1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Request reply cache. This is currently a global cache, but this may 4 * change in the future and be a per-client cache. 5 * 6 * This code is heavily inspired by the 44BSD implementation, although 7 * it does things a bit differently. 8 * 9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de> 10 */ 11 12 #include <linux/sunrpc/svc_xprt.h> 13 #include <linux/slab.h> 14 #include <linux/vmalloc.h> 15 #include <linux/sunrpc/addr.h> 16 #include <linux/highmem.h> 17 #include <linux/log2.h> 18 #include <linux/hash.h> 19 #include <net/checksum.h> 20 21 #include "nfsd.h" 22 #include "cache.h" 23 #include "trace.h" 24 25 /* 26 * We use this value to determine the number of hash buckets from the max 27 * cache size, the idea being that when the cache is at its maximum number 28 * of entries, then this should be the average number of entries per bucket. 29 */ 30 #define TARGET_BUCKET_SIZE 64 31 32 struct nfsd_drc_bucket { 33 struct rb_root rb_head; 34 struct list_head lru_head; 35 spinlock_t cache_lock; 36 }; 37 38 static struct kmem_cache *drc_slab; 39 40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec); 41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink, 42 struct shrink_control *sc); 43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink, 44 struct shrink_control *sc); 45 46 /* 47 * Put a cap on the size of the DRC based on the amount of available 48 * low memory in the machine. 49 * 50 * 64MB: 8192 51 * 128MB: 11585 52 * 256MB: 16384 53 * 512MB: 23170 54 * 1GB: 32768 55 * 2GB: 46340 56 * 4GB: 65536 57 * 8GB: 92681 58 * 16GB: 131072 59 * 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be 61 * ~1k, so the above numbers should give a rough max of the amount of memory 62 * used in k. 63 * 64 * XXX: these limits are per-container, so memory used will increase 65 * linearly with number of containers. Maybe that's OK. 66 */ 67 static unsigned int 68 nfsd_cache_size_limit(void) 69 { 70 unsigned int limit; 71 unsigned long low_pages = totalram_pages() - totalhigh_pages(); 72 73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10); 74 return min_t(unsigned int, limit, 256*1024); 75 } 76 77 /* 78 * Compute the number of hash buckets we need. Divide the max cachesize by 79 * the "target" max bucket size, and round up to next power of two. 80 */ 81 static unsigned int 82 nfsd_hashsize(unsigned int limit) 83 { 84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE); 85 } 86 87 static struct nfsd_cacherep * 88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum, 89 struct nfsd_net *nn) 90 { 91 struct nfsd_cacherep *rp; 92 93 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL); 94 if (rp) { 95 rp->c_state = RC_UNUSED; 96 rp->c_type = RC_NOCACHE; 97 RB_CLEAR_NODE(&rp->c_node); 98 INIT_LIST_HEAD(&rp->c_lru); 99 100 memset(&rp->c_key, 0, sizeof(rp->c_key)); 101 rp->c_key.k_xid = rqstp->rq_xid; 102 rp->c_key.k_proc = rqstp->rq_proc; 103 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp)); 104 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp))); 105 rp->c_key.k_prot = rqstp->rq_prot; 106 rp->c_key.k_vers = rqstp->rq_vers; 107 rp->c_key.k_len = rqstp->rq_arg.len; 108 rp->c_key.k_csum = csum; 109 } 110 return rp; 111 } 112 113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp) 114 { 115 if (rp->c_type == RC_REPLBUFF) 116 kfree(rp->c_replvec.iov_base); 117 kmem_cache_free(drc_slab, rp); 118 } 119 120 static unsigned long 121 nfsd_cacherep_dispose(struct list_head *dispose) 122 { 123 struct nfsd_cacherep *rp; 124 unsigned long freed = 0; 125 126 while (!list_empty(dispose)) { 127 rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru); 128 list_del(&rp->c_lru); 129 nfsd_cacherep_free(rp); 130 freed++; 131 } 132 return freed; 133 } 134 135 static void 136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 137 struct nfsd_cacherep *rp) 138 { 139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) 140 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len); 141 if (rp->c_state != RC_UNUSED) { 142 rb_erase(&rp->c_node, &b->rb_head); 143 list_del(&rp->c_lru); 144 atomic_dec(&nn->num_drc_entries); 145 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp)); 146 } 147 } 148 149 static void 150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 151 struct nfsd_net *nn) 152 { 153 nfsd_cacherep_unlink_locked(nn, b, rp); 154 nfsd_cacherep_free(rp); 155 } 156 157 static void 158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp, 159 struct nfsd_net *nn) 160 { 161 spin_lock(&b->cache_lock); 162 nfsd_cacherep_unlink_locked(nn, b, rp); 163 spin_unlock(&b->cache_lock); 164 nfsd_cacherep_free(rp); 165 } 166 167 int nfsd_drc_slab_create(void) 168 { 169 drc_slab = KMEM_CACHE(nfsd_cacherep, 0); 170 return drc_slab ? 0: -ENOMEM; 171 } 172 173 void nfsd_drc_slab_free(void) 174 { 175 kmem_cache_destroy(drc_slab); 176 } 177 178 int nfsd_reply_cache_init(struct nfsd_net *nn) 179 { 180 unsigned int hashsize; 181 unsigned int i; 182 183 nn->max_drc_entries = nfsd_cache_size_limit(); 184 atomic_set(&nn->num_drc_entries, 0); 185 hashsize = nfsd_hashsize(nn->max_drc_entries); 186 nn->maskbits = ilog2(hashsize); 187 188 nn->drc_hashtbl = kvzalloc(array_size(hashsize, 189 sizeof(*nn->drc_hashtbl)), GFP_KERNEL); 190 if (!nn->drc_hashtbl) 191 return -ENOMEM; 192 193 nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s", 194 nn->nfsd_name); 195 if (!nn->nfsd_reply_cache_shrinker) 196 goto out_shrinker; 197 198 nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan; 199 nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count; 200 nn->nfsd_reply_cache_shrinker->seeks = 1; 201 nn->nfsd_reply_cache_shrinker->private_data = nn; 202 203 shrinker_register(nn->nfsd_reply_cache_shrinker); 204 205 for (i = 0; i < hashsize; i++) { 206 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head); 207 spin_lock_init(&nn->drc_hashtbl[i].cache_lock); 208 } 209 nn->drc_hashsize = hashsize; 210 211 return 0; 212 out_shrinker: 213 kvfree(nn->drc_hashtbl); 214 printk(KERN_ERR "nfsd: failed to allocate reply cache\n"); 215 return -ENOMEM; 216 } 217 218 void nfsd_reply_cache_shutdown(struct nfsd_net *nn) 219 { 220 struct nfsd_cacherep *rp; 221 unsigned int i; 222 223 shrinker_free(nn->nfsd_reply_cache_shrinker); 224 225 for (i = 0; i < nn->drc_hashsize; i++) { 226 struct list_head *head = &nn->drc_hashtbl[i].lru_head; 227 while (!list_empty(head)) { 228 rp = list_first_entry(head, struct nfsd_cacherep, c_lru); 229 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i], 230 rp, nn); 231 } 232 } 233 234 kvfree(nn->drc_hashtbl); 235 nn->drc_hashtbl = NULL; 236 nn->drc_hashsize = 0; 237 238 } 239 240 /* 241 * Move cache entry to end of LRU list, and queue the cleaner to run if it's 242 * not already scheduled. 243 */ 244 static void 245 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp) 246 { 247 rp->c_timestamp = jiffies; 248 list_move_tail(&rp->c_lru, &b->lru_head); 249 } 250 251 static noinline struct nfsd_drc_bucket * 252 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn) 253 { 254 unsigned int hash = hash_32((__force u32)xid, nn->maskbits); 255 256 return &nn->drc_hashtbl[hash]; 257 } 258 259 /* 260 * Remove and return no more than @max expired entries in bucket @b. 261 * If @max is zero, do not limit the number of removed entries. 262 */ 263 static void 264 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b, 265 unsigned int max, struct list_head *dispose) 266 { 267 unsigned long expiry = jiffies - RC_EXPIRE; 268 struct nfsd_cacherep *rp, *tmp; 269 unsigned int freed = 0; 270 271 lockdep_assert_held(&b->cache_lock); 272 273 /* The bucket LRU is ordered oldest-first. */ 274 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) { 275 /* 276 * Don't free entries attached to calls that are still 277 * in-progress, but do keep scanning the list. 278 */ 279 if (rp->c_state == RC_INPROG) 280 continue; 281 282 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries && 283 time_before(expiry, rp->c_timestamp)) 284 break; 285 286 nfsd_cacherep_unlink_locked(nn, b, rp); 287 list_add(&rp->c_lru, dispose); 288 289 if (max && ++freed > max) 290 break; 291 } 292 } 293 294 /** 295 * nfsd_reply_cache_count - count_objects method for the DRC shrinker 296 * @shrink: our registered shrinker context 297 * @sc: garbage collection parameters 298 * 299 * Returns the total number of entries in the duplicate reply cache. To 300 * keep things simple and quick, this is not the number of expired entries 301 * in the cache (ie, the number that would be removed by a call to 302 * nfsd_reply_cache_scan). 303 */ 304 static unsigned long 305 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc) 306 { 307 struct nfsd_net *nn = shrink->private_data; 308 309 return atomic_read(&nn->num_drc_entries); 310 } 311 312 /** 313 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker 314 * @shrink: our registered shrinker context 315 * @sc: garbage collection parameters 316 * 317 * Free expired entries on each bucket's LRU list until we've released 318 * nr_to_scan freed objects. Nothing will be released if the cache 319 * has not exceeded it's max_drc_entries limit. 320 * 321 * Returns the number of entries released by this call. 322 */ 323 static unsigned long 324 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 325 { 326 struct nfsd_net *nn = shrink->private_data; 327 unsigned long freed = 0; 328 LIST_HEAD(dispose); 329 unsigned int i; 330 331 for (i = 0; i < nn->drc_hashsize; i++) { 332 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i]; 333 334 if (list_empty(&b->lru_head)) 335 continue; 336 337 spin_lock(&b->cache_lock); 338 nfsd_prune_bucket_locked(nn, b, 0, &dispose); 339 spin_unlock(&b->cache_lock); 340 341 freed += nfsd_cacherep_dispose(&dispose); 342 if (freed > sc->nr_to_scan) 343 break; 344 } 345 return freed; 346 } 347 348 /** 349 * nfsd_cache_csum - Checksum incoming NFS Call arguments 350 * @buf: buffer containing a whole RPC Call message 351 * @start: starting byte of the NFS Call header 352 * @remaining: size of the NFS Call header, in bytes 353 * 354 * Compute a weak checksum of the leading bytes of an NFS procedure 355 * call header to help verify that a retransmitted Call matches an 356 * entry in the duplicate reply cache. 357 * 358 * To avoid assumptions about how the RPC message is laid out in 359 * @buf and what else it might contain (eg, a GSS MIC suffix), the 360 * caller passes us the exact location and length of the NFS Call 361 * header. 362 * 363 * Returns a 32-bit checksum value, as defined in RFC 793. 364 */ 365 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start, 366 unsigned int remaining) 367 { 368 unsigned int base, len; 369 struct xdr_buf subbuf; 370 __wsum csum = 0; 371 void *p; 372 int idx; 373 374 if (remaining > RC_CSUMLEN) 375 remaining = RC_CSUMLEN; 376 if (xdr_buf_subsegment(buf, &subbuf, start, remaining)) 377 return csum; 378 379 /* rq_arg.head first */ 380 if (subbuf.head[0].iov_len) { 381 len = min_t(unsigned int, subbuf.head[0].iov_len, remaining); 382 csum = csum_partial(subbuf.head[0].iov_base, len, csum); 383 remaining -= len; 384 } 385 386 /* Continue into page array */ 387 idx = subbuf.page_base / PAGE_SIZE; 388 base = subbuf.page_base & ~PAGE_MASK; 389 while (remaining) { 390 p = page_address(subbuf.pages[idx]) + base; 391 len = min_t(unsigned int, PAGE_SIZE - base, remaining); 392 csum = csum_partial(p, len, csum); 393 remaining -= len; 394 base = 0; 395 ++idx; 396 } 397 return csum; 398 } 399 400 static int 401 nfsd_cache_key_cmp(const struct nfsd_cacherep *key, 402 const struct nfsd_cacherep *rp, struct nfsd_net *nn) 403 { 404 if (key->c_key.k_xid == rp->c_key.k_xid && 405 key->c_key.k_csum != rp->c_key.k_csum) { 406 nfsd_stats_payload_misses_inc(nn); 407 trace_nfsd_drc_mismatch(nn, key, rp); 408 } 409 410 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key)); 411 } 412 413 /* 414 * Search the request hash for an entry that matches the given rqstp. 415 * Must be called with cache_lock held. Returns the found entry or 416 * inserts an empty key on failure. 417 */ 418 static struct nfsd_cacherep * 419 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key, 420 struct nfsd_net *nn) 421 { 422 struct nfsd_cacherep *rp, *ret = key; 423 struct rb_node **p = &b->rb_head.rb_node, 424 *parent = NULL; 425 unsigned int entries = 0; 426 int cmp; 427 428 while (*p != NULL) { 429 ++entries; 430 parent = *p; 431 rp = rb_entry(parent, struct nfsd_cacherep, c_node); 432 433 cmp = nfsd_cache_key_cmp(key, rp, nn); 434 if (cmp < 0) 435 p = &parent->rb_left; 436 else if (cmp > 0) 437 p = &parent->rb_right; 438 else { 439 ret = rp; 440 goto out; 441 } 442 } 443 rb_link_node(&key->c_node, parent, p); 444 rb_insert_color(&key->c_node, &b->rb_head); 445 out: 446 /* tally hash chain length stats */ 447 if (entries > nn->longest_chain) { 448 nn->longest_chain = entries; 449 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries); 450 } else if (entries == nn->longest_chain) { 451 /* prefer to keep the smallest cachesize possible here */ 452 nn->longest_chain_cachesize = min_t(unsigned int, 453 nn->longest_chain_cachesize, 454 atomic_read(&nn->num_drc_entries)); 455 } 456 457 lru_put_end(b, ret); 458 return ret; 459 } 460 461 /** 462 * nfsd_cache_lookup - Find an entry in the duplicate reply cache 463 * @rqstp: Incoming Call to find 464 * @start: starting byte in @rqstp->rq_arg of the NFS Call header 465 * @len: size of the NFS Call header, in bytes 466 * @cacherep: OUT: DRC entry for this request 467 * 468 * Try to find an entry matching the current call in the cache. When none 469 * is found, we try to grab the oldest expired entry off the LRU list. If 470 * a suitable one isn't there, then drop the cache_lock and allocate a 471 * new one, then search again in case one got inserted while this thread 472 * didn't hold the lock. 473 * 474 * Return values: 475 * %RC_DOIT: Process the request normally 476 * %RC_REPLY: Reply from cache 477 * %RC_DROPIT: Do not process the request further 478 */ 479 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start, 480 unsigned int len, struct nfsd_cacherep **cacherep) 481 { 482 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 483 struct nfsd_cacherep *rp, *found; 484 __wsum csum; 485 struct nfsd_drc_bucket *b; 486 int type = rqstp->rq_cachetype; 487 LIST_HEAD(dispose); 488 int rtn = RC_DOIT; 489 490 if (type == RC_NOCACHE) { 491 nfsd_stats_rc_nocache_inc(nn); 492 goto out; 493 } 494 495 csum = nfsd_cache_csum(&rqstp->rq_arg, start, len); 496 497 /* 498 * Since the common case is a cache miss followed by an insert, 499 * preallocate an entry. 500 */ 501 rp = nfsd_cacherep_alloc(rqstp, csum, nn); 502 if (!rp) 503 goto out; 504 505 b = nfsd_cache_bucket_find(rqstp->rq_xid, nn); 506 spin_lock(&b->cache_lock); 507 found = nfsd_cache_insert(b, rp, nn); 508 if (found != rp) 509 goto found_entry; 510 *cacherep = rp; 511 rp->c_state = RC_INPROG; 512 nfsd_prune_bucket_locked(nn, b, 3, &dispose); 513 spin_unlock(&b->cache_lock); 514 515 nfsd_cacherep_dispose(&dispose); 516 517 nfsd_stats_rc_misses_inc(nn); 518 atomic_inc(&nn->num_drc_entries); 519 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp)); 520 goto out; 521 522 found_entry: 523 /* We found a matching entry which is either in progress or done. */ 524 nfsd_reply_cache_free_locked(NULL, rp, nn); 525 nfsd_stats_rc_hits_inc(nn); 526 rtn = RC_DROPIT; 527 rp = found; 528 529 /* Request being processed */ 530 if (rp->c_state == RC_INPROG) 531 goto out_trace; 532 533 /* From the hall of fame of impractical attacks: 534 * Is this a user who tries to snoop on the cache? */ 535 rtn = RC_DOIT; 536 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure) 537 goto out_trace; 538 539 /* Compose RPC reply header */ 540 switch (rp->c_type) { 541 case RC_NOCACHE: 542 break; 543 case RC_REPLSTAT: 544 xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat); 545 rtn = RC_REPLY; 546 break; 547 case RC_REPLBUFF: 548 if (!nfsd_cache_append(rqstp, &rp->c_replvec)) 549 goto out_unlock; /* should not happen */ 550 rtn = RC_REPLY; 551 break; 552 default: 553 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type); 554 } 555 556 out_trace: 557 trace_nfsd_drc_found(nn, rqstp, rtn); 558 out_unlock: 559 spin_unlock(&b->cache_lock); 560 out: 561 return rtn; 562 } 563 564 /** 565 * nfsd_cache_update - Update an entry in the duplicate reply cache. 566 * @rqstp: svc_rqst with a finished Reply 567 * @rp: IN: DRC entry for this request 568 * @cachetype: which cache to update 569 * @statp: pointer to Reply's NFS status code, or NULL 570 * 571 * This is called from nfsd_dispatch when the procedure has been 572 * executed and the complete reply is in rqstp->rq_res. 573 * 574 * We're copying around data here rather than swapping buffers because 575 * the toplevel loop requires max-sized buffers, which would be a waste 576 * of memory for a cache with a max reply size of 100 bytes (diropokres). 577 * 578 * If we should start to use different types of cache entries tailored 579 * specifically for attrstat and fh's, we may save even more space. 580 * 581 * Also note that a cachetype of RC_NOCACHE can legally be passed when 582 * nfsd failed to encode a reply that otherwise would have been cached. 583 * In this case, nfsd_cache_update is called with statp == NULL. 584 */ 585 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp, 586 int cachetype, __be32 *statp) 587 { 588 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id); 589 struct kvec *resv = &rqstp->rq_res.head[0], *cachv; 590 struct nfsd_drc_bucket *b; 591 int len; 592 size_t bufsize = 0; 593 594 if (!rp) 595 return; 596 597 b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn); 598 599 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base); 600 len >>= 2; 601 602 /* Don't cache excessive amounts of data and XDR failures */ 603 if (!statp || len > (256 >> 2)) { 604 nfsd_reply_cache_free(b, rp, nn); 605 return; 606 } 607 608 switch (cachetype) { 609 case RC_REPLSTAT: 610 if (len != 1) 611 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len); 612 rp->c_replstat = *statp; 613 break; 614 case RC_REPLBUFF: 615 cachv = &rp->c_replvec; 616 bufsize = len << 2; 617 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL); 618 if (!cachv->iov_base) { 619 nfsd_reply_cache_free(b, rp, nn); 620 return; 621 } 622 cachv->iov_len = bufsize; 623 memcpy(cachv->iov_base, statp, bufsize); 624 break; 625 case RC_NOCACHE: 626 nfsd_reply_cache_free(b, rp, nn); 627 return; 628 } 629 spin_lock(&b->cache_lock); 630 nfsd_stats_drc_mem_usage_add(nn, bufsize); 631 lru_put_end(b, rp); 632 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags); 633 rp->c_type = cachetype; 634 rp->c_state = RC_DONE; 635 spin_unlock(&b->cache_lock); 636 return; 637 } 638 639 static int 640 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data) 641 { 642 __be32 *p; 643 644 p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len); 645 if (unlikely(!p)) 646 return false; 647 memcpy(p, data->iov_base, data->iov_len); 648 xdr_commit_encode(&rqstp->rq_res_stream); 649 return true; 650 } 651 652 /* 653 * Note that fields may be added, removed or reordered in the future. Programs 654 * scraping this file for info should test the labels to ensure they're 655 * getting the correct field. 656 */ 657 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v) 658 { 659 struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info, 660 nfsd_net_id); 661 662 seq_printf(m, "max entries: %u\n", nn->max_drc_entries); 663 seq_printf(m, "num entries: %u\n", 664 atomic_read(&nn->num_drc_entries)); 665 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits); 666 seq_printf(m, "mem usage: %lld\n", 667 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_DRC_MEM_USAGE])); 668 seq_printf(m, "cache hits: %lld\n", 669 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS])); 670 seq_printf(m, "cache misses: %lld\n", 671 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES])); 672 seq_printf(m, "not cached: %lld\n", 673 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE])); 674 seq_printf(m, "payload misses: %lld\n", 675 percpu_counter_sum_positive(&nn->counter[NFSD_STATS_PAYLOAD_MISSES])); 676 seq_printf(m, "longest chain len: %u\n", nn->longest_chain); 677 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize); 678 return 0; 679 } 680
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.