
246         }
247 
248         /* Deal with the trickiest case: that this subreq is in the middle of a
249          * folio, not touching either edge, but finishes first.  In such a
250          * case, we donate to the previous subreq, if there is one, so that the
251          * donation is only handled when that completes - and remove this
252          * subreq from the list.
253          *
254          * If the previous subreq finished first, we will have acquired their
255          * donation and should be able to unlock folios and/or donate nextwards.
256          */
257         if (!subreq->consumed &&
258             !prev_donated &&
259             !list_is_first(&subreq->rreq_link, &rreq->subrequests)) {
260                 prev = list_prev_entry(subreq, rreq_link);
261                 WRITE_ONCE(prev->next_donated, prev->next_donated + subreq->len);
262                 subreq->start += subreq->len;
263                 subreq->len = 0;
264                 subreq->transferred = 0;
265                 trace_netfs_donate(rreq, subreq, prev, subreq->len,
266                                    netfs_trace_donate_to_prev);
267                 trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_prev);
268                 goto remove_subreq_locked;
269         }
270 
271         /* If we can't donate down the chain, donate up the chain instead. */
272         excess = subreq->len - subreq->consumed + next_donated;
273 
274         if (!subreq->consumed)
275                 excess += prev_donated;
276 
277         if (list_is_last(&subreq->rreq_link, &rreq->subrequests)) {
278                 rreq->prev_donated = excess;
279                 trace_netfs_donate(rreq, subreq, NULL, excess,
280                                    netfs_trace_donate_to_deferred_next);
281         } else {
282                 next = list_next_entry(subreq, rreq_link);
283                 WRITE_ONCE(next->prev_donated, excess);
284                 trace_netfs_donate(rreq, subreq, next, excess,
285                                    netfs_trace_donate_to_next);
286         }
287         trace_netfs_sreq(subreq, netfs_sreq_trace_donate_to_next);
288         subreq->len = subreq->consumed;
289         subreq->transferred = subreq->consumed;
290         goto remove_subreq_locked;
291 
292 remove_subreq:
293         spin_lock_bh(&rreq->lock);
294 remove_subreq_locked:
295         subreq->consumed = subreq->len;
296         list_del(&subreq->rreq_link);
297         spin_unlock_bh(&rreq->lock);
298         netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_consumed);
299         return true;
300 
301 bad:
302         /* Errr... prev and next both donated to us, but insufficient to finish
303          * the folio.
304          */
305         printk("R=%08x[%x] s=%llx-%llx %zx/%zx/%zx\n",
306                rreq->debug_id, subreq->debug_index,
307                subreq->start, subreq->start + subreq->transferred - 1,
308                subreq->consumed, subreq->transferred, subreq->len);
309         printk("folio: %llx-%llx\n", fpos, fend - 1);
310         printk("donated: prev=%zx next=%zx\n", prev_donated, next_donated);
311         printk("s=%llx av=%zx part=%zx\n", start, avail, part);
312         BUG();
313 }
314 
315 /*
316  * Do page flushing and suchlike after DIO.
317  */
318 static void netfs_rreq_assess_dio(struct netfs_io_request *rreq)
319 {
320         struct netfs_io_subrequest *subreq;
321         unsigned int i;
322 
323         /* Collect unbuffered reads and direct reads, adding up the transfer
324          * sizes until we find the first short or failed subrequest.
325          */
326         list_for_each_entry(subreq, &rreq->subrequests, rreq_link) {
327                 rreq->transferred += subreq->transferred;
328 
329                 if (subreq->transferred < subreq->len ||
330                     test_bit(NETFS_SREQ_FAILED, &subreq->flags)) {
331                         rreq->error = subreq->error;
332                         break;
333                 }
334         }
335 
336         if (rreq->origin == NETFS_DIO_READ) {
337                 for (i = 0; i < rreq->direct_bv_count; i++) {
338                         flush_dcache_page(rreq->direct_bv[i].bv_page);
339                         // TODO: cifs marks pages in the destination buffer
340                         // dirty under some circumstances after a read.  Do we
341                         // need to do that too?
342                         set_page_dirty(rreq->direct_bv[i].bv_page);
343                 }
344         }
345 
346         if (rreq->iocb) {
347                 rreq->iocb->ki_pos += rreq->transferred;
348                 if (rreq->iocb->ki_complete)
349                         rreq->iocb->ki_complete(
350                                 rreq->iocb, rreq->error ? rreq->error : rreq->transferred);
351         }
352         if (rreq->netfs_ops->done)
353                 rreq->netfs_ops->done(rreq);
354         if (rreq->origin == NETFS_DIO_READ)
355                 inode_dio_end(rreq->inode);
356 }
357 
358 /*
359  * Assess the state of a read request and decide what to do next.
360  *
361  * Note that we're in normal kernel thread context at this point, possibly
362  * running on a workqueue.
363  */
364 static void netfs_rreq_assess(struct netfs_io_request *rreq)
365 {
366         trace_netfs_rreq(rreq, netfs_rreq_trace_assess);
367 
368         //netfs_rreq_is_still_valid(rreq);
369 
370         if (test_and_clear_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags)) {
371                 netfs_retry_reads(rreq);
372                 return;
373         }
374 
375         if (rreq->origin == NETFS_DIO_READ ||
376             rreq->origin == NETFS_READ_GAPS)
377                 netfs_rreq_assess_dio(rreq);
378         task_io_account_read(rreq->transferred);
379 
380         trace_netfs_rreq(rreq, netfs_rreq_trace_wake_ip);
381         clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &rreq->flags);
382         wake_up_bit(&rreq->flags, NETFS_RREQ_IN_PROGRESS);
383 
384         trace_netfs_rreq(rreq, netfs_rreq_trace_done);
385         netfs_clear_subrequests(rreq, false);
386         netfs_unlock_abandoned_read_pages(rreq);
387         if (unlikely(test_bit(NETFS_RREQ_USE_PGPRIV2, &rreq->flags)))
388                 netfs_pgpriv2_write_to_the_cache(rreq);
389 }
390 
391 void netfs_read_termination_worker(struct work_struct *work)
392 {
393         struct netfs_io_request *rreq =
394                 container_of(work, struct netfs_io_request, work);
395         netfs_see_request(rreq, netfs_rreq_trace_see_work);
396         netfs_rreq_assess(rreq);
397         netfs_put_request(rreq, false, netfs_rreq_trace_put_work_complete);
398 }
399 
400 /*
401  * Handle the completion of all outstanding I/O operations on a read request.
402  * We inherit a ref from the caller.
403  */
404 void netfs_rreq_terminated(struct netfs_io_request *rreq, bool was_async)
405 {
406         if (!was_async)
407                 return netfs_rreq_assess(rreq);
408         if (!work_pending(&rreq->work)) {
409                 netfs_get_request(rreq, netfs_rreq_trace_get_work);
410                 if (!queue_work(system_unbound_wq, &rreq->work))
411                         netfs_put_request(rreq, was_async, netfs_rreq_trace_put_work_nq);
412         }
413 }
414 
415 /**
416  * netfs_read_subreq_progress - Note progress of a read operation.
417  * @subreq: The read request that has terminated.
418  * @was_async: True if we're in an asynchronous context.
419  *
420  * This tells the read side of netfs lib that a contributory I/O operation has
421  * made some progress and that it may be possible to unlock some folios.
422  *
423  * Before calling, the filesystem should update subreq->transferred to track
424  * the amount of data copied into the output buffer.
425  *
426  * If @was_async is true, the caller might be running in softirq or interrupt
427  * context and we can't sleep.
428  */
429 void netfs_read_subreq_progress(struct netfs_io_subrequest *subreq,
430                                 bool was_async)
431 {
432         struct netfs_io_request *rreq = subreq->rreq;
433 
434         trace_netfs_sreq(subreq, netfs_sreq_trace_progress);
435 
436         if (subreq->transferred > subreq->consumed &&
437             (rreq->origin == NETFS_READAHEAD ||
438              rreq->origin == NETFS_READPAGE ||
439              rreq->origin == NETFS_READ_FOR_WRITE)) {
440                 netfs_consume_read_data(subreq, was_async);
441                 __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
442         }
443 }
444 EXPORT_SYMBOL(netfs_read_subreq_progress);
445 
446 /**
447  * netfs_read_subreq_terminated - Note the termination of an I/O operation.
448  * @subreq: The I/O request that has terminated.
449  * @error: Error code indicating type of completion.
450  * @was_async: The termination was asynchronous
451  *
452  * This tells the read helper that a contributory I/O operation has terminated,
453  * one way or another, and that it should integrate the results.
454  *
455  * The caller indicates the outcome of the operation through @error, supplying
456  * 0 to indicate a successful or retryable transfer (if NETFS_SREQ_NEED_RETRY
457  * is set) or a negative error code.  The helper will look after reissuing I/O
458  * operations as appropriate and writing downloaded data to the cache.
459  *
460  * Before calling, the filesystem should update subreq->transferred to track
461  * the amount of data copied into the output buffer.
462  *
463  * If @was_async is true, the caller might be running in softirq or interrupt
464  * context and we can't sleep.
465  */
466 void netfs_read_subreq_terminated(struct netfs_io_subrequest *subreq,
467                                   int error, bool was_async)
468 {
469         struct netfs_io_request *rreq = subreq->rreq;
470 
471         switch (subreq->source) {
472         case NETFS_READ_FROM_CACHE:
473                 netfs_stat(&netfs_n_rh_read_done);
474                 break;
475         case NETFS_DOWNLOAD_FROM_SERVER:
476                 netfs_stat(&netfs_n_rh_download_done);
477                 break;
478         default:
479                 break;
480         }
481 
482         if (rreq->origin != NETFS_DIO_READ) {
483                 /* Collect buffered reads.
484                  *
485                  * If the read completed validly short, then we can clear the
486                  * tail before going on to unlock the folios.
487                  */
488                 if (error == 0 && subreq->transferred < subreq->len &&
489                     (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags) ||
490                      test_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags))) {
491                         netfs_clear_unread(subreq);
492                         subreq->transferred = subreq->len;
493                         trace_netfs_sreq(subreq, netfs_sreq_trace_clear);
494                 }
495                 if (subreq->transferred > subreq->consumed &&
496                     (rreq->origin == NETFS_READAHEAD ||
497                      rreq->origin == NETFS_READPAGE ||
498                      rreq->origin == NETFS_READ_FOR_WRITE)) {
499                         netfs_consume_read_data(subreq, was_async);
500                         __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
501                 }
502                 rreq->transferred += subreq->transferred;
503         }
504 
505         /* Deal with retry requests, short reads and errors.  If we retry
506          * but don't make progress, we abandon the attempt.
507          */
508         if (!error && subreq->transferred < subreq->len) {
509                 if (test_bit(NETFS_SREQ_HIT_EOF, &subreq->flags)) {
510                         trace_netfs_sreq(subreq, netfs_sreq_trace_hit_eof);
511                 } else {
512                         trace_netfs_sreq(subreq, netfs_sreq_trace_short);
513                         if (subreq->transferred > subreq->consumed) {
514                                 __set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
515                                 __clear_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags);
516                                 set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
517                         } else if (!__test_and_set_bit(NETFS_SREQ_NO_PROGRESS, &subreq->flags)) {
518                                 __set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags);
519                                 set_bit(NETFS_RREQ_NEED_RETRY, &rreq->flags);
520                         } else {
521                                 __set_bit(NETFS_SREQ_FAILED, &subreq->flags);
522                                 error = -ENODATA;
523                         }
524                 }
525         }
526 
527         subreq->error = error;
528         trace_netfs_sreq(subreq, netfs_sreq_trace_terminated);
529 
530         if (unlikely(error < 0)) {
531                 trace_netfs_failure(rreq, subreq, error, netfs_fail_read);
532                 if (subreq->source == NETFS_READ_FROM_CACHE) {
533                         netfs_stat(&netfs_n_rh_read_failed);
534                 } else {
535                         netfs_stat(&netfs_n_rh_download_failed);
536                         set_bit(NETFS_RREQ_FAILED, &rreq->flags);
537                         rreq->error = subreq->error;
538                 }
539         }
540 
541         if (atomic_dec_and_test(&rreq->nr_outstanding))
542                 netfs_rreq_terminated(rreq, was_async);
543 
544         netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated);
545 }
546 EXPORT_SYMBOL(netfs_read_subreq_terminated);
547 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php