1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Network filesystem write subrequest result collection, assessment 3 * and retrying. 4 * 5 * Copyright (C) 2024 Red Hat, Inc. All Rights Reserved. 6 * Written by David Howells (dhowells@redhat.com) 7 */ 8 9 #include <linux/export.h> 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/slab.h> 14 #include "internal.h" 15 16 /* Notes made in the collector */ 17 #define HIT_PENDING 0x01 /* A front op was still pending */ 18 #define SOME_EMPTY 0x02 /* One of more streams are empty */ 19 #define ALL_EMPTY 0x04 /* All streams are empty */ 20 #define MAYBE_DISCONTIG 0x08 /* A front op may be discontiguous (rounded to PAGE_SIZE) */ 21 #define NEED_REASSESS 0x10 /* Need to loop round and reassess */ 22 #define REASSESS_DISCONTIG 0x20 /* Reassess discontiguity if contiguity advances */ 23 #define MADE_PROGRESS 0x40 /* Made progress cleaning up a stream or the folio set */ 24 #define BUFFERED 0x80 /* The pagecache needs cleaning up */ 25 #define NEED_RETRY 0x100 /* A front op requests retrying */ 26 #define SAW_FAILURE 0x200 /* One stream or hit a permanent failure */ 27 28 /* 29 * Successful completion of write of a folio to the server and/or cache. Note 30 * that we are not allowed to lock the folio here on pain of deadlocking with 31 * truncate. 32 */ 33 int netfs_folio_written_back(struct folio *folio) 34 { 35 enum netfs_folio_trace why = netfs_folio_trace_clear; 36 struct netfs_inode *ictx = netfs_inode(folio->mapping->host); 37 struct netfs_folio *finfo; 38 struct netfs_group *group = NULL; 39 int gcount = 0; 40 41 if ((finfo = netfs_folio_info(folio))) { 42 /* Streaming writes cannot be redirtied whilst under writeback, 43 * so discard the streaming record. 44 */ 45 unsigned long long fend; 46 47 fend = folio_pos(folio) + finfo->dirty_offset + finfo->dirty_len; 48 if (fend > ictx->zero_point) 49 ictx->zero_point = fend; 50 51 folio_detach_private(folio); 52 group = finfo->netfs_group; 53 gcount++; 54 kfree(finfo); 55 why = netfs_folio_trace_clear_s; 56 goto end_wb; 57 } 58 59 if ((group = netfs_folio_group(folio))) { 60 if (group == NETFS_FOLIO_COPY_TO_CACHE) { 61 why = netfs_folio_trace_clear_cc; 62 folio_detach_private(folio); 63 goto end_wb; 64 } 65 66 /* Need to detach the group pointer if the page didn't get 67 * redirtied. If it has been redirtied, then it must be within 68 * the same group. 69 */ 70 why = netfs_folio_trace_redirtied; 71 if (!folio_test_dirty(folio)) { 72 folio_detach_private(folio); 73 gcount++; 74 why = netfs_folio_trace_clear_g; 75 } 76 } 77 78 end_wb: 79 trace_netfs_folio(folio, why); 80 folio_end_writeback(folio); 81 return gcount; 82 } 83 84 /* 85 * Get hold of a folio we have under writeback. We don't want to get the 86 * refcount on it. 87 */ 88 static struct folio *netfs_writeback_lookup_folio(struct netfs_io_request *wreq, loff_t pos) 89 { 90 XA_STATE(xas, &wreq->mapping->i_pages, pos / PAGE_SIZE); 91 struct folio *folio; 92 93 rcu_read_lock(); 94 95 for (;;) { 96 xas_reset(&xas); 97 folio = xas_load(&xas); 98 if (xas_retry(&xas, folio)) 99 continue; 100 101 if (!folio || xa_is_value(folio)) 102 kdebug("R=%08x: folio %lx (%llx) not present", 103 wreq->debug_id, xas.xa_index, pos / PAGE_SIZE); 104 BUG_ON(!folio || xa_is_value(folio)); 105 106 if (folio == xas_reload(&xas)) 107 break; 108 } 109 110 rcu_read_unlock(); 111 112 if (WARN_ONCE(!folio_test_writeback(folio), 113 "R=%08x: folio %lx is not under writeback\n", 114 wreq->debug_id, folio->index)) { 115 trace_netfs_folio(folio, netfs_folio_trace_not_under_wback); 116 } 117 return folio; 118 } 119 120 /* 121 * Unlock any folios we've finished with. 122 */ 123 static void netfs_writeback_unlock_folios(struct netfs_io_request *wreq, 124 unsigned long long collected_to, 125 unsigned int *notes) 126 { 127 for (;;) { 128 struct folio *folio; 129 struct netfs_folio *finfo; 130 unsigned long long fpos, fend; 131 size_t fsize, flen; 132 133 folio = netfs_writeback_lookup_folio(wreq, wreq->cleaned_to); 134 135 fpos = folio_pos(folio); 136 fsize = folio_size(folio); 137 finfo = netfs_folio_info(folio); 138 flen = finfo ? finfo->dirty_offset + finfo->dirty_len : fsize; 139 140 fend = min_t(unsigned long long, fpos + flen, wreq->i_size); 141 142 trace_netfs_collect_folio(wreq, folio, fend, collected_to); 143 144 if (fpos + fsize > wreq->contiguity) { 145 trace_netfs_collect_contig(wreq, fpos + fsize, 146 netfs_contig_trace_unlock); 147 wreq->contiguity = fpos + fsize; 148 } 149 150 /* Unlock any folio we've transferred all of. */ 151 if (collected_to < fend) 152 break; 153 154 wreq->nr_group_rel += netfs_folio_written_back(folio); 155 wreq->cleaned_to = fpos + fsize; 156 *notes |= MADE_PROGRESS; 157 158 if (fpos + fsize >= collected_to) 159 break; 160 } 161 } 162 163 /* 164 * Perform retries on the streams that need it. 165 */ 166 static void netfs_retry_write_stream(struct netfs_io_request *wreq, 167 struct netfs_io_stream *stream) 168 { 169 struct list_head *next; 170 171 _enter("R=%x[%x:]", wreq->debug_id, stream->stream_nr); 172 173 if (list_empty(&stream->subrequests)) 174 return; 175 176 if (stream->source == NETFS_UPLOAD_TO_SERVER && 177 wreq->netfs_ops->retry_request) 178 wreq->netfs_ops->retry_request(wreq, stream); 179 180 if (unlikely(stream->failed)) 181 return; 182 183 /* If there's no renegotiation to do, just resend each failed subreq. */ 184 if (!stream->prepare_write) { 185 struct netfs_io_subrequest *subreq; 186 187 list_for_each_entry(subreq, &stream->subrequests, rreq_link) { 188 if (test_bit(NETFS_SREQ_FAILED, &subreq->flags)) 189 break; 190 if (__test_and_clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags)) { 191 __set_bit(NETFS_SREQ_RETRYING, &subreq->flags); 192 netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit); 193 netfs_reissue_write(stream, subreq); 194 } 195 } 196 return; 197 } 198 199 next = stream->subrequests.next; 200 201 do { 202 struct netfs_io_subrequest *subreq = NULL, *from, *to, *tmp; 203 unsigned long long start, len; 204 size_t part; 205 bool boundary = false; 206 207 /* Go through the stream and find the next span of contiguous 208 * data that we then rejig (cifs, for example, needs the wsize 209 * renegotiating) and reissue. 210 */ 211 from = list_entry(next, struct netfs_io_subrequest, rreq_link); 212 to = from; 213 start = from->start + from->transferred; 214 len = from->len - from->transferred; 215 216 if (test_bit(NETFS_SREQ_FAILED, &from->flags) || 217 !test_bit(NETFS_SREQ_NEED_RETRY, &from->flags)) 218 return; 219 220 list_for_each_continue(next, &stream->subrequests) { 221 subreq = list_entry(next, struct netfs_io_subrequest, rreq_link); 222 if (subreq->start + subreq->transferred != start + len || 223 test_bit(NETFS_SREQ_BOUNDARY, &subreq->flags) || 224 !test_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags)) 225 break; 226 to = subreq; 227 len += to->len; 228 } 229 230 /* Work through the sublist. */ 231 subreq = from; 232 list_for_each_entry_from(subreq, &stream->subrequests, rreq_link) { 233 if (!len) 234 break; 235 /* Renegotiate max_len (wsize) */ 236 trace_netfs_sreq(subreq, netfs_sreq_trace_retry); 237 __clear_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags); 238 __set_bit(NETFS_SREQ_RETRYING, &subreq->flags); 239 stream->prepare_write(subreq); 240 241 part = min(len, subreq->max_len); 242 subreq->len = part; 243 subreq->start = start; 244 subreq->transferred = 0; 245 len -= part; 246 start += part; 247 if (len && subreq == to && 248 __test_and_clear_bit(NETFS_SREQ_BOUNDARY, &to->flags)) 249 boundary = true; 250 251 netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit); 252 netfs_reissue_write(stream, subreq); 253 if (subreq == to) 254 break; 255 } 256 257 /* If we managed to use fewer subreqs, we can discard the 258 * excess; if we used the same number, then we're done. 259 */ 260 if (!len) { 261 if (subreq == to) 262 continue; 263 list_for_each_entry_safe_from(subreq, tmp, 264 &stream->subrequests, rreq_link) { 265 trace_netfs_sreq(subreq, netfs_sreq_trace_discard); 266 list_del(&subreq->rreq_link); 267 netfs_put_subrequest(subreq, false, netfs_sreq_trace_put_done); 268 if (subreq == to) 269 break; 270 } 271 continue; 272 } 273 274 /* We ran out of subrequests, so we need to allocate some more 275 * and insert them after. 276 */ 277 do { 278 subreq = netfs_alloc_subrequest(wreq); 279 subreq->source = to->source; 280 subreq->start = start; 281 subreq->max_len = len; 282 subreq->max_nr_segs = INT_MAX; 283 subreq->debug_index = atomic_inc_return(&wreq->subreq_counter); 284 subreq->stream_nr = to->stream_nr; 285 __set_bit(NETFS_SREQ_RETRYING, &subreq->flags); 286 287 trace_netfs_sreq_ref(wreq->debug_id, subreq->debug_index, 288 refcount_read(&subreq->ref), 289 netfs_sreq_trace_new); 290 netfs_get_subrequest(subreq, netfs_sreq_trace_get_resubmit); 291 292 list_add(&subreq->rreq_link, &to->rreq_link); 293 to = list_next_entry(to, rreq_link); 294 trace_netfs_sreq(subreq, netfs_sreq_trace_retry); 295 296 switch (stream->source) { 297 case NETFS_UPLOAD_TO_SERVER: 298 netfs_stat(&netfs_n_wh_upload); 299 subreq->max_len = min(len, wreq->wsize); 300 break; 301 case NETFS_WRITE_TO_CACHE: 302 netfs_stat(&netfs_n_wh_write); 303 break; 304 default: 305 WARN_ON_ONCE(1); 306 } 307 308 stream->prepare_write(subreq); 309 310 part = min(len, subreq->max_len); 311 subreq->len = subreq->transferred + part; 312 len -= part; 313 start += part; 314 if (!len && boundary) { 315 __set_bit(NETFS_SREQ_BOUNDARY, &to->flags); 316 boundary = false; 317 } 318 319 netfs_reissue_write(stream, subreq); 320 if (!len) 321 break; 322 323 } while (len); 324 325 } while (!list_is_head(next, &stream->subrequests)); 326 } 327 328 /* 329 * Perform retries on the streams that need it. If we're doing content 330 * encryption and the server copy changed due to a third-party write, we may 331 * need to do an RMW cycle and also rewrite the data to the cache. 332 */ 333 static void netfs_retry_writes(struct netfs_io_request *wreq) 334 { 335 struct netfs_io_subrequest *subreq; 336 struct netfs_io_stream *stream; 337 int s; 338 339 /* Wait for all outstanding I/O to quiesce before performing retries as 340 * we may need to renegotiate the I/O sizes. 341 */ 342 for (s = 0; s < NR_IO_STREAMS; s++) { 343 stream = &wreq->io_streams[s]; 344 if (!stream->active) 345 continue; 346 347 list_for_each_entry(subreq, &stream->subrequests, rreq_link) { 348 wait_on_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS, 349 TASK_UNINTERRUPTIBLE); 350 } 351 } 352 353 // TODO: Enc: Fetch changed partial pages 354 // TODO: Enc: Reencrypt content if needed. 355 // TODO: Enc: Wind back transferred point. 356 // TODO: Enc: Mark cache pages for retry. 357 358 for (s = 0; s < NR_IO_STREAMS; s++) { 359 stream = &wreq->io_streams[s]; 360 if (stream->need_retry) { 361 stream->need_retry = false; 362 netfs_retry_write_stream(wreq, stream); 363 } 364 } 365 } 366 367 /* 368 * Collect and assess the results of various write subrequests. We may need to 369 * retry some of the results - or even do an RMW cycle for content crypto. 370 * 371 * Note that we have a number of parallel, overlapping lists of subrequests, 372 * one to the server and one to the local cache for example, which may not be 373 * the same size or starting position and may not even correspond in boundary 374 * alignment. 375 */ 376 static void netfs_collect_write_results(struct netfs_io_request *wreq) 377 { 378 struct netfs_io_subrequest *front, *remove; 379 struct netfs_io_stream *stream; 380 unsigned long long collected_to; 381 unsigned int notes; 382 int s; 383 384 _enter("%llx-%llx", wreq->start, wreq->start + wreq->len); 385 trace_netfs_collect(wreq); 386 trace_netfs_rreq(wreq, netfs_rreq_trace_collect); 387 388 reassess_streams: 389 smp_rmb(); 390 collected_to = ULLONG_MAX; 391 if (wreq->origin == NETFS_WRITEBACK) 392 notes = ALL_EMPTY | BUFFERED | MAYBE_DISCONTIG; 393 else if (wreq->origin == NETFS_WRITETHROUGH) 394 notes = ALL_EMPTY | BUFFERED; 395 else 396 notes = ALL_EMPTY; 397 398 /* Remove completed subrequests from the front of the streams and 399 * advance the completion point on each stream. We stop when we hit 400 * something that's in progress. The issuer thread may be adding stuff 401 * to the tail whilst we're doing this. 402 * 403 * We must not, however, merge in discontiguities that span whole 404 * folios that aren't under writeback. This is made more complicated 405 * by the folios in the gap being of unpredictable sizes - if they even 406 * exist - but we don't want to look them up. 407 */ 408 for (s = 0; s < NR_IO_STREAMS; s++) { 409 loff_t rstart, rend; 410 411 stream = &wreq->io_streams[s]; 412 /* Read active flag before list pointers */ 413 if (!smp_load_acquire(&stream->active)) 414 continue; 415 416 front = stream->front; 417 while (front) { 418 trace_netfs_collect_sreq(wreq, front); 419 //_debug("sreq [%x] %llx %zx/%zx", 420 // front->debug_index, front->start, front->transferred, front->len); 421 422 /* Stall if there may be a discontinuity. */ 423 rstart = round_down(front->start, PAGE_SIZE); 424 if (rstart > wreq->contiguity) { 425 if (wreq->contiguity > stream->collected_to) { 426 trace_netfs_collect_gap(wreq, stream, 427 wreq->contiguity, 'D'); 428 stream->collected_to = wreq->contiguity; 429 } 430 notes |= REASSESS_DISCONTIG; 431 break; 432 } 433 rend = round_up(front->start + front->len, PAGE_SIZE); 434 if (rend > wreq->contiguity) { 435 trace_netfs_collect_contig(wreq, rend, 436 netfs_contig_trace_collect); 437 wreq->contiguity = rend; 438 if (notes & REASSESS_DISCONTIG) 439 notes |= NEED_REASSESS; 440 } 441 notes &= ~MAYBE_DISCONTIG; 442 443 /* Stall if the front is still undergoing I/O. */ 444 if (test_bit(NETFS_SREQ_IN_PROGRESS, &front->flags)) { 445 notes |= HIT_PENDING; 446 break; 447 } 448 smp_rmb(); /* Read counters after I-P flag. */ 449 450 if (stream->failed) { 451 stream->collected_to = front->start + front->len; 452 notes |= MADE_PROGRESS | SAW_FAILURE; 453 goto cancel; 454 } 455 if (front->start + front->transferred > stream->collected_to) { 456 stream->collected_to = front->start + front->transferred; 457 stream->transferred = stream->collected_to - wreq->start; 458 notes |= MADE_PROGRESS; 459 } 460 if (test_bit(NETFS_SREQ_FAILED, &front->flags)) { 461 stream->failed = true; 462 stream->error = front->error; 463 if (stream->source == NETFS_UPLOAD_TO_SERVER) 464 mapping_set_error(wreq->mapping, front->error); 465 notes |= NEED_REASSESS | SAW_FAILURE; 466 break; 467 } 468 if (front->transferred < front->len) { 469 stream->need_retry = true; 470 notes |= NEED_RETRY | MADE_PROGRESS; 471 break; 472 } 473 474 cancel: 475 /* Remove if completely consumed. */ 476 spin_lock(&wreq->lock); 477 478 remove = front; 479 list_del_init(&front->rreq_link); 480 front = list_first_entry_or_null(&stream->subrequests, 481 struct netfs_io_subrequest, rreq_link); 482 stream->front = front; 483 if (!front) { 484 unsigned long long jump_to = atomic64_read(&wreq->issued_to); 485 486 if (stream->collected_to < jump_to) { 487 trace_netfs_collect_gap(wreq, stream, jump_to, 'A'); 488 stream->collected_to = jump_to; 489 } 490 } 491 492 spin_unlock(&wreq->lock); 493 netfs_put_subrequest(remove, false, 494 notes & SAW_FAILURE ? 495 netfs_sreq_trace_put_cancel : 496 netfs_sreq_trace_put_done); 497 } 498 499 if (front) 500 notes &= ~ALL_EMPTY; 501 else 502 notes |= SOME_EMPTY; 503 504 if (stream->collected_to < collected_to) 505 collected_to = stream->collected_to; 506 } 507 508 if (collected_to != ULLONG_MAX && collected_to > wreq->collected_to) 509 wreq->collected_to = collected_to; 510 511 /* If we have an empty stream, we need to jump it forward over any gap 512 * otherwise the collection point will never advance. 513 * 514 * Note that the issuer always adds to the stream with the lowest 515 * so-far submitted start, so if we see two consecutive subreqs in one 516 * stream with nothing between then in another stream, then the second 517 * stream has a gap that can be jumped. 518 */ 519 if (notes & SOME_EMPTY) { 520 unsigned long long jump_to = wreq->start + READ_ONCE(wreq->submitted); 521 522 for (s = 0; s < NR_IO_STREAMS; s++) { 523 stream = &wreq->io_streams[s]; 524 if (stream->active && 525 stream->front && 526 stream->front->start < jump_to) 527 jump_to = stream->front->start; 528 } 529 530 for (s = 0; s < NR_IO_STREAMS; s++) { 531 stream = &wreq->io_streams[s]; 532 if (stream->active && 533 !stream->front && 534 stream->collected_to < jump_to) { 535 trace_netfs_collect_gap(wreq, stream, jump_to, 'B'); 536 stream->collected_to = jump_to; 537 } 538 } 539 } 540 541 for (s = 0; s < NR_IO_STREAMS; s++) { 542 stream = &wreq->io_streams[s]; 543 if (stream->active) 544 trace_netfs_collect_stream(wreq, stream); 545 } 546 547 trace_netfs_collect_state(wreq, wreq->collected_to, notes); 548 549 /* Unlock any folios that we have now finished with. */ 550 if (notes & BUFFERED) { 551 unsigned long long clean_to = min(wreq->collected_to, wreq->contiguity); 552 553 if (wreq->cleaned_to < clean_to) 554 netfs_writeback_unlock_folios(wreq, clean_to, ¬es); 555 } else { 556 wreq->cleaned_to = wreq->collected_to; 557 } 558 559 // TODO: Discard encryption buffers 560 561 /* If all streams are discontiguous with the last folio we cleared, we 562 * may need to skip a set of folios. 563 */ 564 if ((notes & (MAYBE_DISCONTIG | ALL_EMPTY)) == MAYBE_DISCONTIG) { 565 unsigned long long jump_to = ULLONG_MAX; 566 567 for (s = 0; s < NR_IO_STREAMS; s++) { 568 stream = &wreq->io_streams[s]; 569 if (stream->active && stream->front && 570 stream->front->start < jump_to) 571 jump_to = stream->front->start; 572 } 573 574 trace_netfs_collect_contig(wreq, jump_to, netfs_contig_trace_jump); 575 wreq->contiguity = jump_to; 576 wreq->cleaned_to = jump_to; 577 wreq->collected_to = jump_to; 578 for (s = 0; s < NR_IO_STREAMS; s++) { 579 stream = &wreq->io_streams[s]; 580 if (stream->collected_to < jump_to) 581 stream->collected_to = jump_to; 582 } 583 //cond_resched(); 584 notes |= MADE_PROGRESS; 585 goto reassess_streams; 586 } 587 588 if (notes & NEED_RETRY) 589 goto need_retry; 590 if ((notes & MADE_PROGRESS) && test_bit(NETFS_RREQ_PAUSE, &wreq->flags)) { 591 trace_netfs_rreq(wreq, netfs_rreq_trace_unpause); 592 clear_bit_unlock(NETFS_RREQ_PAUSE, &wreq->flags); 593 wake_up_bit(&wreq->flags, NETFS_RREQ_PAUSE); 594 } 595 596 if (notes & NEED_REASSESS) { 597 //cond_resched(); 598 goto reassess_streams; 599 } 600 if (notes & MADE_PROGRESS) { 601 //cond_resched(); 602 goto reassess_streams; 603 } 604 605 out: 606 netfs_put_group_many(wreq->group, wreq->nr_group_rel); 607 wreq->nr_group_rel = 0; 608 _leave(" = %x", notes); 609 return; 610 611 need_retry: 612 /* Okay... We're going to have to retry one or both streams. Note 613 * that any partially completed op will have had any wholly transferred 614 * folios removed from it. 615 */ 616 _debug("retry"); 617 netfs_retry_writes(wreq); 618 goto out; 619 } 620 621 /* 622 * Perform the collection of subrequests, folios and encryption buffers. 623 */ 624 void netfs_write_collection_worker(struct work_struct *work) 625 { 626 struct netfs_io_request *wreq = container_of(work, struct netfs_io_request, work); 627 struct netfs_inode *ictx = netfs_inode(wreq->inode); 628 size_t transferred; 629 int s; 630 631 _enter("R=%x", wreq->debug_id); 632 633 netfs_see_request(wreq, netfs_rreq_trace_see_work); 634 if (!test_bit(NETFS_RREQ_IN_PROGRESS, &wreq->flags)) { 635 netfs_put_request(wreq, false, netfs_rreq_trace_put_work); 636 return; 637 } 638 639 netfs_collect_write_results(wreq); 640 641 /* We're done when the app thread has finished posting subreqs and all 642 * the queues in all the streams are empty. 643 */ 644 if (!test_bit(NETFS_RREQ_ALL_QUEUED, &wreq->flags)) { 645 netfs_put_request(wreq, false, netfs_rreq_trace_put_work); 646 return; 647 } 648 smp_rmb(); /* Read ALL_QUEUED before lists. */ 649 650 transferred = LONG_MAX; 651 for (s = 0; s < NR_IO_STREAMS; s++) { 652 struct netfs_io_stream *stream = &wreq->io_streams[s]; 653 if (!stream->active) 654 continue; 655 if (!list_empty(&stream->subrequests)) { 656 netfs_put_request(wreq, false, netfs_rreq_trace_put_work); 657 return; 658 } 659 if (stream->transferred < transferred) 660 transferred = stream->transferred; 661 } 662 663 /* Okay, declare that all I/O is complete. */ 664 wreq->transferred = transferred; 665 trace_netfs_rreq(wreq, netfs_rreq_trace_write_done); 666 667 if (wreq->io_streams[1].active && 668 wreq->io_streams[1].failed) { 669 /* Cache write failure doesn't prevent writeback completion 670 * unless we're in disconnected mode. 671 */ 672 ictx->ops->invalidate_cache(wreq); 673 } 674 675 if (wreq->cleanup) 676 wreq->cleanup(wreq); 677 678 if (wreq->origin == NETFS_DIO_WRITE && 679 wreq->mapping->nrpages) { 680 /* mmap may have got underfoot and we may now have folios 681 * locally covering the region we just wrote. Attempt to 682 * discard the folios, but leave in place any modified locally. 683 * ->write_iter() is prevented from interfering by the DIO 684 * counter. 685 */ 686 pgoff_t first = wreq->start >> PAGE_SHIFT; 687 pgoff_t last = (wreq->start + wreq->transferred - 1) >> PAGE_SHIFT; 688 invalidate_inode_pages2_range(wreq->mapping, first, last); 689 } 690 691 if (wreq->origin == NETFS_DIO_WRITE) 692 inode_dio_end(wreq->inode); 693 694 _debug("finished"); 695 trace_netfs_rreq(wreq, netfs_rreq_trace_wake_ip); 696 clear_bit_unlock(NETFS_RREQ_IN_PROGRESS, &wreq->flags); 697 wake_up_bit(&wreq->flags, NETFS_RREQ_IN_PROGRESS); 698 699 if (wreq->iocb) { 700 size_t written = min(wreq->transferred, wreq->len); 701 wreq->iocb->ki_pos += written; 702 if (wreq->iocb->ki_complete) 703 wreq->iocb->ki_complete( 704 wreq->iocb, wreq->error ? wreq->error : written); 705 wreq->iocb = VFS_PTR_POISON; 706 } 707 708 netfs_clear_subrequests(wreq, false); 709 netfs_put_request(wreq, false, netfs_rreq_trace_put_work_complete); 710 } 711 712 /* 713 * Wake the collection work item. 714 */ 715 void netfs_wake_write_collector(struct netfs_io_request *wreq, bool was_async) 716 { 717 if (!work_pending(&wreq->work)) { 718 netfs_get_request(wreq, netfs_rreq_trace_get_work); 719 if (!queue_work(system_unbound_wq, &wreq->work)) 720 netfs_put_request(wreq, was_async, netfs_rreq_trace_put_work_nq); 721 } 722 } 723 724 /** 725 * netfs_write_subrequest_terminated - Note the termination of a write operation. 726 * @_op: The I/O request that has terminated. 727 * @transferred_or_error: The amount of data transferred or an error code. 728 * @was_async: The termination was asynchronous 729 * 730 * This tells the library that a contributory write I/O operation has 731 * terminated, one way or another, and that it should collect the results. 732 * 733 * The caller indicates in @transferred_or_error the outcome of the operation, 734 * supplying a positive value to indicate the number of bytes transferred or a 735 * negative error code. The library will look after reissuing I/O operations 736 * as appropriate and writing downloaded data to the cache. 737 * 738 * If @was_async is true, the caller might be running in softirq or interrupt 739 * context and we can't sleep. 740 * 741 * When this is called, ownership of the subrequest is transferred back to the 742 * library, along with a ref. 743 * 744 * Note that %_op is a void* so that the function can be passed to 745 * kiocb::term_func without the need for a casting wrapper. 746 */ 747 void netfs_write_subrequest_terminated(void *_op, ssize_t transferred_or_error, 748 bool was_async) 749 { 750 struct netfs_io_subrequest *subreq = _op; 751 struct netfs_io_request *wreq = subreq->rreq; 752 struct netfs_io_stream *stream = &wreq->io_streams[subreq->stream_nr]; 753 754 _enter("%x[%x] %zd", wreq->debug_id, subreq->debug_index, transferred_or_error); 755 756 switch (subreq->source) { 757 case NETFS_UPLOAD_TO_SERVER: 758 netfs_stat(&netfs_n_wh_upload_done); 759 break; 760 case NETFS_WRITE_TO_CACHE: 761 netfs_stat(&netfs_n_wh_write_done); 762 break; 763 case NETFS_INVALID_WRITE: 764 break; 765 default: 766 BUG(); 767 } 768 769 if (IS_ERR_VALUE(transferred_or_error)) { 770 subreq->error = transferred_or_error; 771 if (subreq->error == -EAGAIN) 772 set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags); 773 else 774 set_bit(NETFS_SREQ_FAILED, &subreq->flags); 775 trace_netfs_failure(wreq, subreq, transferred_or_error, netfs_fail_write); 776 777 switch (subreq->source) { 778 case NETFS_WRITE_TO_CACHE: 779 netfs_stat(&netfs_n_wh_write_failed); 780 break; 781 case NETFS_UPLOAD_TO_SERVER: 782 netfs_stat(&netfs_n_wh_upload_failed); 783 break; 784 default: 785 break; 786 } 787 trace_netfs_rreq(wreq, netfs_rreq_trace_set_pause); 788 set_bit(NETFS_RREQ_PAUSE, &wreq->flags); 789 } else { 790 if (WARN(transferred_or_error > subreq->len - subreq->transferred, 791 "Subreq excess write: R=%x[%x] %zd > %zu - %zu", 792 wreq->debug_id, subreq->debug_index, 793 transferred_or_error, subreq->len, subreq->transferred)) 794 transferred_or_error = subreq->len - subreq->transferred; 795 796 subreq->error = 0; 797 subreq->transferred += transferred_or_error; 798 799 if (subreq->transferred < subreq->len) 800 set_bit(NETFS_SREQ_NEED_RETRY, &subreq->flags); 801 } 802 803 trace_netfs_sreq(subreq, netfs_sreq_trace_terminated); 804 805 clear_bit_unlock(NETFS_SREQ_IN_PROGRESS, &subreq->flags); 806 wake_up_bit(&subreq->flags, NETFS_SREQ_IN_PROGRESS); 807 808 /* If we are at the head of the queue, wake up the collector, 809 * transferring a ref to it if we were the ones to do so. 810 */ 811 if (list_is_first(&subreq->rreq_link, &stream->subrequests)) 812 netfs_wake_write_collector(wreq, was_async); 813 814 netfs_put_subrequest(subreq, was_async, netfs_sreq_trace_put_terminated); 815 } 816 EXPORT_SYMBOL(netfs_write_subrequest_terminated); 817
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.