1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * the_nilfs shared structure. 4 * 5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation. 6 * 7 * Written by Ryusuke Konishi. 8 * 9 */ 10 11 #include <linux/buffer_head.h> 12 #include <linux/slab.h> 13 #include <linux/blkdev.h> 14 #include <linux/backing-dev.h> 15 #include <linux/random.h> 16 #include <linux/log2.h> 17 #include <linux/crc32.h> 18 #include "nilfs.h" 19 #include "segment.h" 20 #include "alloc.h" 21 #include "cpfile.h" 22 #include "sufile.h" 23 #include "dat.h" 24 #include "segbuf.h" 25 26 27 static int nilfs_valid_sb(struct nilfs_super_block *sbp); 28 29 void nilfs_set_last_segment(struct the_nilfs *nilfs, 30 sector_t start_blocknr, u64 seq, __u64 cno) 31 { 32 spin_lock(&nilfs->ns_last_segment_lock); 33 nilfs->ns_last_pseg = start_blocknr; 34 nilfs->ns_last_seq = seq; 35 nilfs->ns_last_cno = cno; 36 37 if (!nilfs_sb_dirty(nilfs)) { 38 if (nilfs->ns_prev_seq == nilfs->ns_last_seq) 39 goto stay_cursor; 40 41 set_nilfs_sb_dirty(nilfs); 42 } 43 nilfs->ns_prev_seq = nilfs->ns_last_seq; 44 45 stay_cursor: 46 spin_unlock(&nilfs->ns_last_segment_lock); 47 } 48 49 /** 50 * alloc_nilfs - allocate a nilfs object 51 * @sb: super block instance 52 * 53 * Return Value: On success, pointer to the_nilfs is returned. 54 * On error, NULL is returned. 55 */ 56 struct the_nilfs *alloc_nilfs(struct super_block *sb) 57 { 58 struct the_nilfs *nilfs; 59 60 nilfs = kzalloc(sizeof(*nilfs), GFP_KERNEL); 61 if (!nilfs) 62 return NULL; 63 64 nilfs->ns_sb = sb; 65 nilfs->ns_bdev = sb->s_bdev; 66 atomic_set(&nilfs->ns_ndirtyblks, 0); 67 init_rwsem(&nilfs->ns_sem); 68 mutex_init(&nilfs->ns_snapshot_mount_mutex); 69 INIT_LIST_HEAD(&nilfs->ns_dirty_files); 70 INIT_LIST_HEAD(&nilfs->ns_gc_inodes); 71 spin_lock_init(&nilfs->ns_inode_lock); 72 spin_lock_init(&nilfs->ns_next_gen_lock); 73 spin_lock_init(&nilfs->ns_last_segment_lock); 74 nilfs->ns_cptree = RB_ROOT; 75 spin_lock_init(&nilfs->ns_cptree_lock); 76 init_rwsem(&nilfs->ns_segctor_sem); 77 nilfs->ns_sb_update_freq = NILFS_SB_FREQ; 78 79 return nilfs; 80 } 81 82 /** 83 * destroy_nilfs - destroy nilfs object 84 * @nilfs: nilfs object to be released 85 */ 86 void destroy_nilfs(struct the_nilfs *nilfs) 87 { 88 might_sleep(); 89 if (nilfs_init(nilfs)) { 90 brelse(nilfs->ns_sbh[0]); 91 brelse(nilfs->ns_sbh[1]); 92 } 93 kfree(nilfs); 94 } 95 96 static int nilfs_load_super_root(struct the_nilfs *nilfs, 97 struct super_block *sb, sector_t sr_block) 98 { 99 struct buffer_head *bh_sr; 100 struct nilfs_super_root *raw_sr; 101 struct nilfs_super_block **sbp = nilfs->ns_sbp; 102 struct nilfs_inode *rawi; 103 unsigned int dat_entry_size, segment_usage_size, checkpoint_size; 104 unsigned int inode_size; 105 int err; 106 107 err = nilfs_read_super_root_block(nilfs, sr_block, &bh_sr, 1); 108 if (unlikely(err)) 109 return err; 110 111 down_read(&nilfs->ns_sem); 112 dat_entry_size = le16_to_cpu(sbp[0]->s_dat_entry_size); 113 checkpoint_size = le16_to_cpu(sbp[0]->s_checkpoint_size); 114 segment_usage_size = le16_to_cpu(sbp[0]->s_segment_usage_size); 115 up_read(&nilfs->ns_sem); 116 117 inode_size = nilfs->ns_inode_size; 118 119 rawi = (void *)bh_sr->b_data + NILFS_SR_DAT_OFFSET(inode_size); 120 err = nilfs_dat_read(sb, dat_entry_size, rawi, &nilfs->ns_dat); 121 if (err) 122 goto failed; 123 124 rawi = (void *)bh_sr->b_data + NILFS_SR_CPFILE_OFFSET(inode_size); 125 err = nilfs_cpfile_read(sb, checkpoint_size, rawi, &nilfs->ns_cpfile); 126 if (err) 127 goto failed_dat; 128 129 rawi = (void *)bh_sr->b_data + NILFS_SR_SUFILE_OFFSET(inode_size); 130 err = nilfs_sufile_read(sb, segment_usage_size, rawi, 131 &nilfs->ns_sufile); 132 if (err) 133 goto failed_cpfile; 134 135 raw_sr = (struct nilfs_super_root *)bh_sr->b_data; 136 nilfs->ns_nongc_ctime = le64_to_cpu(raw_sr->sr_nongc_ctime); 137 138 failed: 139 brelse(bh_sr); 140 return err; 141 142 failed_cpfile: 143 iput(nilfs->ns_cpfile); 144 145 failed_dat: 146 iput(nilfs->ns_dat); 147 goto failed; 148 } 149 150 static void nilfs_init_recovery_info(struct nilfs_recovery_info *ri) 151 { 152 memset(ri, 0, sizeof(*ri)); 153 INIT_LIST_HEAD(&ri->ri_used_segments); 154 } 155 156 static void nilfs_clear_recovery_info(struct nilfs_recovery_info *ri) 157 { 158 nilfs_dispose_segment_list(&ri->ri_used_segments); 159 } 160 161 /** 162 * nilfs_store_log_cursor - load log cursor from a super block 163 * @nilfs: nilfs object 164 * @sbp: buffer storing super block to be read 165 * 166 * nilfs_store_log_cursor() reads the last position of the log 167 * containing a super root from a given super block, and initializes 168 * relevant information on the nilfs object preparatory for log 169 * scanning and recovery. 170 */ 171 static int nilfs_store_log_cursor(struct the_nilfs *nilfs, 172 struct nilfs_super_block *sbp) 173 { 174 int ret = 0; 175 176 nilfs->ns_last_pseg = le64_to_cpu(sbp->s_last_pseg); 177 nilfs->ns_last_cno = le64_to_cpu(sbp->s_last_cno); 178 nilfs->ns_last_seq = le64_to_cpu(sbp->s_last_seq); 179 180 nilfs->ns_prev_seq = nilfs->ns_last_seq; 181 nilfs->ns_seg_seq = nilfs->ns_last_seq; 182 nilfs->ns_segnum = 183 nilfs_get_segnum_of_block(nilfs, nilfs->ns_last_pseg); 184 nilfs->ns_cno = nilfs->ns_last_cno + 1; 185 if (nilfs->ns_segnum >= nilfs->ns_nsegments) { 186 nilfs_err(nilfs->ns_sb, 187 "pointed segment number is out of range: segnum=%llu, nsegments=%lu", 188 (unsigned long long)nilfs->ns_segnum, 189 nilfs->ns_nsegments); 190 ret = -EINVAL; 191 } 192 return ret; 193 } 194 195 /** 196 * nilfs_get_blocksize - get block size from raw superblock data 197 * @sb: super block instance 198 * @sbp: superblock raw data buffer 199 * @blocksize: place to store block size 200 * 201 * nilfs_get_blocksize() calculates the block size from the block size 202 * exponent information written in @sbp and stores it in @blocksize, 203 * or aborts with an error message if it's too large. 204 * 205 * Return Value: On success, 0 is returned. If the block size is too 206 * large, -EINVAL is returned. 207 */ 208 static int nilfs_get_blocksize(struct super_block *sb, 209 struct nilfs_super_block *sbp, int *blocksize) 210 { 211 unsigned int shift_bits = le32_to_cpu(sbp->s_log_block_size); 212 213 if (unlikely(shift_bits > 214 ilog2(NILFS_MAX_BLOCK_SIZE) - BLOCK_SIZE_BITS)) { 215 nilfs_err(sb, "too large filesystem blocksize: 2 ^ %u KiB", 216 shift_bits); 217 return -EINVAL; 218 } 219 *blocksize = BLOCK_SIZE << shift_bits; 220 return 0; 221 } 222 223 /** 224 * load_nilfs - load and recover the nilfs 225 * @nilfs: the_nilfs structure to be released 226 * @sb: super block instance used to recover past segment 227 * 228 * load_nilfs() searches and load the latest super root, 229 * attaches the last segment, and does recovery if needed. 230 * The caller must call this exclusively for simultaneous mounts. 231 */ 232 int load_nilfs(struct the_nilfs *nilfs, struct super_block *sb) 233 { 234 struct nilfs_recovery_info ri; 235 unsigned int s_flags = sb->s_flags; 236 int really_read_only = bdev_read_only(nilfs->ns_bdev); 237 int valid_fs = nilfs_valid_fs(nilfs); 238 int err; 239 240 if (!valid_fs) { 241 nilfs_warn(sb, "mounting unchecked fs"); 242 if (s_flags & SB_RDONLY) { 243 nilfs_info(sb, 244 "recovery required for readonly filesystem"); 245 nilfs_info(sb, 246 "write access will be enabled during recovery"); 247 } 248 } 249 250 nilfs_init_recovery_info(&ri); 251 252 err = nilfs_search_super_root(nilfs, &ri); 253 if (unlikely(err)) { 254 struct nilfs_super_block **sbp = nilfs->ns_sbp; 255 int blocksize; 256 257 if (err != -EINVAL) 258 goto scan_error; 259 260 if (!nilfs_valid_sb(sbp[1])) { 261 nilfs_warn(sb, 262 "unable to fall back to spare super block"); 263 goto scan_error; 264 } 265 nilfs_info(sb, "trying rollback from an earlier position"); 266 267 /* 268 * restore super block with its spare and reconfigure 269 * relevant states of the nilfs object. 270 */ 271 memcpy(sbp[0], sbp[1], nilfs->ns_sbsize); 272 nilfs->ns_crc_seed = le32_to_cpu(sbp[0]->s_crc_seed); 273 nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime); 274 275 /* verify consistency between two super blocks */ 276 err = nilfs_get_blocksize(sb, sbp[0], &blocksize); 277 if (err) 278 goto scan_error; 279 280 if (blocksize != nilfs->ns_blocksize) { 281 nilfs_warn(sb, 282 "blocksize differs between two super blocks (%d != %d)", 283 blocksize, nilfs->ns_blocksize); 284 err = -EINVAL; 285 goto scan_error; 286 } 287 288 err = nilfs_store_log_cursor(nilfs, sbp[0]); 289 if (err) 290 goto scan_error; 291 292 /* drop clean flag to allow roll-forward and recovery */ 293 nilfs->ns_mount_state &= ~NILFS_VALID_FS; 294 valid_fs = 0; 295 296 err = nilfs_search_super_root(nilfs, &ri); 297 if (err) 298 goto scan_error; 299 } 300 301 err = nilfs_load_super_root(nilfs, sb, ri.ri_super_root); 302 if (unlikely(err)) { 303 nilfs_err(sb, "error %d while loading super root", err); 304 goto failed; 305 } 306 307 err = nilfs_sysfs_create_device_group(sb); 308 if (unlikely(err)) 309 goto sysfs_error; 310 311 if (valid_fs) 312 goto skip_recovery; 313 314 if (s_flags & SB_RDONLY) { 315 __u64 features; 316 317 if (nilfs_test_opt(nilfs, NORECOVERY)) { 318 nilfs_info(sb, 319 "norecovery option specified, skipping roll-forward recovery"); 320 goto skip_recovery; 321 } 322 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) & 323 ~NILFS_FEATURE_COMPAT_RO_SUPP; 324 if (features) { 325 nilfs_err(sb, 326 "couldn't proceed with recovery because of unsupported optional features (%llx)", 327 (unsigned long long)features); 328 err = -EROFS; 329 goto failed_unload; 330 } 331 if (really_read_only) { 332 nilfs_err(sb, 333 "write access unavailable, cannot proceed"); 334 err = -EROFS; 335 goto failed_unload; 336 } 337 sb->s_flags &= ~SB_RDONLY; 338 } else if (nilfs_test_opt(nilfs, NORECOVERY)) { 339 nilfs_err(sb, 340 "recovery cancelled because norecovery option was specified for a read/write mount"); 341 err = -EINVAL; 342 goto failed_unload; 343 } 344 345 err = nilfs_salvage_orphan_logs(nilfs, sb, &ri); 346 if (err) 347 goto failed_unload; 348 349 down_write(&nilfs->ns_sem); 350 nilfs->ns_mount_state |= NILFS_VALID_FS; /* set "clean" flag */ 351 err = nilfs_cleanup_super(sb); 352 up_write(&nilfs->ns_sem); 353 354 if (err) { 355 nilfs_err(sb, 356 "error %d updating super block. recovery unfinished.", 357 err); 358 goto failed_unload; 359 } 360 nilfs_info(sb, "recovery complete"); 361 362 skip_recovery: 363 nilfs_clear_recovery_info(&ri); 364 sb->s_flags = s_flags; 365 return 0; 366 367 scan_error: 368 nilfs_err(sb, "error %d while searching super root", err); 369 goto failed; 370 371 failed_unload: 372 nilfs_sysfs_delete_device_group(nilfs); 373 374 sysfs_error: 375 iput(nilfs->ns_cpfile); 376 iput(nilfs->ns_sufile); 377 iput(nilfs->ns_dat); 378 379 failed: 380 nilfs_clear_recovery_info(&ri); 381 sb->s_flags = s_flags; 382 return err; 383 } 384 385 static unsigned long long nilfs_max_size(unsigned int blkbits) 386 { 387 unsigned int max_bits; 388 unsigned long long res = MAX_LFS_FILESIZE; /* page cache limit */ 389 390 max_bits = blkbits + NILFS_BMAP_KEY_BIT; /* bmap size limit */ 391 if (max_bits < 64) 392 res = min_t(unsigned long long, res, (1ULL << max_bits) - 1); 393 return res; 394 } 395 396 /** 397 * nilfs_nrsvsegs - calculate the number of reserved segments 398 * @nilfs: nilfs object 399 * @nsegs: total number of segments 400 */ 401 unsigned long nilfs_nrsvsegs(struct the_nilfs *nilfs, unsigned long nsegs) 402 { 403 return max_t(unsigned long, NILFS_MIN_NRSVSEGS, 404 DIV_ROUND_UP(nsegs * nilfs->ns_r_segments_percentage, 405 100)); 406 } 407 408 /** 409 * nilfs_max_segment_count - calculate the maximum number of segments 410 * @nilfs: nilfs object 411 */ 412 static u64 nilfs_max_segment_count(struct the_nilfs *nilfs) 413 { 414 u64 max_count = U64_MAX; 415 416 max_count = div64_ul(max_count, nilfs->ns_blocks_per_segment); 417 return min_t(u64, max_count, ULONG_MAX); 418 } 419 420 void nilfs_set_nsegments(struct the_nilfs *nilfs, unsigned long nsegs) 421 { 422 nilfs->ns_nsegments = nsegs; 423 nilfs->ns_nrsvsegs = nilfs_nrsvsegs(nilfs, nsegs); 424 } 425 426 static int nilfs_store_disk_layout(struct the_nilfs *nilfs, 427 struct nilfs_super_block *sbp) 428 { 429 u64 nsegments, nblocks; 430 431 if (le32_to_cpu(sbp->s_rev_level) < NILFS_MIN_SUPP_REV) { 432 nilfs_err(nilfs->ns_sb, 433 "unsupported revision (superblock rev.=%d.%d, current rev.=%d.%d). Please check the version of mkfs.nilfs(2).", 434 le32_to_cpu(sbp->s_rev_level), 435 le16_to_cpu(sbp->s_minor_rev_level), 436 NILFS_CURRENT_REV, NILFS_MINOR_REV); 437 return -EINVAL; 438 } 439 nilfs->ns_sbsize = le16_to_cpu(sbp->s_bytes); 440 if (nilfs->ns_sbsize > BLOCK_SIZE) 441 return -EINVAL; 442 443 nilfs->ns_inode_size = le16_to_cpu(sbp->s_inode_size); 444 if (nilfs->ns_inode_size > nilfs->ns_blocksize) { 445 nilfs_err(nilfs->ns_sb, "too large inode size: %d bytes", 446 nilfs->ns_inode_size); 447 return -EINVAL; 448 } else if (nilfs->ns_inode_size < NILFS_MIN_INODE_SIZE) { 449 nilfs_err(nilfs->ns_sb, "too small inode size: %d bytes", 450 nilfs->ns_inode_size); 451 return -EINVAL; 452 } 453 454 nilfs->ns_first_ino = le32_to_cpu(sbp->s_first_ino); 455 if (nilfs->ns_first_ino < NILFS_USER_INO) { 456 nilfs_err(nilfs->ns_sb, 457 "too small lower limit for non-reserved inode numbers: %u", 458 nilfs->ns_first_ino); 459 return -EINVAL; 460 } 461 462 nilfs->ns_blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment); 463 if (nilfs->ns_blocks_per_segment < NILFS_SEG_MIN_BLOCKS) { 464 nilfs_err(nilfs->ns_sb, "too short segment: %lu blocks", 465 nilfs->ns_blocks_per_segment); 466 return -EINVAL; 467 } 468 469 nilfs->ns_first_data_block = le64_to_cpu(sbp->s_first_data_block); 470 nilfs->ns_r_segments_percentage = 471 le32_to_cpu(sbp->s_r_segments_percentage); 472 if (nilfs->ns_r_segments_percentage < 1 || 473 nilfs->ns_r_segments_percentage > 99) { 474 nilfs_err(nilfs->ns_sb, 475 "invalid reserved segments percentage: %lu", 476 nilfs->ns_r_segments_percentage); 477 return -EINVAL; 478 } 479 480 nsegments = le64_to_cpu(sbp->s_nsegments); 481 if (nsegments > nilfs_max_segment_count(nilfs)) { 482 nilfs_err(nilfs->ns_sb, 483 "segment count %llu exceeds upper limit (%llu segments)", 484 (unsigned long long)nsegments, 485 (unsigned long long)nilfs_max_segment_count(nilfs)); 486 return -EINVAL; 487 } 488 489 nblocks = sb_bdev_nr_blocks(nilfs->ns_sb); 490 if (nblocks) { 491 u64 min_block_count = nsegments * nilfs->ns_blocks_per_segment; 492 /* 493 * To avoid failing to mount early device images without a 494 * second superblock, exclude that block count from the 495 * "min_block_count" calculation. 496 */ 497 498 if (nblocks < min_block_count) { 499 nilfs_err(nilfs->ns_sb, 500 "total number of segment blocks %llu exceeds device size (%llu blocks)", 501 (unsigned long long)min_block_count, 502 (unsigned long long)nblocks); 503 return -EINVAL; 504 } 505 } 506 507 nilfs_set_nsegments(nilfs, nsegments); 508 nilfs->ns_crc_seed = le32_to_cpu(sbp->s_crc_seed); 509 return 0; 510 } 511 512 static int nilfs_valid_sb(struct nilfs_super_block *sbp) 513 { 514 static unsigned char sum[4]; 515 const int sumoff = offsetof(struct nilfs_super_block, s_sum); 516 size_t bytes; 517 u32 crc; 518 519 if (!sbp || le16_to_cpu(sbp->s_magic) != NILFS_SUPER_MAGIC) 520 return 0; 521 bytes = le16_to_cpu(sbp->s_bytes); 522 if (bytes < sumoff + 4 || bytes > BLOCK_SIZE) 523 return 0; 524 crc = crc32_le(le32_to_cpu(sbp->s_crc_seed), (unsigned char *)sbp, 525 sumoff); 526 crc = crc32_le(crc, sum, 4); 527 crc = crc32_le(crc, (unsigned char *)sbp + sumoff + 4, 528 bytes - sumoff - 4); 529 return crc == le32_to_cpu(sbp->s_sum); 530 } 531 532 /** 533 * nilfs_sb2_bad_offset - check the location of the second superblock 534 * @sbp: superblock raw data buffer 535 * @offset: byte offset of second superblock calculated from device size 536 * 537 * nilfs_sb2_bad_offset() checks if the position on the second 538 * superblock is valid or not based on the filesystem parameters 539 * stored in @sbp. If @offset points to a location within the segment 540 * area, or if the parameters themselves are not normal, it is 541 * determined to be invalid. 542 * 543 * Return Value: true if invalid, false if valid. 544 */ 545 static bool nilfs_sb2_bad_offset(struct nilfs_super_block *sbp, u64 offset) 546 { 547 unsigned int shift_bits = le32_to_cpu(sbp->s_log_block_size); 548 u32 blocks_per_segment = le32_to_cpu(sbp->s_blocks_per_segment); 549 u64 nsegments = le64_to_cpu(sbp->s_nsegments); 550 u64 index; 551 552 if (blocks_per_segment < NILFS_SEG_MIN_BLOCKS || 553 shift_bits > ilog2(NILFS_MAX_BLOCK_SIZE) - BLOCK_SIZE_BITS) 554 return true; 555 556 index = offset >> (shift_bits + BLOCK_SIZE_BITS); 557 do_div(index, blocks_per_segment); 558 return index < nsegments; 559 } 560 561 static void nilfs_release_super_block(struct the_nilfs *nilfs) 562 { 563 int i; 564 565 for (i = 0; i < 2; i++) { 566 if (nilfs->ns_sbp[i]) { 567 brelse(nilfs->ns_sbh[i]); 568 nilfs->ns_sbh[i] = NULL; 569 nilfs->ns_sbp[i] = NULL; 570 } 571 } 572 } 573 574 void nilfs_fall_back_super_block(struct the_nilfs *nilfs) 575 { 576 brelse(nilfs->ns_sbh[0]); 577 nilfs->ns_sbh[0] = nilfs->ns_sbh[1]; 578 nilfs->ns_sbp[0] = nilfs->ns_sbp[1]; 579 nilfs->ns_sbh[1] = NULL; 580 nilfs->ns_sbp[1] = NULL; 581 } 582 583 void nilfs_swap_super_block(struct the_nilfs *nilfs) 584 { 585 struct buffer_head *tsbh = nilfs->ns_sbh[0]; 586 struct nilfs_super_block *tsbp = nilfs->ns_sbp[0]; 587 588 nilfs->ns_sbh[0] = nilfs->ns_sbh[1]; 589 nilfs->ns_sbp[0] = nilfs->ns_sbp[1]; 590 nilfs->ns_sbh[1] = tsbh; 591 nilfs->ns_sbp[1] = tsbp; 592 } 593 594 static int nilfs_load_super_block(struct the_nilfs *nilfs, 595 struct super_block *sb, int blocksize, 596 struct nilfs_super_block **sbpp) 597 { 598 struct nilfs_super_block **sbp = nilfs->ns_sbp; 599 struct buffer_head **sbh = nilfs->ns_sbh; 600 u64 sb2off, devsize = bdev_nr_bytes(nilfs->ns_bdev); 601 int valid[2], swp = 0, older; 602 603 if (devsize < NILFS_SEG_MIN_BLOCKS * NILFS_MIN_BLOCK_SIZE + 4096) { 604 nilfs_err(sb, "device size too small"); 605 return -EINVAL; 606 } 607 sb2off = NILFS_SB2_OFFSET_BYTES(devsize); 608 609 sbp[0] = nilfs_read_super_block(sb, NILFS_SB_OFFSET_BYTES, blocksize, 610 &sbh[0]); 611 sbp[1] = nilfs_read_super_block(sb, sb2off, blocksize, &sbh[1]); 612 613 if (!sbp[0]) { 614 if (!sbp[1]) { 615 nilfs_err(sb, "unable to read superblock"); 616 return -EIO; 617 } 618 nilfs_warn(sb, 619 "unable to read primary superblock (blocksize = %d)", 620 blocksize); 621 } else if (!sbp[1]) { 622 nilfs_warn(sb, 623 "unable to read secondary superblock (blocksize = %d)", 624 blocksize); 625 } 626 627 /* 628 * Compare two super blocks and set 1 in swp if the secondary 629 * super block is valid and newer. Otherwise, set 0 in swp. 630 */ 631 valid[0] = nilfs_valid_sb(sbp[0]); 632 valid[1] = nilfs_valid_sb(sbp[1]); 633 swp = valid[1] && (!valid[0] || 634 le64_to_cpu(sbp[1]->s_last_cno) > 635 le64_to_cpu(sbp[0]->s_last_cno)); 636 637 if (valid[swp] && nilfs_sb2_bad_offset(sbp[swp], sb2off)) { 638 brelse(sbh[1]); 639 sbh[1] = NULL; 640 sbp[1] = NULL; 641 valid[1] = 0; 642 swp = 0; 643 } 644 if (!valid[swp]) { 645 nilfs_release_super_block(nilfs); 646 nilfs_err(sb, "couldn't find nilfs on the device"); 647 return -EINVAL; 648 } 649 650 if (!valid[!swp]) 651 nilfs_warn(sb, 652 "broken superblock, retrying with spare superblock (blocksize = %d)", 653 blocksize); 654 if (swp) 655 nilfs_swap_super_block(nilfs); 656 657 /* 658 * Calculate the array index of the older superblock data. 659 * If one has been dropped, set index 0 pointing to the remaining one, 660 * otherwise set index 1 pointing to the old one (including if both 661 * are the same). 662 * 663 * Divided case valid[0] valid[1] swp -> older 664 * ------------------------------------------------------------- 665 * Both SBs are invalid 0 0 N/A (Error) 666 * SB1 is invalid 0 1 1 0 667 * SB2 is invalid 1 0 0 0 668 * SB2 is newer 1 1 1 0 669 * SB2 is older or the same 1 1 0 1 670 */ 671 older = valid[1] ^ swp; 672 673 nilfs->ns_sbwcount = 0; 674 nilfs->ns_sbwtime = le64_to_cpu(sbp[0]->s_wtime); 675 nilfs->ns_prot_seq = le64_to_cpu(sbp[older]->s_last_seq); 676 *sbpp = sbp[0]; 677 return 0; 678 } 679 680 /** 681 * init_nilfs - initialize a NILFS instance. 682 * @nilfs: the_nilfs structure 683 * @sb: super block 684 * 685 * init_nilfs() performs common initialization per block device (e.g. 686 * reading the super block, getting disk layout information, initializing 687 * shared fields in the_nilfs). 688 * 689 * Return Value: On success, 0 is returned. On error, a negative error 690 * code is returned. 691 */ 692 int init_nilfs(struct the_nilfs *nilfs, struct super_block *sb) 693 { 694 struct nilfs_super_block *sbp; 695 int blocksize; 696 int err; 697 698 down_write(&nilfs->ns_sem); 699 700 blocksize = sb_min_blocksize(sb, NILFS_MIN_BLOCK_SIZE); 701 if (!blocksize) { 702 nilfs_err(sb, "unable to set blocksize"); 703 err = -EINVAL; 704 goto out; 705 } 706 err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp); 707 if (err) 708 goto out; 709 710 err = nilfs_store_magic(sb, sbp); 711 if (err) 712 goto failed_sbh; 713 714 err = nilfs_check_feature_compatibility(sb, sbp); 715 if (err) 716 goto failed_sbh; 717 718 err = nilfs_get_blocksize(sb, sbp, &blocksize); 719 if (err) 720 goto failed_sbh; 721 722 if (blocksize < NILFS_MIN_BLOCK_SIZE) { 723 nilfs_err(sb, 724 "couldn't mount because of unsupported filesystem blocksize %d", 725 blocksize); 726 err = -EINVAL; 727 goto failed_sbh; 728 } 729 if (sb->s_blocksize != blocksize) { 730 int hw_blocksize = bdev_logical_block_size(sb->s_bdev); 731 732 if (blocksize < hw_blocksize) { 733 nilfs_err(sb, 734 "blocksize %d too small for device (sector-size = %d)", 735 blocksize, hw_blocksize); 736 err = -EINVAL; 737 goto failed_sbh; 738 } 739 nilfs_release_super_block(nilfs); 740 if (!sb_set_blocksize(sb, blocksize)) { 741 nilfs_err(sb, "bad blocksize %d", blocksize); 742 err = -EINVAL; 743 goto out; 744 } 745 746 err = nilfs_load_super_block(nilfs, sb, blocksize, &sbp); 747 if (err) 748 goto out; 749 /* 750 * Not to failed_sbh; sbh is released automatically 751 * when reloading fails. 752 */ 753 } 754 nilfs->ns_blocksize_bits = sb->s_blocksize_bits; 755 nilfs->ns_blocksize = blocksize; 756 757 get_random_bytes(&nilfs->ns_next_generation, 758 sizeof(nilfs->ns_next_generation)); 759 760 err = nilfs_store_disk_layout(nilfs, sbp); 761 if (err) 762 goto failed_sbh; 763 764 sb->s_maxbytes = nilfs_max_size(sb->s_blocksize_bits); 765 766 nilfs->ns_mount_state = le16_to_cpu(sbp->s_state); 767 768 err = nilfs_store_log_cursor(nilfs, sbp); 769 if (err) 770 goto failed_sbh; 771 772 set_nilfs_init(nilfs); 773 err = 0; 774 out: 775 up_write(&nilfs->ns_sem); 776 return err; 777 778 failed_sbh: 779 nilfs_release_super_block(nilfs); 780 goto out; 781 } 782 783 int nilfs_discard_segments(struct the_nilfs *nilfs, __u64 *segnump, 784 size_t nsegs) 785 { 786 sector_t seg_start, seg_end; 787 sector_t start = 0, nblocks = 0; 788 unsigned int sects_per_block; 789 __u64 *sn; 790 int ret = 0; 791 792 sects_per_block = (1 << nilfs->ns_blocksize_bits) / 793 bdev_logical_block_size(nilfs->ns_bdev); 794 for (sn = segnump; sn < segnump + nsegs; sn++) { 795 nilfs_get_segment_range(nilfs, *sn, &seg_start, &seg_end); 796 797 if (!nblocks) { 798 start = seg_start; 799 nblocks = seg_end - seg_start + 1; 800 } else if (start + nblocks == seg_start) { 801 nblocks += seg_end - seg_start + 1; 802 } else { 803 ret = blkdev_issue_discard(nilfs->ns_bdev, 804 start * sects_per_block, 805 nblocks * sects_per_block, 806 GFP_NOFS); 807 if (ret < 0) 808 return ret; 809 nblocks = 0; 810 } 811 } 812 if (nblocks) 813 ret = blkdev_issue_discard(nilfs->ns_bdev, 814 start * sects_per_block, 815 nblocks * sects_per_block, 816 GFP_NOFS); 817 return ret; 818 } 819 820 int nilfs_count_free_blocks(struct the_nilfs *nilfs, sector_t *nblocks) 821 { 822 unsigned long ncleansegs; 823 824 ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile); 825 *nblocks = (sector_t)ncleansegs * nilfs->ns_blocks_per_segment; 826 return 0; 827 } 828 829 int nilfs_near_disk_full(struct the_nilfs *nilfs) 830 { 831 unsigned long ncleansegs, nincsegs; 832 833 ncleansegs = nilfs_sufile_get_ncleansegs(nilfs->ns_sufile); 834 nincsegs = atomic_read(&nilfs->ns_ndirtyblks) / 835 nilfs->ns_blocks_per_segment + 1; 836 837 return ncleansegs <= nilfs->ns_nrsvsegs + nincsegs; 838 } 839 840 struct nilfs_root *nilfs_lookup_root(struct the_nilfs *nilfs, __u64 cno) 841 { 842 struct rb_node *n; 843 struct nilfs_root *root; 844 845 spin_lock(&nilfs->ns_cptree_lock); 846 n = nilfs->ns_cptree.rb_node; 847 while (n) { 848 root = rb_entry(n, struct nilfs_root, rb_node); 849 850 if (cno < root->cno) { 851 n = n->rb_left; 852 } else if (cno > root->cno) { 853 n = n->rb_right; 854 } else { 855 refcount_inc(&root->count); 856 spin_unlock(&nilfs->ns_cptree_lock); 857 return root; 858 } 859 } 860 spin_unlock(&nilfs->ns_cptree_lock); 861 862 return NULL; 863 } 864 865 struct nilfs_root * 866 nilfs_find_or_create_root(struct the_nilfs *nilfs, __u64 cno) 867 { 868 struct rb_node **p, *parent; 869 struct nilfs_root *root, *new; 870 int err; 871 872 root = nilfs_lookup_root(nilfs, cno); 873 if (root) 874 return root; 875 876 new = kzalloc(sizeof(*root), GFP_KERNEL); 877 if (!new) 878 return NULL; 879 880 spin_lock(&nilfs->ns_cptree_lock); 881 882 p = &nilfs->ns_cptree.rb_node; 883 parent = NULL; 884 885 while (*p) { 886 parent = *p; 887 root = rb_entry(parent, struct nilfs_root, rb_node); 888 889 if (cno < root->cno) { 890 p = &(*p)->rb_left; 891 } else if (cno > root->cno) { 892 p = &(*p)->rb_right; 893 } else { 894 refcount_inc(&root->count); 895 spin_unlock(&nilfs->ns_cptree_lock); 896 kfree(new); 897 return root; 898 } 899 } 900 901 new->cno = cno; 902 new->ifile = NULL; 903 new->nilfs = nilfs; 904 refcount_set(&new->count, 1); 905 atomic64_set(&new->inodes_count, 0); 906 atomic64_set(&new->blocks_count, 0); 907 908 rb_link_node(&new->rb_node, parent, p); 909 rb_insert_color(&new->rb_node, &nilfs->ns_cptree); 910 911 spin_unlock(&nilfs->ns_cptree_lock); 912 913 err = nilfs_sysfs_create_snapshot_group(new); 914 if (err) { 915 kfree(new); 916 new = NULL; 917 } 918 919 return new; 920 } 921 922 void nilfs_put_root(struct nilfs_root *root) 923 { 924 struct the_nilfs *nilfs = root->nilfs; 925 926 if (refcount_dec_and_lock(&root->count, &nilfs->ns_cptree_lock)) { 927 rb_erase(&root->rb_node, &nilfs->ns_cptree); 928 spin_unlock(&nilfs->ns_cptree_lock); 929 930 nilfs_sysfs_delete_snapshot_group(root); 931 iput(root->ifile); 932 933 kfree(root); 934 } 935 } 936
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.