~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/nilfs2/super.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0+
  2 /*
  3  * NILFS module and super block management.
  4  *
  5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  6  *
  7  * Written by Ryusuke Konishi.
  8  */
  9 /*
 10  *  linux/fs/ext2/super.c
 11  *
 12  * Copyright (C) 1992, 1993, 1994, 1995
 13  * Remy Card (card@masi.ibp.fr)
 14  * Laboratoire MASI - Institut Blaise Pascal
 15  * Universite Pierre et Marie Curie (Paris VI)
 16  *
 17  *  from
 18  *
 19  *  linux/fs/minix/inode.c
 20  *
 21  *  Copyright (C) 1991, 1992  Linus Torvalds
 22  *
 23  *  Big-endian to little-endian byte-swapping/bitmaps by
 24  *        David S. Miller (davem@caip.rutgers.edu), 1995
 25  */
 26 
 27 #include <linux/module.h>
 28 #include <linux/string.h>
 29 #include <linux/slab.h>
 30 #include <linux/init.h>
 31 #include <linux/blkdev.h>
 32 #include <linux/crc32.h>
 33 #include <linux/vfs.h>
 34 #include <linux/writeback.h>
 35 #include <linux/seq_file.h>
 36 #include <linux/mount.h>
 37 #include <linux/fs_context.h>
 38 #include <linux/fs_parser.h>
 39 #include "nilfs.h"
 40 #include "export.h"
 41 #include "mdt.h"
 42 #include "alloc.h"
 43 #include "btree.h"
 44 #include "btnode.h"
 45 #include "page.h"
 46 #include "cpfile.h"
 47 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
 48 #include "ifile.h"
 49 #include "dat.h"
 50 #include "segment.h"
 51 #include "segbuf.h"
 52 
 53 MODULE_AUTHOR("NTT Corp.");
 54 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
 55                    "(NILFS)");
 56 MODULE_LICENSE("GPL");
 57 
 58 static struct kmem_cache *nilfs_inode_cachep;
 59 struct kmem_cache *nilfs_transaction_cachep;
 60 struct kmem_cache *nilfs_segbuf_cachep;
 61 struct kmem_cache *nilfs_btree_path_cache;
 62 
 63 static int nilfs_setup_super(struct super_block *sb, int is_mount);
 64 
 65 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
 66 {
 67         struct va_format vaf;
 68         va_list args;
 69         int level;
 70 
 71         va_start(args, fmt);
 72 
 73         level = printk_get_level(fmt);
 74         vaf.fmt = printk_skip_level(fmt);
 75         vaf.va = &args;
 76 
 77         if (sb)
 78                 printk("%c%cNILFS (%s): %pV\n",
 79                        KERN_SOH_ASCII, level, sb->s_id, &vaf);
 80         else
 81                 printk("%c%cNILFS: %pV\n",
 82                        KERN_SOH_ASCII, level, &vaf);
 83 
 84         va_end(args);
 85 }
 86 
 87 static void nilfs_set_error(struct super_block *sb)
 88 {
 89         struct the_nilfs *nilfs = sb->s_fs_info;
 90         struct nilfs_super_block **sbp;
 91 
 92         down_write(&nilfs->ns_sem);
 93         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
 94                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
 95                 sbp = nilfs_prepare_super(sb, 0);
 96                 if (likely(sbp)) {
 97                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
 98                         if (sbp[1])
 99                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100                         nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
101                 }
102         }
103         up_write(&nilfs->ns_sem);
104 }
105 
106 /**
107  * __nilfs_error() - report failure condition on a filesystem
108  *
109  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
110  * reporting an error message.  This function should be called when
111  * NILFS detects incoherences or defects of meta data on disk.
112  *
113  * This implements the body of nilfs_error() macro.  Normally,
114  * nilfs_error() should be used.  As for sustainable errors such as a
115  * single-shot I/O error, nilfs_err() should be used instead.
116  *
117  * Callers should not add a trailing newline since this will do it.
118  */
119 void __nilfs_error(struct super_block *sb, const char *function,
120                    const char *fmt, ...)
121 {
122         struct the_nilfs *nilfs = sb->s_fs_info;
123         struct va_format vaf;
124         va_list args;
125 
126         va_start(args, fmt);
127 
128         vaf.fmt = fmt;
129         vaf.va = &args;
130 
131         printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
132                sb->s_id, function, &vaf);
133 
134         va_end(args);
135 
136         if (!sb_rdonly(sb)) {
137                 nilfs_set_error(sb);
138 
139                 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
140                         printk(KERN_CRIT "Remounting filesystem read-only\n");
141                         sb->s_flags |= SB_RDONLY;
142                 }
143         }
144 
145         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
146                 panic("NILFS (device %s): panic forced after error\n",
147                       sb->s_id);
148 }
149 
150 struct inode *nilfs_alloc_inode(struct super_block *sb)
151 {
152         struct nilfs_inode_info *ii;
153 
154         ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
155         if (!ii)
156                 return NULL;
157         ii->i_bh = NULL;
158         ii->i_state = 0;
159         ii->i_cno = 0;
160         ii->i_assoc_inode = NULL;
161         ii->i_bmap = &ii->i_bmap_data;
162         return &ii->vfs_inode;
163 }
164 
165 static void nilfs_free_inode(struct inode *inode)
166 {
167         if (nilfs_is_metadata_file_inode(inode))
168                 nilfs_mdt_destroy(inode);
169 
170         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
171 }
172 
173 static int nilfs_sync_super(struct super_block *sb, int flag)
174 {
175         struct the_nilfs *nilfs = sb->s_fs_info;
176         int err;
177 
178  retry:
179         set_buffer_dirty(nilfs->ns_sbh[0]);
180         if (nilfs_test_opt(nilfs, BARRIER)) {
181                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182                                           REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
183         } else {
184                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
185         }
186 
187         if (unlikely(err)) {
188                 nilfs_err(sb, "unable to write superblock: err=%d", err);
189                 if (err == -EIO && nilfs->ns_sbh[1]) {
190                         /*
191                          * sbp[0] points to newer log than sbp[1],
192                          * so copy sbp[0] to sbp[1] to take over sbp[0].
193                          */
194                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
195                                nilfs->ns_sbsize);
196                         nilfs_fall_back_super_block(nilfs);
197                         goto retry;
198                 }
199         } else {
200                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
201 
202                 nilfs->ns_sbwcount++;
203 
204                 /*
205                  * The latest segment becomes trailable from the position
206                  * written in superblock.
207                  */
208                 clear_nilfs_discontinued(nilfs);
209 
210                 /* update GC protection for recent segments */
211                 if (nilfs->ns_sbh[1]) {
212                         if (flag == NILFS_SB_COMMIT_ALL) {
213                                 set_buffer_dirty(nilfs->ns_sbh[1]);
214                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
215                                         goto out;
216                         }
217                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
218                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
219                                 sbp = nilfs->ns_sbp[1];
220                 }
221 
222                 spin_lock(&nilfs->ns_last_segment_lock);
223                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
224                 spin_unlock(&nilfs->ns_last_segment_lock);
225         }
226  out:
227         return err;
228 }
229 
230 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
231                           struct the_nilfs *nilfs)
232 {
233         sector_t nfreeblocks;
234 
235         /* nilfs->ns_sem must be locked by the caller. */
236         nilfs_count_free_blocks(nilfs, &nfreeblocks);
237         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
238 
239         spin_lock(&nilfs->ns_last_segment_lock);
240         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
241         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
242         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
243         spin_unlock(&nilfs->ns_last_segment_lock);
244 }
245 
246 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
247                                                int flip)
248 {
249         struct the_nilfs *nilfs = sb->s_fs_info;
250         struct nilfs_super_block **sbp = nilfs->ns_sbp;
251 
252         /* nilfs->ns_sem must be locked by the caller. */
253         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
254                 if (sbp[1] &&
255                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
256                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
257                 } else {
258                         nilfs_crit(sb, "superblock broke");
259                         return NULL;
260                 }
261         } else if (sbp[1] &&
262                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
263                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
264         }
265 
266         if (flip && sbp[1])
267                 nilfs_swap_super_block(nilfs);
268 
269         return sbp;
270 }
271 
272 int nilfs_commit_super(struct super_block *sb, int flag)
273 {
274         struct the_nilfs *nilfs = sb->s_fs_info;
275         struct nilfs_super_block **sbp = nilfs->ns_sbp;
276         time64_t t;
277 
278         /* nilfs->ns_sem must be locked by the caller. */
279         t = ktime_get_real_seconds();
280         nilfs->ns_sbwtime = t;
281         sbp[0]->s_wtime = cpu_to_le64(t);
282         sbp[0]->s_sum = 0;
283         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284                                              (unsigned char *)sbp[0],
285                                              nilfs->ns_sbsize));
286         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
287                 sbp[1]->s_wtime = sbp[0]->s_wtime;
288                 sbp[1]->s_sum = 0;
289                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
290                                             (unsigned char *)sbp[1],
291                                             nilfs->ns_sbsize));
292         }
293         clear_nilfs_sb_dirty(nilfs);
294         nilfs->ns_flushed_device = 1;
295         /* make sure store to ns_flushed_device cannot be reordered */
296         smp_wmb();
297         return nilfs_sync_super(sb, flag);
298 }
299 
300 /**
301  * nilfs_cleanup_super() - write filesystem state for cleanup
302  * @sb: super block instance to be unmounted or degraded to read-only
303  *
304  * This function restores state flags in the on-disk super block.
305  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
306  * filesystem was not clean previously.
307  */
308 int nilfs_cleanup_super(struct super_block *sb)
309 {
310         struct the_nilfs *nilfs = sb->s_fs_info;
311         struct nilfs_super_block **sbp;
312         int flag = NILFS_SB_COMMIT;
313         int ret = -EIO;
314 
315         sbp = nilfs_prepare_super(sb, 0);
316         if (sbp) {
317                 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
318                 nilfs_set_log_cursor(sbp[0], nilfs);
319                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
320                         /*
321                          * make the "clean" flag also to the opposite
322                          * super block if both super blocks point to
323                          * the same checkpoint.
324                          */
325                         sbp[1]->s_state = sbp[0]->s_state;
326                         flag = NILFS_SB_COMMIT_ALL;
327                 }
328                 ret = nilfs_commit_super(sb, flag);
329         }
330         return ret;
331 }
332 
333 /**
334  * nilfs_move_2nd_super - relocate secondary super block
335  * @sb: super block instance
336  * @sb2off: new offset of the secondary super block (in bytes)
337  */
338 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
339 {
340         struct the_nilfs *nilfs = sb->s_fs_info;
341         struct buffer_head *nsbh;
342         struct nilfs_super_block *nsbp;
343         sector_t blocknr, newblocknr;
344         unsigned long offset;
345         int sb2i;  /* array index of the secondary superblock */
346         int ret = 0;
347 
348         /* nilfs->ns_sem must be locked by the caller. */
349         if (nilfs->ns_sbh[1] &&
350             nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
351                 sb2i = 1;
352                 blocknr = nilfs->ns_sbh[1]->b_blocknr;
353         } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
354                 sb2i = 0;
355                 blocknr = nilfs->ns_sbh[0]->b_blocknr;
356         } else {
357                 sb2i = -1;
358                 blocknr = 0;
359         }
360         if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
361                 goto out;  /* super block location is unchanged */
362 
363         /* Get new super block buffer */
364         newblocknr = sb2off >> nilfs->ns_blocksize_bits;
365         offset = sb2off & (nilfs->ns_blocksize - 1);
366         nsbh = sb_getblk(sb, newblocknr);
367         if (!nsbh) {
368                 nilfs_warn(sb,
369                            "unable to move secondary superblock to block %llu",
370                            (unsigned long long)newblocknr);
371                 ret = -EIO;
372                 goto out;
373         }
374         nsbp = (void *)nsbh->b_data + offset;
375 
376         lock_buffer(nsbh);
377         if (sb2i >= 0) {
378                 /*
379                  * The position of the second superblock only changes by 4KiB,
380                  * which is larger than the maximum superblock data size
381                  * (= 1KiB), so there is no need to use memmove() to allow
382                  * overlap between source and destination.
383                  */
384                 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
385 
386                 /*
387                  * Zero fill after copy to avoid overwriting in case of move
388                  * within the same block.
389                  */
390                 memset(nsbh->b_data, 0, offset);
391                 memset((void *)nsbp + nilfs->ns_sbsize, 0,
392                        nsbh->b_size - offset - nilfs->ns_sbsize);
393         } else {
394                 memset(nsbh->b_data, 0, nsbh->b_size);
395         }
396         set_buffer_uptodate(nsbh);
397         unlock_buffer(nsbh);
398 
399         if (sb2i >= 0) {
400                 brelse(nilfs->ns_sbh[sb2i]);
401                 nilfs->ns_sbh[sb2i] = nsbh;
402                 nilfs->ns_sbp[sb2i] = nsbp;
403         } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
404                 /* secondary super block will be restored to index 1 */
405                 nilfs->ns_sbh[1] = nsbh;
406                 nilfs->ns_sbp[1] = nsbp;
407         } else {
408                 brelse(nsbh);
409         }
410 out:
411         return ret;
412 }
413 
414 /**
415  * nilfs_resize_fs - resize the filesystem
416  * @sb: super block instance
417  * @newsize: new size of the filesystem (in bytes)
418  */
419 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
420 {
421         struct the_nilfs *nilfs = sb->s_fs_info;
422         struct nilfs_super_block **sbp;
423         __u64 devsize, newnsegs;
424         loff_t sb2off;
425         int ret;
426 
427         ret = -ERANGE;
428         devsize = bdev_nr_bytes(sb->s_bdev);
429         if (newsize > devsize)
430                 goto out;
431 
432         /*
433          * Prevent underflow in second superblock position calculation.
434          * The exact minimum size check is done in nilfs_sufile_resize().
435          */
436         if (newsize < 4096) {
437                 ret = -ENOSPC;
438                 goto out;
439         }
440 
441         /*
442          * Write lock is required to protect some functions depending
443          * on the number of segments, the number of reserved segments,
444          * and so forth.
445          */
446         down_write(&nilfs->ns_segctor_sem);
447 
448         sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
449         newnsegs = sb2off >> nilfs->ns_blocksize_bits;
450         newnsegs = div64_ul(newnsegs, nilfs->ns_blocks_per_segment);
451 
452         ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
453         up_write(&nilfs->ns_segctor_sem);
454         if (ret < 0)
455                 goto out;
456 
457         ret = nilfs_construct_segment(sb);
458         if (ret < 0)
459                 goto out;
460 
461         down_write(&nilfs->ns_sem);
462         nilfs_move_2nd_super(sb, sb2off);
463         ret = -EIO;
464         sbp = nilfs_prepare_super(sb, 0);
465         if (likely(sbp)) {
466                 nilfs_set_log_cursor(sbp[0], nilfs);
467                 /*
468                  * Drop NILFS_RESIZE_FS flag for compatibility with
469                  * mount-time resize which may be implemented in a
470                  * future release.
471                  */
472                 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
473                                               ~NILFS_RESIZE_FS);
474                 sbp[0]->s_dev_size = cpu_to_le64(newsize);
475                 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
476                 if (sbp[1])
477                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
478                 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
479         }
480         up_write(&nilfs->ns_sem);
481 
482         /*
483          * Reset the range of allocatable segments last.  This order
484          * is important in the case of expansion because the secondary
485          * superblock must be protected from log write until migration
486          * completes.
487          */
488         if (!ret)
489                 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
490 out:
491         return ret;
492 }
493 
494 static void nilfs_put_super(struct super_block *sb)
495 {
496         struct the_nilfs *nilfs = sb->s_fs_info;
497 
498         nilfs_detach_log_writer(sb);
499 
500         if (!sb_rdonly(sb)) {
501                 down_write(&nilfs->ns_sem);
502                 nilfs_cleanup_super(sb);
503                 up_write(&nilfs->ns_sem);
504         }
505 
506         nilfs_sysfs_delete_device_group(nilfs);
507         iput(nilfs->ns_sufile);
508         iput(nilfs->ns_cpfile);
509         iput(nilfs->ns_dat);
510 
511         destroy_nilfs(nilfs);
512         sb->s_fs_info = NULL;
513 }
514 
515 static int nilfs_sync_fs(struct super_block *sb, int wait)
516 {
517         struct the_nilfs *nilfs = sb->s_fs_info;
518         struct nilfs_super_block **sbp;
519         int err = 0;
520 
521         /* This function is called when super block should be written back */
522         if (wait)
523                 err = nilfs_construct_segment(sb);
524 
525         down_write(&nilfs->ns_sem);
526         if (nilfs_sb_dirty(nilfs)) {
527                 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
528                 if (likely(sbp)) {
529                         nilfs_set_log_cursor(sbp[0], nilfs);
530                         nilfs_commit_super(sb, NILFS_SB_COMMIT);
531                 }
532         }
533         up_write(&nilfs->ns_sem);
534 
535         if (!err)
536                 err = nilfs_flush_device(nilfs);
537 
538         return err;
539 }
540 
541 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
542                             struct nilfs_root **rootp)
543 {
544         struct the_nilfs *nilfs = sb->s_fs_info;
545         struct nilfs_root *root;
546         int err = -ENOMEM;
547 
548         root = nilfs_find_or_create_root(
549                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
550         if (!root)
551                 return err;
552 
553         if (root->ifile)
554                 goto reuse; /* already attached checkpoint */
555 
556         down_read(&nilfs->ns_segctor_sem);
557         err = nilfs_ifile_read(sb, root, cno, nilfs->ns_inode_size);
558         up_read(&nilfs->ns_segctor_sem);
559         if (unlikely(err))
560                 goto failed;
561 
562  reuse:
563         *rootp = root;
564         return 0;
565 
566  failed:
567         if (err == -EINVAL)
568                 nilfs_err(sb, "Invalid checkpoint (checkpoint number=%llu)",
569                           (unsigned long long)cno);
570         nilfs_put_root(root);
571 
572         return err;
573 }
574 
575 static int nilfs_freeze(struct super_block *sb)
576 {
577         struct the_nilfs *nilfs = sb->s_fs_info;
578         int err;
579 
580         if (sb_rdonly(sb))
581                 return 0;
582 
583         /* Mark super block clean */
584         down_write(&nilfs->ns_sem);
585         err = nilfs_cleanup_super(sb);
586         up_write(&nilfs->ns_sem);
587         return err;
588 }
589 
590 static int nilfs_unfreeze(struct super_block *sb)
591 {
592         struct the_nilfs *nilfs = sb->s_fs_info;
593 
594         if (sb_rdonly(sb))
595                 return 0;
596 
597         down_write(&nilfs->ns_sem);
598         nilfs_setup_super(sb, false);
599         up_write(&nilfs->ns_sem);
600         return 0;
601 }
602 
603 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
604 {
605         struct super_block *sb = dentry->d_sb;
606         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
607         struct the_nilfs *nilfs = root->nilfs;
608         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
609         unsigned long long blocks;
610         unsigned long overhead;
611         unsigned long nrsvblocks;
612         sector_t nfreeblocks;
613         u64 nmaxinodes, nfreeinodes;
614         int err;
615 
616         /*
617          * Compute all of the segment blocks
618          *
619          * The blocks before first segment and after last segment
620          * are excluded.
621          */
622         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
623                 - nilfs->ns_first_data_block;
624         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
625 
626         /*
627          * Compute the overhead
628          *
629          * When distributing meta data blocks outside segment structure,
630          * We must count them as the overhead.
631          */
632         overhead = 0;
633 
634         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
635         if (unlikely(err))
636                 return err;
637 
638         err = nilfs_ifile_count_free_inodes(root->ifile,
639                                             &nmaxinodes, &nfreeinodes);
640         if (unlikely(err)) {
641                 nilfs_warn(sb, "failed to count free inodes: err=%d", err);
642                 if (err == -ERANGE) {
643                         /*
644                          * If nilfs_palloc_count_max_entries() returns
645                          * -ERANGE error code then we simply treat
646                          * curent inodes count as maximum possible and
647                          * zero as free inodes value.
648                          */
649                         nmaxinodes = atomic64_read(&root->inodes_count);
650                         nfreeinodes = 0;
651                         err = 0;
652                 } else
653                         return err;
654         }
655 
656         buf->f_type = NILFS_SUPER_MAGIC;
657         buf->f_bsize = sb->s_blocksize;
658         buf->f_blocks = blocks - overhead;
659         buf->f_bfree = nfreeblocks;
660         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
661                 (buf->f_bfree - nrsvblocks) : 0;
662         buf->f_files = nmaxinodes;
663         buf->f_ffree = nfreeinodes;
664         buf->f_namelen = NILFS_NAME_LEN;
665         buf->f_fsid = u64_to_fsid(id);
666 
667         return 0;
668 }
669 
670 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
671 {
672         struct super_block *sb = dentry->d_sb;
673         struct the_nilfs *nilfs = sb->s_fs_info;
674         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
675 
676         if (!nilfs_test_opt(nilfs, BARRIER))
677                 seq_puts(seq, ",nobarrier");
678         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
679                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
680         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
681                 seq_puts(seq, ",errors=panic");
682         if (nilfs_test_opt(nilfs, ERRORS_CONT))
683                 seq_puts(seq, ",errors=continue");
684         if (nilfs_test_opt(nilfs, STRICT_ORDER))
685                 seq_puts(seq, ",order=strict");
686         if (nilfs_test_opt(nilfs, NORECOVERY))
687                 seq_puts(seq, ",norecovery");
688         if (nilfs_test_opt(nilfs, DISCARD))
689                 seq_puts(seq, ",discard");
690 
691         return 0;
692 }
693 
694 static const struct super_operations nilfs_sops = {
695         .alloc_inode    = nilfs_alloc_inode,
696         .free_inode     = nilfs_free_inode,
697         .dirty_inode    = nilfs_dirty_inode,
698         .evict_inode    = nilfs_evict_inode,
699         .put_super      = nilfs_put_super,
700         .sync_fs        = nilfs_sync_fs,
701         .freeze_fs      = nilfs_freeze,
702         .unfreeze_fs    = nilfs_unfreeze,
703         .statfs         = nilfs_statfs,
704         .show_options = nilfs_show_options
705 };
706 
707 enum {
708         Opt_err, Opt_barrier, Opt_snapshot, Opt_order, Opt_norecovery,
709         Opt_discard,
710 };
711 
712 static const struct constant_table nilfs_param_err[] = {
713         {"continue",    NILFS_MOUNT_ERRORS_CONT},
714         {"panic",       NILFS_MOUNT_ERRORS_PANIC},
715         {"remount-ro",  NILFS_MOUNT_ERRORS_RO},
716         {}
717 };
718 
719 static const struct fs_parameter_spec nilfs_param_spec[] = {
720         fsparam_enum    ("errors", Opt_err, nilfs_param_err),
721         fsparam_flag_no ("barrier", Opt_barrier),
722         fsparam_u64     ("cp", Opt_snapshot),
723         fsparam_string  ("order", Opt_order),
724         fsparam_flag    ("norecovery", Opt_norecovery),
725         fsparam_flag_no ("discard", Opt_discard),
726         {}
727 };
728 
729 struct nilfs_fs_context {
730         unsigned long ns_mount_opt;
731         __u64 cno;
732 };
733 
734 static int nilfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
735 {
736         struct nilfs_fs_context *nilfs = fc->fs_private;
737         int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
738         struct fs_parse_result result;
739         int opt;
740 
741         opt = fs_parse(fc, nilfs_param_spec, param, &result);
742         if (opt < 0)
743                 return opt;
744 
745         switch (opt) {
746         case Opt_barrier:
747                 if (result.negated)
748                         nilfs_clear_opt(nilfs, BARRIER);
749                 else
750                         nilfs_set_opt(nilfs, BARRIER);
751                 break;
752         case Opt_order:
753                 if (strcmp(param->string, "relaxed") == 0)
754                         /* Ordered data semantics */
755                         nilfs_clear_opt(nilfs, STRICT_ORDER);
756                 else if (strcmp(param->string, "strict") == 0)
757                         /* Strict in-order semantics */
758                         nilfs_set_opt(nilfs, STRICT_ORDER);
759                 else
760                         return -EINVAL;
761                 break;
762         case Opt_err:
763                 nilfs->ns_mount_opt &= ~NILFS_MOUNT_ERROR_MODE;
764                 nilfs->ns_mount_opt |= result.uint_32;
765                 break;
766         case Opt_snapshot:
767                 if (is_remount) {
768                         struct super_block *sb = fc->root->d_sb;
769 
770                         nilfs_err(sb,
771                                   "\"%s\" option is invalid for remount",
772                                   param->key);
773                         return -EINVAL;
774                 }
775                 if (result.uint_64 == 0) {
776                         nilfs_err(NULL,
777                                   "invalid option \"cp=0\": invalid checkpoint number 0");
778                         return -EINVAL;
779                 }
780                 nilfs->cno = result.uint_64;
781                 break;
782         case Opt_norecovery:
783                 nilfs_set_opt(nilfs, NORECOVERY);
784                 break;
785         case Opt_discard:
786                 if (result.negated)
787                         nilfs_clear_opt(nilfs, DISCARD);
788                 else
789                         nilfs_set_opt(nilfs, DISCARD);
790                 break;
791         default:
792                 return -EINVAL;
793         }
794 
795         return 0;
796 }
797 
798 static int nilfs_setup_super(struct super_block *sb, int is_mount)
799 {
800         struct the_nilfs *nilfs = sb->s_fs_info;
801         struct nilfs_super_block **sbp;
802         int max_mnt_count;
803         int mnt_count;
804 
805         /* nilfs->ns_sem must be locked by the caller. */
806         sbp = nilfs_prepare_super(sb, 0);
807         if (!sbp)
808                 return -EIO;
809 
810         if (!is_mount)
811                 goto skip_mount_setup;
812 
813         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
814         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
815 
816         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
817                 nilfs_warn(sb, "mounting fs with errors");
818 #if 0
819         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
820                 nilfs_warn(sb, "maximal mount count reached");
821 #endif
822         }
823         if (!max_mnt_count)
824                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
825 
826         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
827         sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
828 
829 skip_mount_setup:
830         sbp[0]->s_state =
831                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
832         /* synchronize sbp[1] with sbp[0] */
833         if (sbp[1])
834                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
835         return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
836 }
837 
838 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
839                                                  u64 pos, int blocksize,
840                                                  struct buffer_head **pbh)
841 {
842         unsigned long long sb_index = pos;
843         unsigned long offset;
844 
845         offset = do_div(sb_index, blocksize);
846         *pbh = sb_bread(sb, sb_index);
847         if (!*pbh)
848                 return NULL;
849         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
850 }
851 
852 int nilfs_store_magic(struct super_block *sb,
853                       struct nilfs_super_block *sbp)
854 {
855         struct the_nilfs *nilfs = sb->s_fs_info;
856 
857         sb->s_magic = le16_to_cpu(sbp->s_magic);
858 
859         /* FS independent flags */
860 #ifdef NILFS_ATIME_DISABLE
861         sb->s_flags |= SB_NOATIME;
862 #endif
863 
864         nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
865         nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
866         nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
867         nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
868 
869         return 0;
870 }
871 
872 int nilfs_check_feature_compatibility(struct super_block *sb,
873                                       struct nilfs_super_block *sbp)
874 {
875         __u64 features;
876 
877         features = le64_to_cpu(sbp->s_feature_incompat) &
878                 ~NILFS_FEATURE_INCOMPAT_SUPP;
879         if (features) {
880                 nilfs_err(sb,
881                           "couldn't mount because of unsupported optional features (%llx)",
882                           (unsigned long long)features);
883                 return -EINVAL;
884         }
885         features = le64_to_cpu(sbp->s_feature_compat_ro) &
886                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
887         if (!sb_rdonly(sb) && features) {
888                 nilfs_err(sb,
889                           "couldn't mount RDWR because of unsupported optional features (%llx)",
890                           (unsigned long long)features);
891                 return -EINVAL;
892         }
893         return 0;
894 }
895 
896 static int nilfs_get_root_dentry(struct super_block *sb,
897                                  struct nilfs_root *root,
898                                  struct dentry **root_dentry)
899 {
900         struct inode *inode;
901         struct dentry *dentry;
902         int ret = 0;
903 
904         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
905         if (IS_ERR(inode)) {
906                 ret = PTR_ERR(inode);
907                 nilfs_err(sb, "error %d getting root inode", ret);
908                 goto out;
909         }
910         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
911                 iput(inode);
912                 nilfs_err(sb, "corrupt root inode");
913                 ret = -EINVAL;
914                 goto out;
915         }
916 
917         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
918                 dentry = d_find_alias(inode);
919                 if (!dentry) {
920                         dentry = d_make_root(inode);
921                         if (!dentry) {
922                                 ret = -ENOMEM;
923                                 goto failed_dentry;
924                         }
925                 } else {
926                         iput(inode);
927                 }
928         } else {
929                 dentry = d_obtain_root(inode);
930                 if (IS_ERR(dentry)) {
931                         ret = PTR_ERR(dentry);
932                         goto failed_dentry;
933                 }
934         }
935         *root_dentry = dentry;
936  out:
937         return ret;
938 
939  failed_dentry:
940         nilfs_err(sb, "error %d getting root dentry", ret);
941         goto out;
942 }
943 
944 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
945                                  struct dentry **root_dentry)
946 {
947         struct the_nilfs *nilfs = s->s_fs_info;
948         struct nilfs_root *root;
949         int ret;
950 
951         mutex_lock(&nilfs->ns_snapshot_mount_mutex);
952 
953         down_read(&nilfs->ns_segctor_sem);
954         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
955         up_read(&nilfs->ns_segctor_sem);
956         if (ret < 0) {
957                 ret = (ret == -ENOENT) ? -EINVAL : ret;
958                 goto out;
959         } else if (!ret) {
960                 nilfs_err(s,
961                           "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
962                           (unsigned long long)cno);
963                 ret = -EINVAL;
964                 goto out;
965         }
966 
967         ret = nilfs_attach_checkpoint(s, cno, false, &root);
968         if (ret) {
969                 nilfs_err(s,
970                           "error %d while loading snapshot (checkpoint number=%llu)",
971                           ret, (unsigned long long)cno);
972                 goto out;
973         }
974         ret = nilfs_get_root_dentry(s, root, root_dentry);
975         nilfs_put_root(root);
976  out:
977         mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
978         return ret;
979 }
980 
981 /**
982  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
983  * @root_dentry: root dentry of the tree to be shrunk
984  *
985  * This function returns true if the tree was in-use.
986  */
987 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
988 {
989         shrink_dcache_parent(root_dentry);
990         return d_count(root_dentry) > 1;
991 }
992 
993 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
994 {
995         struct the_nilfs *nilfs = sb->s_fs_info;
996         struct nilfs_root *root;
997         struct inode *inode;
998         struct dentry *dentry;
999         int ret;
1000 
1001         if (cno > nilfs->ns_cno)
1002                 return false;
1003 
1004         if (cno >= nilfs_last_cno(nilfs))
1005                 return true;    /* protect recent checkpoints */
1006 
1007         ret = false;
1008         root = nilfs_lookup_root(nilfs, cno);
1009         if (root) {
1010                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1011                 if (inode) {
1012                         dentry = d_find_alias(inode);
1013                         if (dentry) {
1014                                 ret = nilfs_tree_is_busy(dentry);
1015                                 dput(dentry);
1016                         }
1017                         iput(inode);
1018                 }
1019                 nilfs_put_root(root);
1020         }
1021         return ret;
1022 }
1023 
1024 /**
1025  * nilfs_fill_super() - initialize a super block instance
1026  * @sb: super_block
1027  * @fc: filesystem context
1028  *
1029  * This function is called exclusively by nilfs->ns_mount_mutex.
1030  * So, the recovery process is protected from other simultaneous mounts.
1031  */
1032 static int
1033 nilfs_fill_super(struct super_block *sb, struct fs_context *fc)
1034 {
1035         struct the_nilfs *nilfs;
1036         struct nilfs_root *fsroot;
1037         struct nilfs_fs_context *ctx = fc->fs_private;
1038         __u64 cno;
1039         int err;
1040 
1041         nilfs = alloc_nilfs(sb);
1042         if (!nilfs)
1043                 return -ENOMEM;
1044 
1045         sb->s_fs_info = nilfs;
1046 
1047         err = init_nilfs(nilfs, sb);
1048         if (err)
1049                 goto failed_nilfs;
1050 
1051         /* Copy in parsed mount options */
1052         nilfs->ns_mount_opt = ctx->ns_mount_opt;
1053 
1054         sb->s_op = &nilfs_sops;
1055         sb->s_export_op = &nilfs_export_ops;
1056         sb->s_root = NULL;
1057         sb->s_time_gran = 1;
1058         sb->s_max_links = NILFS_LINK_MAX;
1059 
1060         sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1061 
1062         err = load_nilfs(nilfs, sb);
1063         if (err)
1064                 goto failed_nilfs;
1065 
1066         cno = nilfs_last_cno(nilfs);
1067         err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1068         if (err) {
1069                 nilfs_err(sb,
1070                           "error %d while loading last checkpoint (checkpoint number=%llu)",
1071                           err, (unsigned long long)cno);
1072                 goto failed_unload;
1073         }
1074 
1075         if (!sb_rdonly(sb)) {
1076                 err = nilfs_attach_log_writer(sb, fsroot);
1077                 if (err)
1078                         goto failed_checkpoint;
1079         }
1080 
1081         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1082         if (err)
1083                 goto failed_segctor;
1084 
1085         nilfs_put_root(fsroot);
1086 
1087         if (!sb_rdonly(sb)) {
1088                 down_write(&nilfs->ns_sem);
1089                 nilfs_setup_super(sb, true);
1090                 up_write(&nilfs->ns_sem);
1091         }
1092 
1093         return 0;
1094 
1095  failed_segctor:
1096         nilfs_detach_log_writer(sb);
1097 
1098  failed_checkpoint:
1099         nilfs_put_root(fsroot);
1100 
1101  failed_unload:
1102         nilfs_sysfs_delete_device_group(nilfs);
1103         iput(nilfs->ns_sufile);
1104         iput(nilfs->ns_cpfile);
1105         iput(nilfs->ns_dat);
1106 
1107  failed_nilfs:
1108         destroy_nilfs(nilfs);
1109         return err;
1110 }
1111 
1112 static int nilfs_reconfigure(struct fs_context *fc)
1113 {
1114         struct nilfs_fs_context *ctx = fc->fs_private;
1115         struct super_block *sb = fc->root->d_sb;
1116         struct the_nilfs *nilfs = sb->s_fs_info;
1117         int err;
1118 
1119         sync_filesystem(sb);
1120 
1121         err = -EINVAL;
1122 
1123         if (!nilfs_valid_fs(nilfs)) {
1124                 nilfs_warn(sb,
1125                            "couldn't remount because the filesystem is in an incomplete recovery state");
1126                 goto ignore_opts;
1127         }
1128         if ((bool)(fc->sb_flags & SB_RDONLY) == sb_rdonly(sb))
1129                 goto out;
1130         if (fc->sb_flags & SB_RDONLY) {
1131                 sb->s_flags |= SB_RDONLY;
1132 
1133                 /*
1134                  * Remounting a valid RW partition RDONLY, so set
1135                  * the RDONLY flag and then mark the partition as valid again.
1136                  */
1137                 down_write(&nilfs->ns_sem);
1138                 nilfs_cleanup_super(sb);
1139                 up_write(&nilfs->ns_sem);
1140         } else {
1141                 __u64 features;
1142                 struct nilfs_root *root;
1143 
1144                 /*
1145                  * Mounting a RDONLY partition read-write, so reread and
1146                  * store the current valid flag.  (It may have been changed
1147                  * by fsck since we originally mounted the partition.)
1148                  */
1149                 down_read(&nilfs->ns_sem);
1150                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1151                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1152                 up_read(&nilfs->ns_sem);
1153                 if (features) {
1154                         nilfs_warn(sb,
1155                                    "couldn't remount RDWR because of unsupported optional features (%llx)",
1156                                    (unsigned long long)features);
1157                         err = -EROFS;
1158                         goto ignore_opts;
1159                 }
1160 
1161                 sb->s_flags &= ~SB_RDONLY;
1162 
1163                 root = NILFS_I(d_inode(sb->s_root))->i_root;
1164                 err = nilfs_attach_log_writer(sb, root);
1165                 if (err) {
1166                         sb->s_flags |= SB_RDONLY;
1167                         goto ignore_opts;
1168                 }
1169 
1170                 down_write(&nilfs->ns_sem);
1171                 nilfs_setup_super(sb, true);
1172                 up_write(&nilfs->ns_sem);
1173         }
1174  out:
1175         sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1176         /* Copy over parsed remount options */
1177         nilfs->ns_mount_opt = ctx->ns_mount_opt;
1178 
1179         return 0;
1180 
1181  ignore_opts:
1182         return err;
1183 }
1184 
1185 static int
1186 nilfs_get_tree(struct fs_context *fc)
1187 {
1188         struct nilfs_fs_context *ctx = fc->fs_private;
1189         struct super_block *s;
1190         dev_t dev;
1191         int err;
1192 
1193         if (ctx->cno && !(fc->sb_flags & SB_RDONLY)) {
1194                 nilfs_err(NULL,
1195                           "invalid option \"cp=%llu\": read-only option is not specified",
1196                           ctx->cno);
1197                 return -EINVAL;
1198         }
1199 
1200         err = lookup_bdev(fc->source, &dev);
1201         if (err)
1202                 return err;
1203 
1204         s = sget_dev(fc, dev);
1205         if (IS_ERR(s))
1206                 return PTR_ERR(s);
1207 
1208         if (!s->s_root) {
1209                 err = setup_bdev_super(s, fc->sb_flags, fc);
1210                 if (!err)
1211                         err = nilfs_fill_super(s, fc);
1212                 if (err)
1213                         goto failed_super;
1214 
1215                 s->s_flags |= SB_ACTIVE;
1216         } else if (!ctx->cno) {
1217                 if (nilfs_tree_is_busy(s->s_root)) {
1218                         if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1219                                 nilfs_err(s,
1220                                           "the device already has a %s mount.",
1221                                           sb_rdonly(s) ? "read-only" : "read/write");
1222                                 err = -EBUSY;
1223                                 goto failed_super;
1224                         }
1225                 } else {
1226                         /*
1227                          * Try reconfigure to setup mount states if the current
1228                          * tree is not mounted and only snapshots use this sb.
1229                          *
1230                          * Since nilfs_reconfigure() requires fc->root to be
1231                          * set, set it first and release it on failure.
1232                          */
1233                         fc->root = dget(s->s_root);
1234                         err = nilfs_reconfigure(fc);
1235                         if (err) {
1236                                 dput(fc->root);
1237                                 fc->root = NULL;  /* prevent double release */
1238                                 goto failed_super;
1239                         }
1240                         return 0;
1241                 }
1242         }
1243 
1244         if (ctx->cno) {
1245                 struct dentry *root_dentry;
1246 
1247                 err = nilfs_attach_snapshot(s, ctx->cno, &root_dentry);
1248                 if (err)
1249                         goto failed_super;
1250                 fc->root = root_dentry;
1251                 return 0;
1252         }
1253 
1254         fc->root = dget(s->s_root);
1255         return 0;
1256 
1257  failed_super:
1258         deactivate_locked_super(s);
1259         return err;
1260 }
1261 
1262 static void nilfs_free_fc(struct fs_context *fc)
1263 {
1264         kfree(fc->fs_private);
1265 }
1266 
1267 static const struct fs_context_operations nilfs_context_ops = {
1268         .parse_param    = nilfs_parse_param,
1269         .get_tree       = nilfs_get_tree,
1270         .reconfigure    = nilfs_reconfigure,
1271         .free           = nilfs_free_fc,
1272 };
1273 
1274 static int nilfs_init_fs_context(struct fs_context *fc)
1275 {
1276         struct nilfs_fs_context *ctx;
1277 
1278         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1279         if (!ctx)
1280                 return -ENOMEM;
1281 
1282         ctx->ns_mount_opt = NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
1283         fc->fs_private = ctx;
1284         fc->ops = &nilfs_context_ops;
1285 
1286         return 0;
1287 }
1288 
1289 struct file_system_type nilfs_fs_type = {
1290         .owner    = THIS_MODULE,
1291         .name     = "nilfs2",
1292         .kill_sb  = kill_block_super,
1293         .fs_flags = FS_REQUIRES_DEV,
1294         .init_fs_context = nilfs_init_fs_context,
1295         .parameters = nilfs_param_spec,
1296 };
1297 MODULE_ALIAS_FS("nilfs2");
1298 
1299 static void nilfs_inode_init_once(void *obj)
1300 {
1301         struct nilfs_inode_info *ii = obj;
1302 
1303         INIT_LIST_HEAD(&ii->i_dirty);
1304 #ifdef CONFIG_NILFS_XATTR
1305         init_rwsem(&ii->xattr_sem);
1306 #endif
1307         inode_init_once(&ii->vfs_inode);
1308 }
1309 
1310 static void nilfs_segbuf_init_once(void *obj)
1311 {
1312         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1313 }
1314 
1315 static void nilfs_destroy_cachep(void)
1316 {
1317         /*
1318          * Make sure all delayed rcu free inodes are flushed before we
1319          * destroy cache.
1320          */
1321         rcu_barrier();
1322 
1323         kmem_cache_destroy(nilfs_inode_cachep);
1324         kmem_cache_destroy(nilfs_transaction_cachep);
1325         kmem_cache_destroy(nilfs_segbuf_cachep);
1326         kmem_cache_destroy(nilfs_btree_path_cache);
1327 }
1328 
1329 static int __init nilfs_init_cachep(void)
1330 {
1331         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1332                         sizeof(struct nilfs_inode_info), 0,
1333                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1334                         nilfs_inode_init_once);
1335         if (!nilfs_inode_cachep)
1336                 goto fail;
1337 
1338         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1339                         sizeof(struct nilfs_transaction_info), 0,
1340                         SLAB_RECLAIM_ACCOUNT, NULL);
1341         if (!nilfs_transaction_cachep)
1342                 goto fail;
1343 
1344         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1345                         sizeof(struct nilfs_segment_buffer), 0,
1346                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1347         if (!nilfs_segbuf_cachep)
1348                 goto fail;
1349 
1350         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1351                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1352                         0, 0, NULL);
1353         if (!nilfs_btree_path_cache)
1354                 goto fail;
1355 
1356         return 0;
1357 
1358 fail:
1359         nilfs_destroy_cachep();
1360         return -ENOMEM;
1361 }
1362 
1363 static int __init init_nilfs_fs(void)
1364 {
1365         int err;
1366 
1367         err = nilfs_init_cachep();
1368         if (err)
1369                 goto fail;
1370 
1371         err = nilfs_sysfs_init();
1372         if (err)
1373                 goto free_cachep;
1374 
1375         err = register_filesystem(&nilfs_fs_type);
1376         if (err)
1377                 goto deinit_sysfs_entry;
1378 
1379         printk(KERN_INFO "NILFS version 2 loaded\n");
1380         return 0;
1381 
1382 deinit_sysfs_entry:
1383         nilfs_sysfs_exit();
1384 free_cachep:
1385         nilfs_destroy_cachep();
1386 fail:
1387         return err;
1388 }
1389 
1390 static void __exit exit_nilfs_fs(void)
1391 {
1392         nilfs_destroy_cachep();
1393         nilfs_sysfs_exit();
1394         unregister_filesystem(&nilfs_fs_type);
1395 }
1396 
1397 module_init(init_nilfs_fs)
1398 module_exit(exit_nilfs_fs)
1399 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php