1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/nfs/direct.c 4 * 5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com> 6 * 7 * High-performance uncached I/O for the Linux NFS client 8 * 9 * There are important applications whose performance or correctness 10 * depends on uncached access to file data. Database clusters 11 * (multiple copies of the same instance running on separate hosts) 12 * implement their own cache coherency protocol that subsumes file 13 * system cache protocols. Applications that process datasets 14 * considerably larger than the client's memory do not always benefit 15 * from a local cache. A streaming video server, for instance, has no 16 * need to cache the contents of a file. 17 * 18 * When an application requests uncached I/O, all read and write requests 19 * are made directly to the server; data stored or fetched via these 20 * requests is not cached in the Linux page cache. The client does not 21 * correct unaligned requests from applications. All requested bytes are 22 * held on permanent storage before a direct write system call returns to 23 * an application. 24 * 25 * Solaris implements an uncached I/O facility called directio() that 26 * is used for backups and sequential I/O to very large files. Solaris 27 * also supports uncaching whole NFS partitions with "-o forcedirectio," 28 * an undocumented mount option. 29 * 30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with 31 * help from Andrew Morton. 32 * 33 * 18 Dec 2001 Initial implementation for 2.4 --cel 34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy 35 * 08 Jun 2003 Port to 2.5 APIs --cel 36 * 31 Mar 2004 Handle direct I/O without VFS support --cel 37 * 15 Sep 2004 Parallel async reads --cel 38 * 04 May 2005 support O_DIRECT with aio --cel 39 * 40 */ 41 42 #include <linux/errno.h> 43 #include <linux/sched.h> 44 #include <linux/kernel.h> 45 #include <linux/file.h> 46 #include <linux/pagemap.h> 47 #include <linux/kref.h> 48 #include <linux/slab.h> 49 #include <linux/task_io_accounting_ops.h> 50 #include <linux/module.h> 51 52 #include <linux/nfs_fs.h> 53 #include <linux/nfs_page.h> 54 #include <linux/sunrpc/clnt.h> 55 56 #include <linux/uaccess.h> 57 #include <linux/atomic.h> 58 59 #include "internal.h" 60 #include "iostat.h" 61 #include "pnfs.h" 62 #include "fscache.h" 63 #include "nfstrace.h" 64 65 #define NFSDBG_FACILITY NFSDBG_VFS 66 67 static struct kmem_cache *nfs_direct_cachep; 68 69 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops; 70 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops; 71 static void nfs_direct_write_complete(struct nfs_direct_req *dreq); 72 static void nfs_direct_write_schedule_work(struct work_struct *work); 73 74 static inline void get_dreq(struct nfs_direct_req *dreq) 75 { 76 atomic_inc(&dreq->io_count); 77 } 78 79 static inline int put_dreq(struct nfs_direct_req *dreq) 80 { 81 return atomic_dec_and_test(&dreq->io_count); 82 } 83 84 static void 85 nfs_direct_handle_truncated(struct nfs_direct_req *dreq, 86 const struct nfs_pgio_header *hdr, 87 ssize_t dreq_len) 88 { 89 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) || 90 test_bit(NFS_IOHDR_EOF, &hdr->flags))) 91 return; 92 if (dreq->max_count >= dreq_len) { 93 dreq->max_count = dreq_len; 94 if (dreq->count > dreq_len) 95 dreq->count = dreq_len; 96 } 97 98 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error) 99 dreq->error = hdr->error; 100 } 101 102 static void 103 nfs_direct_count_bytes(struct nfs_direct_req *dreq, 104 const struct nfs_pgio_header *hdr) 105 { 106 loff_t hdr_end = hdr->io_start + hdr->good_bytes; 107 ssize_t dreq_len = 0; 108 109 if (hdr_end > dreq->io_start) 110 dreq_len = hdr_end - dreq->io_start; 111 112 nfs_direct_handle_truncated(dreq, hdr, dreq_len); 113 114 if (dreq_len > dreq->max_count) 115 dreq_len = dreq->max_count; 116 117 if (dreq->count < dreq_len) 118 dreq->count = dreq_len; 119 } 120 121 static void nfs_direct_truncate_request(struct nfs_direct_req *dreq, 122 struct nfs_page *req) 123 { 124 loff_t offs = req_offset(req); 125 size_t req_start = (size_t)(offs - dreq->io_start); 126 127 if (req_start < dreq->max_count) 128 dreq->max_count = req_start; 129 if (req_start < dreq->count) 130 dreq->count = req_start; 131 } 132 133 /** 134 * nfs_swap_rw - NFS address space operation for swap I/O 135 * @iocb: target I/O control block 136 * @iter: I/O buffer 137 * 138 * Perform IO to the swap-file. This is much like direct IO. 139 */ 140 int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter) 141 { 142 ssize_t ret; 143 144 if (iov_iter_rw(iter) == READ) 145 ret = nfs_file_direct_read(iocb, iter, true); 146 else 147 ret = nfs_file_direct_write(iocb, iter, true); 148 if (ret < 0) 149 return ret; 150 return 0; 151 } 152 153 static void nfs_direct_release_pages(struct page **pages, unsigned int npages) 154 { 155 unsigned int i; 156 for (i = 0; i < npages; i++) 157 put_page(pages[i]); 158 } 159 160 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo, 161 struct nfs_direct_req *dreq) 162 { 163 cinfo->inode = dreq->inode; 164 cinfo->mds = &dreq->mds_cinfo; 165 cinfo->ds = &dreq->ds_cinfo; 166 cinfo->dreq = dreq; 167 cinfo->completion_ops = &nfs_direct_commit_completion_ops; 168 } 169 170 static inline struct nfs_direct_req *nfs_direct_req_alloc(void) 171 { 172 struct nfs_direct_req *dreq; 173 174 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL); 175 if (!dreq) 176 return NULL; 177 178 kref_init(&dreq->kref); 179 kref_get(&dreq->kref); 180 init_completion(&dreq->completion); 181 INIT_LIST_HEAD(&dreq->mds_cinfo.list); 182 pnfs_init_ds_commit_info(&dreq->ds_cinfo); 183 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work); 184 spin_lock_init(&dreq->lock); 185 186 return dreq; 187 } 188 189 static void nfs_direct_req_free(struct kref *kref) 190 { 191 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref); 192 193 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode); 194 if (dreq->l_ctx != NULL) 195 nfs_put_lock_context(dreq->l_ctx); 196 if (dreq->ctx != NULL) 197 put_nfs_open_context(dreq->ctx); 198 kmem_cache_free(nfs_direct_cachep, dreq); 199 } 200 201 static void nfs_direct_req_release(struct nfs_direct_req *dreq) 202 { 203 kref_put(&dreq->kref, nfs_direct_req_free); 204 } 205 206 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset) 207 { 208 loff_t start = offset - dreq->io_start; 209 return dreq->max_count - start; 210 } 211 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left); 212 213 /* 214 * Collects and returns the final error value/byte-count. 215 */ 216 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq) 217 { 218 ssize_t result = -EIOCBQUEUED; 219 220 /* Async requests don't wait here */ 221 if (dreq->iocb) 222 goto out; 223 224 result = wait_for_completion_killable(&dreq->completion); 225 226 if (!result) { 227 result = dreq->count; 228 WARN_ON_ONCE(dreq->count < 0); 229 } 230 if (!result) 231 result = dreq->error; 232 233 out: 234 return (ssize_t) result; 235 } 236 237 /* 238 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust 239 * the iocb is still valid here if this is a synchronous request. 240 */ 241 static void nfs_direct_complete(struct nfs_direct_req *dreq) 242 { 243 struct inode *inode = dreq->inode; 244 245 inode_dio_end(inode); 246 247 if (dreq->iocb) { 248 long res = (long) dreq->error; 249 if (dreq->count != 0) { 250 res = (long) dreq->count; 251 WARN_ON_ONCE(dreq->count < 0); 252 } 253 dreq->iocb->ki_complete(dreq->iocb, res); 254 } 255 256 complete(&dreq->completion); 257 258 nfs_direct_req_release(dreq); 259 } 260 261 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr) 262 { 263 unsigned long bytes = 0; 264 struct nfs_direct_req *dreq = hdr->dreq; 265 266 spin_lock(&dreq->lock); 267 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 268 spin_unlock(&dreq->lock); 269 goto out_put; 270 } 271 272 nfs_direct_count_bytes(dreq, hdr); 273 spin_unlock(&dreq->lock); 274 275 while (!list_empty(&hdr->pages)) { 276 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 277 struct page *page = req->wb_page; 278 279 if (!PageCompound(page) && bytes < hdr->good_bytes && 280 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY)) 281 set_page_dirty(page); 282 bytes += req->wb_bytes; 283 nfs_list_remove_request(req); 284 nfs_release_request(req); 285 } 286 out_put: 287 if (put_dreq(dreq)) 288 nfs_direct_complete(dreq); 289 hdr->release(hdr); 290 } 291 292 static void nfs_read_sync_pgio_error(struct list_head *head, int error) 293 { 294 struct nfs_page *req; 295 296 while (!list_empty(head)) { 297 req = nfs_list_entry(head->next); 298 nfs_list_remove_request(req); 299 nfs_release_request(req); 300 } 301 } 302 303 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr) 304 { 305 get_dreq(hdr->dreq); 306 } 307 308 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = { 309 .error_cleanup = nfs_read_sync_pgio_error, 310 .init_hdr = nfs_direct_pgio_init, 311 .completion = nfs_direct_read_completion, 312 }; 313 314 /* 315 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ 316 * operation. If nfs_readdata_alloc() or get_user_pages() fails, 317 * bail and stop sending more reads. Read length accounting is 318 * handled automatically by nfs_direct_read_result(). Otherwise, if 319 * no requests have been sent, just return an error. 320 */ 321 322 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq, 323 struct iov_iter *iter, 324 loff_t pos) 325 { 326 struct nfs_pageio_descriptor desc; 327 struct inode *inode = dreq->inode; 328 ssize_t result = -EINVAL; 329 size_t requested_bytes = 0; 330 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE); 331 332 nfs_pageio_init_read(&desc, dreq->inode, false, 333 &nfs_direct_read_completion_ops); 334 get_dreq(dreq); 335 desc.pg_dreq = dreq; 336 inode_dio_begin(inode); 337 338 while (iov_iter_count(iter)) { 339 struct page **pagevec; 340 size_t bytes; 341 size_t pgbase; 342 unsigned npages, i; 343 344 result = iov_iter_get_pages_alloc2(iter, &pagevec, 345 rsize, &pgbase); 346 if (result < 0) 347 break; 348 349 bytes = result; 350 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 351 for (i = 0; i < npages; i++) { 352 struct nfs_page *req; 353 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 354 /* XXX do we need to do the eof zeroing found in async_filler? */ 355 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 356 pgbase, pos, req_len); 357 if (IS_ERR(req)) { 358 result = PTR_ERR(req); 359 break; 360 } 361 if (!nfs_pageio_add_request(&desc, req)) { 362 result = desc.pg_error; 363 nfs_release_request(req); 364 break; 365 } 366 pgbase = 0; 367 bytes -= req_len; 368 requested_bytes += req_len; 369 pos += req_len; 370 } 371 nfs_direct_release_pages(pagevec, npages); 372 kvfree(pagevec); 373 if (result < 0) 374 break; 375 } 376 377 nfs_pageio_complete(&desc); 378 379 /* 380 * If no bytes were started, return the error, and let the 381 * generic layer handle the completion. 382 */ 383 if (requested_bytes == 0) { 384 inode_dio_end(inode); 385 nfs_direct_req_release(dreq); 386 return result < 0 ? result : -EIO; 387 } 388 389 if (put_dreq(dreq)) 390 nfs_direct_complete(dreq); 391 return requested_bytes; 392 } 393 394 /** 395 * nfs_file_direct_read - file direct read operation for NFS files 396 * @iocb: target I/O control block 397 * @iter: vector of user buffers into which to read data 398 * @swap: flag indicating this is swap IO, not O_DIRECT IO 399 * 400 * We use this function for direct reads instead of calling 401 * generic_file_aio_read() in order to avoid gfar's check to see if 402 * the request starts before the end of the file. For that check 403 * to work, we must generate a GETATTR before each direct read, and 404 * even then there is a window between the GETATTR and the subsequent 405 * READ where the file size could change. Our preference is simply 406 * to do all reads the application wants, and the server will take 407 * care of managing the end of file boundary. 408 * 409 * This function also eliminates unnecessarily updating the file's 410 * atime locally, as the NFS server sets the file's atime, and this 411 * client must read the updated atime from the server back into its 412 * cache. 413 */ 414 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter, 415 bool swap) 416 { 417 struct file *file = iocb->ki_filp; 418 struct address_space *mapping = file->f_mapping; 419 struct inode *inode = mapping->host; 420 struct nfs_direct_req *dreq; 421 struct nfs_lock_context *l_ctx; 422 ssize_t result, requested; 423 size_t count = iov_iter_count(iter); 424 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count); 425 426 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n", 427 file, count, (long long) iocb->ki_pos); 428 429 result = 0; 430 if (!count) 431 goto out; 432 433 task_io_account_read(count); 434 435 result = -ENOMEM; 436 dreq = nfs_direct_req_alloc(); 437 if (dreq == NULL) 438 goto out; 439 440 dreq->inode = inode; 441 dreq->max_count = count; 442 dreq->io_start = iocb->ki_pos; 443 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 444 l_ctx = nfs_get_lock_context(dreq->ctx); 445 if (IS_ERR(l_ctx)) { 446 result = PTR_ERR(l_ctx); 447 nfs_direct_req_release(dreq); 448 goto out_release; 449 } 450 dreq->l_ctx = l_ctx; 451 if (!is_sync_kiocb(iocb)) 452 dreq->iocb = iocb; 453 454 if (user_backed_iter(iter)) 455 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY; 456 457 if (!swap) 458 nfs_start_io_direct(inode); 459 460 NFS_I(inode)->read_io += count; 461 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos); 462 463 if (!swap) 464 nfs_end_io_direct(inode); 465 466 if (requested > 0) { 467 result = nfs_direct_wait(dreq); 468 if (result > 0) { 469 requested -= result; 470 iocb->ki_pos += result; 471 } 472 iov_iter_revert(iter, requested); 473 } else { 474 result = requested; 475 } 476 477 out_release: 478 nfs_direct_req_release(dreq); 479 out: 480 return result; 481 } 482 483 static void nfs_direct_add_page_head(struct list_head *list, 484 struct nfs_page *req) 485 { 486 struct nfs_page *head = req->wb_head; 487 488 if (!list_empty(&head->wb_list) || !nfs_lock_request(head)) 489 return; 490 if (!list_empty(&head->wb_list)) { 491 nfs_unlock_request(head); 492 return; 493 } 494 list_add(&head->wb_list, list); 495 kref_get(&head->wb_kref); 496 kref_get(&head->wb_kref); 497 } 498 499 static void nfs_direct_join_group(struct list_head *list, 500 struct nfs_commit_info *cinfo, 501 struct inode *inode) 502 { 503 struct nfs_page *req, *subreq; 504 505 list_for_each_entry(req, list, wb_list) { 506 if (req->wb_head != req) { 507 nfs_direct_add_page_head(&req->wb_list, req); 508 continue; 509 } 510 subreq = req->wb_this_page; 511 if (subreq == req) 512 continue; 513 do { 514 /* 515 * Remove subrequests from this list before freeing 516 * them in the call to nfs_join_page_group(). 517 */ 518 if (!list_empty(&subreq->wb_list)) { 519 nfs_list_remove_request(subreq); 520 nfs_release_request(subreq); 521 } 522 } while ((subreq = subreq->wb_this_page) != req); 523 nfs_join_page_group(req, cinfo, inode); 524 } 525 } 526 527 static void 528 nfs_direct_write_scan_commit_list(struct inode *inode, 529 struct list_head *list, 530 struct nfs_commit_info *cinfo) 531 { 532 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex); 533 pnfs_recover_commit_reqs(list, cinfo); 534 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0); 535 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex); 536 } 537 538 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq) 539 { 540 struct nfs_pageio_descriptor desc; 541 struct nfs_page *req; 542 LIST_HEAD(reqs); 543 struct nfs_commit_info cinfo; 544 545 nfs_init_cinfo_from_dreq(&cinfo, dreq); 546 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 547 548 nfs_direct_join_group(&reqs, &cinfo, dreq->inode); 549 550 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo); 551 get_dreq(dreq); 552 553 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false, 554 &nfs_direct_write_completion_ops); 555 desc.pg_dreq = dreq; 556 557 while (!list_empty(&reqs)) { 558 req = nfs_list_entry(reqs.next); 559 /* Bump the transmission count */ 560 req->wb_nio++; 561 if (!nfs_pageio_add_request(&desc, req)) { 562 spin_lock(&dreq->lock); 563 if (dreq->error < 0) { 564 desc.pg_error = dreq->error; 565 } else if (desc.pg_error != -EAGAIN) { 566 dreq->flags = 0; 567 if (!desc.pg_error) 568 desc.pg_error = -EIO; 569 dreq->error = desc.pg_error; 570 } else 571 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 572 spin_unlock(&dreq->lock); 573 break; 574 } 575 nfs_release_request(req); 576 } 577 nfs_pageio_complete(&desc); 578 579 while (!list_empty(&reqs)) { 580 req = nfs_list_entry(reqs.next); 581 nfs_list_remove_request(req); 582 nfs_unlock_and_release_request(req); 583 if (desc.pg_error == -EAGAIN) { 584 nfs_mark_request_commit(req, NULL, &cinfo, 0); 585 } else { 586 spin_lock(&dreq->lock); 587 nfs_direct_truncate_request(dreq, req); 588 spin_unlock(&dreq->lock); 589 nfs_release_request(req); 590 } 591 } 592 593 if (put_dreq(dreq)) 594 nfs_direct_write_complete(dreq); 595 } 596 597 static void nfs_direct_commit_complete(struct nfs_commit_data *data) 598 { 599 const struct nfs_writeverf *verf = data->res.verf; 600 struct nfs_direct_req *dreq = data->dreq; 601 struct nfs_commit_info cinfo; 602 struct nfs_page *req; 603 int status = data->task.tk_status; 604 605 trace_nfs_direct_commit_complete(dreq); 606 607 spin_lock(&dreq->lock); 608 if (status < 0) { 609 /* Errors in commit are fatal */ 610 dreq->error = status; 611 dreq->flags = NFS_ODIRECT_DONE; 612 } else { 613 status = dreq->error; 614 } 615 spin_unlock(&dreq->lock); 616 617 nfs_init_cinfo_from_dreq(&cinfo, dreq); 618 619 while (!list_empty(&data->pages)) { 620 req = nfs_list_entry(data->pages.next); 621 nfs_list_remove_request(req); 622 if (status < 0) { 623 spin_lock(&dreq->lock); 624 nfs_direct_truncate_request(dreq, req); 625 spin_unlock(&dreq->lock); 626 nfs_release_request(req); 627 } else if (!nfs_write_match_verf(verf, req)) { 628 spin_lock(&dreq->lock); 629 if (dreq->flags == 0) 630 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 631 spin_unlock(&dreq->lock); 632 /* 633 * Despite the reboot, the write was successful, 634 * so reset wb_nio. 635 */ 636 req->wb_nio = 0; 637 nfs_mark_request_commit(req, NULL, &cinfo, 0); 638 } else 639 nfs_release_request(req); 640 nfs_unlock_and_release_request(req); 641 } 642 643 if (nfs_commit_end(cinfo.mds)) 644 nfs_direct_write_complete(dreq); 645 } 646 647 static void nfs_direct_resched_write(struct nfs_commit_info *cinfo, 648 struct nfs_page *req) 649 { 650 struct nfs_direct_req *dreq = cinfo->dreq; 651 652 trace_nfs_direct_resched_write(dreq); 653 654 spin_lock(&dreq->lock); 655 if (dreq->flags != NFS_ODIRECT_DONE) 656 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 657 spin_unlock(&dreq->lock); 658 nfs_mark_request_commit(req, NULL, cinfo, 0); 659 } 660 661 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = { 662 .completion = nfs_direct_commit_complete, 663 .resched_write = nfs_direct_resched_write, 664 }; 665 666 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq) 667 { 668 int res; 669 struct nfs_commit_info cinfo; 670 LIST_HEAD(mds_list); 671 672 nfs_init_cinfo_from_dreq(&cinfo, dreq); 673 nfs_commit_begin(cinfo.mds); 674 nfs_scan_commit(dreq->inode, &mds_list, &cinfo); 675 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo); 676 if (res < 0) { /* res == -ENOMEM */ 677 spin_lock(&dreq->lock); 678 if (dreq->flags == 0) 679 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 680 spin_unlock(&dreq->lock); 681 } 682 if (nfs_commit_end(cinfo.mds)) 683 nfs_direct_write_complete(dreq); 684 } 685 686 static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq) 687 { 688 struct nfs_commit_info cinfo; 689 struct nfs_page *req; 690 LIST_HEAD(reqs); 691 692 nfs_init_cinfo_from_dreq(&cinfo, dreq); 693 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo); 694 695 while (!list_empty(&reqs)) { 696 req = nfs_list_entry(reqs.next); 697 nfs_list_remove_request(req); 698 nfs_direct_truncate_request(dreq, req); 699 nfs_release_request(req); 700 nfs_unlock_and_release_request(req); 701 } 702 } 703 704 static void nfs_direct_write_schedule_work(struct work_struct *work) 705 { 706 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work); 707 int flags = dreq->flags; 708 709 dreq->flags = 0; 710 switch (flags) { 711 case NFS_ODIRECT_DO_COMMIT: 712 nfs_direct_commit_schedule(dreq); 713 break; 714 case NFS_ODIRECT_RESCHED_WRITES: 715 nfs_direct_write_reschedule(dreq); 716 break; 717 default: 718 nfs_direct_write_clear_reqs(dreq); 719 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping); 720 nfs_direct_complete(dreq); 721 } 722 } 723 724 static void nfs_direct_write_complete(struct nfs_direct_req *dreq) 725 { 726 trace_nfs_direct_write_complete(dreq); 727 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */ 728 } 729 730 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr) 731 { 732 struct nfs_direct_req *dreq = hdr->dreq; 733 struct nfs_commit_info cinfo; 734 struct nfs_page *req = nfs_list_entry(hdr->pages.next); 735 int flags = NFS_ODIRECT_DONE; 736 737 trace_nfs_direct_write_completion(dreq); 738 739 nfs_init_cinfo_from_dreq(&cinfo, dreq); 740 741 spin_lock(&dreq->lock); 742 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) { 743 spin_unlock(&dreq->lock); 744 goto out_put; 745 } 746 747 nfs_direct_count_bytes(dreq, hdr); 748 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) && 749 !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) { 750 if (!dreq->flags) 751 dreq->flags = NFS_ODIRECT_DO_COMMIT; 752 flags = dreq->flags; 753 } 754 spin_unlock(&dreq->lock); 755 756 while (!list_empty(&hdr->pages)) { 757 758 req = nfs_list_entry(hdr->pages.next); 759 nfs_list_remove_request(req); 760 if (flags == NFS_ODIRECT_DO_COMMIT) { 761 kref_get(&req->wb_kref); 762 memcpy(&req->wb_verf, &hdr->verf.verifier, 763 sizeof(req->wb_verf)); 764 nfs_mark_request_commit(req, hdr->lseg, &cinfo, 765 hdr->ds_commit_idx); 766 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) { 767 kref_get(&req->wb_kref); 768 nfs_mark_request_commit(req, NULL, &cinfo, 0); 769 } 770 nfs_unlock_and_release_request(req); 771 } 772 773 out_put: 774 if (put_dreq(dreq)) 775 nfs_direct_write_complete(dreq); 776 hdr->release(hdr); 777 } 778 779 static void nfs_write_sync_pgio_error(struct list_head *head, int error) 780 { 781 struct nfs_page *req; 782 783 while (!list_empty(head)) { 784 req = nfs_list_entry(head->next); 785 nfs_list_remove_request(req); 786 nfs_unlock_and_release_request(req); 787 } 788 } 789 790 static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr) 791 { 792 struct nfs_direct_req *dreq = hdr->dreq; 793 struct nfs_page *req; 794 struct nfs_commit_info cinfo; 795 796 trace_nfs_direct_write_reschedule_io(dreq); 797 798 nfs_init_cinfo_from_dreq(&cinfo, dreq); 799 spin_lock(&dreq->lock); 800 if (dreq->error == 0) 801 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 802 set_bit(NFS_IOHDR_REDO, &hdr->flags); 803 spin_unlock(&dreq->lock); 804 while (!list_empty(&hdr->pages)) { 805 req = nfs_list_entry(hdr->pages.next); 806 nfs_list_remove_request(req); 807 nfs_unlock_request(req); 808 nfs_mark_request_commit(req, NULL, &cinfo, 0); 809 } 810 } 811 812 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = { 813 .error_cleanup = nfs_write_sync_pgio_error, 814 .init_hdr = nfs_direct_pgio_init, 815 .completion = nfs_direct_write_completion, 816 .reschedule_io = nfs_direct_write_reschedule_io, 817 }; 818 819 820 /* 821 * NB: Return the value of the first error return code. Subsequent 822 * errors after the first one are ignored. 823 */ 824 /* 825 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE 826 * operation. If nfs_writedata_alloc() or get_user_pages() fails, 827 * bail and stop sending more writes. Write length accounting is 828 * handled automatically by nfs_direct_write_result(). Otherwise, if 829 * no requests have been sent, just return an error. 830 */ 831 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq, 832 struct iov_iter *iter, 833 loff_t pos, int ioflags) 834 { 835 struct nfs_pageio_descriptor desc; 836 struct inode *inode = dreq->inode; 837 struct nfs_commit_info cinfo; 838 ssize_t result = 0; 839 size_t requested_bytes = 0; 840 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE); 841 bool defer = false; 842 843 trace_nfs_direct_write_schedule_iovec(dreq); 844 845 nfs_pageio_init_write(&desc, inode, ioflags, false, 846 &nfs_direct_write_completion_ops); 847 desc.pg_dreq = dreq; 848 get_dreq(dreq); 849 inode_dio_begin(inode); 850 851 NFS_I(inode)->write_io += iov_iter_count(iter); 852 while (iov_iter_count(iter)) { 853 struct page **pagevec; 854 size_t bytes; 855 size_t pgbase; 856 unsigned npages, i; 857 858 result = iov_iter_get_pages_alloc2(iter, &pagevec, 859 wsize, &pgbase); 860 if (result < 0) 861 break; 862 863 bytes = result; 864 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE; 865 for (i = 0; i < npages; i++) { 866 struct nfs_page *req; 867 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase); 868 869 req = nfs_page_create_from_page(dreq->ctx, pagevec[i], 870 pgbase, pos, req_len); 871 if (IS_ERR(req)) { 872 result = PTR_ERR(req); 873 break; 874 } 875 876 if (desc.pg_error < 0) { 877 nfs_free_request(req); 878 result = desc.pg_error; 879 break; 880 } 881 882 pgbase = 0; 883 bytes -= req_len; 884 requested_bytes += req_len; 885 pos += req_len; 886 887 if (defer) { 888 nfs_mark_request_commit(req, NULL, &cinfo, 0); 889 continue; 890 } 891 892 nfs_lock_request(req); 893 if (nfs_pageio_add_request(&desc, req)) 894 continue; 895 896 /* Exit on hard errors */ 897 if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) { 898 result = desc.pg_error; 899 nfs_unlock_and_release_request(req); 900 break; 901 } 902 903 /* If the error is soft, defer remaining requests */ 904 nfs_init_cinfo_from_dreq(&cinfo, dreq); 905 spin_lock(&dreq->lock); 906 dreq->flags = NFS_ODIRECT_RESCHED_WRITES; 907 spin_unlock(&dreq->lock); 908 nfs_unlock_request(req); 909 nfs_mark_request_commit(req, NULL, &cinfo, 0); 910 desc.pg_error = 0; 911 defer = true; 912 } 913 nfs_direct_release_pages(pagevec, npages); 914 kvfree(pagevec); 915 if (result < 0) 916 break; 917 } 918 nfs_pageio_complete(&desc); 919 920 /* 921 * If no bytes were started, return the error, and let the 922 * generic layer handle the completion. 923 */ 924 if (requested_bytes == 0) { 925 inode_dio_end(inode); 926 nfs_direct_req_release(dreq); 927 return result < 0 ? result : -EIO; 928 } 929 930 if (put_dreq(dreq)) 931 nfs_direct_write_complete(dreq); 932 return requested_bytes; 933 } 934 935 /** 936 * nfs_file_direct_write - file direct write operation for NFS files 937 * @iocb: target I/O control block 938 * @iter: vector of user buffers from which to write data 939 * @swap: flag indicating this is swap IO, not O_DIRECT IO 940 * 941 * We use this function for direct writes instead of calling 942 * generic_file_aio_write() in order to avoid taking the inode 943 * semaphore and updating the i_size. The NFS server will set 944 * the new i_size and this client must read the updated size 945 * back into its cache. We let the server do generic write 946 * parameter checking and report problems. 947 * 948 * We eliminate local atime updates, see direct read above. 949 * 950 * We avoid unnecessary page cache invalidations for normal cached 951 * readers of this file. 952 * 953 * Note that O_APPEND is not supported for NFS direct writes, as there 954 * is no atomic O_APPEND write facility in the NFS protocol. 955 */ 956 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter, 957 bool swap) 958 { 959 ssize_t result, requested; 960 size_t count; 961 struct file *file = iocb->ki_filp; 962 struct address_space *mapping = file->f_mapping; 963 struct inode *inode = mapping->host; 964 struct nfs_direct_req *dreq; 965 struct nfs_lock_context *l_ctx; 966 loff_t pos, end; 967 968 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n", 969 file, iov_iter_count(iter), (long long) iocb->ki_pos); 970 971 if (swap) 972 /* bypass generic checks */ 973 result = iov_iter_count(iter); 974 else 975 result = generic_write_checks(iocb, iter); 976 if (result <= 0) 977 return result; 978 count = result; 979 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count); 980 981 pos = iocb->ki_pos; 982 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT; 983 984 task_io_account_write(count); 985 986 result = -ENOMEM; 987 dreq = nfs_direct_req_alloc(); 988 if (!dreq) 989 goto out; 990 991 dreq->inode = inode; 992 dreq->max_count = count; 993 dreq->io_start = pos; 994 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp)); 995 l_ctx = nfs_get_lock_context(dreq->ctx); 996 if (IS_ERR(l_ctx)) { 997 result = PTR_ERR(l_ctx); 998 nfs_direct_req_release(dreq); 999 goto out_release; 1000 } 1001 dreq->l_ctx = l_ctx; 1002 if (!is_sync_kiocb(iocb)) 1003 dreq->iocb = iocb; 1004 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode); 1005 1006 if (swap) { 1007 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1008 FLUSH_STABLE); 1009 } else { 1010 nfs_start_io_direct(inode); 1011 1012 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos, 1013 FLUSH_COND_STABLE); 1014 1015 if (mapping->nrpages) { 1016 invalidate_inode_pages2_range(mapping, 1017 pos >> PAGE_SHIFT, end); 1018 } 1019 1020 nfs_end_io_direct(inode); 1021 } 1022 1023 if (requested > 0) { 1024 result = nfs_direct_wait(dreq); 1025 if (result > 0) { 1026 requested -= result; 1027 iocb->ki_pos = pos + result; 1028 /* XXX: should check the generic_write_sync retval */ 1029 generic_write_sync(iocb, result); 1030 } 1031 iov_iter_revert(iter, requested); 1032 } else { 1033 result = requested; 1034 } 1035 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE); 1036 out_release: 1037 nfs_direct_req_release(dreq); 1038 out: 1039 return result; 1040 } 1041 1042 /** 1043 * nfs_init_directcache - create a slab cache for nfs_direct_req structures 1044 * 1045 */ 1046 int __init nfs_init_directcache(void) 1047 { 1048 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache", 1049 sizeof(struct nfs_direct_req), 1050 0, SLAB_RECLAIM_ACCOUNT, 1051 NULL); 1052 if (nfs_direct_cachep == NULL) 1053 return -ENOMEM; 1054 1055 return 0; 1056 } 1057 1058 /** 1059 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures 1060 * 1061 */ 1062 void nfs_destroy_directcache(void) 1063 { 1064 kmem_cache_destroy(nfs_direct_cachep); 1065 } 1066
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.