~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/nilfs2/segment.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 /*
  3  * NILFS segment constructor.
  4  *
  5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  6  *
  7  * Written by Ryusuke Konishi.
  8  *
  9  */
 10 
 11 #include <linux/pagemap.h>
 12 #include <linux/buffer_head.h>
 13 #include <linux/writeback.h>
 14 #include <linux/bitops.h>
 15 #include <linux/bio.h>
 16 #include <linux/completion.h>
 17 #include <linux/blkdev.h>
 18 #include <linux/backing-dev.h>
 19 #include <linux/freezer.h>
 20 #include <linux/kthread.h>
 21 #include <linux/crc32.h>
 22 #include <linux/pagevec.h>
 23 #include <linux/slab.h>
 24 #include <linux/sched/signal.h>
 25 
 26 #include "nilfs.h"
 27 #include "btnode.h"
 28 #include "page.h"
 29 #include "segment.h"
 30 #include "sufile.h"
 31 #include "cpfile.h"
 32 #include "ifile.h"
 33 #include "segbuf.h"
 34 
 35 
 36 /*
 37  * Segment constructor
 38  */
 39 #define SC_N_INODEVEC   16   /* Size of locally allocated inode vector */
 40 
 41 #define SC_MAX_SEGDELTA 64   /*
 42                               * Upper limit of the number of segments
 43                               * appended in collection retry loop
 44                               */
 45 
 46 /* Construction mode */
 47 enum {
 48         SC_LSEG_SR = 1, /* Make a logical segment having a super root */
 49         SC_LSEG_DSYNC,  /*
 50                          * Flush data blocks of a given file and make
 51                          * a logical segment without a super root.
 52                          */
 53         SC_FLUSH_FILE,  /*
 54                          * Flush data files, leads to segment writes without
 55                          * creating a checkpoint.
 56                          */
 57         SC_FLUSH_DAT,   /*
 58                          * Flush DAT file.  This also creates segments
 59                          * without a checkpoint.
 60                          */
 61 };
 62 
 63 /* Stage numbers of dirty block collection */
 64 enum {
 65         NILFS_ST_INIT = 0,
 66         NILFS_ST_GC,            /* Collecting dirty blocks for GC */
 67         NILFS_ST_FILE,
 68         NILFS_ST_IFILE,
 69         NILFS_ST_CPFILE,
 70         NILFS_ST_SUFILE,
 71         NILFS_ST_DAT,
 72         NILFS_ST_SR,            /* Super root */
 73         NILFS_ST_DSYNC,         /* Data sync blocks */
 74         NILFS_ST_DONE,
 75 };
 76 
 77 #define CREATE_TRACE_POINTS
 78 #include <trace/events/nilfs2.h>
 79 
 80 /*
 81  * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
 82  * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
 83  * the variable must use them because transition of stage count must involve
 84  * trace events (trace_nilfs2_collection_stage_transition).
 85  *
 86  * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
 87  * produce tracepoint events. It is provided just for making the intention
 88  * clear.
 89  */
 90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info *sci)
 91 {
 92         sci->sc_stage.scnt++;
 93         trace_nilfs2_collection_stage_transition(sci);
 94 }
 95 
 96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info *sci, int next_scnt)
 97 {
 98         sci->sc_stage.scnt = next_scnt;
 99         trace_nilfs2_collection_stage_transition(sci);
100 }
101 
102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info *sci)
103 {
104         return sci->sc_stage.scnt;
105 }
106 
107 /* State flags of collection */
108 #define NILFS_CF_NODE           0x0001  /* Collecting node blocks */
109 #define NILFS_CF_IFILE_STARTED  0x0002  /* IFILE stage has started */
110 #define NILFS_CF_SUFREED        0x0004  /* segment usages has been freed */
111 #define NILFS_CF_HISTORY_MASK   (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
112 
113 /* Operations depending on the construction mode and file type */
114 struct nilfs_sc_operations {
115         int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
116                             struct inode *);
117         int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
118                             struct inode *);
119         int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
120                             struct inode *);
121         void (*write_data_binfo)(struct nilfs_sc_info *,
122                                  struct nilfs_segsum_pointer *,
123                                  union nilfs_binfo *);
124         void (*write_node_binfo)(struct nilfs_sc_info *,
125                                  struct nilfs_segsum_pointer *,
126                                  union nilfs_binfo *);
127 };
128 
129 /*
130  * Other definitions
131  */
132 static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
133 static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
135 static void nilfs_dispose_list(struct the_nilfs *, struct list_head *, int);
136 
137 #define nilfs_cnt32_ge(a, b)   \
138         (typecheck(__u32, a) && typecheck(__u32, b) && \
139          ((__s32)((a) - (b)) >= 0))
140 
141 static int nilfs_prepare_segment_lock(struct super_block *sb,
142                                       struct nilfs_transaction_info *ti)
143 {
144         struct nilfs_transaction_info *cur_ti = current->journal_info;
145         void *save = NULL;
146 
147         if (cur_ti) {
148                 if (cur_ti->ti_magic == NILFS_TI_MAGIC)
149                         return ++cur_ti->ti_count;
150 
151                 /*
152                  * If journal_info field is occupied by other FS,
153                  * it is saved and will be restored on
154                  * nilfs_transaction_commit().
155                  */
156                 nilfs_warn(sb, "journal info from a different FS");
157                 save = current->journal_info;
158         }
159         if (!ti) {
160                 ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
161                 if (!ti)
162                         return -ENOMEM;
163                 ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
164         } else {
165                 ti->ti_flags = 0;
166         }
167         ti->ti_count = 0;
168         ti->ti_save = save;
169         ti->ti_magic = NILFS_TI_MAGIC;
170         current->journal_info = ti;
171         return 0;
172 }
173 
174 /**
175  * nilfs_transaction_begin - start indivisible file operations.
176  * @sb: super block
177  * @ti: nilfs_transaction_info
178  * @vacancy_check: flags for vacancy rate checks
179  *
180  * nilfs_transaction_begin() acquires a reader/writer semaphore, called
181  * the segment semaphore, to make a segment construction and write tasks
182  * exclusive.  The function is used with nilfs_transaction_commit() in pairs.
183  * The region enclosed by these two functions can be nested.  To avoid a
184  * deadlock, the semaphore is only acquired or released in the outermost call.
185  *
186  * This function allocates a nilfs_transaction_info struct to keep context
187  * information on it.  It is initialized and hooked onto the current task in
188  * the outermost call.  If a pre-allocated struct is given to @ti, it is used
189  * instead; otherwise a new struct is assigned from a slab.
190  *
191  * When @vacancy_check flag is set, this function will check the amount of
192  * free space, and will wait for the GC to reclaim disk space if low capacity.
193  *
194  * Return Value: On success, 0 is returned. On error, one of the following
195  * negative error code is returned.
196  *
197  * %-ENOMEM - Insufficient memory available.
198  *
199  * %-ENOSPC - No space left on device
200  */
201 int nilfs_transaction_begin(struct super_block *sb,
202                             struct nilfs_transaction_info *ti,
203                             int vacancy_check)
204 {
205         struct the_nilfs *nilfs;
206         int ret = nilfs_prepare_segment_lock(sb, ti);
207         struct nilfs_transaction_info *trace_ti;
208 
209         if (unlikely(ret < 0))
210                 return ret;
211         if (ret > 0) {
212                 trace_ti = current->journal_info;
213 
214                 trace_nilfs2_transaction_transition(sb, trace_ti,
215                                     trace_ti->ti_count, trace_ti->ti_flags,
216                                     TRACE_NILFS2_TRANSACTION_BEGIN);
217                 return 0;
218         }
219 
220         sb_start_intwrite(sb);
221 
222         nilfs = sb->s_fs_info;
223         down_read(&nilfs->ns_segctor_sem);
224         if (vacancy_check && nilfs_near_disk_full(nilfs)) {
225                 up_read(&nilfs->ns_segctor_sem);
226                 ret = -ENOSPC;
227                 goto failed;
228         }
229 
230         trace_ti = current->journal_info;
231         trace_nilfs2_transaction_transition(sb, trace_ti, trace_ti->ti_count,
232                                             trace_ti->ti_flags,
233                                             TRACE_NILFS2_TRANSACTION_BEGIN);
234         return 0;
235 
236  failed:
237         ti = current->journal_info;
238         current->journal_info = ti->ti_save;
239         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
240                 kmem_cache_free(nilfs_transaction_cachep, ti);
241         sb_end_intwrite(sb);
242         return ret;
243 }
244 
245 /**
246  * nilfs_transaction_commit - commit indivisible file operations.
247  * @sb: super block
248  *
249  * nilfs_transaction_commit() releases the read semaphore which is
250  * acquired by nilfs_transaction_begin(). This is only performed
251  * in outermost call of this function.  If a commit flag is set,
252  * nilfs_transaction_commit() sets a timer to start the segment
253  * constructor.  If a sync flag is set, it starts construction
254  * directly.
255  */
256 int nilfs_transaction_commit(struct super_block *sb)
257 {
258         struct nilfs_transaction_info *ti = current->journal_info;
259         struct the_nilfs *nilfs = sb->s_fs_info;
260         int err = 0;
261 
262         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
263         ti->ti_flags |= NILFS_TI_COMMIT;
264         if (ti->ti_count > 0) {
265                 ti->ti_count--;
266                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
267                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
268                 return 0;
269         }
270         if (nilfs->ns_writer) {
271                 struct nilfs_sc_info *sci = nilfs->ns_writer;
272 
273                 if (ti->ti_flags & NILFS_TI_COMMIT)
274                         nilfs_segctor_start_timer(sci);
275                 if (atomic_read(&nilfs->ns_ndirtyblks) > sci->sc_watermark)
276                         nilfs_segctor_do_flush(sci, 0);
277         }
278         up_read(&nilfs->ns_segctor_sem);
279         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
280                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_COMMIT);
281 
282         current->journal_info = ti->ti_save;
283 
284         if (ti->ti_flags & NILFS_TI_SYNC)
285                 err = nilfs_construct_segment(sb);
286         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
287                 kmem_cache_free(nilfs_transaction_cachep, ti);
288         sb_end_intwrite(sb);
289         return err;
290 }
291 
292 void nilfs_transaction_abort(struct super_block *sb)
293 {
294         struct nilfs_transaction_info *ti = current->journal_info;
295         struct the_nilfs *nilfs = sb->s_fs_info;
296 
297         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
298         if (ti->ti_count > 0) {
299                 ti->ti_count--;
300                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
301                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
302                 return;
303         }
304         up_read(&nilfs->ns_segctor_sem);
305 
306         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
307                     ti->ti_flags, TRACE_NILFS2_TRANSACTION_ABORT);
308 
309         current->journal_info = ti->ti_save;
310         if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
311                 kmem_cache_free(nilfs_transaction_cachep, ti);
312         sb_end_intwrite(sb);
313 }
314 
315 void nilfs_relax_pressure_in_lock(struct super_block *sb)
316 {
317         struct the_nilfs *nilfs = sb->s_fs_info;
318         struct nilfs_sc_info *sci = nilfs->ns_writer;
319 
320         if (sb_rdonly(sb) || unlikely(!sci) || !sci->sc_flush_request)
321                 return;
322 
323         set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
324         up_read(&nilfs->ns_segctor_sem);
325 
326         down_write(&nilfs->ns_segctor_sem);
327         if (sci->sc_flush_request &&
328             test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
329                 struct nilfs_transaction_info *ti = current->journal_info;
330 
331                 ti->ti_flags |= NILFS_TI_WRITER;
332                 nilfs_segctor_do_immediate_flush(sci);
333                 ti->ti_flags &= ~NILFS_TI_WRITER;
334         }
335         downgrade_write(&nilfs->ns_segctor_sem);
336 }
337 
338 static void nilfs_transaction_lock(struct super_block *sb,
339                                    struct nilfs_transaction_info *ti,
340                                    int gcflag)
341 {
342         struct nilfs_transaction_info *cur_ti = current->journal_info;
343         struct the_nilfs *nilfs = sb->s_fs_info;
344         struct nilfs_sc_info *sci = nilfs->ns_writer;
345 
346         WARN_ON(cur_ti);
347         ti->ti_flags = NILFS_TI_WRITER;
348         ti->ti_count = 0;
349         ti->ti_save = cur_ti;
350         ti->ti_magic = NILFS_TI_MAGIC;
351         current->journal_info = ti;
352 
353         for (;;) {
354                 trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
355                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_TRYLOCK);
356 
357                 down_write(&nilfs->ns_segctor_sem);
358                 if (!test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags))
359                         break;
360 
361                 nilfs_segctor_do_immediate_flush(sci);
362 
363                 up_write(&nilfs->ns_segctor_sem);
364                 cond_resched();
365         }
366         if (gcflag)
367                 ti->ti_flags |= NILFS_TI_GC;
368 
369         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
370                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_LOCK);
371 }
372 
373 static void nilfs_transaction_unlock(struct super_block *sb)
374 {
375         struct nilfs_transaction_info *ti = current->journal_info;
376         struct the_nilfs *nilfs = sb->s_fs_info;
377 
378         BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
379         BUG_ON(ti->ti_count > 0);
380 
381         up_write(&nilfs->ns_segctor_sem);
382         current->journal_info = ti->ti_save;
383 
384         trace_nilfs2_transaction_transition(sb, ti, ti->ti_count,
385                             ti->ti_flags, TRACE_NILFS2_TRANSACTION_UNLOCK);
386 }
387 
388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
389                                             struct nilfs_segsum_pointer *ssp,
390                                             unsigned int bytes)
391 {
392         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
393         unsigned int blocksize = sci->sc_super->s_blocksize;
394         void *p;
395 
396         if (unlikely(ssp->offset + bytes > blocksize)) {
397                 ssp->offset = 0;
398                 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
399                                                &segbuf->sb_segsum_buffers));
400                 ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
401         }
402         p = ssp->bh->b_data + ssp->offset;
403         ssp->offset += bytes;
404         return p;
405 }
406 
407 /**
408  * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
409  * @sci: nilfs_sc_info
410  */
411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
412 {
413         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
414         struct buffer_head *sumbh;
415         unsigned int sumbytes;
416         unsigned int flags = 0;
417         int err;
418 
419         if (nilfs_doing_gc())
420                 flags = NILFS_SS_GC;
421         err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
422         if (unlikely(err))
423                 return err;
424 
425         sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
426         sumbytes = segbuf->sb_sum.sumbytes;
427         sci->sc_finfo_ptr.bh = sumbh;  sci->sc_finfo_ptr.offset = sumbytes;
428         sci->sc_binfo_ptr.bh = sumbh;  sci->sc_binfo_ptr.offset = sumbytes;
429         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
430         return 0;
431 }
432 
433 /**
434  * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area
435  * @sci: segment constructor object
436  *
437  * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of
438  * the current segment summary block.
439  */
440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info *sci)
441 {
442         struct nilfs_segsum_pointer *ssp;
443 
444         ssp = sci->sc_blk_cnt > 0 ? &sci->sc_binfo_ptr : &sci->sc_finfo_ptr;
445         if (ssp->offset < ssp->bh->b_size)
446                 memset(ssp->bh->b_data + ssp->offset, 0,
447                        ssp->bh->b_size - ssp->offset);
448 }
449 
450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
451 {
452         sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
453         if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
454                 return -E2BIG; /*
455                                 * The current segment is filled up
456                                 * (internal code)
457                                 */
458         nilfs_segctor_zeropad_segsum(sci);
459         sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
460         return nilfs_segctor_reset_segment_buffer(sci);
461 }
462 
463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
464 {
465         struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
466         int err;
467 
468         if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
469                 err = nilfs_segctor_feed_segment(sci);
470                 if (err)
471                         return err;
472                 segbuf = sci->sc_curseg;
473         }
474         err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
475         if (likely(!err))
476                 segbuf->sb_sum.flags |= NILFS_SS_SR;
477         return err;
478 }
479 
480 /*
481  * Functions for making segment summary and payloads
482  */
483 static int nilfs_segctor_segsum_block_required(
484         struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
485         unsigned int binfo_size)
486 {
487         unsigned int blocksize = sci->sc_super->s_blocksize;
488         /* Size of finfo and binfo is enough small against blocksize */
489 
490         return ssp->offset + binfo_size +
491                 (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
492                 blocksize;
493 }
494 
495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
496                                       struct inode *inode)
497 {
498         sci->sc_curseg->sb_sum.nfinfo++;
499         sci->sc_binfo_ptr = sci->sc_finfo_ptr;
500         nilfs_segctor_map_segsum_entry(
501                 sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
502 
503         if (NILFS_I(inode)->i_root &&
504             !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
505                 set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
506         /* skip finfo */
507 }
508 
509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
510                                     struct inode *inode)
511 {
512         struct nilfs_finfo *finfo;
513         struct nilfs_inode_info *ii;
514         struct nilfs_segment_buffer *segbuf;
515         __u64 cno;
516 
517         if (sci->sc_blk_cnt == 0)
518                 return;
519 
520         ii = NILFS_I(inode);
521 
522         if (test_bit(NILFS_I_GCINODE, &ii->i_state))
523                 cno = ii->i_cno;
524         else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
525                 cno = 0;
526         else
527                 cno = sci->sc_cno;
528 
529         finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
530                                                  sizeof(*finfo));
531         finfo->fi_ino = cpu_to_le64(inode->i_ino);
532         finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
533         finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
534         finfo->fi_cno = cpu_to_le64(cno);
535 
536         segbuf = sci->sc_curseg;
537         segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
538                 sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
539         sci->sc_finfo_ptr = sci->sc_binfo_ptr;
540         sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
541 }
542 
543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
544                                         struct buffer_head *bh,
545                                         struct inode *inode,
546                                         unsigned int binfo_size)
547 {
548         struct nilfs_segment_buffer *segbuf;
549         int required, err = 0;
550 
551  retry:
552         segbuf = sci->sc_curseg;
553         required = nilfs_segctor_segsum_block_required(
554                 sci, &sci->sc_binfo_ptr, binfo_size);
555         if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
556                 nilfs_segctor_end_finfo(sci, inode);
557                 err = nilfs_segctor_feed_segment(sci);
558                 if (err)
559                         return err;
560                 goto retry;
561         }
562         if (unlikely(required)) {
563                 nilfs_segctor_zeropad_segsum(sci);
564                 err = nilfs_segbuf_extend_segsum(segbuf);
565                 if (unlikely(err))
566                         goto failed;
567         }
568         if (sci->sc_blk_cnt == 0)
569                 nilfs_segctor_begin_finfo(sci, inode);
570 
571         nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
572         /* Substitution to vblocknr is delayed until update_blocknr() */
573         nilfs_segbuf_add_file_buffer(segbuf, bh);
574         sci->sc_blk_cnt++;
575  failed:
576         return err;
577 }
578 
579 /*
580  * Callback functions that enumerate, mark, and collect dirty blocks
581  */
582 static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
583                                    struct buffer_head *bh, struct inode *inode)
584 {
585         int err;
586 
587         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
588         if (err < 0)
589                 return err;
590 
591         err = nilfs_segctor_add_file_block(sci, bh, inode,
592                                            sizeof(struct nilfs_binfo_v));
593         if (!err)
594                 sci->sc_datablk_cnt++;
595         return err;
596 }
597 
598 static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
599                                    struct buffer_head *bh,
600                                    struct inode *inode)
601 {
602         return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
603 }
604 
605 static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
606                                    struct buffer_head *bh,
607                                    struct inode *inode)
608 {
609         WARN_ON(!buffer_dirty(bh));
610         return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
611 }
612 
613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
614                                         struct nilfs_segsum_pointer *ssp,
615                                         union nilfs_binfo *binfo)
616 {
617         struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
618                 sci, ssp, sizeof(*binfo_v));
619         *binfo_v = binfo->bi_v;
620 }
621 
622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
623                                         struct nilfs_segsum_pointer *ssp,
624                                         union nilfs_binfo *binfo)
625 {
626         __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
627                 sci, ssp, sizeof(*vblocknr));
628         *vblocknr = binfo->bi_v.bi_vblocknr;
629 }
630 
631 static const struct nilfs_sc_operations nilfs_sc_file_ops = {
632         .collect_data = nilfs_collect_file_data,
633         .collect_node = nilfs_collect_file_node,
634         .collect_bmap = nilfs_collect_file_bmap,
635         .write_data_binfo = nilfs_write_file_data_binfo,
636         .write_node_binfo = nilfs_write_file_node_binfo,
637 };
638 
639 static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
640                                   struct buffer_head *bh, struct inode *inode)
641 {
642         int err;
643 
644         err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
645         if (err < 0)
646                 return err;
647 
648         err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
649         if (!err)
650                 sci->sc_datablk_cnt++;
651         return err;
652 }
653 
654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
655                                   struct buffer_head *bh, struct inode *inode)
656 {
657         WARN_ON(!buffer_dirty(bh));
658         return nilfs_segctor_add_file_block(sci, bh, inode,
659                                             sizeof(struct nilfs_binfo_dat));
660 }
661 
662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
663                                        struct nilfs_segsum_pointer *ssp,
664                                        union nilfs_binfo *binfo)
665 {
666         __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
667                                                           sizeof(*blkoff));
668         *blkoff = binfo->bi_dat.bi_blkoff;
669 }
670 
671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
672                                        struct nilfs_segsum_pointer *ssp,
673                                        union nilfs_binfo *binfo)
674 {
675         struct nilfs_binfo_dat *binfo_dat =
676                 nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
677         *binfo_dat = binfo->bi_dat;
678 }
679 
680 static const struct nilfs_sc_operations nilfs_sc_dat_ops = {
681         .collect_data = nilfs_collect_dat_data,
682         .collect_node = nilfs_collect_file_node,
683         .collect_bmap = nilfs_collect_dat_bmap,
684         .write_data_binfo = nilfs_write_dat_data_binfo,
685         .write_node_binfo = nilfs_write_dat_node_binfo,
686 };
687 
688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops = {
689         .collect_data = nilfs_collect_file_data,
690         .collect_node = NULL,
691         .collect_bmap = NULL,
692         .write_data_binfo = nilfs_write_file_data_binfo,
693         .write_node_binfo = NULL,
694 };
695 
696 static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
697                                               struct list_head *listp,
698                                               size_t nlimit,
699                                               loff_t start, loff_t end)
700 {
701         struct address_space *mapping = inode->i_mapping;
702         struct folio_batch fbatch;
703         pgoff_t index = 0, last = ULONG_MAX;
704         size_t ndirties = 0;
705         int i;
706 
707         if (unlikely(start != 0 || end != LLONG_MAX)) {
708                 /*
709                  * A valid range is given for sync-ing data pages. The
710                  * range is rounded to per-page; extra dirty buffers
711                  * may be included if blocksize < pagesize.
712                  */
713                 index = start >> PAGE_SHIFT;
714                 last = end >> PAGE_SHIFT;
715         }
716         folio_batch_init(&fbatch);
717  repeat:
718         if (unlikely(index > last) ||
719               !filemap_get_folios_tag(mapping, &index, last,
720                       PAGECACHE_TAG_DIRTY, &fbatch))
721                 return ndirties;
722 
723         for (i = 0; i < folio_batch_count(&fbatch); i++) {
724                 struct buffer_head *bh, *head;
725                 struct folio *folio = fbatch.folios[i];
726 
727                 folio_lock(folio);
728                 if (unlikely(folio->mapping != mapping)) {
729                         /* Exclude folios removed from the address space */
730                         folio_unlock(folio);
731                         continue;
732                 }
733                 head = folio_buffers(folio);
734                 if (!head)
735                         head = create_empty_buffers(folio,
736                                         i_blocksize(inode), 0);
737                 folio_unlock(folio);
738 
739                 bh = head;
740                 do {
741                         if (!buffer_dirty(bh) || buffer_async_write(bh))
742                                 continue;
743                         get_bh(bh);
744                         list_add_tail(&bh->b_assoc_buffers, listp);
745                         ndirties++;
746                         if (unlikely(ndirties >= nlimit)) {
747                                 folio_batch_release(&fbatch);
748                                 cond_resched();
749                                 return ndirties;
750                         }
751                 } while (bh = bh->b_this_page, bh != head);
752         }
753         folio_batch_release(&fbatch);
754         cond_resched();
755         goto repeat;
756 }
757 
758 static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
759                                             struct list_head *listp)
760 {
761         struct nilfs_inode_info *ii = NILFS_I(inode);
762         struct inode *btnc_inode = ii->i_assoc_inode;
763         struct folio_batch fbatch;
764         struct buffer_head *bh, *head;
765         unsigned int i;
766         pgoff_t index = 0;
767 
768         if (!btnc_inode)
769                 return;
770         folio_batch_init(&fbatch);
771 
772         while (filemap_get_folios_tag(btnc_inode->i_mapping, &index,
773                                 (pgoff_t)-1, PAGECACHE_TAG_DIRTY, &fbatch)) {
774                 for (i = 0; i < folio_batch_count(&fbatch); i++) {
775                         bh = head = folio_buffers(fbatch.folios[i]);
776                         do {
777                                 if (buffer_dirty(bh) &&
778                                                 !buffer_async_write(bh)) {
779                                         get_bh(bh);
780                                         list_add_tail(&bh->b_assoc_buffers,
781                                                       listp);
782                                 }
783                                 bh = bh->b_this_page;
784                         } while (bh != head);
785                 }
786                 folio_batch_release(&fbatch);
787                 cond_resched();
788         }
789 }
790 
791 static void nilfs_dispose_list(struct the_nilfs *nilfs,
792                                struct list_head *head, int force)
793 {
794         struct nilfs_inode_info *ii, *n;
795         struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
796         unsigned int nv = 0;
797 
798         while (!list_empty(head)) {
799                 spin_lock(&nilfs->ns_inode_lock);
800                 list_for_each_entry_safe(ii, n, head, i_dirty) {
801                         list_del_init(&ii->i_dirty);
802                         if (force) {
803                                 if (unlikely(ii->i_bh)) {
804                                         brelse(ii->i_bh);
805                                         ii->i_bh = NULL;
806                                 }
807                         } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
808                                 set_bit(NILFS_I_QUEUED, &ii->i_state);
809                                 list_add_tail(&ii->i_dirty,
810                                               &nilfs->ns_dirty_files);
811                                 continue;
812                         }
813                         ivec[nv++] = ii;
814                         if (nv == SC_N_INODEVEC)
815                                 break;
816                 }
817                 spin_unlock(&nilfs->ns_inode_lock);
818 
819                 for (pii = ivec; nv > 0; pii++, nv--)
820                         iput(&(*pii)->vfs_inode);
821         }
822 }
823 
824 static void nilfs_iput_work_func(struct work_struct *work)
825 {
826         struct nilfs_sc_info *sci = container_of(work, struct nilfs_sc_info,
827                                                  sc_iput_work);
828         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
829 
830         nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 0);
831 }
832 
833 static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
834                                      struct nilfs_root *root)
835 {
836         int ret = 0;
837 
838         if (nilfs_mdt_fetch_dirty(root->ifile))
839                 ret++;
840         if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
841                 ret++;
842         if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
843                 ret++;
844         if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
845                 ret++;
846         return ret;
847 }
848 
849 static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
850 {
851         return list_empty(&sci->sc_dirty_files) &&
852                 !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
853                 sci->sc_nfreesegs == 0 &&
854                 (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
855 }
856 
857 static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
858 {
859         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
860         int ret = 0;
861 
862         if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
863                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
864 
865         spin_lock(&nilfs->ns_inode_lock);
866         if (list_empty(&nilfs->ns_dirty_files) && nilfs_segctor_clean(sci))
867                 ret++;
868 
869         spin_unlock(&nilfs->ns_inode_lock);
870         return ret;
871 }
872 
873 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
874 {
875         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
876 
877         nilfs_mdt_clear_dirty(sci->sc_root->ifile);
878         nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
879         nilfs_mdt_clear_dirty(nilfs->ns_sufile);
880         nilfs_mdt_clear_dirty(nilfs->ns_dat);
881 }
882 
883 static void nilfs_fill_in_file_bmap(struct inode *ifile,
884                                     struct nilfs_inode_info *ii)
885 
886 {
887         struct buffer_head *ibh;
888         struct nilfs_inode *raw_inode;
889 
890         if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
891                 ibh = ii->i_bh;
892                 BUG_ON(!ibh);
893                 raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
894                                                   ibh);
895                 nilfs_bmap_write(ii->i_bmap, raw_inode);
896                 nilfs_ifile_unmap_inode(raw_inode);
897         }
898 }
899 
900 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
901 {
902         struct nilfs_inode_info *ii;
903 
904         list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
905                 nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
906                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
907         }
908 }
909 
910 /**
911  * nilfs_write_root_mdt_inode - export root metadata inode information to
912  *                              the on-disk inode
913  * @inode:     inode object of the root metadata file
914  * @raw_inode: on-disk inode
915  *
916  * nilfs_write_root_mdt_inode() writes inode information and bmap data of
917  * @inode to the inode area of the metadata file allocated on the super root
918  * block created to finalize the log.  Since super root blocks are configured
919  * each time, this function zero-fills the unused area of @raw_inode.
920  */
921 static void nilfs_write_root_mdt_inode(struct inode *inode,
922                                        struct nilfs_inode *raw_inode)
923 {
924         struct the_nilfs *nilfs = inode->i_sb->s_fs_info;
925 
926         nilfs_write_inode_common(inode, raw_inode);
927 
928         /* zero-fill unused portion of raw_inode */
929         raw_inode->i_xattr = 0;
930         raw_inode->i_pad = 0;
931         memset((void *)raw_inode + sizeof(*raw_inode), 0,
932                nilfs->ns_inode_size - sizeof(*raw_inode));
933 
934         nilfs_bmap_write(NILFS_I(inode)->i_bmap, raw_inode);
935 }
936 
937 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
938                                              struct the_nilfs *nilfs)
939 {
940         struct buffer_head *bh_sr;
941         struct nilfs_super_root *raw_sr;
942         unsigned int isz, srsz;
943 
944         bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
945 
946         lock_buffer(bh_sr);
947         raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
948         isz = nilfs->ns_inode_size;
949         srsz = NILFS_SR_BYTES(isz);
950 
951         raw_sr->sr_sum = 0;  /* Ensure initialization within this update */
952         raw_sr->sr_bytes = cpu_to_le16(srsz);
953         raw_sr->sr_nongc_ctime
954                 = cpu_to_le64(nilfs_doing_gc() ?
955                               nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
956         raw_sr->sr_flags = 0;
957 
958         nilfs_write_root_mdt_inode(nilfs->ns_dat, (void *)raw_sr +
959                                    NILFS_SR_DAT_OFFSET(isz));
960         nilfs_write_root_mdt_inode(nilfs->ns_cpfile, (void *)raw_sr +
961                                    NILFS_SR_CPFILE_OFFSET(isz));
962         nilfs_write_root_mdt_inode(nilfs->ns_sufile, (void *)raw_sr +
963                                    NILFS_SR_SUFILE_OFFSET(isz));
964 
965         memset((void *)raw_sr + srsz, 0, nilfs->ns_blocksize - srsz);
966         set_buffer_uptodate(bh_sr);
967         unlock_buffer(bh_sr);
968 }
969 
970 static void nilfs_redirty_inodes(struct list_head *head)
971 {
972         struct nilfs_inode_info *ii;
973 
974         list_for_each_entry(ii, head, i_dirty) {
975                 if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
976                         clear_bit(NILFS_I_COLLECTED, &ii->i_state);
977         }
978 }
979 
980 static void nilfs_drop_collected_inodes(struct list_head *head)
981 {
982         struct nilfs_inode_info *ii;
983 
984         list_for_each_entry(ii, head, i_dirty) {
985                 if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
986                         continue;
987 
988                 clear_bit(NILFS_I_INODE_SYNC, &ii->i_state);
989                 set_bit(NILFS_I_UPDATED, &ii->i_state);
990         }
991 }
992 
993 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
994                                        struct inode *inode,
995                                        struct list_head *listp,
996                                        int (*collect)(struct nilfs_sc_info *,
997                                                       struct buffer_head *,
998                                                       struct inode *))
999 {
1000         struct buffer_head *bh, *n;
1001         int err = 0;
1002 
1003         if (collect) {
1004                 list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
1005                         list_del_init(&bh->b_assoc_buffers);
1006                         err = collect(sci, bh, inode);
1007                         brelse(bh);
1008                         if (unlikely(err))
1009                                 goto dispose_buffers;
1010                 }
1011                 return 0;
1012         }
1013 
1014  dispose_buffers:
1015         while (!list_empty(listp)) {
1016                 bh = list_first_entry(listp, struct buffer_head,
1017                                       b_assoc_buffers);
1018                 list_del_init(&bh->b_assoc_buffers);
1019                 brelse(bh);
1020         }
1021         return err;
1022 }
1023 
1024 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
1025 {
1026         /* Remaining number of blocks within segment buffer */
1027         return sci->sc_segbuf_nblocks -
1028                 (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
1029 }
1030 
1031 static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
1032                                    struct inode *inode,
1033                                    const struct nilfs_sc_operations *sc_ops)
1034 {
1035         LIST_HEAD(data_buffers);
1036         LIST_HEAD(node_buffers);
1037         int err;
1038 
1039         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1040                 size_t n, rest = nilfs_segctor_buffer_rest(sci);
1041 
1042                 n = nilfs_lookup_dirty_data_buffers(
1043                         inode, &data_buffers, rest + 1, 0, LLONG_MAX);
1044                 if (n > rest) {
1045                         err = nilfs_segctor_apply_buffers(
1046                                 sci, inode, &data_buffers,
1047                                 sc_ops->collect_data);
1048                         BUG_ON(!err); /* always receive -E2BIG or true error */
1049                         goto break_or_fail;
1050                 }
1051         }
1052         nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
1053 
1054         if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
1055                 err = nilfs_segctor_apply_buffers(
1056                         sci, inode, &data_buffers, sc_ops->collect_data);
1057                 if (unlikely(err)) {
1058                         /* dispose node list */
1059                         nilfs_segctor_apply_buffers(
1060                                 sci, inode, &node_buffers, NULL);
1061                         goto break_or_fail;
1062                 }
1063                 sci->sc_stage.flags |= NILFS_CF_NODE;
1064         }
1065         /* Collect node */
1066         err = nilfs_segctor_apply_buffers(
1067                 sci, inode, &node_buffers, sc_ops->collect_node);
1068         if (unlikely(err))
1069                 goto break_or_fail;
1070 
1071         nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
1072         err = nilfs_segctor_apply_buffers(
1073                 sci, inode, &node_buffers, sc_ops->collect_bmap);
1074         if (unlikely(err))
1075                 goto break_or_fail;
1076 
1077         nilfs_segctor_end_finfo(sci, inode);
1078         sci->sc_stage.flags &= ~NILFS_CF_NODE;
1079 
1080  break_or_fail:
1081         return err;
1082 }
1083 
1084 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
1085                                          struct inode *inode)
1086 {
1087         LIST_HEAD(data_buffers);
1088         size_t n, rest = nilfs_segctor_buffer_rest(sci);
1089         int err;
1090 
1091         n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
1092                                             sci->sc_dsync_start,
1093                                             sci->sc_dsync_end);
1094 
1095         err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
1096                                           nilfs_collect_file_data);
1097         if (!err) {
1098                 nilfs_segctor_end_finfo(sci, inode);
1099                 BUG_ON(n > rest);
1100                 /* always receive -E2BIG or true error if n > rest */
1101         }
1102         return err;
1103 }
1104 
1105 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
1106 {
1107         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1108         struct list_head *head;
1109         struct nilfs_inode_info *ii;
1110         size_t ndone;
1111         int err = 0;
1112 
1113         switch (nilfs_sc_cstage_get(sci)) {
1114         case NILFS_ST_INIT:
1115                 /* Pre-processes */
1116                 sci->sc_stage.flags = 0;
1117 
1118                 if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
1119                         sci->sc_nblk_inc = 0;
1120                         sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
1121                         if (mode == SC_LSEG_DSYNC) {
1122                                 nilfs_sc_cstage_set(sci, NILFS_ST_DSYNC);
1123                                 goto dsync_mode;
1124                         }
1125                 }
1126 
1127                 sci->sc_stage.dirty_file_ptr = NULL;
1128                 sci->sc_stage.gc_inode_ptr = NULL;
1129                 if (mode == SC_FLUSH_DAT) {
1130                         nilfs_sc_cstage_set(sci, NILFS_ST_DAT);
1131                         goto dat_stage;
1132                 }
1133                 nilfs_sc_cstage_inc(sci);
1134                 fallthrough;
1135         case NILFS_ST_GC:
1136                 if (nilfs_doing_gc()) {
1137                         head = &sci->sc_gc_inodes;
1138                         ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
1139                                                 head, i_dirty);
1140                         list_for_each_entry_continue(ii, head, i_dirty) {
1141                                 err = nilfs_segctor_scan_file(
1142                                         sci, &ii->vfs_inode,
1143                                         &nilfs_sc_file_ops);
1144                                 if (unlikely(err)) {
1145                                         sci->sc_stage.gc_inode_ptr = list_entry(
1146                                                 ii->i_dirty.prev,
1147                                                 struct nilfs_inode_info,
1148                                                 i_dirty);
1149                                         goto break_or_fail;
1150                                 }
1151                                 set_bit(NILFS_I_COLLECTED, &ii->i_state);
1152                         }
1153                         sci->sc_stage.gc_inode_ptr = NULL;
1154                 }
1155                 nilfs_sc_cstage_inc(sci);
1156                 fallthrough;
1157         case NILFS_ST_FILE:
1158                 head = &sci->sc_dirty_files;
1159                 ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
1160                                         i_dirty);
1161                 list_for_each_entry_continue(ii, head, i_dirty) {
1162                         clear_bit(NILFS_I_DIRTY, &ii->i_state);
1163 
1164                         err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
1165                                                       &nilfs_sc_file_ops);
1166                         if (unlikely(err)) {
1167                                 sci->sc_stage.dirty_file_ptr =
1168                                         list_entry(ii->i_dirty.prev,
1169                                                    struct nilfs_inode_info,
1170                                                    i_dirty);
1171                                 goto break_or_fail;
1172                         }
1173                         /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1174                         /* XXX: required ? */
1175                 }
1176                 sci->sc_stage.dirty_file_ptr = NULL;
1177                 if (mode == SC_FLUSH_FILE) {
1178                         nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1179                         return 0;
1180                 }
1181                 nilfs_sc_cstage_inc(sci);
1182                 sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
1183                 fallthrough;
1184         case NILFS_ST_IFILE:
1185                 err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
1186                                               &nilfs_sc_file_ops);
1187                 if (unlikely(err))
1188                         break;
1189                 nilfs_sc_cstage_inc(sci);
1190                 /* Creating a checkpoint */
1191                 err = nilfs_cpfile_create_checkpoint(nilfs->ns_cpfile,
1192                                                      nilfs->ns_cno);
1193                 if (unlikely(err))
1194                         break;
1195                 fallthrough;
1196         case NILFS_ST_CPFILE:
1197                 err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
1198                                               &nilfs_sc_file_ops);
1199                 if (unlikely(err))
1200                         break;
1201                 nilfs_sc_cstage_inc(sci);
1202                 fallthrough;
1203         case NILFS_ST_SUFILE:
1204                 err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
1205                                          sci->sc_nfreesegs, &ndone);
1206                 if (unlikely(err)) {
1207                         nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1208                                                   sci->sc_freesegs, ndone,
1209                                                   NULL);
1210                         break;
1211                 }
1212                 sci->sc_stage.flags |= NILFS_CF_SUFREED;
1213 
1214                 err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
1215                                               &nilfs_sc_file_ops);
1216                 if (unlikely(err))
1217                         break;
1218                 nilfs_sc_cstage_inc(sci);
1219                 fallthrough;
1220         case NILFS_ST_DAT:
1221  dat_stage:
1222                 err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
1223                                               &nilfs_sc_dat_ops);
1224                 if (unlikely(err))
1225                         break;
1226                 if (mode == SC_FLUSH_DAT) {
1227                         nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1228                         return 0;
1229                 }
1230                 nilfs_sc_cstage_inc(sci);
1231                 fallthrough;
1232         case NILFS_ST_SR:
1233                 if (mode == SC_LSEG_SR) {
1234                         /* Appending a super root */
1235                         err = nilfs_segctor_add_super_root(sci);
1236                         if (unlikely(err))
1237                                 break;
1238                 }
1239                 /* End of a logical segment */
1240                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1241                 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1242                 return 0;
1243         case NILFS_ST_DSYNC:
1244  dsync_mode:
1245                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
1246                 ii = sci->sc_dsync_inode;
1247                 if (!test_bit(NILFS_I_BUSY, &ii->i_state))
1248                         break;
1249 
1250                 err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
1251                 if (unlikely(err))
1252                         break;
1253                 sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
1254                 nilfs_sc_cstage_set(sci, NILFS_ST_DONE);
1255                 return 0;
1256         case NILFS_ST_DONE:
1257                 return 0;
1258         default:
1259                 BUG();
1260         }
1261 
1262  break_or_fail:
1263         return err;
1264 }
1265 
1266 /**
1267  * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1268  * @sci: nilfs_sc_info
1269  * @nilfs: nilfs object
1270  */
1271 static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
1272                                             struct the_nilfs *nilfs)
1273 {
1274         struct nilfs_segment_buffer *segbuf, *prev;
1275         __u64 nextnum;
1276         int err, alloc = 0;
1277 
1278         segbuf = nilfs_segbuf_new(sci->sc_super);
1279         if (unlikely(!segbuf))
1280                 return -ENOMEM;
1281 
1282         if (list_empty(&sci->sc_write_logs)) {
1283                 nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
1284                                  nilfs->ns_pseg_offset, nilfs);
1285                 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1286                         nilfs_shift_to_next_segment(nilfs);
1287                         nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
1288                 }
1289 
1290                 segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
1291                 nextnum = nilfs->ns_nextnum;
1292 
1293                 if (nilfs->ns_segnum == nilfs->ns_nextnum)
1294                         /* Start from the head of a new full segment */
1295                         alloc++;
1296         } else {
1297                 /* Continue logs */
1298                 prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1299                 nilfs_segbuf_map_cont(segbuf, prev);
1300                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
1301                 nextnum = prev->sb_nextnum;
1302 
1303                 if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
1304                         nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1305                         segbuf->sb_sum.seg_seq++;
1306                         alloc++;
1307                 }
1308         }
1309 
1310         err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
1311         if (err)
1312                 goto failed;
1313 
1314         if (alloc) {
1315                 err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
1316                 if (err)
1317                         goto failed;
1318         }
1319         nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
1320 
1321         BUG_ON(!list_empty(&sci->sc_segbufs));
1322         list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
1323         sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
1324         return 0;
1325 
1326  failed:
1327         nilfs_segbuf_free(segbuf);
1328         return err;
1329 }
1330 
1331 static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
1332                                          struct the_nilfs *nilfs, int nadd)
1333 {
1334         struct nilfs_segment_buffer *segbuf, *prev;
1335         struct inode *sufile = nilfs->ns_sufile;
1336         __u64 nextnextnum;
1337         LIST_HEAD(list);
1338         int err, ret, i;
1339 
1340         prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
1341         /*
1342          * Since the segment specified with nextnum might be allocated during
1343          * the previous construction, the buffer including its segusage may
1344          * not be dirty.  The following call ensures that the buffer is dirty
1345          * and will pin the buffer on memory until the sufile is written.
1346          */
1347         err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
1348         if (unlikely(err))
1349                 return err;
1350 
1351         for (i = 0; i < nadd; i++) {
1352                 /* extend segment info */
1353                 err = -ENOMEM;
1354                 segbuf = nilfs_segbuf_new(sci->sc_super);
1355                 if (unlikely(!segbuf))
1356                         goto failed;
1357 
1358                 /* map this buffer to region of segment on-disk */
1359                 nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
1360                 sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
1361 
1362                 /* allocate the next next full segment */
1363                 err = nilfs_sufile_alloc(sufile, &nextnextnum);
1364                 if (unlikely(err))
1365                         goto failed_segbuf;
1366 
1367                 segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
1368                 nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
1369 
1370                 list_add_tail(&segbuf->sb_list, &list);
1371                 prev = segbuf;
1372         }
1373         list_splice_tail(&list, &sci->sc_segbufs);
1374         return 0;
1375 
1376  failed_segbuf:
1377         nilfs_segbuf_free(segbuf);
1378  failed:
1379         list_for_each_entry(segbuf, &list, sb_list) {
1380                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1381                 WARN_ON(ret); /* never fails */
1382         }
1383         nilfs_destroy_logs(&list);
1384         return err;
1385 }
1386 
1387 static void nilfs_free_incomplete_logs(struct list_head *logs,
1388                                        struct the_nilfs *nilfs)
1389 {
1390         struct nilfs_segment_buffer *segbuf, *prev;
1391         struct inode *sufile = nilfs->ns_sufile;
1392         int ret;
1393 
1394         segbuf = NILFS_FIRST_SEGBUF(logs);
1395         if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
1396                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1397                 WARN_ON(ret); /* never fails */
1398         }
1399         if (atomic_read(&segbuf->sb_err)) {
1400                 /* Case 1: The first segment failed */
1401                 if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
1402                         /*
1403                          * Case 1a:  Partial segment appended into an existing
1404                          * segment
1405                          */
1406                         nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
1407                                                 segbuf->sb_fseg_end);
1408                 else /* Case 1b:  New full segment */
1409                         set_nilfs_discontinued(nilfs);
1410         }
1411 
1412         prev = segbuf;
1413         list_for_each_entry_continue(segbuf, logs, sb_list) {
1414                 if (prev->sb_nextnum != segbuf->sb_nextnum) {
1415                         ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1416                         WARN_ON(ret); /* never fails */
1417                 }
1418                 if (atomic_read(&segbuf->sb_err) &&
1419                     segbuf->sb_segnum != nilfs->ns_nextnum)
1420                         /* Case 2: extended segment (!= next) failed */
1421                         nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
1422                 prev = segbuf;
1423         }
1424 }
1425 
1426 static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
1427                                           struct inode *sufile)
1428 {
1429         struct nilfs_segment_buffer *segbuf;
1430         unsigned long live_blocks;
1431         int ret;
1432 
1433         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1434                 live_blocks = segbuf->sb_sum.nblocks +
1435                         (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
1436                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1437                                                      live_blocks,
1438                                                      sci->sc_seg_ctime);
1439                 WARN_ON(ret); /* always succeed because the segusage is dirty */
1440         }
1441 }
1442 
1443 static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
1444 {
1445         struct nilfs_segment_buffer *segbuf;
1446         int ret;
1447 
1448         segbuf = NILFS_FIRST_SEGBUF(logs);
1449         ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1450                                              segbuf->sb_pseg_start -
1451                                              segbuf->sb_fseg_start, 0);
1452         WARN_ON(ret); /* always succeed because the segusage is dirty */
1453 
1454         list_for_each_entry_continue(segbuf, logs, sb_list) {
1455                 ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
1456                                                      0, 0);
1457                 WARN_ON(ret); /* always succeed */
1458         }
1459 }
1460 
1461 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
1462                                             struct nilfs_segment_buffer *last,
1463                                             struct inode *sufile)
1464 {
1465         struct nilfs_segment_buffer *segbuf = last;
1466         int ret;
1467 
1468         list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
1469                 sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
1470                 ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
1471                 WARN_ON(ret);
1472         }
1473         nilfs_truncate_logs(&sci->sc_segbufs, last);
1474 }
1475 
1476 
1477 static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
1478                                  struct the_nilfs *nilfs, int mode)
1479 {
1480         struct nilfs_cstage prev_stage = sci->sc_stage;
1481         int err, nadd = 1;
1482 
1483         /* Collection retry loop */
1484         for (;;) {
1485                 sci->sc_nblk_this_inc = 0;
1486                 sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
1487 
1488                 err = nilfs_segctor_reset_segment_buffer(sci);
1489                 if (unlikely(err))
1490                         goto failed;
1491 
1492                 err = nilfs_segctor_collect_blocks(sci, mode);
1493                 sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
1494                 if (!err)
1495                         break;
1496 
1497                 if (unlikely(err != -E2BIG))
1498                         goto failed;
1499 
1500                 /* The current segment is filled up */
1501                 if (mode != SC_LSEG_SR ||
1502                     nilfs_sc_cstage_get(sci) < NILFS_ST_CPFILE)
1503                         break;
1504 
1505                 nilfs_clear_logs(&sci->sc_segbufs);
1506 
1507                 if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1508                         err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1509                                                         sci->sc_freesegs,
1510                                                         sci->sc_nfreesegs,
1511                                                         NULL);
1512                         WARN_ON(err); /* do not happen */
1513                         sci->sc_stage.flags &= ~NILFS_CF_SUFREED;
1514                 }
1515 
1516                 err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
1517                 if (unlikely(err))
1518                         return err;
1519 
1520                 nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
1521                 sci->sc_stage = prev_stage;
1522         }
1523         nilfs_segctor_zeropad_segsum(sci);
1524         nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
1525         return 0;
1526 
1527  failed:
1528         return err;
1529 }
1530 
1531 static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
1532                                       struct buffer_head *new_bh)
1533 {
1534         BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
1535 
1536         list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
1537         /* The caller must release old_bh */
1538 }
1539 
1540 static int
1541 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
1542                                      struct nilfs_segment_buffer *segbuf,
1543                                      int mode)
1544 {
1545         struct inode *inode = NULL;
1546         sector_t blocknr;
1547         unsigned long nfinfo = segbuf->sb_sum.nfinfo;
1548         unsigned long nblocks = 0, ndatablk = 0;
1549         const struct nilfs_sc_operations *sc_op = NULL;
1550         struct nilfs_segsum_pointer ssp;
1551         struct nilfs_finfo *finfo = NULL;
1552         union nilfs_binfo binfo;
1553         struct buffer_head *bh, *bh_org;
1554         ino_t ino = 0;
1555         int err = 0;
1556 
1557         if (!nfinfo)
1558                 goto out;
1559 
1560         blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
1561         ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
1562         ssp.offset = sizeof(struct nilfs_segment_summary);
1563 
1564         list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
1565                 if (bh == segbuf->sb_super_root)
1566                         break;
1567                 if (!finfo) {
1568                         finfo = nilfs_segctor_map_segsum_entry(
1569                                 sci, &ssp, sizeof(*finfo));
1570                         ino = le64_to_cpu(finfo->fi_ino);
1571                         nblocks = le32_to_cpu(finfo->fi_nblocks);
1572                         ndatablk = le32_to_cpu(finfo->fi_ndatablk);
1573 
1574                         inode = bh->b_folio->mapping->host;
1575 
1576                         if (mode == SC_LSEG_DSYNC)
1577                                 sc_op = &nilfs_sc_dsync_ops;
1578                         else if (ino == NILFS_DAT_INO)
1579                                 sc_op = &nilfs_sc_dat_ops;
1580                         else /* file blocks */
1581                                 sc_op = &nilfs_sc_file_ops;
1582                 }
1583                 bh_org = bh;
1584                 get_bh(bh_org);
1585                 err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
1586                                         &binfo);
1587                 if (bh != bh_org)
1588                         nilfs_list_replace_buffer(bh_org, bh);
1589                 brelse(bh_org);
1590                 if (unlikely(err))
1591                         goto failed_bmap;
1592 
1593                 if (ndatablk > 0)
1594                         sc_op->write_data_binfo(sci, &ssp, &binfo);
1595                 else
1596                         sc_op->write_node_binfo(sci, &ssp, &binfo);
1597 
1598                 blocknr++;
1599                 if (--nblocks == 0) {
1600                         finfo = NULL;
1601                         if (--nfinfo == 0)
1602                                 break;
1603                 } else if (ndatablk > 0)
1604                         ndatablk--;
1605         }
1606  out:
1607         return 0;
1608 
1609  failed_bmap:
1610         return err;
1611 }
1612 
1613 static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
1614 {
1615         struct nilfs_segment_buffer *segbuf;
1616         int err;
1617 
1618         list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
1619                 err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
1620                 if (unlikely(err))
1621                         return err;
1622                 nilfs_segbuf_fill_in_segsum(segbuf);
1623         }
1624         return 0;
1625 }
1626 
1627 static void nilfs_begin_folio_io(struct folio *folio)
1628 {
1629         if (!folio || folio_test_writeback(folio))
1630                 /*
1631                  * For split b-tree node pages, this function may be called
1632                  * twice.  We ignore the 2nd or later calls by this check.
1633                  */
1634                 return;
1635 
1636         folio_lock(folio);
1637         folio_clear_dirty_for_io(folio);
1638         folio_start_writeback(folio);
1639         folio_unlock(folio);
1640 }
1641 
1642 /**
1643  * nilfs_prepare_write_logs - prepare to write logs
1644  * @logs: logs to prepare for writing
1645  * @seed: checksum seed value
1646  *
1647  * nilfs_prepare_write_logs() adds checksums and prepares the block
1648  * buffers/folios for writing logs.  In order to stabilize folios of
1649  * memory-mapped file blocks by putting them in writeback state before
1650  * calculating the checksums, first prepare to write payload blocks other
1651  * than segment summary and super root blocks in which the checksums will
1652  * be embedded.
1653  */
1654 static void nilfs_prepare_write_logs(struct list_head *logs, u32 seed)
1655 {
1656         struct nilfs_segment_buffer *segbuf;
1657         struct folio *bd_folio = NULL, *fs_folio = NULL;
1658         struct buffer_head *bh;
1659 
1660         /* Prepare to write payload blocks */
1661         list_for_each_entry(segbuf, logs, sb_list) {
1662                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1663                                     b_assoc_buffers) {
1664                         if (bh == segbuf->sb_super_root)
1665                                 break;
1666                         set_buffer_async_write(bh);
1667                         if (bh->b_folio != fs_folio) {
1668                                 nilfs_begin_folio_io(fs_folio);
1669                                 fs_folio = bh->b_folio;
1670                         }
1671                 }
1672         }
1673         nilfs_begin_folio_io(fs_folio);
1674 
1675         nilfs_add_checksums_on_logs(logs, seed);
1676 
1677         /* Prepare to write segment summary blocks */
1678         list_for_each_entry(segbuf, logs, sb_list) {
1679                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1680                                     b_assoc_buffers) {
1681                         mark_buffer_dirty(bh);
1682                         if (bh->b_folio == bd_folio)
1683                                 continue;
1684                         if (bd_folio) {
1685                                 folio_lock(bd_folio);
1686                                 folio_wait_writeback(bd_folio);
1687                                 folio_clear_dirty_for_io(bd_folio);
1688                                 folio_start_writeback(bd_folio);
1689                                 folio_unlock(bd_folio);
1690                         }
1691                         bd_folio = bh->b_folio;
1692                 }
1693         }
1694 
1695         /* Prepare to write super root block */
1696         bh = NILFS_LAST_SEGBUF(logs)->sb_super_root;
1697         if (bh) {
1698                 mark_buffer_dirty(bh);
1699                 if (bh->b_folio != bd_folio) {
1700                         folio_lock(bd_folio);
1701                         folio_wait_writeback(bd_folio);
1702                         folio_clear_dirty_for_io(bd_folio);
1703                         folio_start_writeback(bd_folio);
1704                         folio_unlock(bd_folio);
1705                         bd_folio = bh->b_folio;
1706                 }
1707         }
1708 
1709         if (bd_folio) {
1710                 folio_lock(bd_folio);
1711                 folio_wait_writeback(bd_folio);
1712                 folio_clear_dirty_for_io(bd_folio);
1713                 folio_start_writeback(bd_folio);
1714                 folio_unlock(bd_folio);
1715         }
1716 }
1717 
1718 static int nilfs_segctor_write(struct nilfs_sc_info *sci,
1719                                struct the_nilfs *nilfs)
1720 {
1721         int ret;
1722 
1723         ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
1724         list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
1725         return ret;
1726 }
1727 
1728 static void nilfs_end_folio_io(struct folio *folio, int err)
1729 {
1730         if (!folio)
1731                 return;
1732 
1733         if (buffer_nilfs_node(folio_buffers(folio)) &&
1734                         !folio_test_writeback(folio)) {
1735                 /*
1736                  * For b-tree node pages, this function may be called twice
1737                  * or more because they might be split in a segment.
1738                  */
1739                 if (folio_test_dirty(folio)) {
1740                         /*
1741                          * For pages holding split b-tree node buffers, dirty
1742                          * flag on the buffers may be cleared discretely.
1743                          * In that case, the page is once redirtied for
1744                          * remaining buffers, and it must be cancelled if
1745                          * all the buffers get cleaned later.
1746                          */
1747                         folio_lock(folio);
1748                         if (nilfs_folio_buffers_clean(folio))
1749                                 __nilfs_clear_folio_dirty(folio);
1750                         folio_unlock(folio);
1751                 }
1752                 return;
1753         }
1754 
1755         if (err || !nilfs_folio_buffers_clean(folio))
1756                 filemap_dirty_folio(folio->mapping, folio);
1757 
1758         folio_end_writeback(folio);
1759 }
1760 
1761 static void nilfs_abort_logs(struct list_head *logs, int err)
1762 {
1763         struct nilfs_segment_buffer *segbuf;
1764         struct folio *bd_folio = NULL, *fs_folio = NULL;
1765         struct buffer_head *bh;
1766 
1767         if (list_empty(logs))
1768                 return;
1769 
1770         list_for_each_entry(segbuf, logs, sb_list) {
1771                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1772                                     b_assoc_buffers) {
1773                         clear_buffer_uptodate(bh);
1774                         if (bh->b_folio != bd_folio) {
1775                                 if (bd_folio)
1776                                         folio_end_writeback(bd_folio);
1777                                 bd_folio = bh->b_folio;
1778                         }
1779                 }
1780 
1781                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1782                                     b_assoc_buffers) {
1783                         if (bh == segbuf->sb_super_root) {
1784                                 clear_buffer_uptodate(bh);
1785                                 if (bh->b_folio != bd_folio) {
1786                                         folio_end_writeback(bd_folio);
1787                                         bd_folio = bh->b_folio;
1788                                 }
1789                                 break;
1790                         }
1791                         clear_buffer_async_write(bh);
1792                         if (bh->b_folio != fs_folio) {
1793                                 nilfs_end_folio_io(fs_folio, err);
1794                                 fs_folio = bh->b_folio;
1795                         }
1796                 }
1797         }
1798         if (bd_folio)
1799                 folio_end_writeback(bd_folio);
1800 
1801         nilfs_end_folio_io(fs_folio, err);
1802 }
1803 
1804 static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
1805                                              struct the_nilfs *nilfs, int err)
1806 {
1807         LIST_HEAD(logs);
1808         int ret;
1809 
1810         list_splice_tail_init(&sci->sc_write_logs, &logs);
1811         ret = nilfs_wait_on_logs(&logs);
1812         nilfs_abort_logs(&logs, ret ? : err);
1813 
1814         list_splice_tail_init(&sci->sc_segbufs, &logs);
1815         if (list_empty(&logs))
1816                 return; /* if the first segment buffer preparation failed */
1817 
1818         nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
1819         nilfs_free_incomplete_logs(&logs, nilfs);
1820 
1821         if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
1822                 ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
1823                                                 sci->sc_freesegs,
1824                                                 sci->sc_nfreesegs,
1825                                                 NULL);
1826                 WARN_ON(ret); /* do not happen */
1827         }
1828 
1829         nilfs_destroy_logs(&logs);
1830 }
1831 
1832 static void nilfs_set_next_segment(struct the_nilfs *nilfs,
1833                                    struct nilfs_segment_buffer *segbuf)
1834 {
1835         nilfs->ns_segnum = segbuf->sb_segnum;
1836         nilfs->ns_nextnum = segbuf->sb_nextnum;
1837         nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
1838                 + segbuf->sb_sum.nblocks;
1839         nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
1840         nilfs->ns_ctime = segbuf->sb_sum.ctime;
1841 }
1842 
1843 static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
1844 {
1845         struct nilfs_segment_buffer *segbuf;
1846         struct folio *bd_folio = NULL, *fs_folio = NULL;
1847         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
1848         int update_sr = false;
1849 
1850         list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
1851                 struct buffer_head *bh;
1852 
1853                 list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
1854                                     b_assoc_buffers) {
1855                         set_buffer_uptodate(bh);
1856                         clear_buffer_dirty(bh);
1857                         if (bh->b_folio != bd_folio) {
1858                                 if (bd_folio)
1859                                         folio_end_writeback(bd_folio);
1860                                 bd_folio = bh->b_folio;
1861                         }
1862                 }
1863                 /*
1864                  * We assume that the buffers which belong to the same folio
1865                  * continue over the buffer list.
1866                  * Under this assumption, the last BHs of folios is
1867                  * identifiable by the discontinuity of bh->b_folio
1868                  * (folio != fs_folio).
1869                  *
1870                  * For B-tree node blocks, however, this assumption is not
1871                  * guaranteed.  The cleanup code of B-tree node folios needs
1872                  * special care.
1873                  */
1874                 list_for_each_entry(bh, &segbuf->sb_payload_buffers,
1875                                     b_assoc_buffers) {
1876                         const unsigned long set_bits = BIT(BH_Uptodate);
1877                         const unsigned long clear_bits =
1878                                 (BIT(BH_Dirty) | BIT(BH_Async_Write) |
1879                                  BIT(BH_Delay) | BIT(BH_NILFS_Volatile) |
1880                                  BIT(BH_NILFS_Redirected));
1881 
1882                         if (bh == segbuf->sb_super_root) {
1883                                 set_buffer_uptodate(bh);
1884                                 clear_buffer_dirty(bh);
1885                                 if (bh->b_folio != bd_folio) {
1886                                         folio_end_writeback(bd_folio);
1887                                         bd_folio = bh->b_folio;
1888                                 }
1889                                 update_sr = true;
1890                                 break;
1891                         }
1892                         set_mask_bits(&bh->b_state, clear_bits, set_bits);
1893                         if (bh->b_folio != fs_folio) {
1894                                 nilfs_end_folio_io(fs_folio, 0);
1895                                 fs_folio = bh->b_folio;
1896                         }
1897                 }
1898 
1899                 if (!nilfs_segbuf_simplex(segbuf)) {
1900                         if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
1901                                 set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1902                                 sci->sc_lseg_stime = jiffies;
1903                         }
1904                         if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
1905                                 clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
1906                 }
1907         }
1908         /*
1909          * Since folios may continue over multiple segment buffers,
1910          * end of the last folio must be checked outside of the loop.
1911          */
1912         if (bd_folio)
1913                 folio_end_writeback(bd_folio);
1914 
1915         nilfs_end_folio_io(fs_folio, 0);
1916 
1917         nilfs_drop_collected_inodes(&sci->sc_dirty_files);
1918 
1919         if (nilfs_doing_gc())
1920                 nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
1921         else
1922                 nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
1923 
1924         sci->sc_nblk_inc += sci->sc_nblk_this_inc;
1925 
1926         segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
1927         nilfs_set_next_segment(nilfs, segbuf);
1928 
1929         if (update_sr) {
1930                 nilfs->ns_flushed_device = 0;
1931                 nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
1932                                        segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
1933 
1934                 clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
1935                 clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
1936                 set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1937                 nilfs_segctor_clear_metadata_dirty(sci);
1938         } else
1939                 clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
1940 }
1941 
1942 static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
1943 {
1944         int ret;
1945 
1946         ret = nilfs_wait_on_logs(&sci->sc_write_logs);
1947         if (!ret) {
1948                 nilfs_segctor_complete_write(sci);
1949                 nilfs_destroy_logs(&sci->sc_write_logs);
1950         }
1951         return ret;
1952 }
1953 
1954 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info *sci,
1955                                              struct the_nilfs *nilfs)
1956 {
1957         struct nilfs_inode_info *ii, *n;
1958         struct inode *ifile = sci->sc_root->ifile;
1959 
1960         spin_lock(&nilfs->ns_inode_lock);
1961  retry:
1962         list_for_each_entry_safe(ii, n, &nilfs->ns_dirty_files, i_dirty) {
1963                 if (!ii->i_bh) {
1964                         struct buffer_head *ibh;
1965                         int err;
1966 
1967                         spin_unlock(&nilfs->ns_inode_lock);
1968                         err = nilfs_ifile_get_inode_block(
1969                                 ifile, ii->vfs_inode.i_ino, &ibh);
1970                         if (unlikely(err)) {
1971                                 nilfs_warn(sci->sc_super,
1972                                            "log writer: error %d getting inode block (ino=%lu)",
1973                                            err, ii->vfs_inode.i_ino);
1974                                 return err;
1975                         }
1976                         spin_lock(&nilfs->ns_inode_lock);
1977                         if (likely(!ii->i_bh))
1978                                 ii->i_bh = ibh;
1979                         else
1980                                 brelse(ibh);
1981                         goto retry;
1982                 }
1983 
1984                 // Always redirty the buffer to avoid race condition
1985                 mark_buffer_dirty(ii->i_bh);
1986                 nilfs_mdt_mark_dirty(ifile);
1987 
1988                 clear_bit(NILFS_I_QUEUED, &ii->i_state);
1989                 set_bit(NILFS_I_BUSY, &ii->i_state);
1990                 list_move_tail(&ii->i_dirty, &sci->sc_dirty_files);
1991         }
1992         spin_unlock(&nilfs->ns_inode_lock);
1993 
1994         return 0;
1995 }
1996 
1997 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info *sci,
1998                                              struct the_nilfs *nilfs)
1999 {
2000         struct nilfs_inode_info *ii, *n;
2001         int during_mount = !(sci->sc_super->s_flags & SB_ACTIVE);
2002         int defer_iput = false;
2003 
2004         spin_lock(&nilfs->ns_inode_lock);
2005         list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
2006                 if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
2007                     test_bit(NILFS_I_DIRTY, &ii->i_state))
2008                         continue;
2009 
2010                 clear_bit(NILFS_I_BUSY, &ii->i_state);
2011                 brelse(ii->i_bh);
2012                 ii->i_bh = NULL;
2013                 list_del_init(&ii->i_dirty);
2014                 if (!ii->vfs_inode.i_nlink || during_mount) {
2015                         /*
2016                          * Defer calling iput() to avoid deadlocks if
2017                          * i_nlink == 0 or mount is not yet finished.
2018                          */
2019                         list_add_tail(&ii->i_dirty, &sci->sc_iput_queue);
2020                         defer_iput = true;
2021                 } else {
2022                         spin_unlock(&nilfs->ns_inode_lock);
2023                         iput(&ii->vfs_inode);
2024                         spin_lock(&nilfs->ns_inode_lock);
2025                 }
2026         }
2027         spin_unlock(&nilfs->ns_inode_lock);
2028 
2029         if (defer_iput)
2030                 schedule_work(&sci->sc_iput_work);
2031 }
2032 
2033 /*
2034  * Main procedure of segment constructor
2035  */
2036 static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
2037 {
2038         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2039         int err;
2040 
2041         if (sb_rdonly(sci->sc_super))
2042                 return -EROFS;
2043 
2044         nilfs_sc_cstage_set(sci, NILFS_ST_INIT);
2045         sci->sc_cno = nilfs->ns_cno;
2046 
2047         err = nilfs_segctor_collect_dirty_files(sci, nilfs);
2048         if (unlikely(err))
2049                 goto out;
2050 
2051         if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
2052                 set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
2053 
2054         if (nilfs_segctor_clean(sci))
2055                 goto out;
2056 
2057         do {
2058                 sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
2059 
2060                 err = nilfs_segctor_begin_construction(sci, nilfs);
2061                 if (unlikely(err))
2062                         goto failed;
2063 
2064                 /* Update time stamp */
2065                 sci->sc_seg_ctime = ktime_get_real_seconds();
2066 
2067                 err = nilfs_segctor_collect(sci, nilfs, mode);
2068                 if (unlikely(err))
2069                         goto failed;
2070 
2071                 /* Avoid empty segment */
2072                 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE &&
2073                     nilfs_segbuf_empty(sci->sc_curseg)) {
2074                         nilfs_segctor_abort_construction(sci, nilfs, 1);
2075                         goto out;
2076                 }
2077 
2078                 err = nilfs_segctor_assign(sci, mode);
2079                 if (unlikely(err))
2080                         goto failed;
2081 
2082                 if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
2083                         nilfs_segctor_fill_in_file_bmap(sci);
2084 
2085                 if (mode == SC_LSEG_SR &&
2086                     nilfs_sc_cstage_get(sci) >= NILFS_ST_CPFILE) {
2087                         err = nilfs_cpfile_finalize_checkpoint(
2088                                 nilfs->ns_cpfile, nilfs->ns_cno, sci->sc_root,
2089                                 sci->sc_nblk_inc + sci->sc_nblk_this_inc,
2090                                 sci->sc_seg_ctime,
2091                                 !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags));
2092                         if (unlikely(err))
2093                                 goto failed_to_write;
2094 
2095                         nilfs_segctor_fill_in_super_root(sci, nilfs);
2096                 }
2097                 nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
2098 
2099                 /* Write partial segments */
2100                 nilfs_prepare_write_logs(&sci->sc_segbufs, nilfs->ns_crc_seed);
2101 
2102                 err = nilfs_segctor_write(sci, nilfs);
2103                 if (unlikely(err))
2104                         goto failed_to_write;
2105 
2106                 if (nilfs_sc_cstage_get(sci) == NILFS_ST_DONE ||
2107                     nilfs->ns_blocksize_bits != PAGE_SHIFT) {
2108                         /*
2109                          * At this point, we avoid double buffering
2110                          * for blocksize < pagesize because page dirty
2111                          * flag is turned off during write and dirty
2112                          * buffers are not properly collected for
2113                          * pages crossing over segments.
2114                          */
2115                         err = nilfs_segctor_wait(sci);
2116                         if (err)
2117                                 goto failed_to_write;
2118                 }
2119         } while (nilfs_sc_cstage_get(sci) != NILFS_ST_DONE);
2120 
2121  out:
2122         nilfs_segctor_drop_written_files(sci, nilfs);
2123         return err;
2124 
2125  failed_to_write:
2126  failed:
2127         if (mode == SC_LSEG_SR && nilfs_sc_cstage_get(sci) >= NILFS_ST_IFILE)
2128                 nilfs_redirty_inodes(&sci->sc_dirty_files);
2129         if (nilfs_doing_gc())
2130                 nilfs_redirty_inodes(&sci->sc_gc_inodes);
2131         nilfs_segctor_abort_construction(sci, nilfs, err);
2132         goto out;
2133 }
2134 
2135 /**
2136  * nilfs_segctor_start_timer - set timer of background write
2137  * @sci: nilfs_sc_info
2138  *
2139  * If the timer has already been set, it ignores the new request.
2140  * This function MUST be called within a section locking the segment
2141  * semaphore.
2142  */
2143 static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
2144 {
2145         spin_lock(&sci->sc_state_lock);
2146         if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
2147                 if (sci->sc_task) {
2148                         sci->sc_timer.expires = jiffies + sci->sc_interval;
2149                         add_timer(&sci->sc_timer);
2150                 }
2151                 sci->sc_state |= NILFS_SEGCTOR_COMMIT;
2152         }
2153         spin_unlock(&sci->sc_state_lock);
2154 }
2155 
2156 static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
2157 {
2158         spin_lock(&sci->sc_state_lock);
2159         if (!(sci->sc_flush_request & BIT(bn))) {
2160                 unsigned long prev_req = sci->sc_flush_request;
2161 
2162                 sci->sc_flush_request |= BIT(bn);
2163                 if (!prev_req)
2164                         wake_up(&sci->sc_wait_daemon);
2165         }
2166         spin_unlock(&sci->sc_state_lock);
2167 }
2168 
2169 /**
2170  * nilfs_flush_segment - trigger a segment construction for resource control
2171  * @sb: super block
2172  * @ino: inode number of the file to be flushed out.
2173  */
2174 void nilfs_flush_segment(struct super_block *sb, ino_t ino)
2175 {
2176         struct the_nilfs *nilfs = sb->s_fs_info;
2177         struct nilfs_sc_info *sci = nilfs->ns_writer;
2178 
2179         if (!sci || nilfs_doing_construction())
2180                 return;
2181         nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
2182                                         /* assign bit 0 to data files */
2183 }
2184 
2185 struct nilfs_segctor_wait_request {
2186         wait_queue_entry_t      wq;
2187         __u32           seq;
2188         int             err;
2189         atomic_t        done;
2190 };
2191 
2192 static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
2193 {
2194         struct nilfs_segctor_wait_request wait_req;
2195         int err = 0;
2196 
2197         init_wait(&wait_req.wq);
2198         wait_req.err = 0;
2199         atomic_set(&wait_req.done, 0);
2200         init_waitqueue_entry(&wait_req.wq, current);
2201 
2202         /*
2203          * To prevent a race issue where completion notifications from the
2204          * log writer thread are missed, increment the request sequence count
2205          * "sc_seq_request" and insert a wait queue entry using the current
2206          * sequence number into the "sc_wait_request" queue at the same time
2207          * within the lock section of "sc_state_lock".
2208          */
2209         spin_lock(&sci->sc_state_lock);
2210         wait_req.seq = ++sci->sc_seq_request;
2211         add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
2212         spin_unlock(&sci->sc_state_lock);
2213 
2214         wake_up(&sci->sc_wait_daemon);
2215 
2216         for (;;) {
2217                 set_current_state(TASK_INTERRUPTIBLE);
2218 
2219                 /*
2220                  * Synchronize only while the log writer thread is alive.
2221                  * Leave flushing out after the log writer thread exits to
2222                  * the cleanup work in nilfs_segctor_destroy().
2223                  */
2224                 if (!sci->sc_task)
2225                         break;
2226 
2227                 if (atomic_read(&wait_req.done)) {
2228                         err = wait_req.err;
2229                         break;
2230                 }
2231                 if (!signal_pending(current)) {
2232                         schedule();
2233                         continue;
2234                 }
2235                 err = -ERESTARTSYS;
2236                 break;
2237         }
2238         finish_wait(&sci->sc_wait_request, &wait_req.wq);
2239         return err;
2240 }
2241 
2242 static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err, bool force)
2243 {
2244         struct nilfs_segctor_wait_request *wrq, *n;
2245         unsigned long flags;
2246 
2247         spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
2248         list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.head, wq.entry) {
2249                 if (!atomic_read(&wrq->done) &&
2250                     (force || nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq))) {
2251                         wrq->err = err;
2252                         atomic_set(&wrq->done, 1);
2253                 }
2254                 if (atomic_read(&wrq->done)) {
2255                         wrq->wq.func(&wrq->wq,
2256                                      TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
2257                                      0, NULL);
2258                 }
2259         }
2260         spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
2261 }
2262 
2263 /**
2264  * nilfs_construct_segment - construct a logical segment
2265  * @sb: super block
2266  *
2267  * Return Value: On success, 0 is returned. On errors, one of the following
2268  * negative error code is returned.
2269  *
2270  * %-EROFS - Read only filesystem.
2271  *
2272  * %-EIO - I/O error
2273  *
2274  * %-ENOSPC - No space left on device (only in a panic state).
2275  *
2276  * %-ERESTARTSYS - Interrupted.
2277  *
2278  * %-ENOMEM - Insufficient memory available.
2279  */
2280 int nilfs_construct_segment(struct super_block *sb)
2281 {
2282         struct the_nilfs *nilfs = sb->s_fs_info;
2283         struct nilfs_sc_info *sci = nilfs->ns_writer;
2284         struct nilfs_transaction_info *ti;
2285 
2286         if (sb_rdonly(sb) || unlikely(!sci))
2287                 return -EROFS;
2288 
2289         /* A call inside transactions causes a deadlock. */
2290         BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
2291 
2292         return nilfs_segctor_sync(sci);
2293 }
2294 
2295 /**
2296  * nilfs_construct_dsync_segment - construct a data-only logical segment
2297  * @sb: super block
2298  * @inode: inode whose data blocks should be written out
2299  * @start: start byte offset
2300  * @end: end byte offset (inclusive)
2301  *
2302  * Return Value: On success, 0 is returned. On errors, one of the following
2303  * negative error code is returned.
2304  *
2305  * %-EROFS - Read only filesystem.
2306  *
2307  * %-EIO - I/O error
2308  *
2309  * %-ENOSPC - No space left on device (only in a panic state).
2310  *
2311  * %-ERESTARTSYS - Interrupted.
2312  *
2313  * %-ENOMEM - Insufficient memory available.
2314  */
2315 int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
2316                                   loff_t start, loff_t end)
2317 {
2318         struct the_nilfs *nilfs = sb->s_fs_info;
2319         struct nilfs_sc_info *sci = nilfs->ns_writer;
2320         struct nilfs_inode_info *ii;
2321         struct nilfs_transaction_info ti;
2322         int err = 0;
2323 
2324         if (sb_rdonly(sb) || unlikely(!sci))
2325                 return -EROFS;
2326 
2327         nilfs_transaction_lock(sb, &ti, 0);
2328 
2329         ii = NILFS_I(inode);
2330         if (test_bit(NILFS_I_INODE_SYNC, &ii->i_state) ||
2331             nilfs_test_opt(nilfs, STRICT_ORDER) ||
2332             test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2333             nilfs_discontinued(nilfs)) {
2334                 nilfs_transaction_unlock(sb);
2335                 err = nilfs_segctor_sync(sci);
2336                 return err;
2337         }
2338 
2339         spin_lock(&nilfs->ns_inode_lock);
2340         if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
2341             !test_bit(NILFS_I_BUSY, &ii->i_state)) {
2342                 spin_unlock(&nilfs->ns_inode_lock);
2343                 nilfs_transaction_unlock(sb);
2344                 return 0;
2345         }
2346         spin_unlock(&nilfs->ns_inode_lock);
2347         sci->sc_dsync_inode = ii;
2348         sci->sc_dsync_start = start;
2349         sci->sc_dsync_end = end;
2350 
2351         err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
2352         if (!err)
2353                 nilfs->ns_flushed_device = 0;
2354 
2355         nilfs_transaction_unlock(sb);
2356         return err;
2357 }
2358 
2359 #define FLUSH_FILE_BIT  (0x1) /* data file only */
2360 #define FLUSH_DAT_BIT   BIT(NILFS_DAT_INO) /* DAT only */
2361 
2362 /**
2363  * nilfs_segctor_accept - record accepted sequence count of log-write requests
2364  * @sci: segment constructor object
2365  */
2366 static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
2367 {
2368         bool thread_is_alive;
2369 
2370         spin_lock(&sci->sc_state_lock);
2371         sci->sc_seq_accepted = sci->sc_seq_request;
2372         thread_is_alive = (bool)sci->sc_task;
2373         spin_unlock(&sci->sc_state_lock);
2374 
2375         /*
2376          * This function does not race with the log writer thread's
2377          * termination.  Therefore, deleting sc_timer, which should not be
2378          * done after the log writer thread exits, can be done safely outside
2379          * the area protected by sc_state_lock.
2380          */
2381         if (thread_is_alive)
2382                 del_timer_sync(&sci->sc_timer);
2383 }
2384 
2385 /**
2386  * nilfs_segctor_notify - notify the result of request to caller threads
2387  * @sci: segment constructor object
2388  * @mode: mode of log forming
2389  * @err: error code to be notified
2390  */
2391 static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
2392 {
2393         /* Clear requests (even when the construction failed) */
2394         spin_lock(&sci->sc_state_lock);
2395 
2396         if (mode == SC_LSEG_SR) {
2397                 sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
2398                 sci->sc_seq_done = sci->sc_seq_accepted;
2399                 nilfs_segctor_wakeup(sci, err, false);
2400                 sci->sc_flush_request = 0;
2401         } else {
2402                 if (mode == SC_FLUSH_FILE)
2403                         sci->sc_flush_request &= ~FLUSH_FILE_BIT;
2404                 else if (mode == SC_FLUSH_DAT)
2405                         sci->sc_flush_request &= ~FLUSH_DAT_BIT;
2406 
2407                 /* re-enable timer if checkpoint creation was not done */
2408                 if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) && sci->sc_task &&
2409                     time_before(jiffies, sci->sc_timer.expires))
2410                         add_timer(&sci->sc_timer);
2411         }
2412         spin_unlock(&sci->sc_state_lock);
2413 }
2414 
2415 /**
2416  * nilfs_segctor_construct - form logs and write them to disk
2417  * @sci: segment constructor object
2418  * @mode: mode of log forming
2419  */
2420 static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
2421 {
2422         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2423         struct nilfs_super_block **sbp;
2424         int err = 0;
2425 
2426         nilfs_segctor_accept(sci);
2427 
2428         if (nilfs_discontinued(nilfs))
2429                 mode = SC_LSEG_SR;
2430         if (!nilfs_segctor_confirm(sci))
2431                 err = nilfs_segctor_do_construct(sci, mode);
2432 
2433         if (likely(!err)) {
2434                 if (mode != SC_FLUSH_DAT)
2435                         atomic_set(&nilfs->ns_ndirtyblks, 0);
2436                 if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
2437                     nilfs_discontinued(nilfs)) {
2438                         down_write(&nilfs->ns_sem);
2439                         err = -EIO;
2440                         sbp = nilfs_prepare_super(sci->sc_super,
2441                                                   nilfs_sb_will_flip(nilfs));
2442                         if (likely(sbp)) {
2443                                 nilfs_set_log_cursor(sbp[0], nilfs);
2444                                 err = nilfs_commit_super(sci->sc_super,
2445                                                          NILFS_SB_COMMIT);
2446                         }
2447                         up_write(&nilfs->ns_sem);
2448                 }
2449         }
2450 
2451         nilfs_segctor_notify(sci, mode, err);
2452         return err;
2453 }
2454 
2455 static void nilfs_construction_timeout(struct timer_list *t)
2456 {
2457         struct nilfs_sc_info *sci = from_timer(sci, t, sc_timer);
2458 
2459         wake_up_process(sci->sc_timer_task);
2460 }
2461 
2462 static void
2463 nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
2464 {
2465         struct nilfs_inode_info *ii, *n;
2466 
2467         list_for_each_entry_safe(ii, n, head, i_dirty) {
2468                 if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
2469                         continue;
2470                 list_del_init(&ii->i_dirty);
2471                 truncate_inode_pages(&ii->vfs_inode.i_data, 0);
2472                 nilfs_btnode_cache_clear(ii->i_assoc_inode->i_mapping);
2473                 iput(&ii->vfs_inode);
2474         }
2475 }
2476 
2477 int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
2478                          void **kbufs)
2479 {
2480         struct the_nilfs *nilfs = sb->s_fs_info;
2481         struct nilfs_sc_info *sci = nilfs->ns_writer;
2482         struct nilfs_transaction_info ti;
2483         int err;
2484 
2485         if (unlikely(!sci))
2486                 return -EROFS;
2487 
2488         nilfs_transaction_lock(sb, &ti, 1);
2489 
2490         err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
2491         if (unlikely(err))
2492                 goto out_unlock;
2493 
2494         err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
2495         if (unlikely(err)) {
2496                 nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
2497                 goto out_unlock;
2498         }
2499 
2500         sci->sc_freesegs = kbufs[4];
2501         sci->sc_nfreesegs = argv[4].v_nmembs;
2502         list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
2503 
2504         for (;;) {
2505                 err = nilfs_segctor_construct(sci, SC_LSEG_SR);
2506                 nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
2507 
2508                 if (likely(!err))
2509                         break;
2510 
2511                 nilfs_warn(sb, "error %d cleaning segments", err);
2512                 set_current_state(TASK_INTERRUPTIBLE);
2513                 schedule_timeout(sci->sc_interval);
2514         }
2515         if (nilfs_test_opt(nilfs, DISCARD)) {
2516                 int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
2517                                                  sci->sc_nfreesegs);
2518                 if (ret) {
2519                         nilfs_warn(sb,
2520                                    "error %d on discard request, turning discards off for the device",
2521                                    ret);
2522                         nilfs_clear_opt(nilfs, DISCARD);
2523                 }
2524         }
2525 
2526  out_unlock:
2527         sci->sc_freesegs = NULL;
2528         sci->sc_nfreesegs = 0;
2529         nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
2530         nilfs_transaction_unlock(sb);
2531         return err;
2532 }
2533 
2534 static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
2535 {
2536         struct nilfs_transaction_info ti;
2537 
2538         nilfs_transaction_lock(sci->sc_super, &ti, 0);
2539         nilfs_segctor_construct(sci, mode);
2540 
2541         /*
2542          * Unclosed segment should be retried.  We do this using sc_timer.
2543          * Timeout of sc_timer will invoke complete construction which leads
2544          * to close the current logical segment.
2545          */
2546         if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
2547                 nilfs_segctor_start_timer(sci);
2548 
2549         nilfs_transaction_unlock(sci->sc_super);
2550 }
2551 
2552 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
2553 {
2554         int mode = 0;
2555 
2556         spin_lock(&sci->sc_state_lock);
2557         mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
2558                 SC_FLUSH_DAT : SC_FLUSH_FILE;
2559         spin_unlock(&sci->sc_state_lock);
2560 
2561         if (mode) {
2562                 nilfs_segctor_do_construct(sci, mode);
2563 
2564                 spin_lock(&sci->sc_state_lock);
2565                 sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
2566                         ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
2567                 spin_unlock(&sci->sc_state_lock);
2568         }
2569         clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
2570 }
2571 
2572 static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
2573 {
2574         if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
2575             time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
2576                 if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
2577                         return SC_FLUSH_FILE;
2578                 else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
2579                         return SC_FLUSH_DAT;
2580         }
2581         return SC_LSEG_SR;
2582 }
2583 
2584 /**
2585  * nilfs_segctor_thread - main loop of the segment constructor thread.
2586  * @arg: pointer to a struct nilfs_sc_info.
2587  *
2588  * nilfs_segctor_thread() initializes a timer and serves as a daemon
2589  * to execute segment constructions.
2590  */
2591 static int nilfs_segctor_thread(void *arg)
2592 {
2593         struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
2594         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2595         int timeout = 0;
2596 
2597         sci->sc_timer_task = current;
2598         timer_setup(&sci->sc_timer, nilfs_construction_timeout, 0);
2599 
2600         /* start sync. */
2601         sci->sc_task = current;
2602         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
2603         nilfs_info(sci->sc_super,
2604                    "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2605                    sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
2606 
2607         set_freezable();
2608         spin_lock(&sci->sc_state_lock);
2609  loop:
2610         for (;;) {
2611                 int mode;
2612 
2613                 if (sci->sc_state & NILFS_SEGCTOR_QUIT)
2614                         goto end_thread;
2615 
2616                 if (timeout || sci->sc_seq_request != sci->sc_seq_done)
2617                         mode = SC_LSEG_SR;
2618                 else if (sci->sc_flush_request)
2619                         mode = nilfs_segctor_flush_mode(sci);
2620                 else
2621                         break;
2622 
2623                 spin_unlock(&sci->sc_state_lock);
2624                 nilfs_segctor_thread_construct(sci, mode);
2625                 spin_lock(&sci->sc_state_lock);
2626                 timeout = 0;
2627         }
2628 
2629 
2630         if (freezing(current)) {
2631                 spin_unlock(&sci->sc_state_lock);
2632                 try_to_freeze();
2633                 spin_lock(&sci->sc_state_lock);
2634         } else {
2635                 DEFINE_WAIT(wait);
2636                 int should_sleep = 1;
2637 
2638                 prepare_to_wait(&sci->sc_wait_daemon, &wait,
2639                                 TASK_INTERRUPTIBLE);
2640 
2641                 if (sci->sc_seq_request != sci->sc_seq_done)
2642                         should_sleep = 0;
2643                 else if (sci->sc_flush_request)
2644                         should_sleep = 0;
2645                 else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
2646                         should_sleep = time_before(jiffies,
2647                                         sci->sc_timer.expires);
2648 
2649                 if (should_sleep) {
2650                         spin_unlock(&sci->sc_state_lock);
2651                         schedule();
2652                         spin_lock(&sci->sc_state_lock);
2653                 }
2654                 finish_wait(&sci->sc_wait_daemon, &wait);
2655                 timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
2656                            time_after_eq(jiffies, sci->sc_timer.expires));
2657 
2658                 if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
2659                         set_nilfs_discontinued(nilfs);
2660         }
2661         goto loop;
2662 
2663  end_thread:
2664         /* end sync. */
2665         sci->sc_task = NULL;
2666         timer_shutdown_sync(&sci->sc_timer);
2667         wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
2668         spin_unlock(&sci->sc_state_lock);
2669         return 0;
2670 }
2671 
2672 static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
2673 {
2674         struct task_struct *t;
2675 
2676         t = kthread_run(nilfs_segctor_thread, sci, "segctord");
2677         if (IS_ERR(t)) {
2678                 int err = PTR_ERR(t);
2679 
2680                 nilfs_err(sci->sc_super, "error %d creating segctord thread",
2681                           err);
2682                 return err;
2683         }
2684         wait_event(sci->sc_wait_task, sci->sc_task != NULL);
2685         return 0;
2686 }
2687 
2688 static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
2689         __acquires(&sci->sc_state_lock)
2690         __releases(&sci->sc_state_lock)
2691 {
2692         sci->sc_state |= NILFS_SEGCTOR_QUIT;
2693 
2694         while (sci->sc_task) {
2695                 wake_up(&sci->sc_wait_daemon);
2696                 spin_unlock(&sci->sc_state_lock);
2697                 wait_event(sci->sc_wait_task, sci->sc_task == NULL);
2698                 spin_lock(&sci->sc_state_lock);
2699         }
2700 }
2701 
2702 /*
2703  * Setup & clean-up functions
2704  */
2705 static struct nilfs_sc_info *nilfs_segctor_new(struct super_block *sb,
2706                                                struct nilfs_root *root)
2707 {
2708         struct the_nilfs *nilfs = sb->s_fs_info;
2709         struct nilfs_sc_info *sci;
2710 
2711         sci = kzalloc(sizeof(*sci), GFP_KERNEL);
2712         if (!sci)
2713                 return NULL;
2714 
2715         sci->sc_super = sb;
2716 
2717         nilfs_get_root(root);
2718         sci->sc_root = root;
2719 
2720         init_waitqueue_head(&sci->sc_wait_request);
2721         init_waitqueue_head(&sci->sc_wait_daemon);
2722         init_waitqueue_head(&sci->sc_wait_task);
2723         spin_lock_init(&sci->sc_state_lock);
2724         INIT_LIST_HEAD(&sci->sc_dirty_files);
2725         INIT_LIST_HEAD(&sci->sc_segbufs);
2726         INIT_LIST_HEAD(&sci->sc_write_logs);
2727         INIT_LIST_HEAD(&sci->sc_gc_inodes);
2728         INIT_LIST_HEAD(&sci->sc_iput_queue);
2729         INIT_WORK(&sci->sc_iput_work, nilfs_iput_work_func);
2730 
2731         sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
2732         sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
2733         sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
2734 
2735         if (nilfs->ns_interval)
2736                 sci->sc_interval = HZ * nilfs->ns_interval;
2737         if (nilfs->ns_watermark)
2738                 sci->sc_watermark = nilfs->ns_watermark;
2739         return sci;
2740 }
2741 
2742 static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
2743 {
2744         int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
2745 
2746         /*
2747          * The segctord thread was stopped and its timer was removed.
2748          * But some tasks remain.
2749          */
2750         do {
2751                 struct nilfs_transaction_info ti;
2752 
2753                 nilfs_transaction_lock(sci->sc_super, &ti, 0);
2754                 ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
2755                 nilfs_transaction_unlock(sci->sc_super);
2756 
2757                 flush_work(&sci->sc_iput_work);
2758 
2759         } while (ret && ret != -EROFS && retrycount-- > 0);
2760 }
2761 
2762 /**
2763  * nilfs_segctor_destroy - destroy the segment constructor.
2764  * @sci: nilfs_sc_info
2765  *
2766  * nilfs_segctor_destroy() kills the segctord thread and frees
2767  * the nilfs_sc_info struct.
2768  * Caller must hold the segment semaphore.
2769  */
2770 static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
2771 {
2772         struct the_nilfs *nilfs = sci->sc_super->s_fs_info;
2773         int flag;
2774 
2775         up_write(&nilfs->ns_segctor_sem);
2776 
2777         spin_lock(&sci->sc_state_lock);
2778         nilfs_segctor_kill_thread(sci);
2779         flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
2780                 || sci->sc_seq_request != sci->sc_seq_done);
2781         spin_unlock(&sci->sc_state_lock);
2782 
2783         /*
2784          * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can
2785          * be called from delayed iput() via nilfs_evict_inode() and can race
2786          * with the above log writer thread termination.
2787          */
2788         nilfs_segctor_wakeup(sci, 0, true);
2789 
2790         if (flush_work(&sci->sc_iput_work))
2791                 flag = true;
2792 
2793         if (flag || !nilfs_segctor_confirm(sci))
2794                 nilfs_segctor_write_out(sci);
2795 
2796         if (!list_empty(&sci->sc_dirty_files)) {
2797                 nilfs_warn(sci->sc_super,
2798                            "disposed unprocessed dirty file(s) when stopping log writer");
2799                 nilfs_dispose_list(nilfs, &sci->sc_dirty_files, 1);
2800         }
2801 
2802         if (!list_empty(&sci->sc_iput_queue)) {
2803                 nilfs_warn(sci->sc_super,
2804                            "disposed unprocessed inode(s) in iput queue when stopping log writer");
2805                 nilfs_dispose_list(nilfs, &sci->sc_iput_queue, 1);
2806         }
2807 
2808         WARN_ON(!list_empty(&sci->sc_segbufs));
2809         WARN_ON(!list_empty(&sci->sc_write_logs));
2810 
2811         nilfs_put_root(sci->sc_root);
2812 
2813         down_write(&nilfs->ns_segctor_sem);
2814 
2815         kfree(sci);
2816 }
2817 
2818 /**
2819  * nilfs_attach_log_writer - attach log writer
2820  * @sb: super block instance
2821  * @root: root object of the current filesystem tree
2822  *
2823  * This allocates a log writer object, initializes it, and starts the
2824  * log writer.
2825  *
2826  * Return Value: On success, 0 is returned. On error, one of the following
2827  * negative error code is returned.
2828  *
2829  * %-ENOMEM - Insufficient memory available.
2830  */
2831 int nilfs_attach_log_writer(struct super_block *sb, struct nilfs_root *root)
2832 {
2833         struct the_nilfs *nilfs = sb->s_fs_info;
2834         int err;
2835 
2836         if (nilfs->ns_writer) {
2837                 /*
2838                  * This happens if the filesystem is made read-only by
2839                  * __nilfs_error or nilfs_remount and then remounted
2840                  * read/write.  In these cases, reuse the existing
2841                  * writer.
2842                  */
2843                 return 0;
2844         }
2845 
2846         nilfs->ns_writer = nilfs_segctor_new(sb, root);
2847         if (!nilfs->ns_writer)
2848                 return -ENOMEM;
2849 
2850         err = nilfs_segctor_start_thread(nilfs->ns_writer);
2851         if (unlikely(err))
2852                 nilfs_detach_log_writer(sb);
2853 
2854         return err;
2855 }
2856 
2857 /**
2858  * nilfs_detach_log_writer - destroy log writer
2859  * @sb: super block instance
2860  *
2861  * This kills log writer daemon, frees the log writer object, and
2862  * destroys list of dirty files.
2863  */
2864 void nilfs_detach_log_writer(struct super_block *sb)
2865 {
2866         struct the_nilfs *nilfs = sb->s_fs_info;
2867         LIST_HEAD(garbage_list);
2868 
2869         down_write(&nilfs->ns_segctor_sem);
2870         if (nilfs->ns_writer) {
2871                 nilfs_segctor_destroy(nilfs->ns_writer);
2872                 nilfs->ns_writer = NULL;
2873         }
2874         set_nilfs_purging(nilfs);
2875 
2876         /* Force to free the list of dirty files */
2877         spin_lock(&nilfs->ns_inode_lock);
2878         if (!list_empty(&nilfs->ns_dirty_files)) {
2879                 list_splice_init(&nilfs->ns_dirty_files, &garbage_list);
2880                 nilfs_warn(sb,
2881                            "disposed unprocessed dirty file(s) when detaching log writer");
2882         }
2883         spin_unlock(&nilfs->ns_inode_lock);
2884         up_write(&nilfs->ns_segctor_sem);
2885 
2886         nilfs_dispose_list(nilfs, &garbage_list, 1);
2887         clear_nilfs_purging(nilfs);
2888 }
2889 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php