~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ntfs3/fslog.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *
  4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
  5  *
  6  */
  7 
  8 #include <linux/blkdev.h>
  9 #include <linux/fs.h>
 10 #include <linux/random.h>
 11 #include <linux/slab.h>
 12 
 13 #include "debug.h"
 14 #include "ntfs.h"
 15 #include "ntfs_fs.h"
 16 
 17 /*
 18  * LOG FILE structs
 19  */
 20 
 21 // clang-format off
 22 
 23 #define MaxLogFileSize     0x100000000ull
 24 #define DefaultLogPageSize 4096
 25 #define MinLogRecordPages  0x30
 26 
 27 struct RESTART_HDR {
 28         struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
 29         __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
 30         __le32 page_size;     // 0x14: Log page size used for this log file.
 31         __le16 ra_off;        // 0x18:
 32         __le16 minor_ver;     // 0x1A:
 33         __le16 major_ver;     // 0x1C:
 34         __le16 fixups[];
 35 };
 36 
 37 #define LFS_NO_CLIENT 0xffff
 38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
 39 
 40 struct CLIENT_REC {
 41         __le64 oldest_lsn;
 42         __le64 restart_lsn; // 0x08:
 43         __le16 prev_client; // 0x10:
 44         __le16 next_client; // 0x12:
 45         __le16 seq_num;     // 0x14:
 46         u8 align[6];        // 0x16:
 47         __le32 name_bytes;  // 0x1C: In bytes.
 48         __le16 name[32];    // 0x20: Name of client.
 49 };
 50 
 51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
 52 
 53 /* Two copies of these will exist at the beginning of the log file */
 54 struct RESTART_AREA {
 55         __le64 current_lsn;    // 0x00: Current logical end of log file.
 56         __le16 log_clients;    // 0x08: Maximum number of clients.
 57         __le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
 58         __le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
 59         __le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
 60         __le16 ra_len;         // 0x14:
 61         __le16 client_off;     // 0x16:
 62         __le64 l_size;         // 0x18: Usable log file size.
 63         __le32 last_lsn_data_len; // 0x20:
 64         __le16 rec_hdr_len;    // 0x24: Log page data offset.
 65         __le16 data_off;       // 0x26: Log page data length.
 66         __le32 open_log_count; // 0x28:
 67         __le32 align[5];       // 0x2C:
 68         struct CLIENT_REC clients[]; // 0x40:
 69 };
 70 
 71 struct LOG_REC_HDR {
 72         __le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
 73         __le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
 74         __le16 redo_off;     // 0x04:  Offset to Redo record.
 75         __le16 redo_len;     // 0x06:  Redo length.
 76         __le16 undo_off;     // 0x08:  Offset to Undo record.
 77         __le16 undo_len;     // 0x0A:  Undo length.
 78         __le16 target_attr;  // 0x0C:
 79         __le16 lcns_follow;  // 0x0E:
 80         __le16 record_off;   // 0x10:
 81         __le16 attr_off;     // 0x12:
 82         __le16 cluster_off;  // 0x14:
 83         __le16 reserved;     // 0x16:
 84         __le64 target_vcn;   // 0x18:
 85         __le64 page_lcns[];  // 0x20:
 86 };
 87 
 88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
 89 
 90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
 91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
 92 
 93 struct RESTART_TABLE {
 94         __le16 size;       // 0x00: In bytes
 95         __le16 used;       // 0x02: Entries
 96         __le16 total;      // 0x04: Entries
 97         __le16 res[3];     // 0x06:
 98         __le32 free_goal;  // 0x0C:
 99         __le32 first_free; // 0x10:
100         __le32 last_free;  // 0x14:
101 
102 };
103 
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105 
106 struct ATTR_NAME_ENTRY {
107         __le16 off; // Offset in the Open attribute Table.
108         __le16 name_bytes;
109         __le16 name[];
110 };
111 
112 struct OPEN_ATTR_ENRTY {
113         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114         __le32 bytes_per_index; // 0x04:
115         enum ATTR_TYPE type;    // 0x08:
116         u8 is_dirty_pages;      // 0x0C:
117         u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118         u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119         u8 res;
120         struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121         __le64 open_record_lsn; // 0x18:
122         void *ptr;              // 0x20:
123 };
124 
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128         __le32 ptr;             // 0x04:
129         struct MFT_REF ref;     // 0x08:
130         __le64 open_record_lsn; // 0x10:
131         u8 is_dirty_pages;      // 0x18:
132         u8 is_attr_name;        // 0x19:
133         u8 res1[2];
134         enum ATTR_TYPE type;    // 0x1C:
135         u8 name_len;            // 0x20: In wchar
136         u8 res2[3];
137         __le32 AttributeName;   // 0x24:
138         __le32 bytes_per_index; // 0x28:
139 };
140 
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144 
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150         __le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151         __le32 target_attr;  // 0x04: Index into the Open attribute Table
152         __le32 transfer_len; // 0x08:
153         __le32 lcns_follow;  // 0x0C:
154         __le64 vcn;          // 0x10: Vcn of dirty page
155         __le64 oldest_lsn;   // 0x18:
156         __le64 page_lcns[];  // 0x20:
157 };
158 
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160 
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164         __le32 target_attr;     // 0x04: Index into the Open attribute Table
165         __le32 transfer_len;    // 0x08:
166         __le32 lcns_follow;     // 0x0C:
167         __le32 reserved;        // 0x10:
168         __le32 vcn_low;         // 0x14: Vcn of dirty page
169         __le32 vcn_hi;          // 0x18: Vcn of dirty page
170         __le32 oldest_lsn_low;  // 0x1C:
171         __le32 oldest_lsn_hi;   // 0x1C:
172         __le32 page_lcns_low;   // 0x24:
173         __le32 page_lcns_hi;    // 0x24:
174 };
175 
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178 
179 enum transact_state {
180         TransactionUninitialized = 0,
181         TransactionActive,
182         TransactionPrepared,
183         TransactionCommitted
184 };
185 
186 struct TRANSACTION_ENTRY {
187         __le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188         u8 transact_state;    // 0x04:
189         u8 reserved[3];       // 0x05:
190         __le64 first_lsn;     // 0x08:
191         __le64 prev_lsn;      // 0x10:
192         __le64 undo_next_lsn; // 0x18:
193         __le32 undo_records;  // 0x20: Number of undo log records pending abort
194         __le32 undo_len;      // 0x24: Total undo size
195 };
196 
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198 
199 struct NTFS_RESTART {
200         __le32 major_ver;             // 0x00:
201         __le32 minor_ver;             // 0x04:
202         __le64 check_point_start;     // 0x08:
203         __le64 open_attr_table_lsn;   // 0x10:
204         __le64 attr_names_lsn;        // 0x18:
205         __le64 dirty_pages_table_lsn; // 0x20:
206         __le64 transact_table_lsn;    // 0x28:
207         __le32 open_attr_len;         // 0x30: In bytes
208         __le32 attr_names_len;        // 0x34: In bytes
209         __le32 dirty_pages_len;       // 0x38: In bytes
210         __le32 transact_table_len;    // 0x3C: In bytes
211 };
212 
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214 
215 struct NEW_ATTRIBUTE_SIZES {
216         __le64 alloc_size;
217         __le64 valid_size;
218         __le64 data_size;
219         __le64 total_size;
220 };
221 
222 struct BITMAP_RANGE {
223         __le32 bitmap_off;
224         __le32 bits;
225 };
226 
227 struct LCN_RANGE {
228         __le64 lcn;
229         __le64 len;
230 };
231 
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235 
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238         __le16 seq_num;
239         __le16 client_idx;
240 };
241 
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244         __le64 this_lsn;                // 0x00:
245         __le64 client_prev_lsn;         // 0x08:
246         __le64 client_undo_next_lsn;    // 0x10:
247         __le32 client_data_len;         // 0x18:
248         struct CLIENT_ID client;        // 0x1C: Owner of this log record.
249         __le32 record_type;             // 0x20: LfsClientRecord or LfsClientRestart.
250         __le32 transact_id;             // 0x24:
251         __le16 flags;                   // 0x28: LOG_RECORD_MULTI_PAGE
252         u8 align[6];                    // 0x2A:
253 };
254 
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256 
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258 
259 struct LFS_RECORD {
260         __le16 next_record_off; // 0x00: Offset of the free space in the page,
261         u8 align[6];            // 0x02:
262         __le64 last_end_lsn;    // 0x08: lsn for the last log record which ends on the page,
263 };
264 
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266 
267 struct RECORD_PAGE_HDR {
268         struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269         __le32 rflags;                  // 0x10: See LOG_PAGE_LOG_RECORD_END
270         __le16 page_count;              // 0x14:
271         __le16 page_pos;                // 0x16:
272         struct LFS_RECORD record_hdr;   // 0x18:
273         __le16 fixups[10];              // 0x28:
274         __le32 file_off;                // 0x3c: Used when major version >= 2
275 };
276 
277 // clang-format on
278 
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281 
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284         return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286 
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288 
289 /*
290  * END of NTFS LOG structures
291  */
292 
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295 
296 enum NTFS_LOG_OPERATION {
297 
298         Noop = 0x00,
299         CompensationLogRecord = 0x01,
300         InitializeFileRecordSegment = 0x02,
301         DeallocateFileRecordSegment = 0x03,
302         WriteEndOfFileRecordSegment = 0x04,
303         CreateAttribute = 0x05,
304         DeleteAttribute = 0x06,
305         UpdateResidentValue = 0x07,
306         UpdateNonresidentValue = 0x08,
307         UpdateMappingPairs = 0x09,
308         DeleteDirtyClusters = 0x0A,
309         SetNewAttributeSizes = 0x0B,
310         AddIndexEntryRoot = 0x0C,
311         DeleteIndexEntryRoot = 0x0D,
312         AddIndexEntryAllocation = 0x0E,
313         DeleteIndexEntryAllocation = 0x0F,
314         WriteEndOfIndexBuffer = 0x10,
315         SetIndexEntryVcnRoot = 0x11,
316         SetIndexEntryVcnAllocation = 0x12,
317         UpdateFileNameRoot = 0x13,
318         UpdateFileNameAllocation = 0x14,
319         SetBitsInNonresidentBitMap = 0x15,
320         ClearBitsInNonresidentBitMap = 0x16,
321         HotFix = 0x17,
322         EndTopLevelAction = 0x18,
323         PrepareTransaction = 0x19,
324         CommitTransaction = 0x1A,
325         ForgetTransaction = 0x1B,
326         OpenNonresidentAttribute = 0x1C,
327         OpenAttributeTableDump = 0x1D,
328         AttributeNamesDump = 0x1E,
329         DirtyPageTableDump = 0x1F,
330         TransactionTableDump = 0x20,
331         UpdateRecordDataRoot = 0x21,
332         UpdateRecordDataAllocation = 0x22,
333 
334         UpdateRelativeDataInIndex =
335                 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336         UpdateRelativeDataInIndex2 = 0x24,
337         ZeroEndOfFileRecord = 0x25,
338 };
339 
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346         0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348 
349 static inline bool is_target_required(u16 op)
350 {
351         bool ret = op <= UpdateRecordDataAllocation &&
352                    (AttributeRequired[op >> 3] >> (op & 7) & 1);
353         return ret;
354 }
355 
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358         switch (op) {
359         case Noop:
360         case DeleteDirtyClusters:
361         case HotFix:
362         case EndTopLevelAction:
363         case PrepareTransaction:
364         case CommitTransaction:
365         case ForgetTransaction:
366         case CompensationLogRecord:
367         case OpenNonresidentAttribute:
368         case OpenAttributeTableDump:
369         case AttributeNamesDump:
370         case DirtyPageTableDump:
371         case TransactionTableDump:
372                 return true;
373         default:
374                 return false;
375         }
376 }
377 
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379 
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383         return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384                sizeof(struct RESTART_TABLE);
385 }
386 
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390         u16 t16 = le16_to_cpu(lr->lcns_follow);
391 
392         return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394 
395 struct lcb {
396         struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397         struct LOG_REC_HDR *log_rec;
398         u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399         struct CLIENT_ID client;
400         bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402 
403 static void lcb_put(struct lcb *lcb)
404 {
405         if (lcb->alloc)
406                 kfree(lcb->log_rec);
407         kfree(lcb->lrh);
408         kfree(lcb);
409 }
410 
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413                                      __le16 next_client, u64 *oldest_lsn)
414 {
415         while (next_client != LFS_NO_CLIENT_LE) {
416                 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417                 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418 
419                 /* Ignore this block if it's oldest lsn is 0. */
420                 if (lsn && lsn < *oldest_lsn)
421                         *oldest_lsn = lsn;
422 
423                 next_client = cr->next_client;
424         }
425 }
426 
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428                                          const struct RESTART_HDR *rhdr)
429 {
430         u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431         u32 page_size = le32_to_cpu(rhdr->page_size);
432         u32 end_usa;
433         u16 ro;
434 
435         if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436             sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437                 return false;
438         }
439 
440         /* Check that if the file offset isn't 0, it is the system page size. */
441         if (file_off && file_off != sys_page)
442                 return false;
443 
444         /* Check support version 1.1+. */
445         if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446                 return false;
447 
448         if (le16_to_cpu(rhdr->major_ver) > 2)
449                 return false;
450 
451         ro = le16_to_cpu(rhdr->ra_off);
452         if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453                 return false;
454 
455         end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456         end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457 
458         if (ro < end_usa)
459                 return false;
460 
461         return true;
462 }
463 
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466         const struct RESTART_AREA *ra;
467         u16 cl, fl, ul;
468         u32 off, l_size, seq_bits;
469         u16 ro = le16_to_cpu(rhdr->ra_off);
470         u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471 
472         if (ro + offsetof(struct RESTART_AREA, l_size) >
473             SECTOR_SIZE - sizeof(short))
474                 return false;
475 
476         ra = Add2Ptr(rhdr, ro);
477         cl = le16_to_cpu(ra->log_clients);
478 
479         if (cl > 1)
480                 return false;
481 
482         off = le16_to_cpu(ra->client_off);
483 
484         if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485                 return false;
486 
487         off += cl * sizeof(struct CLIENT_REC);
488 
489         if (off > sys_page)
490                 return false;
491 
492         /*
493          * Check the restart length field and whether the entire
494          * restart area is contained that length.
495          */
496         if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497             off > le16_to_cpu(ra->ra_len)) {
498                 return false;
499         }
500 
501         /*
502          * As a final check make sure that the use list and the free list
503          * are either empty or point to a valid client.
504          */
505         fl = le16_to_cpu(ra->client_idx[0]);
506         ul = le16_to_cpu(ra->client_idx[1]);
507         if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508             (ul != LFS_NO_CLIENT && ul >= cl))
509                 return false;
510 
511         /* Make sure the sequence number bits match the log file size. */
512         l_size = le64_to_cpu(ra->l_size);
513 
514         seq_bits = sizeof(u64) * 8 + 3;
515         while (l_size) {
516                 l_size >>= 1;
517                 seq_bits -= 1;
518         }
519 
520         if (seq_bits != le32_to_cpu(ra->seq_num_bits))
521                 return false;
522 
523         /* The log page data offset and record header length must be quad-aligned. */
524         if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
525             !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
526                 return false;
527 
528         return true;
529 }
530 
531 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532                                         bool usa_error)
533 {
534         u16 ro = le16_to_cpu(rhdr->ra_off);
535         const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
536         u16 ra_len = le16_to_cpu(ra->ra_len);
537         const struct CLIENT_REC *ca;
538         u32 i;
539 
540         if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541                 return false;
542 
543         /* Find the start of the client array. */
544         ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545 
546         /*
547          * Start with the free list.
548          * Check that all the clients are valid and that there isn't a cycle.
549          * Do the in-use list on the second pass.
550          */
551         for (i = 0; i < 2; i++) {
552                 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
553                 bool first_client = true;
554                 u16 clients = le16_to_cpu(ra->log_clients);
555 
556                 while (client_idx != LFS_NO_CLIENT) {
557                         const struct CLIENT_REC *cr;
558 
559                         if (!clients ||
560                             client_idx >= le16_to_cpu(ra->log_clients))
561                                 return false;
562 
563                         clients -= 1;
564                         cr = ca + client_idx;
565 
566                         client_idx = le16_to_cpu(cr->next_client);
567 
568                         if (first_client) {
569                                 first_client = false;
570                                 if (cr->prev_client != LFS_NO_CLIENT_LE)
571                                         return false;
572                         }
573                 }
574         }
575 
576         return true;
577 }
578 
579 /*
580  * remove_client
581  *
582  * Remove a client record from a client record list an restart area.
583  */
584 static inline void remove_client(struct CLIENT_REC *ca,
585                                  const struct CLIENT_REC *cr, __le16 *head)
586 {
587         if (cr->prev_client == LFS_NO_CLIENT_LE)
588                 *head = cr->next_client;
589         else
590                 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
591 
592         if (cr->next_client != LFS_NO_CLIENT_LE)
593                 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
594 }
595 
596 /*
597  * add_client - Add a client record to the start of a list.
598  */
599 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
600 {
601         struct CLIENT_REC *cr = ca + index;
602 
603         cr->prev_client = LFS_NO_CLIENT_LE;
604         cr->next_client = *head;
605 
606         if (*head != LFS_NO_CLIENT_LE)
607                 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
608 
609         *head = cpu_to_le16(index);
610 }
611 
612 /*
613  * Enumerate restart table.
614  *
615  * @t - table to enumerate.
616  * @c - current enumerated element.
617  *
618  * enumeration starts with @c == NULL
619  * returns next element or NULL
620  */
621 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
622 {
623         __le32 *e;
624         u32 bprt;
625         u16 rsize;
626 
627         if (!t)
628                 return NULL;
629 
630         rsize = le16_to_cpu(t->size);
631 
632         if (!c) {
633                 /* start enumeration. */
634                 if (!t->total)
635                         return NULL;
636                 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
637         } else {
638                 e = Add2Ptr(c, rsize);
639         }
640 
641         /* Loop until we hit the first one allocated, or the end of the list. */
642         for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
643              e = Add2Ptr(e, rsize)) {
644                 if (*e == RESTART_ENTRY_ALLOCATED_LE)
645                         return e;
646         }
647         return NULL;
648 }
649 
650 /*
651  * find_dp - Search for a @vcn in Dirty Page Table.
652  */
653 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
654                                              u32 target_attr, u64 vcn)
655 {
656         __le32 ta = cpu_to_le32(target_attr);
657         struct DIR_PAGE_ENTRY *dp = NULL;
658 
659         while ((dp = enum_rstbl(dptbl, dp))) {
660                 u64 dp_vcn = le64_to_cpu(dp->vcn);
661 
662                 if (dp->target_attr == ta && vcn >= dp_vcn &&
663                     vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
664                         return dp;
665                 }
666         }
667         return NULL;
668 }
669 
670 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
671 {
672         if (use_default)
673                 page_size = DefaultLogPageSize;
674 
675         /* Round the file size down to a system page boundary. */
676         *l_size &= ~(page_size - 1);
677 
678         /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
679         if (*l_size < (MinLogRecordPages + 2) * page_size)
680                 return 0;
681 
682         return page_size;
683 }
684 
685 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
686                           u32 bytes_per_attr_entry)
687 {
688         u16 t16;
689 
690         if (bytes < sizeof(struct LOG_REC_HDR))
691                 return false;
692         if (!tr)
693                 return false;
694 
695         if ((tr - sizeof(struct RESTART_TABLE)) %
696             sizeof(struct TRANSACTION_ENTRY))
697                 return false;
698 
699         if (le16_to_cpu(lr->redo_off) & 7)
700                 return false;
701 
702         if (le16_to_cpu(lr->undo_off) & 7)
703                 return false;
704 
705         if (lr->target_attr)
706                 goto check_lcns;
707 
708         if (is_target_required(le16_to_cpu(lr->redo_op)))
709                 return false;
710 
711         if (is_target_required(le16_to_cpu(lr->undo_op)))
712                 return false;
713 
714 check_lcns:
715         if (!lr->lcns_follow)
716                 goto check_length;
717 
718         t16 = le16_to_cpu(lr->target_attr);
719         if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
720                 return false;
721 
722 check_length:
723         if (bytes < lrh_length(lr))
724                 return false;
725 
726         return true;
727 }
728 
729 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
730 {
731         u32 ts;
732         u32 i, off;
733         u16 rsize = le16_to_cpu(rt->size);
734         u16 ne = le16_to_cpu(rt->used);
735         u32 ff = le32_to_cpu(rt->first_free);
736         u32 lf = le32_to_cpu(rt->last_free);
737 
738         ts = rsize * ne + sizeof(struct RESTART_TABLE);
739 
740         if (!rsize || rsize > bytes ||
741             rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
742             le16_to_cpu(rt->total) > ne || ff > ts - sizeof(__le32) ||
743             lf > ts - sizeof(__le32) ||
744             (ff && ff < sizeof(struct RESTART_TABLE)) ||
745             (lf && lf < sizeof(struct RESTART_TABLE))) {
746                 return false;
747         }
748 
749         /*
750          * Verify each entry is either allocated or points
751          * to a valid offset the table.
752          */
753         for (i = 0; i < ne; i++) {
754                 off = le32_to_cpu(*(__le32 *)Add2Ptr(
755                         rt, i * rsize + sizeof(struct RESTART_TABLE)));
756 
757                 if (off != RESTART_ENTRY_ALLOCATED && off &&
758                     (off < sizeof(struct RESTART_TABLE) ||
759                      ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
760                         return false;
761                 }
762         }
763 
764         /*
765          * Walk through the list headed by the first entry to make
766          * sure none of the entries are currently being used.
767          */
768         for (off = ff; off;) {
769                 if (off == RESTART_ENTRY_ALLOCATED)
770                         return false;
771 
772                 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
773 
774                 if (off > ts - sizeof(__le32))
775                         return false;
776         }
777 
778         return true;
779 }
780 
781 /*
782  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
783  */
784 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
785 {
786         __le32 *e;
787         u32 lf = le32_to_cpu(rt->last_free);
788         __le32 off_le = cpu_to_le32(off);
789 
790         e = Add2Ptr(rt, off);
791 
792         if (off < le32_to_cpu(rt->free_goal)) {
793                 *e = rt->first_free;
794                 rt->first_free = off_le;
795                 if (!lf)
796                         rt->last_free = off_le;
797         } else {
798                 if (lf)
799                         *(__le32 *)Add2Ptr(rt, lf) = off_le;
800                 else
801                         rt->first_free = off_le;
802 
803                 rt->last_free = off_le;
804                 *e = 0;
805         }
806 
807         le16_sub_cpu(&rt->total, 1);
808 }
809 
810 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
811 {
812         __le32 *e, *last_free;
813         u32 off;
814         u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
815         u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
816         struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
817 
818         if (!t)
819                 return NULL;
820 
821         t->size = cpu_to_le16(esize);
822         t->used = cpu_to_le16(used);
823         t->free_goal = cpu_to_le32(~0u);
824         t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
825         t->last_free = cpu_to_le32(lf);
826 
827         e = (__le32 *)(t + 1);
828         last_free = Add2Ptr(t, lf);
829 
830         for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
831              e = Add2Ptr(e, esize), off += esize) {
832                 *e = cpu_to_le32(off);
833         }
834         return t;
835 }
836 
837 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
838                                                   u32 add, u32 free_goal)
839 {
840         u16 esize = le16_to_cpu(tbl->size);
841         __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
842         u32 used = le16_to_cpu(tbl->used);
843         struct RESTART_TABLE *rt;
844 
845         rt = init_rsttbl(esize, used + add);
846         if (!rt)
847                 return NULL;
848 
849         memcpy(rt + 1, tbl + 1, esize * used);
850 
851         rt->free_goal = free_goal == ~0u ?
852                                 cpu_to_le32(~0u) :
853                                 cpu_to_le32(sizeof(struct RESTART_TABLE) +
854                                             free_goal * esize);
855 
856         if (tbl->first_free) {
857                 rt->first_free = tbl->first_free;
858                 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
859         } else {
860                 rt->first_free = osize;
861         }
862 
863         rt->total = tbl->total;
864 
865         kfree(tbl);
866         return rt;
867 }
868 
869 /*
870  * alloc_rsttbl_idx
871  *
872  * Allocate an index from within a previously initialized Restart Table.
873  */
874 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
875 {
876         u32 off;
877         __le32 *e;
878         struct RESTART_TABLE *t = *tbl;
879 
880         if (!t->first_free) {
881                 *tbl = t = extend_rsttbl(t, 16, ~0u);
882                 if (!t)
883                         return NULL;
884         }
885 
886         off = le32_to_cpu(t->first_free);
887 
888         /* Dequeue this entry and zero it. */
889         e = Add2Ptr(t, off);
890 
891         t->first_free = *e;
892 
893         memset(e, 0, le16_to_cpu(t->size));
894 
895         *e = RESTART_ENTRY_ALLOCATED_LE;
896 
897         /* If list is going empty, then we fix the last_free as well. */
898         if (!t->first_free)
899                 t->last_free = 0;
900 
901         le16_add_cpu(&t->total, 1);
902 
903         return Add2Ptr(t, off);
904 }
905 
906 /*
907  * alloc_rsttbl_from_idx
908  *
909  * Allocate a specific index from within a previously initialized Restart Table.
910  */
911 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
912 {
913         u32 off;
914         __le32 *e;
915         struct RESTART_TABLE *rt = *tbl;
916         u32 bytes = bytes_per_rt(rt);
917         u16 esize = le16_to_cpu(rt->size);
918 
919         /* If the entry is not the table, we will have to extend the table. */
920         if (vbo >= bytes) {
921                 /*
922                  * Extend the size by computing the number of entries between
923                  * the existing size and the desired index and adding 1 to that.
924                  */
925                 u32 bytes2idx = vbo - bytes;
926 
927                 /*
928                  * There should always be an integral number of entries
929                  * being added. Now extend the table.
930                  */
931                 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
932                 if (!rt)
933                         return NULL;
934         }
935 
936         /* See if the entry is already allocated, and just return if it is. */
937         e = Add2Ptr(rt, vbo);
938 
939         if (*e == RESTART_ENTRY_ALLOCATED_LE)
940                 return e;
941 
942         /*
943          * Walk through the table, looking for the entry we're
944          * interested and the previous entry.
945          */
946         off = le32_to_cpu(rt->first_free);
947         e = Add2Ptr(rt, off);
948 
949         if (off == vbo) {
950                 /* this is a match */
951                 rt->first_free = *e;
952                 goto skip_looking;
953         }
954 
955         /*
956          * Need to walk through the list looking for the predecessor
957          * of our entry.
958          */
959         for (;;) {
960                 /* Remember the entry just found */
961                 u32 last_off = off;
962                 __le32 *last_e = e;
963 
964                 /* Should never run of entries. */
965 
966                 /* Lookup up the next entry the list. */
967                 off = le32_to_cpu(*last_e);
968                 e = Add2Ptr(rt, off);
969 
970                 /* If this is our match we are done. */
971                 if (off == vbo) {
972                         *last_e = *e;
973 
974                         /*
975                          * If this was the last entry, we update that
976                          * table as well.
977                          */
978                         if (le32_to_cpu(rt->last_free) == off)
979                                 rt->last_free = cpu_to_le32(last_off);
980                         break;
981                 }
982         }
983 
984 skip_looking:
985         /* If the list is now empty, we fix the last_free as well. */
986         if (!rt->first_free)
987                 rt->last_free = 0;
988 
989         /* Zero this entry. */
990         memset(e, 0, esize);
991         *e = RESTART_ENTRY_ALLOCATED_LE;
992 
993         le16_add_cpu(&rt->total, 1);
994 
995         return e;
996 }
997 
998 struct restart_info {
999         u64 last_lsn;
1000         struct RESTART_HDR *r_page;
1001         u32 vbo;
1002         bool chkdsk_was_run;
1003         bool valid_page;
1004         bool initialized;
1005         bool restart;
1006 };
1007 
1008 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
1009 
1010 #define NTFSLOG_WRAPPED 0x00000001
1011 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
1012 #define NTFSLOG_NO_LAST_LSN 0x00000004
1013 #define NTFSLOG_REUSE_TAIL 0x00000010
1014 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
1015 
1016 /* Helper struct to work with NTFS $LogFile. */
1017 struct ntfs_log {
1018         struct ntfs_inode *ni;
1019 
1020         u32 l_size;
1021         u32 orig_file_size;
1022         u32 sys_page_size;
1023         u32 sys_page_mask;
1024         u32 page_size;
1025         u32 page_mask; // page_size - 1
1026         u8 page_bits;
1027         struct RECORD_PAGE_HDR *one_page_buf;
1028 
1029         struct RESTART_TABLE *open_attr_tbl;
1030         u32 transaction_id;
1031         u32 clst_per_page;
1032 
1033         u32 first_page;
1034         u32 next_page;
1035         u32 ra_off;
1036         u32 data_off;
1037         u32 restart_size;
1038         u32 data_size;
1039         u16 record_header_len;
1040         u64 seq_num;
1041         u32 seq_num_bits;
1042         u32 file_data_bits;
1043         u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1044 
1045         struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1046         u32 ra_size; /* The usable size of the restart area. */
1047 
1048         /*
1049          * If true, then the in-memory restart area is to be written
1050          * to the first position on the disk.
1051          */
1052         bool init_ra;
1053         bool set_dirty; /* True if we need to set dirty flag. */
1054 
1055         u64 oldest_lsn;
1056 
1057         u32 oldest_lsn_off;
1058         u64 last_lsn;
1059 
1060         u32 total_avail;
1061         u32 total_avail_pages;
1062         u32 total_undo_commit;
1063         u32 max_current_avail;
1064         u32 current_avail;
1065         u32 reserved;
1066 
1067         short major_ver;
1068         short minor_ver;
1069 
1070         u32 l_flags; /* See NTFSLOG_XXX */
1071         u32 current_openlog_count; /* On-disk value for open_log_count. */
1072 
1073         struct CLIENT_ID client_id;
1074         u32 client_undo_commit;
1075 
1076         struct restart_info rst_info, rst_info2;
1077 };
1078 
1079 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1080 {
1081         u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1082 
1083         return vbo;
1084 }
1085 
1086 /* Compute the offset in the log file of the next log page. */
1087 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1088 {
1089         off = (off & ~log->sys_page_mask) + log->page_size;
1090         return off >= log->l_size ? log->first_page : off;
1091 }
1092 
1093 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1094 {
1095         return (((u32)lsn) << 3) & log->page_mask;
1096 }
1097 
1098 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1099 {
1100         return (off >> 3) + (Seq << log->file_data_bits);
1101 }
1102 
1103 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1104 {
1105         return lsn >= log->oldest_lsn &&
1106                lsn <= le64_to_cpu(log->ra->current_lsn);
1107 }
1108 
1109 static inline u32 hdr_file_off(struct ntfs_log *log,
1110                                struct RECORD_PAGE_HDR *hdr)
1111 {
1112         if (log->major_ver < 2)
1113                 return le64_to_cpu(hdr->rhdr.lsn);
1114 
1115         return le32_to_cpu(hdr->file_off);
1116 }
1117 
1118 static inline u64 base_lsn(struct ntfs_log *log,
1119                            const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1120 {
1121         u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1122         u64 ret = (((h_lsn >> log->file_data_bits) +
1123                     (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1124                    << log->file_data_bits) +
1125                   ((((is_log_record_end(hdr) &&
1126                       h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1127                              le16_to_cpu(hdr->record_hdr.next_record_off) :
1128                              log->page_size) +
1129                     lsn) >>
1130                    3);
1131 
1132         return ret;
1133 }
1134 
1135 static inline bool verify_client_lsn(struct ntfs_log *log,
1136                                      const struct CLIENT_REC *client, u64 lsn)
1137 {
1138         return lsn >= le64_to_cpu(client->oldest_lsn) &&
1139                lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1140 }
1141 
1142 static int read_log_page(struct ntfs_log *log, u32 vbo,
1143                          struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1144 {
1145         int err = 0;
1146         u32 page_idx = vbo >> log->page_bits;
1147         u32 page_off = vbo & log->page_mask;
1148         u32 bytes = log->page_size - page_off;
1149         void *to_free = NULL;
1150         u32 page_vbo = page_idx << log->page_bits;
1151         struct RECORD_PAGE_HDR *page_buf;
1152         struct ntfs_inode *ni = log->ni;
1153         bool bBAAD;
1154 
1155         if (vbo >= log->l_size)
1156                 return -EINVAL;
1157 
1158         if (!*buffer) {
1159                 to_free = kmalloc(log->page_size, GFP_NOFS);
1160                 if (!to_free)
1161                         return -ENOMEM;
1162                 *buffer = to_free;
1163         }
1164 
1165         page_buf = page_off ? log->one_page_buf : *buffer;
1166 
1167         err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1168                                log->page_size, NULL);
1169         if (err)
1170                 goto out;
1171 
1172         if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1173                 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1174 
1175         if (page_buf != *buffer)
1176                 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1177 
1178         bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1179 
1180         if (usa_error)
1181                 *usa_error = bBAAD;
1182         /* Check that the update sequence array for this page is valid */
1183         /* If we don't allow errors, raise an error status */
1184         else if (bBAAD)
1185                 err = -EINVAL;
1186 
1187 out:
1188         if (err && to_free) {
1189                 kfree(to_free);
1190                 *buffer = NULL;
1191         }
1192 
1193         return err;
1194 }
1195 
1196 /*
1197  * log_read_rst
1198  *
1199  * It walks through 512 blocks of the file looking for a valid
1200  * restart page header. It will stop the first time we find a
1201  * valid page header.
1202  */
1203 static int log_read_rst(struct ntfs_log *log, bool first,
1204                         struct restart_info *info)
1205 {
1206         u32 skip;
1207         u64 vbo;
1208         struct RESTART_HDR *r_page = NULL;
1209 
1210         /* Determine which restart area we are looking for. */
1211         if (first) {
1212                 vbo = 0;
1213                 skip = 512;
1214         } else {
1215                 vbo = 512;
1216                 skip = 0;
1217         }
1218 
1219         /* Loop continuously until we succeed. */
1220         for (; vbo < log->l_size; vbo = 2 * vbo + skip, skip = 0) {
1221                 bool usa_error;
1222                 bool brst, bchk;
1223                 struct RESTART_AREA *ra;
1224 
1225                 /* Read a page header at the current offset. */
1226                 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1227                                   &usa_error)) {
1228                         /* Ignore any errors. */
1229                         continue;
1230                 }
1231 
1232                 /* Exit if the signature is a log record page. */
1233                 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1234                         info->initialized = true;
1235                         break;
1236                 }
1237 
1238                 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1239                 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1240 
1241                 if (!bchk && !brst) {
1242                         if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1243                                 /*
1244                                  * Remember if the signature does not
1245                                  * indicate uninitialized file.
1246                                  */
1247                                 info->initialized = true;
1248                         }
1249                         continue;
1250                 }
1251 
1252                 ra = NULL;
1253                 info->valid_page = false;
1254                 info->initialized = true;
1255                 info->vbo = vbo;
1256 
1257                 /* Let's check the restart area if this is a valid page. */
1258                 if (!is_rst_page_hdr_valid(vbo, r_page))
1259                         goto check_result;
1260                 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1261 
1262                 if (!is_rst_area_valid(r_page))
1263                         goto check_result;
1264 
1265                 /*
1266                  * We have a valid restart page header and restart area.
1267                  * If chkdsk was run or we have no clients then we have
1268                  * no more checking to do.
1269                  */
1270                 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1271                         info->valid_page = true;
1272                         goto check_result;
1273                 }
1274 
1275                 if (is_client_area_valid(r_page, usa_error)) {
1276                         info->valid_page = true;
1277                         ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1278                 }
1279 
1280 check_result:
1281                 /*
1282                  * If chkdsk was run then update the caller's
1283                  * values and return.
1284                  */
1285                 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1286                         info->chkdsk_was_run = true;
1287                         info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1288                         info->restart = true;
1289                         info->r_page = r_page;
1290                         return 0;
1291                 }
1292 
1293                 /*
1294                  * If we have a valid page then copy the values
1295                  * we need from it.
1296                  */
1297                 if (info->valid_page) {
1298                         info->last_lsn = le64_to_cpu(ra->current_lsn);
1299                         info->restart = true;
1300                         info->r_page = r_page;
1301                         return 0;
1302                 }
1303         }
1304 
1305         kfree(r_page);
1306 
1307         return 0;
1308 }
1309 
1310 /*
1311  * Ilog_init_pg_hdr - Init @log from restart page header.
1312  */
1313 static void log_init_pg_hdr(struct ntfs_log *log, u16 major_ver, u16 minor_ver)
1314 {
1315         log->sys_page_size = log->page_size;
1316         log->sys_page_mask = log->page_mask;
1317 
1318         log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1319         if (!log->clst_per_page)
1320                 log->clst_per_page = 1;
1321 
1322         log->first_page = major_ver >= 2 ? 0x22 * log->page_size :
1323                                            4 * log->page_size;
1324         log->major_ver = major_ver;
1325         log->minor_ver = minor_ver;
1326 }
1327 
1328 /*
1329  * log_create - Init @log in cases when we don't have a restart area to use.
1330  */
1331 static void log_create(struct ntfs_log *log, const u64 last_lsn,
1332                        u32 open_log_count, bool wrapped, bool use_multi_page)
1333 {
1334         /* All file offsets must be quadword aligned. */
1335         log->file_data_bits = blksize_bits(log->l_size) - 3;
1336         log->seq_num_mask = (8 << log->file_data_bits) - 1;
1337         log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1338         log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1339         log->next_page = log->first_page;
1340         log->oldest_lsn = log->seq_num << log->file_data_bits;
1341         log->oldest_lsn_off = 0;
1342         log->last_lsn = log->oldest_lsn;
1343 
1344         log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1345 
1346         /* Set the correct flags for the I/O and indicate if we have wrapped. */
1347         if (wrapped)
1348                 log->l_flags |= NTFSLOG_WRAPPED;
1349 
1350         if (use_multi_page)
1351                 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1352 
1353         /* Compute the log page values. */
1354         log->data_off = ALIGN(
1355                 offsetof(struct RECORD_PAGE_HDR, fixups) +
1356                         sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1357                 8);
1358         log->data_size = log->page_size - log->data_off;
1359         log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1360 
1361         /* Remember the different page sizes for reservation. */
1362         log->reserved = log->data_size - log->record_header_len;
1363 
1364         /* Compute the restart page values. */
1365         log->ra_off = ALIGN(
1366                 offsetof(struct RESTART_HDR, fixups) +
1367                         sizeof(short) *
1368                                 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1369                 8);
1370         log->restart_size = log->sys_page_size - log->ra_off;
1371         log->ra_size = struct_size(log->ra, clients, 1);
1372         log->current_openlog_count = open_log_count;
1373 
1374         /*
1375          * The total available log file space is the number of
1376          * log file pages times the space available on each page.
1377          */
1378         log->total_avail_pages = log->l_size - log->first_page;
1379         log->total_avail = log->total_avail_pages >> log->page_bits;
1380 
1381         /*
1382          * We assume that we can't use the end of the page less than
1383          * the file record size.
1384          * Then we won't need to reserve more than the caller asks for.
1385          */
1386         log->max_current_avail = log->total_avail * log->reserved;
1387         log->total_avail = log->total_avail * log->data_size;
1388         log->current_avail = log->max_current_avail;
1389 }
1390 
1391 /*
1392  * log_create_ra - Fill a restart area from the values stored in @log.
1393  */
1394 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1395 {
1396         struct CLIENT_REC *cr;
1397         struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1398 
1399         if (!ra)
1400                 return NULL;
1401 
1402         ra->current_lsn = cpu_to_le64(log->last_lsn);
1403         ra->log_clients = cpu_to_le16(1);
1404         ra->client_idx[1] = LFS_NO_CLIENT_LE;
1405         if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1406                 ra->flags = RESTART_SINGLE_PAGE_IO;
1407         ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1408         ra->ra_len = cpu_to_le16(log->ra_size);
1409         ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1410         ra->l_size = cpu_to_le64(log->l_size);
1411         ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1412         ra->data_off = cpu_to_le16(log->data_off);
1413         ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1414 
1415         cr = ra->clients;
1416 
1417         cr->prev_client = LFS_NO_CLIENT_LE;
1418         cr->next_client = LFS_NO_CLIENT_LE;
1419 
1420         return ra;
1421 }
1422 
1423 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1424 {
1425         u32 base_vbo = lsn << 3;
1426         u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1427         u32 page_off = base_vbo & log->page_mask;
1428         u32 tail = log->page_size - page_off;
1429 
1430         page_off -= 1;
1431 
1432         /* Add the length of the header. */
1433         data_len += log->record_header_len;
1434 
1435         /*
1436          * If this lsn is contained this log page we are done.
1437          * Otherwise we need to walk through several log pages.
1438          */
1439         if (data_len > tail) {
1440                 data_len -= tail;
1441                 tail = log->data_size;
1442                 page_off = log->data_off - 1;
1443 
1444                 for (;;) {
1445                         final_log_off = next_page_off(log, final_log_off);
1446 
1447                         /*
1448                          * We are done if the remaining bytes
1449                          * fit on this page.
1450                          */
1451                         if (data_len <= tail)
1452                                 break;
1453                         data_len -= tail;
1454                 }
1455         }
1456 
1457         /*
1458          * We add the remaining bytes to our starting position on this page
1459          * and then add that value to the file offset of this log page.
1460          */
1461         return final_log_off + data_len + page_off;
1462 }
1463 
1464 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1465                         u64 *lsn)
1466 {
1467         int err;
1468         u64 this_lsn = le64_to_cpu(rh->this_lsn);
1469         u32 vbo = lsn_to_vbo(log, this_lsn);
1470         u32 end =
1471                 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1472         u32 hdr_off = end & ~log->sys_page_mask;
1473         u64 seq = this_lsn >> log->file_data_bits;
1474         struct RECORD_PAGE_HDR *page = NULL;
1475 
1476         /* Remember if we wrapped. */
1477         if (end <= vbo)
1478                 seq += 1;
1479 
1480         /* Log page header for this page. */
1481         err = read_log_page(log, hdr_off, &page, NULL);
1482         if (err)
1483                 return err;
1484 
1485         /*
1486          * If the lsn we were given was not the last lsn on this page,
1487          * then the starting offset for the next lsn is on a quad word
1488          * boundary following the last file offset for the current lsn.
1489          * Otherwise the file offset is the start of the data on the next page.
1490          */
1491         if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1492                 /* If we wrapped, we need to increment the sequence number. */
1493                 hdr_off = next_page_off(log, hdr_off);
1494                 if (hdr_off == log->first_page)
1495                         seq += 1;
1496 
1497                 vbo = hdr_off + log->data_off;
1498         } else {
1499                 vbo = ALIGN(end, 8);
1500         }
1501 
1502         /* Compute the lsn based on the file offset and the sequence count. */
1503         *lsn = vbo_to_lsn(log, vbo, seq);
1504 
1505         /*
1506          * If this lsn is within the legal range for the file, we return true.
1507          * Otherwise false indicates that there are no more lsn's.
1508          */
1509         if (!is_lsn_in_file(log, *lsn))
1510                 *lsn = 0;
1511 
1512         kfree(page);
1513 
1514         return 0;
1515 }
1516 
1517 /*
1518  * current_log_avail - Calculate the number of bytes available for log records.
1519  */
1520 static u32 current_log_avail(struct ntfs_log *log)
1521 {
1522         u32 oldest_off, next_free_off, free_bytes;
1523 
1524         if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1525                 /* The entire file is available. */
1526                 return log->max_current_avail;
1527         }
1528 
1529         /*
1530          * If there is a last lsn the restart area then we know that we will
1531          * have to compute the free range.
1532          * If there is no oldest lsn then start at the first page of the file.
1533          */
1534         oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1535                              log->first_page :
1536                              (log->oldest_lsn_off & ~log->sys_page_mask);
1537 
1538         /*
1539          * We will use the next log page offset to compute the next free page.
1540          * If we are going to reuse this page go to the next page.
1541          * If we are at the first page then use the end of the file.
1542          */
1543         next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1544                                 log->next_page + log->page_size :
1545                         log->next_page == log->first_page ? log->l_size :
1546                                                             log->next_page;
1547 
1548         /* If the two offsets are the same then there is no available space. */
1549         if (oldest_off == next_free_off)
1550                 return 0;
1551         /*
1552          * If the free offset follows the oldest offset then subtract
1553          * this range from the total available pages.
1554          */
1555         free_bytes =
1556                 oldest_off < next_free_off ?
1557                         log->total_avail_pages - (next_free_off - oldest_off) :
1558                         oldest_off - next_free_off;
1559 
1560         free_bytes >>= log->page_bits;
1561         return free_bytes * log->reserved;
1562 }
1563 
1564 static bool check_subseq_log_page(struct ntfs_log *log,
1565                                   const struct RECORD_PAGE_HDR *rp, u32 vbo,
1566                                   u64 seq)
1567 {
1568         u64 lsn_seq;
1569         const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1570         u64 lsn = le64_to_cpu(rhdr->lsn);
1571 
1572         if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1573                 return false;
1574 
1575         /*
1576          * If the last lsn on the page occurs was written after the page
1577          * that caused the original error then we have a fatal error.
1578          */
1579         lsn_seq = lsn >> log->file_data_bits;
1580 
1581         /*
1582          * If the sequence number for the lsn the page is equal or greater
1583          * than lsn we expect, then this is a subsequent write.
1584          */
1585         return lsn_seq >= seq ||
1586                (lsn_seq == seq - 1 && log->first_page == vbo &&
1587                 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1588 }
1589 
1590 /*
1591  * last_log_lsn
1592  *
1593  * Walks through the log pages for a file, searching for the
1594  * last log page written to the file.
1595  */
1596 static int last_log_lsn(struct ntfs_log *log)
1597 {
1598         int err;
1599         bool usa_error = false;
1600         bool replace_page = false;
1601         bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1602         bool wrapped_file, wrapped;
1603 
1604         u32 page_cnt = 1, page_pos = 1;
1605         u32 page_off = 0, page_off1 = 0, saved_off = 0;
1606         u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1607         u32 first_file_off = 0, second_file_off = 0;
1608         u32 part_io_count = 0;
1609         u32 tails = 0;
1610         u32 this_off, curpage_off, nextpage_off, remain_pages;
1611 
1612         u64 expected_seq, seq_base = 0, lsn_base = 0;
1613         u64 best_lsn, best_lsn1, best_lsn2;
1614         u64 lsn_cur, lsn1, lsn2;
1615         u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1616 
1617         u16 cur_pos, best_page_pos;
1618 
1619         struct RECORD_PAGE_HDR *page = NULL;
1620         struct RECORD_PAGE_HDR *tst_page = NULL;
1621         struct RECORD_PAGE_HDR *first_tail = NULL;
1622         struct RECORD_PAGE_HDR *second_tail = NULL;
1623         struct RECORD_PAGE_HDR *tail_page = NULL;
1624         struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1625         struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1626         struct RECORD_PAGE_HDR *page_bufs = NULL;
1627         struct RECORD_PAGE_HDR *best_page;
1628 
1629         if (log->major_ver >= 2) {
1630                 final_off = 0x02 * log->page_size;
1631                 second_off = 0x12 * log->page_size;
1632 
1633                 // 0x10 == 0x12 - 0x2
1634                 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1635                 if (!page_bufs)
1636                         return -ENOMEM;
1637         } else {
1638                 second_off = log->first_page - log->page_size;
1639                 final_off = second_off - log->page_size;
1640         }
1641 
1642 next_tail:
1643         /* Read second tail page (at pos 3/0x12000). */
1644         if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1645             usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1646                 kfree(second_tail);
1647                 second_tail = NULL;
1648                 second_file_off = 0;
1649                 lsn2 = 0;
1650         } else {
1651                 second_file_off = hdr_file_off(log, second_tail);
1652                 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1653         }
1654 
1655         /* Read first tail page (at pos 2/0x2000). */
1656         if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1657             usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1658                 kfree(first_tail);
1659                 first_tail = NULL;
1660                 first_file_off = 0;
1661                 lsn1 = 0;
1662         } else {
1663                 first_file_off = hdr_file_off(log, first_tail);
1664                 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1665         }
1666 
1667         if (log->major_ver < 2) {
1668                 int best_page;
1669 
1670                 first_tail_prev = first_tail;
1671                 final_off_prev = first_file_off;
1672                 second_tail_prev = second_tail;
1673                 second_off_prev = second_file_off;
1674                 tails = 1;
1675 
1676                 if (!first_tail && !second_tail)
1677                         goto tail_read;
1678 
1679                 if (first_tail && second_tail)
1680                         best_page = lsn1 < lsn2 ? 1 : 0;
1681                 else if (first_tail)
1682                         best_page = 0;
1683                 else
1684                         best_page = 1;
1685 
1686                 page_off = best_page ? second_file_off : first_file_off;
1687                 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1688                 goto tail_read;
1689         }
1690 
1691         best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1692         best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1693                                   0;
1694 
1695         if (first_tail && second_tail) {
1696                 if (best_lsn1 > best_lsn2) {
1697                         best_lsn = best_lsn1;
1698                         best_page = first_tail;
1699                         this_off = first_file_off;
1700                 } else {
1701                         best_lsn = best_lsn2;
1702                         best_page = second_tail;
1703                         this_off = second_file_off;
1704                 }
1705         } else if (first_tail) {
1706                 best_lsn = best_lsn1;
1707                 best_page = first_tail;
1708                 this_off = first_file_off;
1709         } else if (second_tail) {
1710                 best_lsn = best_lsn2;
1711                 best_page = second_tail;
1712                 this_off = second_file_off;
1713         } else {
1714                 goto tail_read;
1715         }
1716 
1717         best_page_pos = le16_to_cpu(best_page->page_pos);
1718 
1719         if (!tails) {
1720                 if (best_page_pos == page_pos) {
1721                         seq_base = best_lsn >> log->file_data_bits;
1722                         saved_off = page_off = le32_to_cpu(best_page->file_off);
1723                         lsn_base = best_lsn;
1724 
1725                         memmove(page_bufs, best_page, log->page_size);
1726 
1727                         page_cnt = le16_to_cpu(best_page->page_count);
1728                         if (page_cnt > 1)
1729                                 page_pos += 1;
1730 
1731                         tails = 1;
1732                 }
1733         } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1734                    saved_off + log->page_size == this_off &&
1735                    lsn_base < best_lsn &&
1736                    (page_pos != page_cnt || best_page_pos == page_pos ||
1737                     best_page_pos == 1) &&
1738                    (page_pos >= page_cnt || best_page_pos == page_pos)) {
1739                 u16 bppc = le16_to_cpu(best_page->page_count);
1740 
1741                 saved_off += log->page_size;
1742                 lsn_base = best_lsn;
1743 
1744                 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1745                         log->page_size);
1746 
1747                 tails += 1;
1748 
1749                 if (best_page_pos != bppc) {
1750                         page_cnt = bppc;
1751                         page_pos = best_page_pos;
1752 
1753                         if (page_cnt > 1)
1754                                 page_pos += 1;
1755                 } else {
1756                         page_pos = page_cnt = 1;
1757                 }
1758         } else {
1759                 kfree(first_tail);
1760                 kfree(second_tail);
1761                 goto tail_read;
1762         }
1763 
1764         kfree(first_tail_prev);
1765         first_tail_prev = first_tail;
1766         final_off_prev = first_file_off;
1767         first_tail = NULL;
1768 
1769         kfree(second_tail_prev);
1770         second_tail_prev = second_tail;
1771         second_off_prev = second_file_off;
1772         second_tail = NULL;
1773 
1774         final_off += log->page_size;
1775         second_off += log->page_size;
1776 
1777         if (tails < 0x10)
1778                 goto next_tail;
1779 tail_read:
1780         first_tail = first_tail_prev;
1781         final_off = final_off_prev;
1782 
1783         second_tail = second_tail_prev;
1784         second_off = second_off_prev;
1785 
1786         page_cnt = page_pos = 1;
1787 
1788         curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1789                                                  log->next_page;
1790 
1791         wrapped_file =
1792                 curpage_off == log->first_page &&
1793                 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1794 
1795         expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1796 
1797         nextpage_off = curpage_off;
1798 
1799 next_page:
1800         tail_page = NULL;
1801         /* Read the next log page. */
1802         err = read_log_page(log, curpage_off, &page, &usa_error);
1803 
1804         /* Compute the next log page offset the file. */
1805         nextpage_off = next_page_off(log, curpage_off);
1806         wrapped = nextpage_off == log->first_page;
1807 
1808         if (tails > 1) {
1809                 struct RECORD_PAGE_HDR *cur_page =
1810                         Add2Ptr(page_bufs, curpage_off - page_off);
1811 
1812                 if (curpage_off == saved_off) {
1813                         tail_page = cur_page;
1814                         goto use_tail_page;
1815                 }
1816 
1817                 if (page_off > curpage_off || curpage_off >= saved_off)
1818                         goto use_tail_page;
1819 
1820                 if (page_off1)
1821                         goto use_cur_page;
1822 
1823                 if (!err && !usa_error &&
1824                     page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1825                     cur_page->rhdr.lsn == page->rhdr.lsn &&
1826                     cur_page->record_hdr.next_record_off ==
1827                             page->record_hdr.next_record_off &&
1828                     ((page_pos == page_cnt &&
1829                       le16_to_cpu(page->page_pos) == 1) ||
1830                      (page_pos != page_cnt &&
1831                       le16_to_cpu(page->page_pos) == page_pos + 1 &&
1832                       le16_to_cpu(page->page_count) == page_cnt))) {
1833                         cur_page = NULL;
1834                         goto use_tail_page;
1835                 }
1836 
1837                 page_off1 = page_off;
1838 
1839 use_cur_page:
1840 
1841                 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1842 
1843                 if (last_ok_lsn !=
1844                             le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1845                     ((lsn_cur >> log->file_data_bits) +
1846                      ((curpage_off <
1847                        (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1848                               1 :
1849                               0)) != expected_seq) {
1850                         goto check_tail;
1851                 }
1852 
1853                 if (!is_log_record_end(cur_page)) {
1854                         tail_page = NULL;
1855                         last_ok_lsn = lsn_cur;
1856                         goto next_page_1;
1857                 }
1858 
1859                 log->seq_num = expected_seq;
1860                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1861                 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1862                 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1863 
1864                 if (log->record_header_len <=
1865                     log->page_size -
1866                             le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1867                         log->l_flags |= NTFSLOG_REUSE_TAIL;
1868                         log->next_page = curpage_off;
1869                 } else {
1870                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1871                         log->next_page = nextpage_off;
1872                 }
1873 
1874                 if (wrapped_file)
1875                         log->l_flags |= NTFSLOG_WRAPPED;
1876 
1877                 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1878                 goto next_page_1;
1879         }
1880 
1881         /*
1882          * If we are at the expected first page of a transfer check to see
1883          * if either tail copy is at this offset.
1884          * If this page is the last page of a transfer, check if we wrote
1885          * a subsequent tail copy.
1886          */
1887         if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1888                 /*
1889                  * Check if the offset matches either the first or second
1890                  * tail copy. It is possible it will match both.
1891                  */
1892                 if (curpage_off == final_off)
1893                         tail_page = first_tail;
1894 
1895                 /*
1896                  * If we already matched on the first page then
1897                  * check the ending lsn's.
1898                  */
1899                 if (curpage_off == second_off) {
1900                         if (!tail_page ||
1901                             (second_tail &&
1902                              le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1903                                      le64_to_cpu(first_tail->record_hdr
1904                                                          .last_end_lsn))) {
1905                                 tail_page = second_tail;
1906                         }
1907                 }
1908         }
1909 
1910 use_tail_page:
1911         if (tail_page) {
1912                 /* We have a candidate for a tail copy. */
1913                 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1914 
1915                 if (last_ok_lsn < lsn_cur) {
1916                         /*
1917                          * If the sequence number is not expected,
1918                          * then don't use the tail copy.
1919                          */
1920                         if (expected_seq != (lsn_cur >> log->file_data_bits))
1921                                 tail_page = NULL;
1922                 } else if (last_ok_lsn > lsn_cur) {
1923                         /*
1924                          * If the last lsn is greater than the one on
1925                          * this page then forget this tail.
1926                          */
1927                         tail_page = NULL;
1928                 }
1929         }
1930 
1931         /*
1932          *If we have an error on the current page,
1933          * we will break of this loop.
1934          */
1935         if (err || usa_error)
1936                 goto check_tail;
1937 
1938         /*
1939          * Done if the last lsn on this page doesn't match the previous known
1940          * last lsn or the sequence number is not expected.
1941          */
1942         lsn_cur = le64_to_cpu(page->rhdr.lsn);
1943         if (last_ok_lsn != lsn_cur &&
1944             expected_seq != (lsn_cur >> log->file_data_bits)) {
1945                 goto check_tail;
1946         }
1947 
1948         /*
1949          * Check that the page position and page count values are correct.
1950          * If this is the first page of a transfer the position must be 1
1951          * and the count will be unknown.
1952          */
1953         if (page_cnt == page_pos) {
1954                 if (page->page_pos != cpu_to_le16(1) &&
1955                     (!reuse_page || page->page_pos != page->page_count)) {
1956                         /*
1957                          * If the current page is the first page we are
1958                          * looking at and we are reusing this page then
1959                          * it can be either the first or last page of a
1960                          * transfer. Otherwise it can only be the first.
1961                          */
1962                         goto check_tail;
1963                 }
1964         } else if (le16_to_cpu(page->page_count) != page_cnt ||
1965                    le16_to_cpu(page->page_pos) != page_pos + 1) {
1966                 /*
1967                  * The page position better be 1 more than the last page
1968                  * position and the page count better match.
1969                  */
1970                 goto check_tail;
1971         }
1972 
1973         /*
1974          * We have a valid page the file and may have a valid page
1975          * the tail copy area.
1976          * If the tail page was written after the page the file then
1977          * break of the loop.
1978          */
1979         if (tail_page &&
1980             le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1981                 /* Remember if we will replace the page. */
1982                 replace_page = true;
1983                 goto check_tail;
1984         }
1985 
1986         tail_page = NULL;
1987 
1988         if (is_log_record_end(page)) {
1989                 /*
1990                  * Since we have read this page we know the sequence number
1991                  * is the same as our expected value.
1992                  */
1993                 log->seq_num = expected_seq;
1994                 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1995                 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1996                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1997 
1998                 /*
1999                  * If there is room on this page for another header then
2000                  * remember we want to reuse the page.
2001                  */
2002                 if (log->record_header_len <=
2003                     log->page_size -
2004                             le16_to_cpu(page->record_hdr.next_record_off)) {
2005                         log->l_flags |= NTFSLOG_REUSE_TAIL;
2006                         log->next_page = curpage_off;
2007                 } else {
2008                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2009                         log->next_page = nextpage_off;
2010                 }
2011 
2012                 /* Remember if we wrapped the log file. */
2013                 if (wrapped_file)
2014                         log->l_flags |= NTFSLOG_WRAPPED;
2015         }
2016 
2017         /*
2018          * Remember the last page count and position.
2019          * Also remember the last known lsn.
2020          */
2021         page_cnt = le16_to_cpu(page->page_count);
2022         page_pos = le16_to_cpu(page->page_pos);
2023         last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2024 
2025 next_page_1:
2026 
2027         if (wrapped) {
2028                 expected_seq += 1;
2029                 wrapped_file = 1;
2030         }
2031 
2032         curpage_off = nextpage_off;
2033         kfree(page);
2034         page = NULL;
2035         reuse_page = 0;
2036         goto next_page;
2037 
2038 check_tail:
2039         if (tail_page) {
2040                 log->seq_num = expected_seq;
2041                 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2042                 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2043                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2044 
2045                 if (log->page_size -
2046                             le16_to_cpu(
2047                                     tail_page->record_hdr.next_record_off) >=
2048                     log->record_header_len) {
2049                         log->l_flags |= NTFSLOG_REUSE_TAIL;
2050                         log->next_page = curpage_off;
2051                 } else {
2052                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2053                         log->next_page = nextpage_off;
2054                 }
2055 
2056                 if (wrapped)
2057                         log->l_flags |= NTFSLOG_WRAPPED;
2058         }
2059 
2060         /* Remember that the partial IO will start at the next page. */
2061         second_off = nextpage_off;
2062 
2063         /*
2064          * If the next page is the first page of the file then update
2065          * the sequence number for log records which begon the next page.
2066          */
2067         if (wrapped)
2068                 expected_seq += 1;
2069 
2070         /*
2071          * If we have a tail copy or are performing single page I/O we can
2072          * immediately look at the next page.
2073          */
2074         if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2075                 page_cnt = 2;
2076                 page_pos = 1;
2077                 goto check_valid;
2078         }
2079 
2080         if (page_pos != page_cnt)
2081                 goto check_valid;
2082         /*
2083          * If the next page causes us to wrap to the beginning of the log
2084          * file then we know which page to check next.
2085          */
2086         if (wrapped) {
2087                 page_cnt = 2;
2088                 page_pos = 1;
2089                 goto check_valid;
2090         }
2091 
2092         cur_pos = 2;
2093 
2094 next_test_page:
2095         kfree(tst_page);
2096         tst_page = NULL;
2097 
2098         /* Walk through the file, reading log pages. */
2099         err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2100 
2101         /*
2102          * If we get a USA error then assume that we correctly found
2103          * the end of the original transfer.
2104          */
2105         if (usa_error)
2106                 goto file_is_valid;
2107 
2108         /*
2109          * If we were able to read the page, we examine it to see if it
2110          * is the same or different Io block.
2111          */
2112         if (err)
2113                 goto next_test_page_1;
2114 
2115         if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2116             check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2117                 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2118                 page_pos = le16_to_cpu(tst_page->page_pos);
2119                 goto check_valid;
2120         } else {
2121                 goto file_is_valid;
2122         }
2123 
2124 next_test_page_1:
2125 
2126         nextpage_off = next_page_off(log, curpage_off);
2127         wrapped = nextpage_off == log->first_page;
2128 
2129         if (wrapped) {
2130                 expected_seq += 1;
2131                 page_cnt = 2;
2132                 page_pos = 1;
2133         }
2134 
2135         cur_pos += 1;
2136         part_io_count += 1;
2137         if (!wrapped)
2138                 goto next_test_page;
2139 
2140 check_valid:
2141         /* Skip over the remaining pages this transfer. */
2142         remain_pages = page_cnt - page_pos - 1;
2143         part_io_count += remain_pages;
2144 
2145         while (remain_pages--) {
2146                 nextpage_off = next_page_off(log, curpage_off);
2147                 wrapped = nextpage_off == log->first_page;
2148 
2149                 if (wrapped)
2150                         expected_seq += 1;
2151         }
2152 
2153         /* Call our routine to check this log page. */
2154         kfree(tst_page);
2155         tst_page = NULL;
2156 
2157         err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2158         if (!err && !usa_error &&
2159             check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2160                 err = -EINVAL;
2161                 goto out;
2162         }
2163 
2164 file_is_valid:
2165 
2166         /* We have a valid file. */
2167         if (page_off1 || tail_page) {
2168                 struct RECORD_PAGE_HDR *tmp_page;
2169 
2170                 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2171                         err = -EROFS;
2172                         goto out;
2173                 }
2174 
2175                 if (page_off1) {
2176                         tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2177                         tails -= (page_off1 - page_off) / log->page_size;
2178                         if (!tail_page)
2179                                 tails -= 1;
2180                 } else {
2181                         tmp_page = tail_page;
2182                         tails = 1;
2183                 }
2184 
2185                 while (tails--) {
2186                         u64 off = hdr_file_off(log, tmp_page);
2187 
2188                         if (!page) {
2189                                 page = kmalloc(log->page_size, GFP_NOFS);
2190                                 if (!page) {
2191                                         err = -ENOMEM;
2192                                         goto out;
2193                                 }
2194                         }
2195 
2196                         /*
2197                          * Correct page and copy the data from this page
2198                          * into it and flush it to disk.
2199                          */
2200                         memcpy(page, tmp_page, log->page_size);
2201 
2202                         /* Fill last flushed lsn value flush the page. */
2203                         if (log->major_ver < 2)
2204                                 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2205                         else
2206                                 page->file_off = 0;
2207 
2208                         page->page_pos = page->page_count = cpu_to_le16(1);
2209 
2210                         ntfs_fix_pre_write(&page->rhdr, log->page_size);
2211 
2212                         err = ntfs_sb_write_run(log->ni->mi.sbi,
2213                                                 &log->ni->file.run, off, page,
2214                                                 log->page_size, 0);
2215 
2216                         if (err)
2217                                 goto out;
2218 
2219                         if (part_io_count && second_off == off) {
2220                                 second_off += log->page_size;
2221                                 part_io_count -= 1;
2222                         }
2223 
2224                         tmp_page = Add2Ptr(tmp_page, log->page_size);
2225                 }
2226         }
2227 
2228         if (part_io_count) {
2229                 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2230                         err = -EROFS;
2231                         goto out;
2232                 }
2233         }
2234 
2235 out:
2236         kfree(second_tail);
2237         kfree(first_tail);
2238         kfree(page);
2239         kfree(tst_page);
2240         kfree(page_bufs);
2241 
2242         return err;
2243 }
2244 
2245 /*
2246  * read_log_rec_buf - Copy a log record from the file to a buffer.
2247  *
2248  * The log record may span several log pages and may even wrap the file.
2249  */
2250 static int read_log_rec_buf(struct ntfs_log *log,
2251                             const struct LFS_RECORD_HDR *rh, void *buffer)
2252 {
2253         int err;
2254         struct RECORD_PAGE_HDR *ph = NULL;
2255         u64 lsn = le64_to_cpu(rh->this_lsn);
2256         u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2257         u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2258         u32 data_len = le32_to_cpu(rh->client_data_len);
2259 
2260         /*
2261          * While there are more bytes to transfer,
2262          * we continue to attempt to perform the read.
2263          */
2264         for (;;) {
2265                 bool usa_error;
2266                 u32 tail = log->page_size - off;
2267 
2268                 if (tail >= data_len)
2269                         tail = data_len;
2270 
2271                 data_len -= tail;
2272 
2273                 err = read_log_page(log, vbo, &ph, &usa_error);
2274                 if (err)
2275                         goto out;
2276 
2277                 /*
2278                  * The last lsn on this page better be greater or equal
2279                  * to the lsn we are copying.
2280                  */
2281                 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2282                         err = -EINVAL;
2283                         goto out;
2284                 }
2285 
2286                 memcpy(buffer, Add2Ptr(ph, off), tail);
2287 
2288                 /* If there are no more bytes to transfer, we exit the loop. */
2289                 if (!data_len) {
2290                         if (!is_log_record_end(ph) ||
2291                             lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2292                                 err = -EINVAL;
2293                                 goto out;
2294                         }
2295                         break;
2296                 }
2297 
2298                 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2299                     lsn > le64_to_cpu(ph->rhdr.lsn)) {
2300                         err = -EINVAL;
2301                         goto out;
2302                 }
2303 
2304                 vbo = next_page_off(log, vbo);
2305                 off = log->data_off;
2306 
2307                 /*
2308                  * Adjust our pointer the user's buffer to transfer
2309                  * the next block to.
2310                  */
2311                 buffer = Add2Ptr(buffer, tail);
2312         }
2313 
2314 out:
2315         kfree(ph);
2316         return err;
2317 }
2318 
2319 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2320                          u64 *lsn)
2321 {
2322         int err;
2323         struct LFS_RECORD_HDR *rh = NULL;
2324         const struct CLIENT_REC *cr =
2325                 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2326         u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2327         u32 len;
2328         struct NTFS_RESTART *rst;
2329 
2330         *lsn = 0;
2331         *rst_ = NULL;
2332 
2333         /* If the client doesn't have a restart area, go ahead and exit now. */
2334         if (!lsnc)
2335                 return 0;
2336 
2337         err = read_log_page(log, lsn_to_vbo(log, lsnc),
2338                             (struct RECORD_PAGE_HDR **)&rh, NULL);
2339         if (err)
2340                 return err;
2341 
2342         rst = NULL;
2343         lsnr = le64_to_cpu(rh->this_lsn);
2344 
2345         if (lsnc != lsnr) {
2346                 /* If the lsn values don't match, then the disk is corrupt. */
2347                 err = -EINVAL;
2348                 goto out;
2349         }
2350 
2351         *lsn = lsnr;
2352         len = le32_to_cpu(rh->client_data_len);
2353 
2354         if (!len) {
2355                 err = 0;
2356                 goto out;
2357         }
2358 
2359         if (len < sizeof(struct NTFS_RESTART)) {
2360                 err = -EINVAL;
2361                 goto out;
2362         }
2363 
2364         rst = kmalloc(len, GFP_NOFS);
2365         if (!rst) {
2366                 err = -ENOMEM;
2367                 goto out;
2368         }
2369 
2370         /* Copy the data into the 'rst' buffer. */
2371         err = read_log_rec_buf(log, rh, rst);
2372         if (err)
2373                 goto out;
2374 
2375         *rst_ = rst;
2376         rst = NULL;
2377 
2378 out:
2379         kfree(rh);
2380         kfree(rst);
2381 
2382         return err;
2383 }
2384 
2385 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2386 {
2387         int err;
2388         struct LFS_RECORD_HDR *rh = lcb->lrh;
2389         u32 rec_len, len;
2390 
2391         /* Read the record header for this lsn. */
2392         if (!rh) {
2393                 err = read_log_page(log, lsn_to_vbo(log, lsn),
2394                                     (struct RECORD_PAGE_HDR **)&rh, NULL);
2395 
2396                 lcb->lrh = rh;
2397                 if (err)
2398                         return err;
2399         }
2400 
2401         /*
2402          * If the lsn the log record doesn't match the desired
2403          * lsn then the disk is corrupt.
2404          */
2405         if (lsn != le64_to_cpu(rh->this_lsn))
2406                 return -EINVAL;
2407 
2408         len = le32_to_cpu(rh->client_data_len);
2409 
2410         /*
2411          * Check that the length field isn't greater than the total
2412          * available space the log file.
2413          */
2414         rec_len = len + log->record_header_len;
2415         if (rec_len >= log->total_avail)
2416                 return -EINVAL;
2417 
2418         /*
2419          * If the entire log record is on this log page,
2420          * put a pointer to the log record the context block.
2421          */
2422         if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2423                 void *lr = kmalloc(len, GFP_NOFS);
2424 
2425                 if (!lr)
2426                         return -ENOMEM;
2427 
2428                 lcb->log_rec = lr;
2429                 lcb->alloc = true;
2430 
2431                 /* Copy the data into the buffer returned. */
2432                 err = read_log_rec_buf(log, rh, lr);
2433                 if (err)
2434                         return err;
2435         } else {
2436                 /* If beyond the end of the current page -> an error. */
2437                 u32 page_off = lsn_to_page_off(log, lsn);
2438 
2439                 if (page_off + len + log->record_header_len > log->page_size)
2440                         return -EINVAL;
2441 
2442                 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2443                 lcb->alloc = false;
2444         }
2445 
2446         return 0;
2447 }
2448 
2449 /*
2450  * read_log_rec_lcb - Init the query operation.
2451  */
2452 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2453                             struct lcb **lcb_)
2454 {
2455         int err;
2456         const struct CLIENT_REC *cr;
2457         struct lcb *lcb;
2458 
2459         switch (ctx_mode) {
2460         case lcb_ctx_undo_next:
2461         case lcb_ctx_prev:
2462         case lcb_ctx_next:
2463                 break;
2464         default:
2465                 return -EINVAL;
2466         }
2467 
2468         /* Check that the given lsn is the legal range for this client. */
2469         cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2470 
2471         if (!verify_client_lsn(log, cr, lsn))
2472                 return -EINVAL;
2473 
2474         lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2475         if (!lcb)
2476                 return -ENOMEM;
2477         lcb->client = log->client_id;
2478         lcb->ctx_mode = ctx_mode;
2479 
2480         /* Find the log record indicated by the given lsn. */
2481         err = find_log_rec(log, lsn, lcb);
2482         if (err)
2483                 goto out;
2484 
2485         *lcb_ = lcb;
2486         return 0;
2487 
2488 out:
2489         lcb_put(lcb);
2490         *lcb_ = NULL;
2491         return err;
2492 }
2493 
2494 /*
2495  * find_client_next_lsn
2496  *
2497  * Attempt to find the next lsn to return to a client based on the context mode.
2498  */
2499 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2500 {
2501         int err;
2502         u64 next_lsn;
2503         struct LFS_RECORD_HDR *hdr;
2504 
2505         hdr = lcb->lrh;
2506         *lsn = 0;
2507 
2508         if (lcb_ctx_next != lcb->ctx_mode)
2509                 goto check_undo_next;
2510 
2511         /* Loop as long as another lsn can be found. */
2512         for (;;) {
2513                 u64 current_lsn;
2514 
2515                 err = next_log_lsn(log, hdr, &current_lsn);
2516                 if (err)
2517                         goto out;
2518 
2519                 if (!current_lsn)
2520                         break;
2521 
2522                 if (hdr != lcb->lrh)
2523                         kfree(hdr);
2524 
2525                 hdr = NULL;
2526                 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2527                                     (struct RECORD_PAGE_HDR **)&hdr, NULL);
2528                 if (err)
2529                         goto out;
2530 
2531                 if (memcmp(&hdr->client, &lcb->client,
2532                            sizeof(struct CLIENT_ID))) {
2533                         /*err = -EINVAL; */
2534                 } else if (LfsClientRecord == hdr->record_type) {
2535                         kfree(lcb->lrh);
2536                         lcb->lrh = hdr;
2537                         *lsn = current_lsn;
2538                         return 0;
2539                 }
2540         }
2541 
2542 out:
2543         if (hdr != lcb->lrh)
2544                 kfree(hdr);
2545         return err;
2546 
2547 check_undo_next:
2548         if (lcb_ctx_undo_next == lcb->ctx_mode)
2549                 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2550         else if (lcb_ctx_prev == lcb->ctx_mode)
2551                 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2552         else
2553                 return 0;
2554 
2555         if (!next_lsn)
2556                 return 0;
2557 
2558         if (!verify_client_lsn(
2559                     log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2560                     next_lsn))
2561                 return 0;
2562 
2563         hdr = NULL;
2564         err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2565                             (struct RECORD_PAGE_HDR **)&hdr, NULL);
2566         if (err)
2567                 return err;
2568         kfree(lcb->lrh);
2569         lcb->lrh = hdr;
2570 
2571         *lsn = next_lsn;
2572 
2573         return 0;
2574 }
2575 
2576 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2577 {
2578         int err;
2579 
2580         err = find_client_next_lsn(log, lcb, lsn);
2581         if (err)
2582                 return err;
2583 
2584         if (!*lsn)
2585                 return 0;
2586 
2587         if (lcb->alloc)
2588                 kfree(lcb->log_rec);
2589 
2590         lcb->log_rec = NULL;
2591         lcb->alloc = false;
2592         kfree(lcb->lrh);
2593         lcb->lrh = NULL;
2594 
2595         return find_log_rec(log, *lsn, lcb);
2596 }
2597 
2598 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2599 {
2600         __le16 mask;
2601         u32 min_de, de_off, used, total;
2602         const struct NTFS_DE *e;
2603 
2604         if (hdr_has_subnode(hdr)) {
2605                 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2606                 mask = NTFS_IE_HAS_SUBNODES;
2607         } else {
2608                 min_de = sizeof(struct NTFS_DE);
2609                 mask = 0;
2610         }
2611 
2612         de_off = le32_to_cpu(hdr->de_off);
2613         used = le32_to_cpu(hdr->used);
2614         total = le32_to_cpu(hdr->total);
2615 
2616         if (de_off > bytes - min_de || used > bytes || total > bytes ||
2617             de_off + min_de > used || used > total) {
2618                 return false;
2619         }
2620 
2621         e = Add2Ptr(hdr, de_off);
2622         for (;;) {
2623                 u16 esize = le16_to_cpu(e->size);
2624                 struct NTFS_DE *next = Add2Ptr(e, esize);
2625 
2626                 if (esize < min_de || PtrOffset(hdr, next) > used ||
2627                     (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2628                         return false;
2629                 }
2630 
2631                 if (de_is_last(e))
2632                         break;
2633 
2634                 e = next;
2635         }
2636 
2637         return true;
2638 }
2639 
2640 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2641 {
2642         u16 fo;
2643         const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2644 
2645         if (r->sign != NTFS_INDX_SIGNATURE)
2646                 return false;
2647 
2648         fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2649 
2650         if (le16_to_cpu(r->fix_off) > fo)
2651                 return false;
2652 
2653         if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2654                 return false;
2655 
2656         return check_index_header(&ib->ihdr,
2657                                   bytes - offsetof(struct INDEX_BUFFER, ihdr));
2658 }
2659 
2660 static inline bool check_index_root(const struct ATTRIB *attr,
2661                                     struct ntfs_sb_info *sbi)
2662 {
2663         bool ret;
2664         const struct INDEX_ROOT *root = resident_data(attr);
2665         u8 index_bits = le32_to_cpu(root->index_block_size) >=
2666                                         sbi->cluster_size ?
2667                                 sbi->cluster_bits :
2668                                 SECTOR_SHIFT;
2669         u8 block_clst = root->index_block_clst;
2670 
2671         if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2672             (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2673             (root->type == ATTR_NAME &&
2674              root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2675             (le32_to_cpu(root->index_block_size) !=
2676              (block_clst << index_bits)) ||
2677             (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2678              block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2679              block_clst != 0x40 && block_clst != 0x80)) {
2680                 return false;
2681         }
2682 
2683         ret = check_index_header(&root->ihdr,
2684                                  le32_to_cpu(attr->res.data_size) -
2685                                          offsetof(struct INDEX_ROOT, ihdr));
2686         return ret;
2687 }
2688 
2689 static inline bool check_attr(const struct MFT_REC *rec,
2690                               const struct ATTRIB *attr,
2691                               struct ntfs_sb_info *sbi)
2692 {
2693         u32 asize = le32_to_cpu(attr->size);
2694         u32 rsize = 0;
2695         u64 dsize, svcn, evcn;
2696         u16 run_off;
2697 
2698         /* Check the fixed part of the attribute record header. */
2699         if (asize >= sbi->record_size ||
2700             asize + PtrOffset(rec, attr) >= sbi->record_size ||
2701             (attr->name_len &&
2702              le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2703                      asize)) {
2704                 return false;
2705         }
2706 
2707         /* Check the attribute fields. */
2708         switch (attr->non_res) {
2709         case 0:
2710                 rsize = le32_to_cpu(attr->res.data_size);
2711                 if (rsize >= asize ||
2712                     le16_to_cpu(attr->res.data_off) + rsize > asize) {
2713                         return false;
2714                 }
2715                 break;
2716 
2717         case 1:
2718                 dsize = le64_to_cpu(attr->nres.data_size);
2719                 svcn = le64_to_cpu(attr->nres.svcn);
2720                 evcn = le64_to_cpu(attr->nres.evcn);
2721                 run_off = le16_to_cpu(attr->nres.run_off);
2722 
2723                 if (svcn > evcn + 1 || run_off >= asize ||
2724                     le64_to_cpu(attr->nres.valid_size) > dsize ||
2725                     dsize > le64_to_cpu(attr->nres.alloc_size)) {
2726                         return false;
2727                 }
2728 
2729                 if (run_off > asize)
2730                         return false;
2731 
2732                 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2733                                Add2Ptr(attr, run_off), asize - run_off) < 0) {
2734                         return false;
2735                 }
2736 
2737                 return true;
2738 
2739         default:
2740                 return false;
2741         }
2742 
2743         switch (attr->type) {
2744         case ATTR_NAME:
2745                 if (fname_full_size(Add2Ptr(
2746                             attr, le16_to_cpu(attr->res.data_off))) > asize) {
2747                         return false;
2748                 }
2749                 break;
2750 
2751         case ATTR_ROOT:
2752                 return check_index_root(attr, sbi);
2753 
2754         case ATTR_STD:
2755                 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2756                     rsize != sizeof(struct ATTR_STD_INFO)) {
2757                         return false;
2758                 }
2759                 break;
2760 
2761         case ATTR_LIST:
2762         case ATTR_ID:
2763         case ATTR_SECURE:
2764         case ATTR_LABEL:
2765         case ATTR_VOL_INFO:
2766         case ATTR_DATA:
2767         case ATTR_ALLOC:
2768         case ATTR_BITMAP:
2769         case ATTR_REPARSE:
2770         case ATTR_EA_INFO:
2771         case ATTR_EA:
2772         case ATTR_PROPERTYSET:
2773         case ATTR_LOGGED_UTILITY_STREAM:
2774                 break;
2775 
2776         default:
2777                 return false;
2778         }
2779 
2780         return true;
2781 }
2782 
2783 static inline bool check_file_record(const struct MFT_REC *rec,
2784                                      const struct MFT_REC *rec2,
2785                                      struct ntfs_sb_info *sbi)
2786 {
2787         const struct ATTRIB *attr;
2788         u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2789         u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2790         u16 ao = le16_to_cpu(rec->attr_off);
2791         u32 rs = sbi->record_size;
2792 
2793         /* Check the file record header for consistency. */
2794         if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2795             fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2796             (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2797             ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2798             le32_to_cpu(rec->total) != rs) {
2799                 return false;
2800         }
2801 
2802         /* Loop to check all of the attributes. */
2803         for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2804              attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2805                 if (check_attr(rec, attr, sbi))
2806                         continue;
2807                 return false;
2808         }
2809 
2810         return true;
2811 }
2812 
2813 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2814                             const u64 *rlsn)
2815 {
2816         u64 lsn;
2817 
2818         if (!rlsn)
2819                 return true;
2820 
2821         lsn = le64_to_cpu(hdr->lsn);
2822 
2823         if (hdr->sign == NTFS_HOLE_SIGNATURE)
2824                 return false;
2825 
2826         if (*rlsn > lsn)
2827                 return true;
2828 
2829         return false;
2830 }
2831 
2832 static inline bool check_if_attr(const struct MFT_REC *rec,
2833                                  const struct LOG_REC_HDR *lrh)
2834 {
2835         u16 ro = le16_to_cpu(lrh->record_off);
2836         u16 o = le16_to_cpu(rec->attr_off);
2837         const struct ATTRIB *attr = Add2Ptr(rec, o);
2838 
2839         while (o < ro) {
2840                 u32 asize;
2841 
2842                 if (attr->type == ATTR_END)
2843                         break;
2844 
2845                 asize = le32_to_cpu(attr->size);
2846                 if (!asize)
2847                         break;
2848 
2849                 o += asize;
2850                 attr = Add2Ptr(attr, asize);
2851         }
2852 
2853         return o == ro;
2854 }
2855 
2856 static inline bool check_if_index_root(const struct MFT_REC *rec,
2857                                        const struct LOG_REC_HDR *lrh)
2858 {
2859         u16 ro = le16_to_cpu(lrh->record_off);
2860         u16 o = le16_to_cpu(rec->attr_off);
2861         const struct ATTRIB *attr = Add2Ptr(rec, o);
2862 
2863         while (o < ro) {
2864                 u32 asize;
2865 
2866                 if (attr->type == ATTR_END)
2867                         break;
2868 
2869                 asize = le32_to_cpu(attr->size);
2870                 if (!asize)
2871                         break;
2872 
2873                 o += asize;
2874                 attr = Add2Ptr(attr, asize);
2875         }
2876 
2877         return o == ro && attr->type == ATTR_ROOT;
2878 }
2879 
2880 static inline bool check_if_root_index(const struct ATTRIB *attr,
2881                                        const struct INDEX_HDR *hdr,
2882                                        const struct LOG_REC_HDR *lrh)
2883 {
2884         u16 ao = le16_to_cpu(lrh->attr_off);
2885         u32 de_off = le32_to_cpu(hdr->de_off);
2886         u32 o = PtrOffset(attr, hdr) + de_off;
2887         const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2888         u32 asize = le32_to_cpu(attr->size);
2889 
2890         while (o < ao) {
2891                 u16 esize;
2892 
2893                 if (o >= asize)
2894                         break;
2895 
2896                 esize = le16_to_cpu(e->size);
2897                 if (!esize)
2898                         break;
2899 
2900                 o += esize;
2901                 e = Add2Ptr(e, esize);
2902         }
2903 
2904         return o == ao;
2905 }
2906 
2907 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2908                                         u32 attr_off)
2909 {
2910         u32 de_off = le32_to_cpu(hdr->de_off);
2911         u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2912         const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2913         u32 used = le32_to_cpu(hdr->used);
2914 
2915         while (o < attr_off) {
2916                 u16 esize;
2917 
2918                 if (de_off >= used)
2919                         break;
2920 
2921                 esize = le16_to_cpu(e->size);
2922                 if (!esize)
2923                         break;
2924 
2925                 o += esize;
2926                 de_off += esize;
2927                 e = Add2Ptr(e, esize);
2928         }
2929 
2930         return o == attr_off;
2931 }
2932 
2933 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2934                                     u32 nsize)
2935 {
2936         u32 asize = le32_to_cpu(attr->size);
2937         int dsize = nsize - asize;
2938         u8 *next = Add2Ptr(attr, asize);
2939         u32 used = le32_to_cpu(rec->used);
2940 
2941         memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2942 
2943         rec->used = cpu_to_le32(used + dsize);
2944         attr->size = cpu_to_le32(nsize);
2945 }
2946 
2947 struct OpenAttr {
2948         struct ATTRIB *attr;
2949         struct runs_tree *run1;
2950         struct runs_tree run0;
2951         struct ntfs_inode *ni;
2952         // CLST rno;
2953 };
2954 
2955 /*
2956  * cmp_type_and_name
2957  *
2958  * Return: 0 if 'attr' has the same type and name.
2959  */
2960 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2961                                     const struct ATTRIB *a2)
2962 {
2963         return a1->type != a2->type || a1->name_len != a2->name_len ||
2964                (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2965                                        a1->name_len * sizeof(short)));
2966 }
2967 
2968 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2969                                          const struct ATTRIB *attr, CLST rno)
2970 {
2971         struct OPEN_ATTR_ENRTY *oe = NULL;
2972 
2973         while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2974                 struct OpenAttr *op_attr;
2975 
2976                 if (ino_get(&oe->ref) != rno)
2977                         continue;
2978 
2979                 op_attr = (struct OpenAttr *)oe->ptr;
2980                 if (!cmp_type_and_name(op_attr->attr, attr))
2981                         return op_attr;
2982         }
2983         return NULL;
2984 }
2985 
2986 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2987                                              enum ATTR_TYPE type, u64 size,
2988                                              const u16 *name, size_t name_len,
2989                                              __le16 flags)
2990 {
2991         struct ATTRIB *attr;
2992         u32 name_size = ALIGN(name_len * sizeof(short), 8);
2993         bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2994         u32 asize = name_size +
2995                     (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2996 
2997         attr = kzalloc(asize, GFP_NOFS);
2998         if (!attr)
2999                 return NULL;
3000 
3001         attr->type = type;
3002         attr->size = cpu_to_le32(asize);
3003         attr->flags = flags;
3004         attr->non_res = 1;
3005         attr->name_len = name_len;
3006 
3007         attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
3008         attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
3009         attr->nres.data_size = cpu_to_le64(size);
3010         attr->nres.valid_size = attr->nres.data_size;
3011         if (is_ext) {
3012                 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
3013                 if (is_attr_compressed(attr))
3014                         attr->nres.c_unit = NTFS_LZNT_CUNIT;
3015 
3016                 attr->nres.run_off =
3017                         cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3018                 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3019                        name_len * sizeof(short));
3020         } else {
3021                 attr->name_off = SIZEOF_NONRESIDENT_LE;
3022                 attr->nres.run_off =
3023                         cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3024                 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3025                        name_len * sizeof(short));
3026         }
3027 
3028         return attr;
3029 }
3030 
3031 /*
3032  * do_action - Common routine for the Redo and Undo Passes.
3033  * @rlsn: If it is NULL then undo.
3034  */
3035 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3036                      const struct LOG_REC_HDR *lrh, u32 op, void *data,
3037                      u32 dlen, u32 rec_len, const u64 *rlsn)
3038 {
3039         int err = 0;
3040         struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3041         struct inode *inode = NULL, *inode_parent;
3042         struct mft_inode *mi = NULL, *mi2_child = NULL;
3043         CLST rno = 0, rno_base = 0;
3044         struct INDEX_BUFFER *ib = NULL;
3045         struct MFT_REC *rec = NULL;
3046         struct ATTRIB *attr = NULL, *attr2;
3047         struct INDEX_HDR *hdr;
3048         struct INDEX_ROOT *root;
3049         struct NTFS_DE *e, *e1, *e2;
3050         struct NEW_ATTRIBUTE_SIZES *new_sz;
3051         struct ATTR_FILE_NAME *fname;
3052         struct OpenAttr *oa, *oa2;
3053         u32 nsize, t32, asize, used, esize, off, bits;
3054         u16 id, id2;
3055         u32 record_size = sbi->record_size;
3056         u64 t64;
3057         u16 roff = le16_to_cpu(lrh->record_off);
3058         u16 aoff = le16_to_cpu(lrh->attr_off);
3059         u64 lco = 0;
3060         u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3061         u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3062         u64 vbo = cbo + tvo;
3063         void *buffer_le = NULL;
3064         u32 bytes = 0;
3065         bool a_dirty = false;
3066         u16 data_off;
3067 
3068         oa = oe->ptr;
3069 
3070         /* Big switch to prepare. */
3071         switch (op) {
3072         /* ============================================================
3073          * Process MFT records, as described by the current log record.
3074          * ============================================================
3075          */
3076         case InitializeFileRecordSegment:
3077         case DeallocateFileRecordSegment:
3078         case WriteEndOfFileRecordSegment:
3079         case CreateAttribute:
3080         case DeleteAttribute:
3081         case UpdateResidentValue:
3082         case UpdateMappingPairs:
3083         case SetNewAttributeSizes:
3084         case AddIndexEntryRoot:
3085         case DeleteIndexEntryRoot:
3086         case SetIndexEntryVcnRoot:
3087         case UpdateFileNameRoot:
3088         case UpdateRecordDataRoot:
3089         case ZeroEndOfFileRecord:
3090                 rno = vbo >> sbi->record_bits;
3091                 inode = ilookup(sbi->sb, rno);
3092                 if (inode) {
3093                         mi = &ntfs_i(inode)->mi;
3094                 } else if (op == InitializeFileRecordSegment) {
3095                         mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3096                         if (!mi)
3097                                 return -ENOMEM;
3098                         err = mi_format_new(mi, sbi, rno, 0, false);
3099                         if (err)
3100                                 goto out;
3101                 } else {
3102                         /* Read from disk. */
3103                         err = mi_get(sbi, rno, &mi);
3104                         if (err)
3105                                 return err;
3106                 }
3107                 rec = mi->mrec;
3108 
3109                 if (op == DeallocateFileRecordSegment)
3110                         goto skip_load_parent;
3111 
3112                 if (InitializeFileRecordSegment != op) {
3113                         if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3114                                 goto dirty_vol;
3115                         if (!check_lsn(&rec->rhdr, rlsn))
3116                                 goto out;
3117                         if (!check_file_record(rec, NULL, sbi))
3118                                 goto dirty_vol;
3119                         attr = Add2Ptr(rec, roff);
3120                 }
3121 
3122                 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3123                         rno_base = rno;
3124                         goto skip_load_parent;
3125                 }
3126 
3127                 rno_base = ino_get(&rec->parent_ref);
3128                 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3129                 if (IS_ERR(inode_parent))
3130                         goto skip_load_parent;
3131 
3132                 if (is_bad_inode(inode_parent)) {
3133                         iput(inode_parent);
3134                         goto skip_load_parent;
3135                 }
3136 
3137                 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3138                         iput(inode_parent);
3139                 } else {
3140                         if (mi2_child->mrec != mi->mrec)
3141                                 memcpy(mi2_child->mrec, mi->mrec,
3142                                        sbi->record_size);
3143 
3144                         if (inode)
3145                                 iput(inode);
3146                         else if (mi)
3147                                 mi_put(mi);
3148 
3149                         inode = inode_parent;
3150                         mi = mi2_child;
3151                         rec = mi2_child->mrec;
3152                         attr = Add2Ptr(rec, roff);
3153                 }
3154 
3155 skip_load_parent:
3156                 inode_parent = NULL;
3157                 break;
3158 
3159         /*
3160          * Process attributes, as described by the current log record.
3161          */
3162         case UpdateNonresidentValue:
3163         case AddIndexEntryAllocation:
3164         case DeleteIndexEntryAllocation:
3165         case WriteEndOfIndexBuffer:
3166         case SetIndexEntryVcnAllocation:
3167         case UpdateFileNameAllocation:
3168         case SetBitsInNonresidentBitMap:
3169         case ClearBitsInNonresidentBitMap:
3170         case UpdateRecordDataAllocation:
3171                 attr = oa->attr;
3172                 bytes = UpdateNonresidentValue == op ? dlen : 0;
3173                 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3174 
3175                 if (attr->type == ATTR_ALLOC) {
3176                         t32 = le32_to_cpu(oe->bytes_per_index);
3177                         if (bytes < t32)
3178                                 bytes = t32;
3179                 }
3180 
3181                 if (!bytes)
3182                         bytes = lco - cbo;
3183 
3184                 bytes += roff;
3185                 if (attr->type == ATTR_ALLOC)
3186                         bytes = (bytes + 511) & ~511; // align
3187 
3188                 buffer_le = kmalloc(bytes, GFP_NOFS);
3189                 if (!buffer_le)
3190                         return -ENOMEM;
3191 
3192                 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3193                                        NULL);
3194                 if (err)
3195                         goto out;
3196 
3197                 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3198                         ntfs_fix_post_read(buffer_le, bytes, false);
3199                 break;
3200 
3201         default:
3202                 WARN_ON(1);
3203         }
3204 
3205         /* Big switch to do operation. */
3206         switch (op) {
3207         case InitializeFileRecordSegment:
3208                 if (roff + dlen > record_size)
3209                         goto dirty_vol;
3210 
3211                 memcpy(Add2Ptr(rec, roff), data, dlen);
3212                 mi->dirty = true;
3213                 break;
3214 
3215         case DeallocateFileRecordSegment:
3216                 clear_rec_inuse(rec);
3217                 le16_add_cpu(&rec->seq, 1);
3218                 mi->dirty = true;
3219                 break;
3220 
3221         case WriteEndOfFileRecordSegment:
3222                 attr2 = (struct ATTRIB *)data;
3223                 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3224                         goto dirty_vol;
3225 
3226                 memmove(attr, attr2, dlen);
3227                 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3228 
3229                 mi->dirty = true;
3230                 break;
3231 
3232         case CreateAttribute:
3233                 attr2 = (struct ATTRIB *)data;
3234                 asize = le32_to_cpu(attr2->size);
3235                 used = le32_to_cpu(rec->used);
3236 
3237                 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3238                     !IS_ALIGNED(asize, 8) ||
3239                     Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3240                     dlen > record_size - used) {
3241                         goto dirty_vol;
3242                 }
3243 
3244                 memmove(Add2Ptr(attr, asize), attr, used - roff);
3245                 memcpy(attr, attr2, asize);
3246 
3247                 rec->used = cpu_to_le32(used + asize);
3248                 id = le16_to_cpu(rec->next_attr_id);
3249                 id2 = le16_to_cpu(attr2->id);
3250                 if (id <= id2)
3251                         rec->next_attr_id = cpu_to_le16(id2 + 1);
3252                 if (is_attr_indexed(attr))
3253                         le16_add_cpu(&rec->hard_links, 1);
3254 
3255                 oa2 = find_loaded_attr(log, attr, rno_base);
3256                 if (oa2) {
3257                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3258                                            GFP_NOFS);
3259                         if (p2) {
3260                                 // run_close(oa2->run1);
3261                                 kfree(oa2->attr);
3262                                 oa2->attr = p2;
3263                         }
3264                 }
3265 
3266                 mi->dirty = true;
3267                 break;
3268 
3269         case DeleteAttribute:
3270                 asize = le32_to_cpu(attr->size);
3271                 used = le32_to_cpu(rec->used);
3272 
3273                 if (!check_if_attr(rec, lrh))
3274                         goto dirty_vol;
3275 
3276                 rec->used = cpu_to_le32(used - asize);
3277                 if (is_attr_indexed(attr))
3278                         le16_add_cpu(&rec->hard_links, -1);
3279 
3280                 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3281 
3282                 mi->dirty = true;
3283                 break;
3284 
3285         case UpdateResidentValue:
3286                 nsize = aoff + dlen;
3287 
3288                 if (!check_if_attr(rec, lrh))
3289                         goto dirty_vol;
3290 
3291                 asize = le32_to_cpu(attr->size);
3292                 used = le32_to_cpu(rec->used);
3293 
3294                 if (lrh->redo_len == lrh->undo_len) {
3295                         if (nsize > asize)
3296                                 goto dirty_vol;
3297                         goto move_data;
3298                 }
3299 
3300                 if (nsize > asize && nsize - asize > record_size - used)
3301                         goto dirty_vol;
3302 
3303                 nsize = ALIGN(nsize, 8);
3304                 data_off = le16_to_cpu(attr->res.data_off);
3305 
3306                 if (nsize < asize) {
3307                         memmove(Add2Ptr(attr, aoff), data, dlen);
3308                         data = NULL; // To skip below memmove().
3309                 }
3310 
3311                 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3312                         used - le16_to_cpu(lrh->record_off) - asize);
3313 
3314                 rec->used = cpu_to_le32(used + nsize - asize);
3315                 attr->size = cpu_to_le32(nsize);
3316                 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3317 
3318 move_data:
3319                 if (data)
3320                         memmove(Add2Ptr(attr, aoff), data, dlen);
3321 
3322                 oa2 = find_loaded_attr(log, attr, rno_base);
3323                 if (oa2) {
3324                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3325                                            GFP_NOFS);
3326                         if (p2) {
3327                                 // run_close(&oa2->run0);
3328                                 oa2->run1 = &oa2->run0;
3329                                 kfree(oa2->attr);
3330                                 oa2->attr = p2;
3331                         }
3332                 }
3333 
3334                 mi->dirty = true;
3335                 break;
3336 
3337         case UpdateMappingPairs:
3338                 nsize = aoff + dlen;
3339                 asize = le32_to_cpu(attr->size);
3340                 used = le32_to_cpu(rec->used);
3341 
3342                 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3343                     aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3344                     (nsize > asize && nsize - asize > record_size - used)) {
3345                         goto dirty_vol;
3346                 }
3347 
3348                 nsize = ALIGN(nsize, 8);
3349 
3350                 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3351                         used - le16_to_cpu(lrh->record_off) - asize);
3352                 rec->used = cpu_to_le32(used + nsize - asize);
3353                 attr->size = cpu_to_le32(nsize);
3354                 memmove(Add2Ptr(attr, aoff), data, dlen);
3355 
3356                 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3357                                         attr_run(attr), &t64)) {
3358                         goto dirty_vol;
3359                 }
3360 
3361                 attr->nres.evcn = cpu_to_le64(t64);
3362                 oa2 = find_loaded_attr(log, attr, rno_base);
3363                 if (oa2 && oa2->attr->non_res)
3364                         oa2->attr->nres.evcn = attr->nres.evcn;
3365 
3366                 mi->dirty = true;
3367                 break;
3368 
3369         case SetNewAttributeSizes:
3370                 new_sz = data;
3371                 if (!check_if_attr(rec, lrh) || !attr->non_res)
3372                         goto dirty_vol;
3373 
3374                 attr->nres.alloc_size = new_sz->alloc_size;
3375                 attr->nres.data_size = new_sz->data_size;
3376                 attr->nres.valid_size = new_sz->valid_size;
3377 
3378                 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3379                         attr->nres.total_size = new_sz->total_size;
3380 
3381                 oa2 = find_loaded_attr(log, attr, rno_base);
3382                 if (oa2) {
3383                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3384                                            GFP_NOFS);
3385                         if (p2) {
3386                                 kfree(oa2->attr);
3387                                 oa2->attr = p2;
3388                         }
3389                 }
3390                 mi->dirty = true;
3391                 break;
3392 
3393         case AddIndexEntryRoot:
3394                 e = (struct NTFS_DE *)data;
3395                 esize = le16_to_cpu(e->size);
3396                 root = resident_data(attr);
3397                 hdr = &root->ihdr;
3398                 used = le32_to_cpu(hdr->used);
3399 
3400                 if (!check_if_index_root(rec, lrh) ||
3401                     !check_if_root_index(attr, hdr, lrh) ||
3402                     Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3403                     esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3404                         goto dirty_vol;
3405                 }
3406 
3407                 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3408 
3409                 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3410 
3411                 memmove(Add2Ptr(e1, esize), e1,
3412                         PtrOffset(e1, Add2Ptr(hdr, used)));
3413                 memmove(e1, e, esize);
3414 
3415                 le32_add_cpu(&attr->res.data_size, esize);
3416                 hdr->used = cpu_to_le32(used + esize);
3417                 le32_add_cpu(&hdr->total, esize);
3418 
3419                 mi->dirty = true;
3420                 break;
3421 
3422         case DeleteIndexEntryRoot:
3423                 root = resident_data(attr);
3424                 hdr = &root->ihdr;
3425                 used = le32_to_cpu(hdr->used);
3426 
3427                 if (!check_if_index_root(rec, lrh) ||
3428                     !check_if_root_index(attr, hdr, lrh)) {
3429                         goto dirty_vol;
3430                 }
3431 
3432                 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3433                 esize = le16_to_cpu(e1->size);
3434                 e2 = Add2Ptr(e1, esize);
3435 
3436                 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3437 
3438                 le32_sub_cpu(&attr->res.data_size, esize);
3439                 hdr->used = cpu_to_le32(used - esize);
3440                 le32_sub_cpu(&hdr->total, esize);
3441 
3442                 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3443 
3444                 mi->dirty = true;
3445                 break;
3446 
3447         case SetIndexEntryVcnRoot:
3448                 root = resident_data(attr);
3449                 hdr = &root->ihdr;
3450 
3451                 if (!check_if_index_root(rec, lrh) ||
3452                     !check_if_root_index(attr, hdr, lrh)) {
3453                         goto dirty_vol;
3454                 }
3455 
3456                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3457 
3458                 de_set_vbn_le(e, *(__le64 *)data);
3459                 mi->dirty = true;
3460                 break;
3461 
3462         case UpdateFileNameRoot:
3463                 root = resident_data(attr);
3464                 hdr = &root->ihdr;
3465 
3466                 if (!check_if_index_root(rec, lrh) ||
3467                     !check_if_root_index(attr, hdr, lrh)) {
3468                         goto dirty_vol;
3469                 }
3470 
3471                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3472                 fname = (struct ATTR_FILE_NAME *)(e + 1);
3473                 memmove(&fname->dup, data, sizeof(fname->dup)); //
3474                 mi->dirty = true;
3475                 break;
3476 
3477         case UpdateRecordDataRoot:
3478                 root = resident_data(attr);
3479                 hdr = &root->ihdr;
3480 
3481                 if (!check_if_index_root(rec, lrh) ||
3482                     !check_if_root_index(attr, hdr, lrh)) {
3483                         goto dirty_vol;
3484                 }
3485 
3486                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3487 
3488                 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3489 
3490                 mi->dirty = true;
3491                 break;
3492 
3493         case ZeroEndOfFileRecord:
3494                 if (roff + dlen > record_size)
3495                         goto dirty_vol;
3496 
3497                 memset(attr, 0, dlen);
3498                 mi->dirty = true;
3499                 break;
3500 
3501         case UpdateNonresidentValue:
3502                 if (lco < cbo + roff + dlen)
3503                         goto dirty_vol;
3504 
3505                 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3506 
3507                 a_dirty = true;
3508                 if (attr->type == ATTR_ALLOC)
3509                         ntfs_fix_pre_write(buffer_le, bytes);
3510                 break;
3511 
3512         case AddIndexEntryAllocation:
3513                 ib = Add2Ptr(buffer_le, roff);
3514                 hdr = &ib->ihdr;
3515                 e = data;
3516                 esize = le16_to_cpu(e->size);
3517                 e1 = Add2Ptr(ib, aoff);
3518 
3519                 if (is_baad(&ib->rhdr))
3520                         goto dirty_vol;
3521                 if (!check_lsn(&ib->rhdr, rlsn))
3522                         goto out;
3523 
3524                 used = le32_to_cpu(hdr->used);
3525 
3526                 if (!check_index_buffer(ib, bytes) ||
3527                     !check_if_alloc_index(hdr, aoff) ||
3528                     Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3529                     used + esize > le32_to_cpu(hdr->total)) {
3530                         goto dirty_vol;
3531                 }
3532 
3533                 memmove(Add2Ptr(e1, esize), e1,
3534                         PtrOffset(e1, Add2Ptr(hdr, used)));
3535                 memcpy(e1, e, esize);
3536 
3537                 hdr->used = cpu_to_le32(used + esize);
3538 
3539                 a_dirty = true;
3540 
3541                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3542                 break;
3543 
3544         case DeleteIndexEntryAllocation:
3545                 ib = Add2Ptr(buffer_le, roff);
3546                 hdr = &ib->ihdr;
3547                 e = Add2Ptr(ib, aoff);
3548                 esize = le16_to_cpu(e->size);
3549 
3550                 if (is_baad(&ib->rhdr))
3551                         goto dirty_vol;
3552                 if (!check_lsn(&ib->rhdr, rlsn))
3553                         goto out;
3554 
3555                 if (!check_index_buffer(ib, bytes) ||
3556                     !check_if_alloc_index(hdr, aoff)) {
3557                         goto dirty_vol;
3558                 }
3559 
3560                 e1 = Add2Ptr(e, esize);
3561                 nsize = esize;
3562                 used = le32_to_cpu(hdr->used);
3563 
3564                 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3565 
3566                 hdr->used = cpu_to_le32(used - nsize);
3567 
3568                 a_dirty = true;
3569 
3570                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3571                 break;
3572 
3573         case WriteEndOfIndexBuffer:
3574                 ib = Add2Ptr(buffer_le, roff);
3575                 hdr = &ib->ihdr;
3576                 e = Add2Ptr(ib, aoff);
3577 
3578                 if (is_baad(&ib->rhdr))
3579                         goto dirty_vol;
3580                 if (!check_lsn(&ib->rhdr, rlsn))
3581                         goto out;
3582                 if (!check_index_buffer(ib, bytes) ||
3583                     !check_if_alloc_index(hdr, aoff) ||
3584                     aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3585                                           le32_to_cpu(hdr->total)) {
3586                         goto dirty_vol;
3587                 }
3588 
3589                 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3590                 memmove(e, data, dlen);
3591 
3592                 a_dirty = true;
3593                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3594                 break;
3595 
3596         case SetIndexEntryVcnAllocation:
3597                 ib = Add2Ptr(buffer_le, roff);
3598                 hdr = &ib->ihdr;
3599                 e = Add2Ptr(ib, aoff);
3600 
3601                 if (is_baad(&ib->rhdr))
3602                         goto dirty_vol;
3603 
3604                 if (!check_lsn(&ib->rhdr, rlsn))
3605                         goto out;
3606                 if (!check_index_buffer(ib, bytes) ||
3607                     !check_if_alloc_index(hdr, aoff)) {
3608                         goto dirty_vol;
3609                 }
3610 
3611                 de_set_vbn_le(e, *(__le64 *)data);
3612 
3613                 a_dirty = true;
3614                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3615                 break;
3616 
3617         case UpdateFileNameAllocation:
3618                 ib = Add2Ptr(buffer_le, roff);
3619                 hdr = &ib->ihdr;
3620                 e = Add2Ptr(ib, aoff);
3621 
3622                 if (is_baad(&ib->rhdr))
3623                         goto dirty_vol;
3624 
3625                 if (!check_lsn(&ib->rhdr, rlsn))
3626                         goto out;
3627                 if (!check_index_buffer(ib, bytes) ||
3628                     !check_if_alloc_index(hdr, aoff)) {
3629                         goto dirty_vol;
3630                 }
3631 
3632                 fname = (struct ATTR_FILE_NAME *)(e + 1);
3633                 memmove(&fname->dup, data, sizeof(fname->dup));
3634 
3635                 a_dirty = true;
3636                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3637                 break;
3638 
3639         case SetBitsInNonresidentBitMap:
3640                 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3641                 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3642 
3643                 if (cbo + (off + 7) / 8 > lco ||
3644                     cbo + ((off + bits + 7) / 8) > lco) {
3645                         goto dirty_vol;
3646                 }
3647 
3648                 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3649                 a_dirty = true;
3650                 break;
3651 
3652         case ClearBitsInNonresidentBitMap:
3653                 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3654                 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3655 
3656                 if (cbo + (off + 7) / 8 > lco ||
3657                     cbo + ((off + bits + 7) / 8) > lco) {
3658                         goto dirty_vol;
3659                 }
3660 
3661                 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3662                 a_dirty = true;
3663                 break;
3664 
3665         case UpdateRecordDataAllocation:
3666                 ib = Add2Ptr(buffer_le, roff);
3667                 hdr = &ib->ihdr;
3668                 e = Add2Ptr(ib, aoff);
3669 
3670                 if (is_baad(&ib->rhdr))
3671                         goto dirty_vol;
3672 
3673                 if (!check_lsn(&ib->rhdr, rlsn))
3674                         goto out;
3675                 if (!check_index_buffer(ib, bytes) ||
3676                     !check_if_alloc_index(hdr, aoff)) {
3677                         goto dirty_vol;
3678                 }
3679 
3680                 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3681 
3682                 a_dirty = true;
3683                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3684                 break;
3685 
3686         default:
3687                 WARN_ON(1);
3688         }
3689 
3690         if (rlsn) {
3691                 __le64 t64 = cpu_to_le64(*rlsn);
3692 
3693                 if (rec)
3694                         rec->rhdr.lsn = t64;
3695                 if (ib)
3696                         ib->rhdr.lsn = t64;
3697         }
3698 
3699         if (mi && mi->dirty) {
3700                 err = mi_write(mi, 0);
3701                 if (err)
3702                         goto out;
3703         }
3704 
3705         if (a_dirty) {
3706                 attr = oa->attr;
3707                 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3708                                         0);
3709                 if (err)
3710                         goto out;
3711         }
3712 
3713 out:
3714 
3715         if (inode)
3716                 iput(inode);
3717         else if (mi != mi2_child)
3718                 mi_put(mi);
3719 
3720         kfree(buffer_le);
3721 
3722         return err;
3723 
3724 dirty_vol:
3725         log->set_dirty = true;
3726         goto out;
3727 }
3728 
3729 /*
3730  * log_replay - Replays log and empties it.
3731  *
3732  * This function is called during mount operation.
3733  * It replays log and empties it.
3734  * Initialized is set false if logfile contains '-1'.
3735  */
3736 int log_replay(struct ntfs_inode *ni, bool *initialized)
3737 {
3738         int err;
3739         struct ntfs_sb_info *sbi = ni->mi.sbi;
3740         struct ntfs_log *log;
3741 
3742         u64 rec_lsn, checkpt_lsn = 0, rlsn = 0;
3743         struct ATTR_NAME_ENTRY *attr_names = NULL;
3744         u32 attr_names_bytes = 0;
3745         u32 oatbl_bytes = 0;
3746         struct RESTART_TABLE *dptbl = NULL;
3747         struct RESTART_TABLE *trtbl = NULL;
3748         const struct RESTART_TABLE *rt;
3749         struct RESTART_TABLE *oatbl = NULL;
3750         struct inode *inode;
3751         struct OpenAttr *oa;
3752         struct ntfs_inode *ni_oe;
3753         struct ATTRIB *attr = NULL;
3754         u64 size, vcn, undo_next_lsn;
3755         CLST rno, lcn, lcn0, len0, clen;
3756         void *data;
3757         struct NTFS_RESTART *rst = NULL;
3758         struct lcb *lcb = NULL;
3759         struct OPEN_ATTR_ENRTY *oe;
3760         struct ATTR_NAME_ENTRY *ane;
3761         struct TRANSACTION_ENTRY *tr;
3762         struct DIR_PAGE_ENTRY *dp;
3763         u32 i, bytes_per_attr_entry;
3764         u32 vbo, tail, off, dlen;
3765         u32 saved_len, rec_len, transact_id;
3766         bool use_second_page;
3767         struct RESTART_AREA *ra2, *ra = NULL;
3768         struct CLIENT_REC *ca, *cr;
3769         __le16 client;
3770         struct RESTART_HDR *rh;
3771         const struct LFS_RECORD_HDR *frh;
3772         const struct LOG_REC_HDR *lrh;
3773         bool is_mapped;
3774         bool is_ro = sb_rdonly(sbi->sb);
3775         u64 t64;
3776         u16 t16;
3777         u32 t32;
3778 
3779         log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3780         if (!log)
3781                 return -ENOMEM;
3782 
3783         log->ni = ni;
3784         log->l_size = log->orig_file_size = ni->vfs_inode.i_size;
3785 
3786         /* Get the size of page. NOTE: To replay we can use default page. */
3787 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3788         log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, true);
3789 #else
3790         log->page_size = norm_file_page(PAGE_SIZE, &log->l_size, false);
3791 #endif
3792         if (!log->page_size) {
3793                 err = -EINVAL;
3794                 goto out;
3795         }
3796 
3797         log->one_page_buf = kmalloc(log->page_size, GFP_NOFS);
3798         if (!log->one_page_buf) {
3799                 err = -ENOMEM;
3800                 goto out;
3801         }
3802 
3803         log->page_mask = log->page_size - 1;
3804         log->page_bits = blksize_bits(log->page_size);
3805 
3806         /* Look for a restart area on the disk. */
3807         err = log_read_rst(log, true, &log->rst_info);
3808         if (err)
3809                 goto out;
3810 
3811         /* remember 'initialized' */
3812         *initialized = log->rst_info.initialized;
3813 
3814         if (!log->rst_info.restart) {
3815                 if (log->rst_info.initialized) {
3816                         /* No restart area but the file is not initialized. */
3817                         err = -EINVAL;
3818                         goto out;
3819                 }
3820 
3821                 log_init_pg_hdr(log, 1, 1);
3822                 log_create(log, 0, get_random_u32(), false, false);
3823 
3824                 ra = log_create_ra(log);
3825                 if (!ra) {
3826                         err = -ENOMEM;
3827                         goto out;
3828                 }
3829                 log->ra = ra;
3830                 log->init_ra = true;
3831 
3832                 goto process_log;
3833         }
3834 
3835         /*
3836          * If the restart offset above wasn't zero then we won't
3837          * look for a second restart.
3838          */
3839         if (log->rst_info.vbo)
3840                 goto check_restart_area;
3841 
3842         err = log_read_rst(log, false, &log->rst_info2);
3843         if (err)
3844                 goto out;
3845 
3846         /* Determine which restart area to use. */
3847         if (!log->rst_info2.restart ||
3848             log->rst_info2.last_lsn <= log->rst_info.last_lsn)
3849                 goto use_first_page;
3850 
3851         use_second_page = true;
3852 
3853         if (log->rst_info.chkdsk_was_run &&
3854             log->page_size != log->rst_info.vbo) {
3855                 struct RECORD_PAGE_HDR *sp = NULL;
3856                 bool usa_error;
3857 
3858                 if (!read_log_page(log, log->page_size, &sp, &usa_error) &&
3859                     sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3860                         use_second_page = false;
3861                 }
3862                 kfree(sp);
3863         }
3864 
3865         if (use_second_page) {
3866                 kfree(log->rst_info.r_page);
3867                 memcpy(&log->rst_info, &log->rst_info2,
3868                        sizeof(struct restart_info));
3869                 log->rst_info2.r_page = NULL;
3870         }
3871 
3872 use_first_page:
3873         kfree(log->rst_info2.r_page);
3874 
3875 check_restart_area:
3876         /*
3877          * If the restart area is at offset 0, we want
3878          * to write the second restart area first.
3879          */
3880         log->init_ra = !!log->rst_info.vbo;
3881 
3882         /* If we have a valid page then grab a pointer to the restart area. */
3883         ra2 = log->rst_info.valid_page ?
3884                       Add2Ptr(log->rst_info.r_page,
3885                               le16_to_cpu(log->rst_info.r_page->ra_off)) :
3886                       NULL;
3887 
3888         if (log->rst_info.chkdsk_was_run ||
3889             (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3890                 bool wrapped = false;
3891                 bool use_multi_page = false;
3892                 u32 open_log_count;
3893 
3894                 /* Do some checks based on whether we have a valid log page. */
3895                 open_log_count = log->rst_info.valid_page ?
3896                                          le32_to_cpu(ra2->open_log_count) :
3897                                          get_random_u32();
3898 
3899                 log_init_pg_hdr(log, 1, 1);
3900 
3901                 log_create(log, log->rst_info.last_lsn, open_log_count, wrapped,
3902                            use_multi_page);
3903 
3904                 ra = log_create_ra(log);
3905                 if (!ra) {
3906                         err = -ENOMEM;
3907                         goto out;
3908                 }
3909                 log->ra = ra;
3910 
3911                 /* Put the restart areas and initialize
3912                  * the log file as required.
3913                  */
3914                 goto process_log;
3915         }
3916 
3917         if (!ra2) {
3918                 err = -EINVAL;
3919                 goto out;
3920         }
3921 
3922         /*
3923          * If the log page or the system page sizes have changed, we can't
3924          * use the log file. We must use the system page size instead of the
3925          * default size if there is not a clean shutdown.
3926          */
3927         t32 = le32_to_cpu(log->rst_info.r_page->sys_page_size);
3928         if (log->page_size != t32) {
3929                 log->l_size = log->orig_file_size;
3930                 log->page_size = norm_file_page(t32, &log->l_size,
3931                                                 t32 == DefaultLogPageSize);
3932         }
3933 
3934         if (log->page_size != t32 ||
3935             log->page_size != le32_to_cpu(log->rst_info.r_page->page_size)) {
3936                 err = -EINVAL;
3937                 goto out;
3938         }
3939 
3940         log->page_mask = log->page_size - 1;
3941         log->page_bits = blksize_bits(log->page_size);
3942 
3943         /* If the file size has shrunk then we won't mount it. */
3944         if (log->l_size < le64_to_cpu(ra2->l_size)) {
3945                 err = -EINVAL;
3946                 goto out;
3947         }
3948 
3949         log_init_pg_hdr(log, le16_to_cpu(log->rst_info.r_page->major_ver),
3950                         le16_to_cpu(log->rst_info.r_page->minor_ver));
3951 
3952         log->l_size = le64_to_cpu(ra2->l_size);
3953         log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3954         log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3955         log->seq_num_mask = (8 << log->file_data_bits) - 1;
3956         log->last_lsn = le64_to_cpu(ra2->current_lsn);
3957         log->seq_num = log->last_lsn >> log->file_data_bits;
3958         log->ra_off = le16_to_cpu(log->rst_info.r_page->ra_off);
3959         log->restart_size = log->sys_page_size - log->ra_off;
3960         log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3961         log->ra_size = le16_to_cpu(ra2->ra_len);
3962         log->data_off = le16_to_cpu(ra2->data_off);
3963         log->data_size = log->page_size - log->data_off;
3964         log->reserved = log->data_size - log->record_header_len;
3965 
3966         vbo = lsn_to_vbo(log, log->last_lsn);
3967 
3968         if (vbo < log->first_page) {
3969                 /* This is a pseudo lsn. */
3970                 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3971                 log->next_page = log->first_page;
3972                 goto find_oldest;
3973         }
3974 
3975         /* Find the end of this log record. */
3976         off = final_log_off(log, log->last_lsn,
3977                             le32_to_cpu(ra2->last_lsn_data_len));
3978 
3979         /* If we wrapped the file then increment the sequence number. */
3980         if (off <= vbo) {
3981                 log->seq_num += 1;
3982                 log->l_flags |= NTFSLOG_WRAPPED;
3983         }
3984 
3985         /* Now compute the next log page to use. */
3986         vbo &= ~log->sys_page_mask;
3987         tail = log->page_size - (off & log->page_mask) - 1;
3988 
3989         /*
3990          *If we can fit another log record on the page,
3991          * move back a page the log file.
3992          */
3993         if (tail >= log->record_header_len) {
3994                 log->l_flags |= NTFSLOG_REUSE_TAIL;
3995                 log->next_page = vbo;
3996         } else {
3997                 log->next_page = next_page_off(log, vbo);
3998         }
3999 
4000 find_oldest:
4001         /*
4002          * Find the oldest client lsn. Use the last
4003          * flushed lsn as a starting point.
4004          */
4005         log->oldest_lsn = log->last_lsn;
4006         oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
4007                           ra2->client_idx[1], &log->oldest_lsn);
4008         log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4009 
4010         if (log->oldest_lsn_off < log->first_page)
4011                 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4012 
4013         if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4014                 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4015 
4016         log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4017         log->total_avail_pages = log->l_size - log->first_page;
4018         log->total_avail = log->total_avail_pages >> log->page_bits;
4019         log->max_current_avail = log->total_avail * log->reserved;
4020         log->total_avail = log->total_avail * log->data_size;
4021 
4022         log->current_avail = current_log_avail(log);
4023 
4024         ra = kzalloc(log->restart_size, GFP_NOFS);
4025         if (!ra) {
4026                 err = -ENOMEM;
4027                 goto out;
4028         }
4029         log->ra = ra;
4030 
4031         t16 = le16_to_cpu(ra2->client_off);
4032         if (t16 == offsetof(struct RESTART_AREA, clients)) {
4033                 memcpy(ra, ra2, log->ra_size);
4034         } else {
4035                 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4036                 memcpy(ra->clients, Add2Ptr(ra2, t16),
4037                        le16_to_cpu(ra2->ra_len) - t16);
4038 
4039                 log->current_openlog_count = get_random_u32();
4040                 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4041                 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4042                                sizeof(struct CLIENT_REC);
4043                 ra->client_off =
4044                         cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4045                 ra->ra_len = cpu_to_le16(log->ra_size);
4046         }
4047 
4048         le32_add_cpu(&ra->open_log_count, 1);
4049 
4050         /* Now we need to walk through looking for the last lsn. */
4051         err = last_log_lsn(log);
4052         if (err)
4053                 goto out;
4054 
4055         log->current_avail = current_log_avail(log);
4056 
4057         /* Remember which restart area to write first. */
4058         log->init_ra = log->rst_info.vbo;
4059 
4060 process_log:
4061         /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4062         switch ((log->major_ver << 16) + log->minor_ver) {
4063         case 0x10000:
4064         case 0x10001:
4065         case 0x20000:
4066                 break;
4067         default:
4068                 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4069                           log->major_ver, log->minor_ver);
4070                 err = -EOPNOTSUPP;
4071                 log->set_dirty = true;
4072                 goto out;
4073         }
4074 
4075         /* One client "NTFS" per logfile. */
4076         ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4077 
4078         for (client = ra->client_idx[1];; client = cr->next_client) {
4079                 if (client == LFS_NO_CLIENT_LE) {
4080                         /* Insert "NTFS" client LogFile. */
4081                         client = ra->client_idx[0];
4082                         if (client == LFS_NO_CLIENT_LE) {
4083                                 err = -EINVAL;
4084                                 goto out;
4085                         }
4086 
4087                         t16 = le16_to_cpu(client);
4088                         cr = ca + t16;
4089 
4090                         remove_client(ca, cr, &ra->client_idx[0]);
4091 
4092                         cr->restart_lsn = 0;
4093                         cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4094                         cr->name_bytes = cpu_to_le32(8);
4095                         cr->name[0] = cpu_to_le16('N');
4096                         cr->name[1] = cpu_to_le16('T');
4097                         cr->name[2] = cpu_to_le16('F');
4098                         cr->name[3] = cpu_to_le16('S');
4099 
4100                         add_client(ca, t16, &ra->client_idx[1]);
4101                         break;
4102                 }
4103 
4104                 cr = ca + le16_to_cpu(client);
4105 
4106                 if (cpu_to_le32(8) == cr->name_bytes &&
4107                     cpu_to_le16('N') == cr->name[0] &&
4108                     cpu_to_le16('T') == cr->name[1] &&
4109                     cpu_to_le16('F') == cr->name[2] &&
4110                     cpu_to_le16('S') == cr->name[3])
4111                         break;
4112         }
4113 
4114         /* Update the client handle with the client block information. */
4115         log->client_id.seq_num = cr->seq_num;
4116         log->client_id.client_idx = client;
4117 
4118         err = read_rst_area(log, &rst, &checkpt_lsn);
4119         if (err)
4120                 goto out;
4121 
4122         if (!rst)
4123                 goto out;
4124 
4125         bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4126 
4127         if (rst->check_point_start)
4128                 checkpt_lsn = le64_to_cpu(rst->check_point_start);
4129 
4130         /* Allocate and Read the Transaction Table. */
4131         if (!rst->transact_table_len)
4132                 goto check_dirty_page_table; /* reduce tab pressure. */
4133 
4134         t64 = le64_to_cpu(rst->transact_table_lsn);
4135         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4136         if (err)
4137                 goto out;
4138 
4139         lrh = lcb->log_rec;
4140         frh = lcb->lrh;
4141         rec_len = le32_to_cpu(frh->client_data_len);
4142 
4143         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4144                            bytes_per_attr_entry)) {
4145                 err = -EINVAL;
4146                 goto out;
4147         }
4148 
4149         t16 = le16_to_cpu(lrh->redo_off);
4150 
4151         rt = Add2Ptr(lrh, t16);
4152         t32 = rec_len - t16;
4153 
4154         /* Now check that this is a valid restart table. */
4155         if (!check_rstbl(rt, t32)) {
4156                 err = -EINVAL;
4157                 goto out;
4158         }
4159 
4160         trtbl = kmemdup(rt, t32, GFP_NOFS);
4161         if (!trtbl) {
4162                 err = -ENOMEM;
4163                 goto out;
4164         }
4165 
4166         lcb_put(lcb);
4167         lcb = NULL;
4168 
4169 check_dirty_page_table:
4170         /* The next record back should be the Dirty Pages Table. */
4171         if (!rst->dirty_pages_len)
4172                 goto check_attribute_names; /* reduce tab pressure. */
4173 
4174         t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4175         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4176         if (err)
4177                 goto out;
4178 
4179         lrh = lcb->log_rec;
4180         frh = lcb->lrh;
4181         rec_len = le32_to_cpu(frh->client_data_len);
4182 
4183         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4184                            bytes_per_attr_entry)) {
4185                 err = -EINVAL;
4186                 goto out;
4187         }
4188 
4189         t16 = le16_to_cpu(lrh->redo_off);
4190 
4191         rt = Add2Ptr(lrh, t16);
4192         t32 = rec_len - t16;
4193 
4194         /* Now check that this is a valid restart table. */
4195         if (!check_rstbl(rt, t32)) {
4196                 err = -EINVAL;
4197                 goto out;
4198         }
4199 
4200         dptbl = kmemdup(rt, t32, GFP_NOFS);
4201         if (!dptbl) {
4202                 err = -ENOMEM;
4203                 goto out;
4204         }
4205 
4206         /* Convert Ra version '' into version '1'. */
4207         if (rst->major_ver)
4208                 goto end_conv_1; /* reduce tab pressure. */
4209 
4210         dp = NULL;
4211         while ((dp = enum_rstbl(dptbl, dp))) {
4212                 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4213                 // NOTE: Danger. Check for of boundary.
4214                 memmove(&dp->vcn, &dp0->vcn_low,
4215                         2 * sizeof(u64) +
4216                                 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4217         }
4218 
4219 end_conv_1:
4220         lcb_put(lcb);
4221         lcb = NULL;
4222 
4223         /*
4224          * Go through the table and remove the duplicates,
4225          * remembering the oldest lsn values.
4226          */
4227         if (sbi->cluster_size <= log->page_size)
4228                 goto trace_dp_table; /* reduce tab pressure. */
4229         dp = NULL;
4230         while ((dp = enum_rstbl(dptbl, dp))) {
4231                 struct DIR_PAGE_ENTRY *next = dp;
4232 
4233                 while ((next = enum_rstbl(dptbl, next))) {
4234                         if (next->target_attr == dp->target_attr &&
4235                             next->vcn == dp->vcn) {
4236                                 if (le64_to_cpu(next->oldest_lsn) <
4237                                     le64_to_cpu(dp->oldest_lsn)) {
4238                                         dp->oldest_lsn = next->oldest_lsn;
4239                                 }
4240 
4241                                 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4242                         }
4243                 }
4244         }
4245 trace_dp_table:
4246 check_attribute_names:
4247         /* The next record should be the Attribute Names. */
4248         if (!rst->attr_names_len)
4249                 goto check_attr_table; /* reduce tab pressure. */
4250 
4251         t64 = le64_to_cpu(rst->attr_names_lsn);
4252         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4253         if (err)
4254                 goto out;
4255 
4256         lrh = lcb->log_rec;
4257         frh = lcb->lrh;
4258         rec_len = le32_to_cpu(frh->client_data_len);
4259 
4260         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4261                            bytes_per_attr_entry)) {
4262                 err = -EINVAL;
4263                 goto out;
4264         }
4265 
4266         t32 = lrh_length(lrh);
4267         attr_names_bytes = rec_len - t32;
4268 
4269         attr_names = kmemdup(Add2Ptr(lrh, t32), attr_names_bytes, GFP_NOFS);
4270         if (!attr_names) {
4271                 err = -ENOMEM;
4272                 goto out;
4273         }
4274 
4275         lcb_put(lcb);
4276         lcb = NULL;
4277 
4278 check_attr_table:
4279         /* The next record should be the attribute Table. */
4280         if (!rst->open_attr_len)
4281                 goto check_attribute_names2; /* reduce tab pressure. */
4282 
4283         t64 = le64_to_cpu(rst->open_attr_table_lsn);
4284         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4285         if (err)
4286                 goto out;
4287 
4288         lrh = lcb->log_rec;
4289         frh = lcb->lrh;
4290         rec_len = le32_to_cpu(frh->client_data_len);
4291 
4292         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4293                            bytes_per_attr_entry)) {
4294                 err = -EINVAL;
4295                 goto out;
4296         }
4297 
4298         t16 = le16_to_cpu(lrh->redo_off);
4299 
4300         rt = Add2Ptr(lrh, t16);
4301         oatbl_bytes = rec_len - t16;
4302 
4303         if (!check_rstbl(rt, oatbl_bytes)) {
4304                 err = -EINVAL;
4305                 goto out;
4306         }
4307 
4308         oatbl = kmemdup(rt, oatbl_bytes, GFP_NOFS);
4309         if (!oatbl) {
4310                 err = -ENOMEM;
4311                 goto out;
4312         }
4313 
4314         log->open_attr_tbl = oatbl;
4315 
4316         /* Clear all of the Attr pointers. */
4317         oe = NULL;
4318         while ((oe = enum_rstbl(oatbl, oe))) {
4319                 if (!rst->major_ver) {
4320                         struct OPEN_ATTR_ENRTY_32 oe0;
4321 
4322                         /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4323                         memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4324 
4325                         oe->bytes_per_index = oe0.bytes_per_index;
4326                         oe->type = oe0.type;
4327                         oe->is_dirty_pages = oe0.is_dirty_pages;
4328                         oe->name_len = 0;
4329                         oe->ref = oe0.ref;
4330                         oe->open_record_lsn = oe0.open_record_lsn;
4331                 }
4332 
4333                 oe->is_attr_name = 0;
4334                 oe->ptr = NULL;
4335         }
4336 
4337         lcb_put(lcb);
4338         lcb = NULL;
4339 
4340 check_attribute_names2:
4341         if (attr_names && oatbl) {
4342                 off = 0;
4343                 for (;;) {
4344                         /* Check we can use attribute name entry 'ane'. */
4345                         static_assert(sizeof(*ane) == 4);
4346                         if (off + sizeof(*ane) > attr_names_bytes) {
4347                                 /* just ignore the rest. */
4348                                 break;
4349                         }
4350 
4351                         ane = Add2Ptr(attr_names, off);
4352                         t16 = le16_to_cpu(ane->off);
4353                         if (!t16) {
4354                                 /* this is the only valid exit. */
4355                                 break;
4356                         }
4357 
4358                         /* Check we can use open attribute entry 'oe'. */
4359                         if (t16 + sizeof(*oe) > oatbl_bytes) {
4360                                 /* just ignore the rest. */
4361                                 break;
4362                         }
4363 
4364                         /* TODO: Clear table on exit! */
4365                         oe = Add2Ptr(oatbl, t16);
4366                         t16 = le16_to_cpu(ane->name_bytes);
4367                         off += t16 + sizeof(*ane);
4368                         if (off > attr_names_bytes) {
4369                                 /* just ignore the rest. */
4370                                 break;
4371                         }
4372                         oe->name_len = t16 / sizeof(short);
4373                         oe->ptr = ane->name;
4374                         oe->is_attr_name = 2;
4375                 }
4376         }
4377 
4378         /*
4379          * If the checkpt_lsn is zero, then this is a freshly
4380          * formatted disk and we have no work to do.
4381          */
4382         if (!checkpt_lsn) {
4383                 err = 0;
4384                 goto out;
4385         }
4386 
4387         if (!oatbl) {
4388                 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4389                 if (!oatbl) {
4390                         err = -ENOMEM;
4391                         goto out;
4392                 }
4393         }
4394 
4395         log->open_attr_tbl = oatbl;
4396 
4397         /* Start the analysis pass from the Checkpoint lsn. */
4398         rec_lsn = checkpt_lsn;
4399 
4400         /* Read the first lsn. */
4401         err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4402         if (err)
4403                 goto out;
4404 
4405         /* Loop to read all subsequent records to the end of the log file. */
4406 next_log_record_analyze:
4407         err = read_next_log_rec(log, lcb, &rec_lsn);
4408         if (err)
4409                 goto out;
4410 
4411         if (!rec_lsn)
4412                 goto end_log_records_enumerate;
4413 
4414         frh = lcb->lrh;
4415         transact_id = le32_to_cpu(frh->transact_id);
4416         rec_len = le32_to_cpu(frh->client_data_len);
4417         lrh = lcb->log_rec;
4418 
4419         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4420                 err = -EINVAL;
4421                 goto out;
4422         }
4423 
4424         /*
4425          * The first lsn after the previous lsn remembered
4426          * the checkpoint is the first candidate for the rlsn.
4427          */
4428         if (!rlsn)
4429                 rlsn = rec_lsn;
4430 
4431         if (LfsClientRecord != frh->record_type)
4432                 goto next_log_record_analyze;
4433 
4434         /*
4435          * Now update the Transaction Table for this transaction. If there
4436          * is no entry present or it is unallocated we allocate the entry.
4437          */
4438         if (!trtbl) {
4439                 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4440                                     INITIAL_NUMBER_TRANSACTIONS);
4441                 if (!trtbl) {
4442                         err = -ENOMEM;
4443                         goto out;
4444                 }
4445         }
4446 
4447         tr = Add2Ptr(trtbl, transact_id);
4448 
4449         if (transact_id >= bytes_per_rt(trtbl) ||
4450             tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4451                 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4452                 if (!tr) {
4453                         err = -ENOMEM;
4454                         goto out;
4455                 }
4456                 tr->transact_state = TransactionActive;
4457                 tr->first_lsn = cpu_to_le64(rec_lsn);
4458         }
4459 
4460         tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4461 
4462         /*
4463          * If this is a compensation log record, then change
4464          * the undo_next_lsn to be the undo_next_lsn of this record.
4465          */
4466         if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4467                 tr->undo_next_lsn = frh->client_undo_next_lsn;
4468 
4469         /* Dispatch to handle log record depending on type. */
4470         switch (le16_to_cpu(lrh->redo_op)) {
4471         case InitializeFileRecordSegment:
4472         case DeallocateFileRecordSegment:
4473         case WriteEndOfFileRecordSegment:
4474         case CreateAttribute:
4475         case DeleteAttribute:
4476         case UpdateResidentValue:
4477         case UpdateNonresidentValue:
4478         case UpdateMappingPairs:
4479         case SetNewAttributeSizes:
4480         case AddIndexEntryRoot:
4481         case DeleteIndexEntryRoot:
4482         case AddIndexEntryAllocation:
4483         case DeleteIndexEntryAllocation:
4484         case WriteEndOfIndexBuffer:
4485         case SetIndexEntryVcnRoot:
4486         case SetIndexEntryVcnAllocation:
4487         case UpdateFileNameRoot:
4488         case UpdateFileNameAllocation:
4489         case SetBitsInNonresidentBitMap:
4490         case ClearBitsInNonresidentBitMap:
4491         case UpdateRecordDataRoot:
4492         case UpdateRecordDataAllocation:
4493         case ZeroEndOfFileRecord:
4494                 t16 = le16_to_cpu(lrh->target_attr);
4495                 t64 = le64_to_cpu(lrh->target_vcn);
4496                 dp = find_dp(dptbl, t16, t64);
4497 
4498                 if (dp)
4499                         goto copy_lcns;
4500 
4501                 /*
4502                  * Calculate the number of clusters per page the system
4503                  * which wrote the checkpoint, possibly creating the table.
4504                  */
4505                 if (dptbl) {
4506                         t32 = (le16_to_cpu(dptbl->size) -
4507                                sizeof(struct DIR_PAGE_ENTRY)) /
4508                               sizeof(u64);
4509                 } else {
4510                         t32 = log->clst_per_page;
4511                         kfree(dptbl);
4512                         dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4513                                             32);
4514                         if (!dptbl) {
4515                                 err = -ENOMEM;
4516                                 goto out;
4517                         }
4518                 }
4519 
4520                 dp = alloc_rsttbl_idx(&dptbl);
4521                 if (!dp) {
4522                         err = -ENOMEM;
4523                         goto out;
4524                 }
4525                 dp->target_attr = cpu_to_le32(t16);
4526                 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4527                 dp->lcns_follow = cpu_to_le32(t32);
4528                 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4529                 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4530 
4531 copy_lcns:
4532                 /*
4533                  * Copy the Lcns from the log record into the Dirty Page Entry.
4534                  * TODO: For different page size support, must somehow make
4535                  * whole routine a loop, case Lcns do not fit below.
4536                  */
4537                 t16 = le16_to_cpu(lrh->lcns_follow);
4538                 for (i = 0; i < t16; i++) {
4539                         size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4540                                             le64_to_cpu(dp->vcn));
4541                         dp->page_lcns[j + i] = lrh->page_lcns[i];
4542                 }
4543 
4544                 goto next_log_record_analyze;
4545 
4546         case DeleteDirtyClusters: {
4547                 u32 range_count =
4548                         le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4549                 const struct LCN_RANGE *r =
4550                         Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4551 
4552                 /* Loop through all of the Lcn ranges this log record. */
4553                 for (i = 0; i < range_count; i++, r++) {
4554                         u64 lcn0 = le64_to_cpu(r->lcn);
4555                         u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4556 
4557                         dp = NULL;
4558                         while ((dp = enum_rstbl(dptbl, dp))) {
4559                                 u32 j;
4560 
4561                                 t32 = le32_to_cpu(dp->lcns_follow);
4562                                 for (j = 0; j < t32; j++) {
4563                                         t64 = le64_to_cpu(dp->page_lcns[j]);
4564                                         if (t64 >= lcn0 && t64 <= lcn_e)
4565                                                 dp->page_lcns[j] = 0;
4566                                 }
4567                         }
4568                 }
4569                 goto next_log_record_analyze;
4570         }
4571 
4572         case OpenNonresidentAttribute:
4573                 t16 = le16_to_cpu(lrh->target_attr);
4574                 if (t16 >= bytes_per_rt(oatbl)) {
4575                         /*
4576                          * Compute how big the table needs to be.
4577                          * Add 10 extra entries for some cushion.
4578                          */
4579                         u32 new_e = t16 / le16_to_cpu(oatbl->size);
4580 
4581                         new_e += 10 - le16_to_cpu(oatbl->used);
4582 
4583                         oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4584                         log->open_attr_tbl = oatbl;
4585                         if (!oatbl) {
4586                                 err = -ENOMEM;
4587                                 goto out;
4588                         }
4589                 }
4590 
4591                 /* Point to the entry being opened. */
4592                 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4593                 log->open_attr_tbl = oatbl;
4594                 if (!oe) {
4595                         err = -ENOMEM;
4596                         goto out;
4597                 }
4598 
4599                 /* Initialize this entry from the log record. */
4600                 t16 = le16_to_cpu(lrh->redo_off);
4601                 if (!rst->major_ver) {
4602                         /* Convert version '' into version '1'. */
4603                         struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4604 
4605                         oe->bytes_per_index = oe0->bytes_per_index;
4606                         oe->type = oe0->type;
4607                         oe->is_dirty_pages = oe0->is_dirty_pages;
4608                         oe->name_len = 0; //oe0.name_len;
4609                         oe->ref = oe0->ref;
4610                         oe->open_record_lsn = oe0->open_record_lsn;
4611                 } else {
4612                         memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4613                 }
4614 
4615                 t16 = le16_to_cpu(lrh->undo_len);
4616                 if (t16) {
4617                         oe->ptr = kmalloc(t16, GFP_NOFS);
4618                         if (!oe->ptr) {
4619                                 err = -ENOMEM;
4620                                 goto out;
4621                         }
4622                         oe->name_len = t16 / sizeof(short);
4623                         memcpy(oe->ptr,
4624                                Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4625                         oe->is_attr_name = 1;
4626                 } else {
4627                         oe->ptr = NULL;
4628                         oe->is_attr_name = 0;
4629                 }
4630 
4631                 goto next_log_record_analyze;
4632 
4633         case HotFix:
4634                 t16 = le16_to_cpu(lrh->target_attr);
4635                 t64 = le64_to_cpu(lrh->target_vcn);
4636                 dp = find_dp(dptbl, t16, t64);
4637                 if (dp) {
4638                         size_t j = le64_to_cpu(lrh->target_vcn) -
4639                                    le64_to_cpu(dp->vcn);
4640                         if (dp->page_lcns[j])
4641                                 dp->page_lcns[j] = lrh->page_lcns[0];
4642                 }
4643                 goto next_log_record_analyze;
4644 
4645         case EndTopLevelAction:
4646                 tr = Add2Ptr(trtbl, transact_id);
4647                 tr->prev_lsn = cpu_to_le64(rec_lsn);
4648                 tr->undo_next_lsn = frh->client_undo_next_lsn;
4649                 goto next_log_record_analyze;
4650 
4651         case PrepareTransaction:
4652                 tr = Add2Ptr(trtbl, transact_id);
4653                 tr->transact_state = TransactionPrepared;
4654                 goto next_log_record_analyze;
4655 
4656         case CommitTransaction:
4657                 tr = Add2Ptr(trtbl, transact_id);
4658                 tr->transact_state = TransactionCommitted;
4659                 goto next_log_record_analyze;
4660 
4661         case ForgetTransaction:
4662                 free_rsttbl_idx(trtbl, transact_id);
4663                 goto next_log_record_analyze;
4664 
4665         case Noop:
4666         case OpenAttributeTableDump:
4667         case AttributeNamesDump:
4668         case DirtyPageTableDump:
4669         case TransactionTableDump:
4670                 /* The following cases require no action the Analysis Pass. */
4671                 goto next_log_record_analyze;
4672 
4673         default:
4674                 /*
4675                  * All codes will be explicitly handled.
4676                  * If we see a code we do not expect, then we are trouble.
4677                  */
4678                 goto next_log_record_analyze;
4679         }
4680 
4681 end_log_records_enumerate:
4682         lcb_put(lcb);
4683         lcb = NULL;
4684 
4685         /*
4686          * Scan the Dirty Page Table and Transaction Table for
4687          * the lowest lsn, and return it as the Redo lsn.
4688          */
4689         dp = NULL;
4690         while ((dp = enum_rstbl(dptbl, dp))) {
4691                 t64 = le64_to_cpu(dp->oldest_lsn);
4692                 if (t64 && t64 < rlsn)
4693                         rlsn = t64;
4694         }
4695 
4696         tr = NULL;
4697         while ((tr = enum_rstbl(trtbl, tr))) {
4698                 t64 = le64_to_cpu(tr->first_lsn);
4699                 if (t64 && t64 < rlsn)
4700                         rlsn = t64;
4701         }
4702 
4703         /*
4704          * Only proceed if the Dirty Page Table or Transaction
4705          * table are not empty.
4706          */
4707         if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4708                 goto end_replay;
4709 
4710         sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4711         if (is_ro)
4712                 goto out;
4713 
4714         /* Reopen all of the attributes with dirty pages. */
4715         oe = NULL;
4716 next_open_attribute:
4717 
4718         oe = enum_rstbl(oatbl, oe);
4719         if (!oe) {
4720                 err = 0;
4721                 dp = NULL;
4722                 goto next_dirty_page;
4723         }
4724 
4725         oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4726         if (!oa) {
4727                 err = -ENOMEM;
4728                 goto out;
4729         }
4730 
4731         inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4732         if (IS_ERR(inode))
4733                 goto fake_attr;
4734 
4735         if (is_bad_inode(inode)) {
4736                 iput(inode);
4737 fake_attr:
4738                 if (oa->ni) {
4739                         iput(&oa->ni->vfs_inode);
4740                         oa->ni = NULL;
4741                 }
4742 
4743                 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4744                                               oe->name_len, 0);
4745                 if (!attr) {
4746                         kfree(oa);
4747                         err = -ENOMEM;
4748                         goto out;
4749                 }
4750                 oa->attr = attr;
4751                 oa->run1 = &oa->run0;
4752                 goto final_oe;
4753         }
4754 
4755         ni_oe = ntfs_i(inode);
4756         oa->ni = ni_oe;
4757 
4758         attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4759                             NULL, NULL);
4760 
4761         if (!attr)
4762                 goto fake_attr;
4763 
4764         t32 = le32_to_cpu(attr->size);
4765         oa->attr = kmemdup(attr, t32, GFP_NOFS);
4766         if (!oa->attr)
4767                 goto fake_attr;
4768 
4769         if (!S_ISDIR(inode->i_mode)) {
4770                 if (attr->type == ATTR_DATA && !attr->name_len) {
4771                         oa->run1 = &ni_oe->file.run;
4772                         goto final_oe;
4773                 }
4774         } else {
4775                 if (attr->type == ATTR_ALLOC &&
4776                     attr->name_len == ARRAY_SIZE(I30_NAME) &&
4777                     !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4778                         oa->run1 = &ni_oe->dir.alloc_run;
4779                         goto final_oe;
4780                 }
4781         }
4782 
4783         if (attr->non_res) {
4784                 u16 roff = le16_to_cpu(attr->nres.run_off);
4785                 CLST svcn = le64_to_cpu(attr->nres.svcn);
4786 
4787                 if (roff > t32) {
4788                         kfree(oa->attr);
4789                         oa->attr = NULL;
4790                         goto fake_attr;
4791                 }
4792 
4793                 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4794                                  le64_to_cpu(attr->nres.evcn), svcn,
4795                                  Add2Ptr(attr, roff), t32 - roff);
4796                 if (err < 0) {
4797                         kfree(oa->attr);
4798                         oa->attr = NULL;
4799                         goto fake_attr;
4800                 }
4801                 err = 0;
4802         }
4803         oa->run1 = &oa->run0;
4804         attr = oa->attr;
4805 
4806 final_oe:
4807         if (oe->is_attr_name == 1)
4808                 kfree(oe->ptr);
4809         oe->is_attr_name = 0;
4810         oe->ptr = oa;
4811         oe->name_len = attr->name_len;
4812 
4813         goto next_open_attribute;
4814 
4815         /*
4816          * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4817          * Mapping that we have, and insert it into the appropriate run.
4818          */
4819 next_dirty_page:
4820         dp = enum_rstbl(dptbl, dp);
4821         if (!dp)
4822                 goto do_redo_1;
4823 
4824         oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4825 
4826         if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4827                 goto next_dirty_page;
4828 
4829         oa = oe->ptr;
4830         if (!oa)
4831                 goto next_dirty_page;
4832 
4833         i = -1;
4834 next_dirty_page_vcn:
4835         i += 1;
4836         if (i >= le32_to_cpu(dp->lcns_follow))
4837                 goto next_dirty_page;
4838 
4839         vcn = le64_to_cpu(dp->vcn) + i;
4840         size = (vcn + 1) << sbi->cluster_bits;
4841 
4842         if (!dp->page_lcns[i])
4843                 goto next_dirty_page_vcn;
4844 
4845         rno = ino_get(&oe->ref);
4846         if (rno <= MFT_REC_MIRR &&
4847             size < (MFT_REC_VOL + 1) * sbi->record_size &&
4848             oe->type == ATTR_DATA) {
4849                 goto next_dirty_page_vcn;
4850         }
4851 
4852         lcn = le64_to_cpu(dp->page_lcns[i]);
4853 
4854         if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4855              lcn0 != lcn) &&
4856             !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4857                 err = -ENOMEM;
4858                 goto out;
4859         }
4860         attr = oa->attr;
4861         if (size > le64_to_cpu(attr->nres.alloc_size)) {
4862                 attr->nres.valid_size = attr->nres.data_size =
4863                         attr->nres.alloc_size = cpu_to_le64(size);
4864         }
4865         goto next_dirty_page_vcn;
4866 
4867 do_redo_1:
4868         /*
4869          * Perform the Redo Pass, to restore all of the dirty pages to the same
4870          * contents that they had immediately before the crash. If the dirty
4871          * page table is empty, then we can skip the entire Redo Pass.
4872          */
4873         if (!dptbl || !dptbl->total)
4874                 goto do_undo_action;
4875 
4876         rec_lsn = rlsn;
4877 
4878         /*
4879          * Read the record at the Redo lsn, before falling
4880          * into common code to handle each record.
4881          */
4882         err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4883         if (err)
4884                 goto out;
4885 
4886         /*
4887          * Now loop to read all of our log records forwards, until
4888          * we hit the end of the file, cleaning up at the end.
4889          */
4890 do_action_next:
4891         frh = lcb->lrh;
4892 
4893         if (LfsClientRecord != frh->record_type)
4894                 goto read_next_log_do_action;
4895 
4896         transact_id = le32_to_cpu(frh->transact_id);
4897         rec_len = le32_to_cpu(frh->client_data_len);
4898         lrh = lcb->log_rec;
4899 
4900         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4901                 err = -EINVAL;
4902                 goto out;
4903         }
4904 
4905         /* Ignore log records that do not update pages. */
4906         if (lrh->lcns_follow)
4907                 goto find_dirty_page;
4908 
4909         goto read_next_log_do_action;
4910 
4911 find_dirty_page:
4912         t16 = le16_to_cpu(lrh->target_attr);
4913         t64 = le64_to_cpu(lrh->target_vcn);
4914         dp = find_dp(dptbl, t16, t64);
4915 
4916         if (!dp)
4917                 goto read_next_log_do_action;
4918 
4919         if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4920                 goto read_next_log_do_action;
4921 
4922         t16 = le16_to_cpu(lrh->target_attr);
4923         if (t16 >= bytes_per_rt(oatbl)) {
4924                 err = -EINVAL;
4925                 goto out;
4926         }
4927 
4928         oe = Add2Ptr(oatbl, t16);
4929 
4930         if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4931                 err = -EINVAL;
4932                 goto out;
4933         }
4934 
4935         oa = oe->ptr;
4936 
4937         if (!oa) {
4938                 err = -EINVAL;
4939                 goto out;
4940         }
4941         attr = oa->attr;
4942 
4943         vcn = le64_to_cpu(lrh->target_vcn);
4944 
4945         if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4946             lcn == SPARSE_LCN) {
4947                 goto read_next_log_do_action;
4948         }
4949 
4950         /* Point to the Redo data and get its length. */
4951         data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4952         dlen = le16_to_cpu(lrh->redo_len);
4953 
4954         /* Shorten length by any Lcns which were deleted. */
4955         saved_len = dlen;
4956 
4957         for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4958                 size_t j;
4959                 u32 alen, voff;
4960 
4961                 voff = le16_to_cpu(lrh->record_off) +
4962                        le16_to_cpu(lrh->attr_off);
4963                 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4964 
4965                 /* If the Vcn question is allocated, we can just get out. */
4966                 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4967                 if (dp->page_lcns[j + i - 1])
4968                         break;
4969 
4970                 if (!saved_len)
4971                         saved_len = 1;
4972 
4973                 /*
4974                  * Calculate the allocated space left relative to the
4975                  * log record Vcn, after removing this unallocated Vcn.
4976                  */
4977                 alen = (i - 1) << sbi->cluster_bits;
4978 
4979                 /*
4980                  * If the update described this log record goes beyond
4981                  * the allocated space, then we will have to reduce the length.
4982                  */
4983                 if (voff >= alen)
4984                         dlen = 0;
4985                 else if (voff + dlen > alen)
4986                         dlen = alen - voff;
4987         }
4988 
4989         /*
4990          * If the resulting dlen from above is now zero,
4991          * we can skip this log record.
4992          */
4993         if (!dlen && saved_len)
4994                 goto read_next_log_do_action;
4995 
4996         t16 = le16_to_cpu(lrh->redo_op);
4997         if (can_skip_action(t16))
4998                 goto read_next_log_do_action;
4999 
5000         /* Apply the Redo operation a common routine. */
5001         err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
5002         if (err)
5003                 goto out;
5004 
5005         /* Keep reading and looping back until end of file. */
5006 read_next_log_do_action:
5007         err = read_next_log_rec(log, lcb, &rec_lsn);
5008         if (!err && rec_lsn)
5009                 goto do_action_next;
5010 
5011         lcb_put(lcb);
5012         lcb = NULL;
5013 
5014 do_undo_action:
5015         /* Scan Transaction Table. */
5016         tr = NULL;
5017 transaction_table_next:
5018         tr = enum_rstbl(trtbl, tr);
5019         if (!tr)
5020                 goto undo_action_done;
5021 
5022         if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5023                 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5024                 goto transaction_table_next;
5025         }
5026 
5027         log->transaction_id = PtrOffset(trtbl, tr);
5028         undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5029 
5030         /*
5031          * We only have to do anything if the transaction has
5032          * something its undo_next_lsn field.
5033          */
5034         if (!undo_next_lsn)
5035                 goto commit_undo;
5036 
5037         /* Read the first record to be undone by this transaction. */
5038         err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5039         if (err)
5040                 goto out;
5041 
5042         /*
5043          * Now loop to read all of our log records forwards,
5044          * until we hit the end of the file, cleaning up at the end.
5045          */
5046 undo_action_next:
5047 
5048         lrh = lcb->log_rec;
5049         frh = lcb->lrh;
5050         transact_id = le32_to_cpu(frh->transact_id);
5051         rec_len = le32_to_cpu(frh->client_data_len);
5052 
5053         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5054                 err = -EINVAL;
5055                 goto out;
5056         }
5057 
5058         if (lrh->undo_op == cpu_to_le16(Noop))
5059                 goto read_next_log_undo_action;
5060 
5061         oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5062         oa = oe->ptr;
5063 
5064         t16 = le16_to_cpu(lrh->lcns_follow);
5065         if (!t16)
5066                 goto add_allocated_vcns;
5067 
5068         is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5069                                      &lcn, &clen, NULL);
5070 
5071         /*
5072          * If the mapping isn't already the table or the  mapping
5073          * corresponds to a hole the mapping, we need to make sure
5074          * there is no partial page already memory.
5075          */
5076         if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5077                 goto add_allocated_vcns;
5078 
5079         vcn = le64_to_cpu(lrh->target_vcn);
5080         vcn &= ~(u64)(log->clst_per_page - 1);
5081 
5082 add_allocated_vcns:
5083         for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5084             size = (vcn + 1) << sbi->cluster_bits;
5085              i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5086                 attr = oa->attr;
5087                 if (!attr->non_res) {
5088                         if (size > le32_to_cpu(attr->res.data_size))
5089                                 attr->res.data_size = cpu_to_le32(size);
5090                 } else {
5091                         if (size > le64_to_cpu(attr->nres.data_size))
5092                                 attr->nres.valid_size = attr->nres.data_size =
5093                                         attr->nres.alloc_size =
5094                                                 cpu_to_le64(size);
5095                 }
5096         }
5097 
5098         t16 = le16_to_cpu(lrh->undo_op);
5099         if (can_skip_action(t16))
5100                 goto read_next_log_undo_action;
5101 
5102         /* Point to the Redo data and get its length. */
5103         data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5104         dlen = le16_to_cpu(lrh->undo_len);
5105 
5106         /* It is time to apply the undo action. */
5107         err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5108 
5109 read_next_log_undo_action:
5110         /*
5111          * Keep reading and looping back until we have read the
5112          * last record for this transaction.
5113          */
5114         err = read_next_log_rec(log, lcb, &rec_lsn);
5115         if (err)
5116                 goto out;
5117 
5118         if (rec_lsn)
5119                 goto undo_action_next;
5120 
5121         lcb_put(lcb);
5122         lcb = NULL;
5123 
5124 commit_undo:
5125         free_rsttbl_idx(trtbl, log->transaction_id);
5126 
5127         log->transaction_id = 0;
5128 
5129         goto transaction_table_next;
5130 
5131 undo_action_done:
5132 
5133         ntfs_update_mftmirr(sbi, 0);
5134 
5135         sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5136 
5137 end_replay:
5138 
5139         err = 0;
5140         if (is_ro)
5141                 goto out;
5142 
5143         rh = kzalloc(log->page_size, GFP_NOFS);
5144         if (!rh) {
5145                 err = -ENOMEM;
5146                 goto out;
5147         }
5148 
5149         rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5150         rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5151         t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5152         rh->rhdr.fix_num = cpu_to_le16(t16);
5153         rh->sys_page_size = cpu_to_le32(log->page_size);
5154         rh->page_size = cpu_to_le32(log->page_size);
5155 
5156         t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5157                     8);
5158         rh->ra_off = cpu_to_le16(t16);
5159         rh->minor_ver = cpu_to_le16(1); // 0x1A:
5160         rh->major_ver = cpu_to_le16(1); // 0x1C:
5161 
5162         ra2 = Add2Ptr(rh, t16);
5163         memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5164 
5165         ra2->client_idx[0] = 0;
5166         ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5167         ra2->flags = cpu_to_le16(2);
5168 
5169         le32_add_cpu(&ra2->open_log_count, 1);
5170 
5171         ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5172 
5173         err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5174         if (!err)
5175                 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5176                                         rh, log->page_size, 0);
5177 
5178         kfree(rh);
5179         if (err)
5180                 goto out;
5181 
5182 out:
5183         kfree(rst);
5184         if (lcb)
5185                 lcb_put(lcb);
5186 
5187         /*
5188          * Scan the Open Attribute Table to close all of
5189          * the open attributes.
5190          */
5191         oe = NULL;
5192         while ((oe = enum_rstbl(oatbl, oe))) {
5193                 rno = ino_get(&oe->ref);
5194 
5195                 if (oe->is_attr_name == 1) {
5196                         kfree(oe->ptr);
5197                         oe->ptr = NULL;
5198                         continue;
5199                 }
5200 
5201                 if (oe->is_attr_name)
5202                         continue;
5203 
5204                 oa = oe->ptr;
5205                 if (!oa)
5206                         continue;
5207 
5208                 run_close(&oa->run0);
5209                 kfree(oa->attr);
5210                 if (oa->ni)
5211                         iput(&oa->ni->vfs_inode);
5212                 kfree(oa);
5213         }
5214 
5215         kfree(trtbl);
5216         kfree(oatbl);
5217         kfree(dptbl);
5218         kfree(attr_names);
5219         kfree(log->rst_info.r_page);
5220 
5221         kfree(ra);
5222         kfree(log->one_page_buf);
5223 
5224         if (err)
5225                 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5226 
5227         if (err == -EROFS)
5228                 err = 0;
5229         else if (log->set_dirty)
5230                 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5231 
5232         kfree(log);
5233 
5234         return err;
5235 }
5236 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php