~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ntfs3/index.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *
  4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
  5  *
  6  */
  7 
  8 #include <linux/blkdev.h>
  9 #include <linux/buffer_head.h>
 10 #include <linux/fs.h>
 11 #include <linux/kernel.h>
 12 
 13 #include "debug.h"
 14 #include "ntfs.h"
 15 #include "ntfs_fs.h"
 16 
 17 static const struct INDEX_NAMES {
 18         const __le16 *name;
 19         u8 name_len;
 20 } s_index_names[INDEX_MUTEX_TOTAL] = {
 21         { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
 22         { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
 23         { SQ_NAME, ARRAY_SIZE(SQ_NAME) },   { SR_NAME, ARRAY_SIZE(SR_NAME) },
 24 };
 25 
 26 /*
 27  * cmp_fnames - Compare two names in index.
 28  *
 29  * if l1 != 0
 30  *   Both names are little endian on-disk ATTR_FILE_NAME structs.
 31  * else
 32  *   key1 - cpu_str, key2 - ATTR_FILE_NAME
 33  */
 34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
 35                       const void *data)
 36 {
 37         const struct ATTR_FILE_NAME *f2 = key2;
 38         const struct ntfs_sb_info *sbi = data;
 39         const struct ATTR_FILE_NAME *f1;
 40         u16 fsize2;
 41         bool both_case;
 42 
 43         if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
 44                 return -1;
 45 
 46         fsize2 = fname_full_size(f2);
 47         if (l2 < fsize2)
 48                 return -1;
 49 
 50         both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
 51         if (!l1) {
 52                 const struct le_str *s2 = (struct le_str *)&f2->name_len;
 53 
 54                 /*
 55                  * If names are equal (case insensitive)
 56                  * try to compare it case sensitive.
 57                  */
 58                 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
 59         }
 60 
 61         f1 = key1;
 62         return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
 63                               sbi->upcase, both_case);
 64 }
 65 
 66 /*
 67  * cmp_uint - $SII of $Secure and $Q of Quota
 68  */
 69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
 70                     const void *data)
 71 {
 72         const u32 *k1 = key1;
 73         const u32 *k2 = key2;
 74 
 75         if (l2 < sizeof(u32))
 76                 return -1;
 77 
 78         if (*k1 < *k2)
 79                 return -1;
 80         if (*k1 > *k2)
 81                 return 1;
 82         return 0;
 83 }
 84 
 85 /*
 86  * cmp_sdh - $SDH of $Secure
 87  */
 88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
 89                    const void *data)
 90 {
 91         const struct SECURITY_KEY *k1 = key1;
 92         const struct SECURITY_KEY *k2 = key2;
 93         u32 t1, t2;
 94 
 95         if (l2 < sizeof(struct SECURITY_KEY))
 96                 return -1;
 97 
 98         t1 = le32_to_cpu(k1->hash);
 99         t2 = le32_to_cpu(k2->hash);
100 
101         /* First value is a hash value itself. */
102         if (t1 < t2)
103                 return -1;
104         if (t1 > t2)
105                 return 1;
106 
107         /* Second value is security Id. */
108         if (data) {
109                 t1 = le32_to_cpu(k1->sec_id);
110                 t2 = le32_to_cpu(k2->sec_id);
111                 if (t1 < t2)
112                         return -1;
113                 if (t1 > t2)
114                         return 1;
115         }
116 
117         return 0;
118 }
119 
120 /*
121  * cmp_uints - $O of ObjId and "$R" for Reparse.
122  */
123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124                      const void *data)
125 {
126         const __le32 *k1 = key1;
127         const __le32 *k2 = key2;
128         size_t count;
129 
130         if ((size_t)data == 1) {
131                 /*
132                  * ni_delete_all -> ntfs_remove_reparse ->
133                  * delete all with this reference.
134                  * k1, k2 - pointers to REPARSE_KEY
135                  */
136 
137                 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138                 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139                 if (l2 <= sizeof(int))
140                         return -1;
141                 l2 -= sizeof(int);
142                 if (l1 <= sizeof(int))
143                         return 1;
144                 l1 -= sizeof(int);
145         }
146 
147         if (l2 < sizeof(int))
148                 return -1;
149 
150         for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151                 u32 t1 = le32_to_cpu(*k1);
152                 u32 t2 = le32_to_cpu(*k2);
153 
154                 if (t1 > t2)
155                         return 1;
156                 if (t1 < t2)
157                         return -1;
158         }
159 
160         if (l1 > l2)
161                 return 1;
162         if (l1 < l2)
163                 return -1;
164 
165         return 0;
166 }
167 
168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169 {
170         switch (root->type) {
171         case ATTR_NAME:
172                 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173                         return &cmp_fnames;
174                 break;
175         case ATTR_ZERO:
176                 switch (root->rule) {
177                 case NTFS_COLLATION_TYPE_UINT:
178                         return &cmp_uint;
179                 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180                         return &cmp_sdh;
181                 case NTFS_COLLATION_TYPE_UINTS:
182                         return &cmp_uints;
183                 default:
184                         break;
185                 }
186                 break;
187         default:
188                 break;
189         }
190 
191         return NULL;
192 }
193 
194 struct bmp_buf {
195         struct ATTRIB *b;
196         struct mft_inode *mi;
197         struct buffer_head *bh;
198         ulong *buf;
199         size_t bit;
200         u32 nbits;
201         u64 new_valid;
202 };
203 
204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205                        size_t bit, struct bmp_buf *bbuf)
206 {
207         struct ATTRIB *b;
208         size_t data_size, valid_size, vbo, off = bit >> 3;
209         struct ntfs_sb_info *sbi = ni->mi.sbi;
210         CLST vcn = off >> sbi->cluster_bits;
211         struct ATTR_LIST_ENTRY *le = NULL;
212         struct buffer_head *bh;
213         struct super_block *sb;
214         u32 blocksize;
215         const struct INDEX_NAMES *in = &s_index_names[indx->type];
216 
217         bbuf->bh = NULL;
218 
219         b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220                          &vcn, &bbuf->mi);
221         bbuf->b = b;
222         if (!b)
223                 return -EINVAL;
224 
225         if (!b->non_res) {
226                 data_size = le32_to_cpu(b->res.data_size);
227 
228                 if (off >= data_size)
229                         return -EINVAL;
230 
231                 bbuf->buf = (ulong *)resident_data(b);
232                 bbuf->bit = 0;
233                 bbuf->nbits = data_size * 8;
234 
235                 return 0;
236         }
237 
238         data_size = le64_to_cpu(b->nres.data_size);
239         if (WARN_ON(off >= data_size)) {
240                 /* Looks like filesystem error. */
241                 return -EINVAL;
242         }
243 
244         valid_size = le64_to_cpu(b->nres.valid_size);
245 
246         bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247         if (!bh)
248                 return -EIO;
249 
250         if (IS_ERR(bh))
251                 return PTR_ERR(bh);
252 
253         bbuf->bh = bh;
254 
255         if (buffer_locked(bh))
256                 __wait_on_buffer(bh);
257 
258         lock_buffer(bh);
259 
260         sb = sbi->sb;
261         blocksize = sb->s_blocksize;
262 
263         vbo = off & ~(size_t)sbi->block_mask;
264 
265         bbuf->new_valid = vbo + blocksize;
266         if (bbuf->new_valid <= valid_size)
267                 bbuf->new_valid = 0;
268         else if (bbuf->new_valid > data_size)
269                 bbuf->new_valid = data_size;
270 
271         if (vbo >= valid_size) {
272                 memset(bh->b_data, 0, blocksize);
273         } else if (vbo + blocksize > valid_size) {
274                 u32 voff = valid_size & sbi->block_mask;
275 
276                 memset(bh->b_data + voff, 0, blocksize - voff);
277         }
278 
279         bbuf->buf = (ulong *)bh->b_data;
280         bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281         bbuf->nbits = 8 * blocksize;
282 
283         return 0;
284 }
285 
286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287 {
288         struct buffer_head *bh = bbuf->bh;
289         struct ATTRIB *b = bbuf->b;
290 
291         if (!bh) {
292                 if (b && !b->non_res && dirty)
293                         bbuf->mi->dirty = true;
294                 return;
295         }
296 
297         if (!dirty)
298                 goto out;
299 
300         if (bbuf->new_valid) {
301                 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302                 bbuf->mi->dirty = true;
303         }
304 
305         set_buffer_uptodate(bh);
306         mark_buffer_dirty(bh);
307 
308 out:
309         unlock_buffer(bh);
310         put_bh(bh);
311 }
312 
313 /*
314  * indx_mark_used - Mark the bit @bit as used.
315  */
316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317                           size_t bit)
318 {
319         int err;
320         struct bmp_buf bbuf;
321 
322         err = bmp_buf_get(indx, ni, bit, &bbuf);
323         if (err)
324                 return err;
325 
326         __set_bit_le(bit - bbuf.bit, bbuf.buf);
327 
328         bmp_buf_put(&bbuf, true);
329 
330         return 0;
331 }
332 
333 /*
334  * indx_mark_free - Mark the bit @bit as free.
335  */
336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337                           size_t bit)
338 {
339         int err;
340         struct bmp_buf bbuf;
341 
342         err = bmp_buf_get(indx, ni, bit, &bbuf);
343         if (err)
344                 return err;
345 
346         __clear_bit_le(bit - bbuf.bit, bbuf.buf);
347 
348         bmp_buf_put(&bbuf, true);
349 
350         return 0;
351 }
352 
353 /*
354  * scan_nres_bitmap
355  *
356  * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357  * inode is shared locked and no ni_lock.
358  * Use rw_semaphore for read/write access to bitmap_run.
359  */
360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361                             struct ntfs_index *indx, size_t from,
362                             bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363                                        size_t *ret),
364                             size_t *ret)
365 {
366         struct ntfs_sb_info *sbi = ni->mi.sbi;
367         struct super_block *sb = sbi->sb;
368         struct runs_tree *run = &indx->bitmap_run;
369         struct rw_semaphore *lock = &indx->run_lock;
370         u32 nbits = sb->s_blocksize * 8;
371         u32 blocksize = sb->s_blocksize;
372         u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373         u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374         sector_t eblock = bytes_to_block(sb, data_size);
375         size_t vbo = from >> 3;
376         sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377         sector_t vblock = vbo >> sb->s_blocksize_bits;
378         sector_t blen, block;
379         CLST lcn, clen, vcn, vcn_next;
380         size_t idx;
381         struct buffer_head *bh;
382         bool ok;
383 
384         *ret = MINUS_ONE_T;
385 
386         if (vblock >= eblock)
387                 return 0;
388 
389         from &= nbits - 1;
390         vcn = vbo >> sbi->cluster_bits;
391 
392         down_read(lock);
393         ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394         up_read(lock);
395 
396 next_run:
397         if (!ok) {
398                 int err;
399                 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400 
401                 down_write(lock);
402                 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403                                          name->name_len, run, vcn);
404                 up_write(lock);
405                 if (err)
406                         return err;
407                 down_read(lock);
408                 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409                 up_read(lock);
410                 if (!ok)
411                         return -EINVAL;
412         }
413 
414         blen = (sector_t)clen * sbi->blocks_per_cluster;
415         block = (sector_t)lcn * sbi->blocks_per_cluster;
416 
417         for (; blk < blen; blk++, from = 0) {
418                 bh = ntfs_bread(sb, block + blk);
419                 if (!bh)
420                         return -EIO;
421 
422                 vbo = (u64)vblock << sb->s_blocksize_bits;
423                 if (vbo >= valid_size) {
424                         memset(bh->b_data, 0, blocksize);
425                 } else if (vbo + blocksize > valid_size) {
426                         u32 voff = valid_size & sbi->block_mask;
427 
428                         memset(bh->b_data + voff, 0, blocksize - voff);
429                 }
430 
431                 if (vbo + blocksize > data_size)
432                         nbits = 8 * (data_size - vbo);
433 
434                 ok = nbits > from ?
435                              (*fn)((ulong *)bh->b_data, from, nbits, ret) :
436                              false;
437                 put_bh(bh);
438 
439                 if (ok) {
440                         *ret += 8 * vbo;
441                         return 0;
442                 }
443 
444                 if (++vblock >= eblock) {
445                         *ret = MINUS_ONE_T;
446                         return 0;
447                 }
448         }
449         blk = 0;
450         vcn_next = vcn + clen;
451         down_read(lock);
452         ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
453         if (!ok)
454                 vcn = vcn_next;
455         up_read(lock);
456         goto next_run;
457 }
458 
459 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
460 {
461         size_t pos = find_next_zero_bit_le(buf, bits, bit);
462 
463         if (pos >= bits)
464                 return false;
465         *ret = pos;
466         return true;
467 }
468 
469 /*
470  * indx_find_free - Look for free bit.
471  *
472  * Return: -1 if no free bits.
473  */
474 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
475                           size_t *bit, struct ATTRIB **bitmap)
476 {
477         struct ATTRIB *b;
478         struct ATTR_LIST_ENTRY *le = NULL;
479         const struct INDEX_NAMES *in = &s_index_names[indx->type];
480         int err;
481 
482         b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
483                          NULL, NULL);
484 
485         if (!b)
486                 return -ENOENT;
487 
488         *bitmap = b;
489         *bit = MINUS_ONE_T;
490 
491         if (!b->non_res) {
492                 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
493                 size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
494 
495                 if (pos < nbits)
496                         *bit = pos;
497         } else {
498                 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
499 
500                 if (err)
501                         return err;
502         }
503 
504         return 0;
505 }
506 
507 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
508 {
509         size_t pos = find_next_bit_le(buf, bits, bit);
510 
511         if (pos >= bits)
512                 return false;
513         *ret = pos;
514         return true;
515 }
516 
517 /*
518  * indx_used_bit - Look for used bit.
519  *
520  * Return: MINUS_ONE_T if no used bits.
521  */
522 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
523 {
524         struct ATTRIB *b;
525         struct ATTR_LIST_ENTRY *le = NULL;
526         size_t from = *bit;
527         const struct INDEX_NAMES *in = &s_index_names[indx->type];
528         int err;
529 
530         b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
531                          NULL, NULL);
532 
533         if (!b)
534                 return -ENOENT;
535 
536         *bit = MINUS_ONE_T;
537 
538         if (!b->non_res) {
539                 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
540                 size_t pos = find_next_bit_le(resident_data(b), nbits, from);
541 
542                 if (pos < nbits)
543                         *bit = pos;
544         } else {
545                 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
546                 if (err)
547                         return err;
548         }
549 
550         return 0;
551 }
552 
553 /*
554  * hdr_find_split
555  *
556  * Find a point at which the index allocation buffer would like to be split.
557  * NOTE: This function should never return 'END' entry NULL returns on error.
558  */
559 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
560 {
561         size_t o;
562         const struct NTFS_DE *e = hdr_first_de(hdr);
563         u32 used_2 = le32_to_cpu(hdr->used) >> 1;
564         u16 esize;
565 
566         if (!e || de_is_last(e))
567                 return NULL;
568 
569         esize = le16_to_cpu(e->size);
570         for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
571                 const struct NTFS_DE *p = e;
572 
573                 e = Add2Ptr(hdr, o);
574 
575                 /* We must not return END entry. */
576                 if (de_is_last(e))
577                         return p;
578 
579                 esize = le16_to_cpu(e->size);
580         }
581 
582         return e;
583 }
584 
585 /*
586  * hdr_insert_head - Insert some entries at the beginning of the buffer.
587  *
588  * It is used to insert entries into a newly-created buffer.
589  */
590 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
591                                              const void *ins, u32 ins_bytes)
592 {
593         u32 to_move;
594         struct NTFS_DE *e = hdr_first_de(hdr);
595         u32 used = le32_to_cpu(hdr->used);
596 
597         if (!e)
598                 return NULL;
599 
600         /* Now we just make room for the inserted entries and jam it in. */
601         to_move = used - le32_to_cpu(hdr->de_off);
602         memmove(Add2Ptr(e, ins_bytes), e, to_move);
603         memcpy(e, ins, ins_bytes);
604         hdr->used = cpu_to_le32(used + ins_bytes);
605 
606         return e;
607 }
608 
609 /*
610  * index_hdr_check
611  *
612  * return true if INDEX_HDR is valid
613  */
614 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
615 {
616         u32 end = le32_to_cpu(hdr->used);
617         u32 tot = le32_to_cpu(hdr->total);
618         u32 off = le32_to_cpu(hdr->de_off);
619 
620         if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
621             off + sizeof(struct NTFS_DE) > end) {
622                 /* incorrect index buffer. */
623                 return false;
624         }
625 
626         return true;
627 }
628 
629 /*
630  * index_buf_check
631  *
632  * return true if INDEX_BUFFER seems is valid
633  */
634 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
635                             const CLST *vbn)
636 {
637         const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
638         u16 fo = le16_to_cpu(rhdr->fix_off);
639         u16 fn = le16_to_cpu(rhdr->fix_num);
640 
641         if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
642             rhdr->sign != NTFS_INDX_SIGNATURE ||
643             fo < sizeof(struct INDEX_BUFFER)
644             /* Check index buffer vbn. */
645             || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
646             fo + fn * sizeof(short) >= bytes ||
647             fn != ((bytes >> SECTOR_SHIFT) + 1)) {
648                 /* incorrect index buffer. */
649                 return false;
650         }
651 
652         return index_hdr_check(&ib->ihdr,
653                                bytes - offsetof(struct INDEX_BUFFER, ihdr));
654 }
655 
656 void fnd_clear(struct ntfs_fnd *fnd)
657 {
658         int i;
659 
660         for (i = fnd->level - 1; i >= 0; i--) {
661                 struct indx_node *n = fnd->nodes[i];
662 
663                 if (!n)
664                         continue;
665 
666                 put_indx_node(n);
667                 fnd->nodes[i] = NULL;
668         }
669         fnd->level = 0;
670         fnd->root_de = NULL;
671 }
672 
673 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
674                     struct NTFS_DE *e)
675 {
676         int i = fnd->level;
677 
678         if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
679                 return -EINVAL;
680         fnd->nodes[i] = n;
681         fnd->de[i] = e;
682         fnd->level += 1;
683         return 0;
684 }
685 
686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
687 {
688         struct indx_node *n;
689         int i = fnd->level;
690 
691         i -= 1;
692         n = fnd->nodes[i];
693         fnd->nodes[i] = NULL;
694         fnd->level = i;
695 
696         return n;
697 }
698 
699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
700 {
701         if (!fnd->level)
702                 return !fnd->root_de;
703 
704         return !fnd->de[fnd->level - 1];
705 }
706 
707 /*
708  * hdr_find_e - Locate an entry the index buffer.
709  *
710  * If no matching entry is found, it returns the first entry which is greater
711  * than the desired entry If the search key is greater than all the entries the
712  * buffer, it returns the 'end' entry. This function does a binary search of the
713  * current index buffer, for the first entry that is <= to the search value.
714  *
715  * Return: NULL if error.
716  */
717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718                                   const struct INDEX_HDR *hdr, const void *key,
719                                   size_t key_len, const void *ctx, int *diff)
720 {
721         struct NTFS_DE *e, *found = NULL;
722         NTFS_CMP_FUNC cmp = indx->cmp;
723         int min_idx = 0, mid_idx, max_idx = 0;
724         int diff2;
725         int table_size = 8;
726         u32 e_size, e_key_len;
727         u32 end = le32_to_cpu(hdr->used);
728         u32 off = le32_to_cpu(hdr->de_off);
729         u32 total = le32_to_cpu(hdr->total);
730         u16 offs[128];
731 
732         if (unlikely(!cmp))
733                 return NULL;
734 
735 fill_table:
736         if (end > total)
737                 return NULL;
738 
739         if (off + sizeof(struct NTFS_DE) > end)
740                 return NULL;
741 
742         e = Add2Ptr(hdr, off);
743         e_size = le16_to_cpu(e->size);
744 
745         if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
746                 return NULL;
747 
748         if (!de_is_last(e)) {
749                 offs[max_idx] = off;
750                 off += e_size;
751 
752                 max_idx++;
753                 if (max_idx < table_size)
754                         goto fill_table;
755 
756                 max_idx--;
757         }
758 
759 binary_search:
760         e_key_len = le16_to_cpu(e->key_size);
761 
762         diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
763         if (diff2 > 0) {
764                 if (found) {
765                         min_idx = mid_idx + 1;
766                 } else {
767                         if (de_is_last(e))
768                                 return NULL;
769 
770                         max_idx = 0;
771                         table_size = min(table_size * 2, (int)ARRAY_SIZE(offs));
772                         goto fill_table;
773                 }
774         } else if (diff2 < 0) {
775                 if (found)
776                         max_idx = mid_idx - 1;
777                 else
778                         max_idx--;
779 
780                 found = e;
781         } else {
782                 *diff = 0;
783                 return e;
784         }
785 
786         if (min_idx > max_idx) {
787                 *diff = -1;
788                 return found;
789         }
790 
791         mid_idx = (min_idx + max_idx) >> 1;
792         e = Add2Ptr(hdr, offs[mid_idx]);
793 
794         goto binary_search;
795 }
796 
797 /*
798  * hdr_insert_de - Insert an index entry into the buffer.
799  *
800  * 'before' should be a pointer previously returned from hdr_find_e.
801  */
802 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
803                                      struct INDEX_HDR *hdr,
804                                      const struct NTFS_DE *de,
805                                      struct NTFS_DE *before, const void *ctx)
806 {
807         int diff;
808         size_t off = PtrOffset(hdr, before);
809         u32 used = le32_to_cpu(hdr->used);
810         u32 total = le32_to_cpu(hdr->total);
811         u16 de_size = le16_to_cpu(de->size);
812 
813         /* First, check to see if there's enough room. */
814         if (used + de_size > total)
815                 return NULL;
816 
817         /* We know there's enough space, so we know we'll succeed. */
818         if (before) {
819                 /* Check that before is inside Index. */
820                 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
821                     off + le16_to_cpu(before->size) > total) {
822                         return NULL;
823                 }
824                 goto ok;
825         }
826         /* No insert point is applied. Get it manually. */
827         before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
828                             &diff);
829         if (!before)
830                 return NULL;
831         off = PtrOffset(hdr, before);
832 
833 ok:
834         /* Now we just make room for the entry and jam it in. */
835         memmove(Add2Ptr(before, de_size), before, used - off);
836 
837         hdr->used = cpu_to_le32(used + de_size);
838         memcpy(before, de, de_size);
839 
840         return before;
841 }
842 
843 /*
844  * hdr_delete_de - Remove an entry from the index buffer.
845  */
846 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
847                                             struct NTFS_DE *re)
848 {
849         u32 used = le32_to_cpu(hdr->used);
850         u16 esize = le16_to_cpu(re->size);
851         u32 off = PtrOffset(hdr, re);
852         int bytes = used - (off + esize);
853 
854         /* check INDEX_HDR valid before using INDEX_HDR */
855         if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
856                 return NULL;
857 
858         if (off >= used || esize < sizeof(struct NTFS_DE) ||
859             bytes < sizeof(struct NTFS_DE))
860                 return NULL;
861 
862         hdr->used = cpu_to_le32(used - esize);
863         memmove(re, Add2Ptr(re, esize), bytes);
864 
865         return re;
866 }
867 
868 void indx_clear(struct ntfs_index *indx)
869 {
870         run_close(&indx->alloc_run);
871         run_close(&indx->bitmap_run);
872 }
873 
874 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
875               const struct ATTRIB *attr, enum index_mutex_classed type)
876 {
877         u32 t32;
878         const struct INDEX_ROOT *root = resident_data(attr);
879 
880         t32 = le32_to_cpu(attr->res.data_size);
881         if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
882             !index_hdr_check(&root->ihdr,
883                              t32 - offsetof(struct INDEX_ROOT, ihdr))) {
884                 goto out;
885         }
886 
887         /* Check root fields. */
888         if (!root->index_block_clst)
889                 goto out;
890 
891         indx->type = type;
892         indx->idx2vbn_bits = __ffs(root->index_block_clst);
893 
894         t32 = le32_to_cpu(root->index_block_size);
895         indx->index_bits = blksize_bits(t32);
896 
897         /* Check index record size. */
898         if (t32 < sbi->cluster_size) {
899                 /* Index record is smaller than a cluster, use 512 blocks. */
900                 if (t32 != root->index_block_clst * SECTOR_SIZE)
901                         goto out;
902 
903                 /* Check alignment to a cluster. */
904                 if ((sbi->cluster_size >> SECTOR_SHIFT) &
905                     (root->index_block_clst - 1)) {
906                         goto out;
907                 }
908 
909                 indx->vbn2vbo_bits = SECTOR_SHIFT;
910         } else {
911                 /* Index record must be a multiple of cluster size. */
912                 if (t32 != root->index_block_clst << sbi->cluster_bits)
913                         goto out;
914 
915                 indx->vbn2vbo_bits = sbi->cluster_bits;
916         }
917 
918         init_rwsem(&indx->run_lock);
919 
920         indx->cmp = get_cmp_func(root);
921         if (!indx->cmp)
922                 goto out;
923 
924         return 0;
925 
926 out:
927         ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
928         return -EINVAL;
929 }
930 
931 static struct indx_node *indx_new(struct ntfs_index *indx,
932                                   struct ntfs_inode *ni, CLST vbn,
933                                   const __le64 *sub_vbn)
934 {
935         int err;
936         struct NTFS_DE *e;
937         struct indx_node *r;
938         struct INDEX_HDR *hdr;
939         struct INDEX_BUFFER *index;
940         u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
941         u32 bytes = 1u << indx->index_bits;
942         u16 fn;
943         u32 eo;
944 
945         r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
946         if (!r)
947                 return ERR_PTR(-ENOMEM);
948 
949         index = kzalloc(bytes, GFP_NOFS);
950         if (!index) {
951                 kfree(r);
952                 return ERR_PTR(-ENOMEM);
953         }
954 
955         err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
956 
957         if (err) {
958                 kfree(index);
959                 kfree(r);
960                 return ERR_PTR(err);
961         }
962 
963         /* Create header. */
964         index->rhdr.sign = NTFS_INDX_SIGNATURE;
965         index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
966         fn = (bytes >> SECTOR_SHIFT) + 1; // 9
967         index->rhdr.fix_num = cpu_to_le16(fn);
968         index->vbn = cpu_to_le64(vbn);
969         hdr = &index->ihdr;
970         eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
971         hdr->de_off = cpu_to_le32(eo);
972 
973         e = Add2Ptr(hdr, eo);
974 
975         if (sub_vbn) {
976                 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
977                 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
978                 hdr->used =
979                         cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
980                 de_set_vbn_le(e, *sub_vbn);
981                 hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES;
982         } else {
983                 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
984                 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
985                 e->flags = NTFS_IE_LAST;
986         }
987 
988         hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
989 
990         r->index = index;
991         return r;
992 }
993 
994 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
995                                  struct ATTRIB **attr, struct mft_inode **mi)
996 {
997         struct ATTR_LIST_ENTRY *le = NULL;
998         struct ATTRIB *a;
999         const struct INDEX_NAMES *in = &s_index_names[indx->type];
1000         struct INDEX_ROOT *root;
1001 
1002         a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1003                          mi);
1004         if (!a)
1005                 return NULL;
1006 
1007         if (attr)
1008                 *attr = a;
1009 
1010         root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1011 
1012         /* length check */
1013         if (root &&
1014             offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1015                     le32_to_cpu(a->res.data_size)) {
1016                 return NULL;
1017         }
1018 
1019         return root;
1020 }
1021 
1022 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1023                       struct indx_node *node, int sync)
1024 {
1025         struct INDEX_BUFFER *ib = node->index;
1026 
1027         return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1028 }
1029 
1030 /*
1031  * indx_read
1032  *
1033  * If ntfs_readdir calls this function
1034  * inode is shared locked and no ni_lock.
1035  * Use rw_semaphore for read/write access to alloc_run.
1036  */
1037 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1038               struct indx_node **node)
1039 {
1040         int err;
1041         struct INDEX_BUFFER *ib;
1042         struct runs_tree *run = &indx->alloc_run;
1043         struct rw_semaphore *lock = &indx->run_lock;
1044         u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1045         u32 bytes = 1u << indx->index_bits;
1046         struct indx_node *in = *node;
1047         const struct INDEX_NAMES *name;
1048 
1049         if (!in) {
1050                 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1051                 if (!in)
1052                         return -ENOMEM;
1053         } else {
1054                 nb_put(&in->nb);
1055         }
1056 
1057         ib = in->index;
1058         if (!ib) {
1059                 ib = kmalloc(bytes, GFP_NOFS);
1060                 if (!ib) {
1061                         err = -ENOMEM;
1062                         goto out;
1063                 }
1064         }
1065 
1066         down_read(lock);
1067         err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1068         up_read(lock);
1069         if (!err)
1070                 goto ok;
1071 
1072         if (err == -E_NTFS_FIXUP)
1073                 goto ok;
1074 
1075         if (err != -ENOENT)
1076                 goto out;
1077 
1078         name = &s_index_names[indx->type];
1079         down_write(lock);
1080         err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1081                                    run, vbo, vbo + bytes);
1082         up_write(lock);
1083         if (err)
1084                 goto out;
1085 
1086         down_read(lock);
1087         err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1088         up_read(lock);
1089         if (err == -E_NTFS_FIXUP)
1090                 goto ok;
1091 
1092         if (err)
1093                 goto out;
1094 
1095 ok:
1096         if (!index_buf_check(ib, bytes, &vbn)) {
1097                 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1098                 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1099                 err = -EINVAL;
1100                 goto out;
1101         }
1102 
1103         if (err == -E_NTFS_FIXUP) {
1104                 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1105                 err = 0;
1106         }
1107 
1108         /* check for index header length */
1109         if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1110             bytes) {
1111                 err = -EINVAL;
1112                 goto out;
1113         }
1114 
1115         in->index = ib;
1116         *node = in;
1117 
1118 out:
1119         if (err == -E_NTFS_CORRUPT) {
1120                 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1121                 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1122                 err = -EINVAL;
1123         }
1124 
1125         if (ib != in->index)
1126                 kfree(ib);
1127 
1128         if (*node != in) {
1129                 nb_put(&in->nb);
1130                 kfree(in);
1131         }
1132 
1133         return err;
1134 }
1135 
1136 /*
1137  * indx_find - Scan NTFS directory for given entry.
1138  */
1139 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1140               const struct INDEX_ROOT *root, const void *key, size_t key_len,
1141               const void *ctx, int *diff, struct NTFS_DE **entry,
1142               struct ntfs_fnd *fnd)
1143 {
1144         int err;
1145         struct NTFS_DE *e;
1146         struct indx_node *node;
1147 
1148         if (!root)
1149                 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1150 
1151         if (!root) {
1152                 /* Should not happen. */
1153                 return -EINVAL;
1154         }
1155 
1156         /* Check cache. */
1157         e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1158         if (e && !de_is_last(e) &&
1159             !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1160                 *entry = e;
1161                 *diff = 0;
1162                 return 0;
1163         }
1164 
1165         /* Soft finder reset. */
1166         fnd_clear(fnd);
1167 
1168         /* Lookup entry that is <= to the search value. */
1169         e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1170         if (!e)
1171                 return -EINVAL;
1172 
1173         fnd->root_de = e;
1174 
1175         for (;;) {
1176                 node = NULL;
1177                 if (*diff >= 0 || !de_has_vcn_ex(e))
1178                         break;
1179 
1180                 /* Read next level. */
1181                 err = indx_read(indx, ni, de_get_vbn(e), &node);
1182                 if (err) {
1183                         /* io error? */
1184                         return err;
1185                 }
1186 
1187                 /* Lookup entry that is <= to the search value. */
1188                 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1189                                diff);
1190                 if (!e) {
1191                         put_indx_node(node);
1192                         return -EINVAL;
1193                 }
1194 
1195                 fnd_push(fnd, node, e);
1196         }
1197 
1198         *entry = e;
1199         return 0;
1200 }
1201 
1202 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1203                    const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1204                    struct ntfs_fnd *fnd)
1205 {
1206         int err;
1207         struct indx_node *n = NULL;
1208         struct NTFS_DE *e;
1209         size_t iter = 0;
1210         int level = fnd->level;
1211 
1212         if (!*entry) {
1213                 /* Start find. */
1214                 e = hdr_first_de(&root->ihdr);
1215                 if (!e)
1216                         return 0;
1217                 fnd_clear(fnd);
1218                 fnd->root_de = e;
1219         } else if (!level) {
1220                 if (de_is_last(fnd->root_de)) {
1221                         *entry = NULL;
1222                         return 0;
1223                 }
1224 
1225                 e = hdr_next_de(&root->ihdr, fnd->root_de);
1226                 if (!e)
1227                         return -EINVAL;
1228                 fnd->root_de = e;
1229         } else {
1230                 n = fnd->nodes[level - 1];
1231                 e = fnd->de[level - 1];
1232 
1233                 if (de_is_last(e))
1234                         goto pop_level;
1235 
1236                 e = hdr_next_de(&n->index->ihdr, e);
1237                 if (!e)
1238                         return -EINVAL;
1239 
1240                 fnd->de[level - 1] = e;
1241         }
1242 
1243         /* Just to avoid tree cycle. */
1244 next_iter:
1245         if (iter++ >= 1000)
1246                 return -EINVAL;
1247 
1248         while (de_has_vcn_ex(e)) {
1249                 if (le16_to_cpu(e->size) <
1250                     sizeof(struct NTFS_DE) + sizeof(u64)) {
1251                         if (n) {
1252                                 fnd_pop(fnd);
1253                                 kfree(n);
1254                         }
1255                         return -EINVAL;
1256                 }
1257 
1258                 /* Read next level. */
1259                 err = indx_read(indx, ni, de_get_vbn(e), &n);
1260                 if (err)
1261                         return err;
1262 
1263                 /* Try next level. */
1264                 e = hdr_first_de(&n->index->ihdr);
1265                 if (!e) {
1266                         kfree(n);
1267                         return -EINVAL;
1268                 }
1269 
1270                 fnd_push(fnd, n, e);
1271         }
1272 
1273         if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1274                 *entry = e;
1275                 return 0;
1276         }
1277 
1278 pop_level:
1279         for (;;) {
1280                 if (!de_is_last(e))
1281                         goto next_iter;
1282 
1283                 /* Pop one level. */
1284                 if (n) {
1285                         fnd_pop(fnd);
1286                         kfree(n);
1287                 }
1288 
1289                 level = fnd->level;
1290 
1291                 if (level) {
1292                         n = fnd->nodes[level - 1];
1293                         e = fnd->de[level - 1];
1294                 } else if (fnd->root_de) {
1295                         n = NULL;
1296                         e = fnd->root_de;
1297                         fnd->root_de = NULL;
1298                 } else {
1299                         *entry = NULL;
1300                         return 0;
1301                 }
1302 
1303                 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1304                         *entry = e;
1305                         if (!fnd->root_de)
1306                                 fnd->root_de = e;
1307                         return 0;
1308                 }
1309         }
1310 }
1311 
1312 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1313                   const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1314                   size_t *off, struct ntfs_fnd *fnd)
1315 {
1316         int err;
1317         struct indx_node *n = NULL;
1318         struct NTFS_DE *e = NULL;
1319         struct NTFS_DE *e2;
1320         size_t bit;
1321         CLST next_used_vbn;
1322         CLST next_vbn;
1323         u32 record_size = ni->mi.sbi->record_size;
1324 
1325         /* Use non sorted algorithm. */
1326         if (!*entry) {
1327                 /* This is the first call. */
1328                 e = hdr_first_de(&root->ihdr);
1329                 if (!e)
1330                         return 0;
1331                 fnd_clear(fnd);
1332                 fnd->root_de = e;
1333 
1334                 /* The first call with setup of initial element. */
1335                 if (*off >= record_size) {
1336                         next_vbn = (((*off - record_size) >> indx->index_bits))
1337                                    << indx->idx2vbn_bits;
1338                         /* Jump inside cycle 'for'. */
1339                         goto next;
1340                 }
1341 
1342                 /* Start enumeration from root. */
1343                 *off = 0;
1344         } else if (!fnd->root_de)
1345                 return -EINVAL;
1346 
1347         for (;;) {
1348                 /* Check if current entry can be used. */
1349                 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1350                         goto ok;
1351 
1352                 if (!fnd->level) {
1353                         /* Continue to enumerate root. */
1354                         if (!de_is_last(fnd->root_de)) {
1355                                 e = hdr_next_de(&root->ihdr, fnd->root_de);
1356                                 if (!e)
1357                                         return -EINVAL;
1358                                 fnd->root_de = e;
1359                                 continue;
1360                         }
1361 
1362                         /* Start to enumerate indexes from 0. */
1363                         next_vbn = 0;
1364                 } else {
1365                         /* Continue to enumerate indexes. */
1366                         e2 = fnd->de[fnd->level - 1];
1367 
1368                         n = fnd->nodes[fnd->level - 1];
1369 
1370                         if (!de_is_last(e2)) {
1371                                 e = hdr_next_de(&n->index->ihdr, e2);
1372                                 if (!e)
1373                                         return -EINVAL;
1374                                 fnd->de[fnd->level - 1] = e;
1375                                 continue;
1376                         }
1377 
1378                         /* Continue with next index. */
1379                         next_vbn = le64_to_cpu(n->index->vbn) +
1380                                    root->index_block_clst;
1381                 }
1382 
1383 next:
1384                 /* Release current index. */
1385                 if (n) {
1386                         fnd_pop(fnd);
1387                         put_indx_node(n);
1388                         n = NULL;
1389                 }
1390 
1391                 /* Skip all free indexes. */
1392                 bit = next_vbn >> indx->idx2vbn_bits;
1393                 err = indx_used_bit(indx, ni, &bit);
1394                 if (err == -ENOENT || bit == MINUS_ONE_T) {
1395                         /* No used indexes. */
1396                         *entry = NULL;
1397                         return 0;
1398                 }
1399 
1400                 next_used_vbn = bit << indx->idx2vbn_bits;
1401 
1402                 /* Read buffer into memory. */
1403                 err = indx_read(indx, ni, next_used_vbn, &n);
1404                 if (err)
1405                         return err;
1406 
1407                 e = hdr_first_de(&n->index->ihdr);
1408                 fnd_push(fnd, n, e);
1409                 if (!e)
1410                         return -EINVAL;
1411         }
1412 
1413 ok:
1414         /* Return offset to restore enumerator if necessary. */
1415         if (!n) {
1416                 /* 'e' points in root, */
1417                 *off = PtrOffset(&root->ihdr, e);
1418         } else {
1419                 /* 'e' points in index, */
1420                 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1421                        record_size + PtrOffset(&n->index->ihdr, e);
1422         }
1423 
1424         *entry = e;
1425         return 0;
1426 }
1427 
1428 /*
1429  * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1430  */
1431 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1432                                 CLST *vbn)
1433 {
1434         int err;
1435         struct ntfs_sb_info *sbi = ni->mi.sbi;
1436         struct ATTRIB *bitmap;
1437         struct ATTRIB *alloc;
1438         u32 data_size = 1u << indx->index_bits;
1439         u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1440         CLST len = alloc_size >> sbi->cluster_bits;
1441         const struct INDEX_NAMES *in = &s_index_names[indx->type];
1442         CLST alen;
1443         struct runs_tree run;
1444 
1445         run_init(&run);
1446 
1447         err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
1448                                      &alen, 0, NULL, NULL);
1449         if (err)
1450                 goto out;
1451 
1452         err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1453                                     &run, 0, len, 0, &alloc, NULL, NULL);
1454         if (err)
1455                 goto out1;
1456 
1457         alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1458 
1459         err = ni_insert_resident(ni, ntfs3_bitmap_size(1), ATTR_BITMAP,
1460                                  in->name, in->name_len, &bitmap, NULL, NULL);
1461         if (err)
1462                 goto out2;
1463 
1464         if (in->name == I30_NAME) {
1465                 i_size_write(&ni->vfs_inode, data_size);
1466                 inode_set_bytes(&ni->vfs_inode, alloc_size);
1467         }
1468 
1469         memcpy(&indx->alloc_run, &run, sizeof(run));
1470 
1471         *vbn = 0;
1472 
1473         return 0;
1474 
1475 out2:
1476         mi_remove_attr(NULL, &ni->mi, alloc);
1477 
1478 out1:
1479         run_deallocate(sbi, &run, false);
1480 
1481 out:
1482         return err;
1483 }
1484 
1485 /*
1486  * indx_add_allocate - Add clusters to index.
1487  */
1488 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1489                              CLST *vbn)
1490 {
1491         int err;
1492         size_t bit;
1493         u64 data_size;
1494         u64 bmp_size, bmp_size_v;
1495         struct ATTRIB *bmp, *alloc;
1496         struct mft_inode *mi;
1497         const struct INDEX_NAMES *in = &s_index_names[indx->type];
1498 
1499         err = indx_find_free(indx, ni, &bit, &bmp);
1500         if (err)
1501                 goto out1;
1502 
1503         if (bit != MINUS_ONE_T) {
1504                 bmp = NULL;
1505         } else {
1506                 if (bmp->non_res) {
1507                         bmp_size = le64_to_cpu(bmp->nres.data_size);
1508                         bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1509                 } else {
1510                         bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1511                 }
1512 
1513                 bit = bmp_size << 3;
1514         }
1515 
1516         data_size = (u64)(bit + 1) << indx->index_bits;
1517 
1518         if (bmp) {
1519                 /* Increase bitmap. */
1520                 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1521                                     &indx->bitmap_run,
1522                                     ntfs3_bitmap_size(bit + 1), NULL, true,
1523                                     NULL);
1524                 if (err)
1525                         goto out1;
1526         }
1527 
1528         alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1529                              NULL, &mi);
1530         if (!alloc) {
1531                 err = -EINVAL;
1532                 if (bmp)
1533                         goto out2;
1534                 goto out1;
1535         }
1536 
1537         if (data_size <= le64_to_cpu(alloc->nres.data_size)) {
1538                 /* Reuse index. */
1539                 goto out;
1540         }
1541 
1542         /* Increase allocation. */
1543         err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1544                             &indx->alloc_run, data_size, &data_size, true,
1545                             NULL);
1546         if (err) {
1547                 if (bmp)
1548                         goto out2;
1549                 goto out1;
1550         }
1551 
1552         if (in->name == I30_NAME)
1553                 i_size_write(&ni->vfs_inode, data_size);
1554 
1555 out:
1556         *vbn = bit << indx->idx2vbn_bits;
1557 
1558         return 0;
1559 
1560 out2:
1561         /* Ops. No space? */
1562         attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1563                       &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1564 
1565 out1:
1566         return err;
1567 }
1568 
1569 /*
1570  * indx_insert_into_root - Attempt to insert an entry into the index root.
1571  *
1572  * @undo - True if we undoing previous remove.
1573  * If necessary, it will twiddle the index b-tree.
1574  */
1575 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1576                                  const struct NTFS_DE *new_de,
1577                                  struct NTFS_DE *root_de, const void *ctx,
1578                                  struct ntfs_fnd *fnd, bool undo)
1579 {
1580         int err = 0;
1581         struct NTFS_DE *e, *e0, *re;
1582         struct mft_inode *mi;
1583         struct ATTRIB *attr;
1584         struct INDEX_HDR *hdr;
1585         struct indx_node *n;
1586         CLST new_vbn;
1587         __le64 *sub_vbn, t_vbn;
1588         u16 new_de_size;
1589         u32 hdr_used, hdr_total, asize, to_move;
1590         u32 root_size, new_root_size;
1591         struct ntfs_sb_info *sbi;
1592         int ds_root;
1593         struct INDEX_ROOT *root, *a_root;
1594 
1595         /* Get the record this root placed in. */
1596         root = indx_get_root(indx, ni, &attr, &mi);
1597         if (!root)
1598                 return -EINVAL;
1599 
1600         /*
1601          * Try easy case:
1602          * hdr_insert_de will succeed if there's
1603          * room the root for the new entry.
1604          */
1605         hdr = &root->ihdr;
1606         sbi = ni->mi.sbi;
1607         new_de_size = le16_to_cpu(new_de->size);
1608         hdr_used = le32_to_cpu(hdr->used);
1609         hdr_total = le32_to_cpu(hdr->total);
1610         asize = le32_to_cpu(attr->size);
1611         root_size = le32_to_cpu(attr->res.data_size);
1612 
1613         ds_root = new_de_size + hdr_used - hdr_total;
1614 
1615         /* If 'undo' is set then reduce requirements. */
1616         if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1617             mi_resize_attr(mi, attr, ds_root)) {
1618                 hdr->total = cpu_to_le32(hdr_total + ds_root);
1619                 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1620                 WARN_ON(!e);
1621                 fnd_clear(fnd);
1622                 fnd->root_de = e;
1623 
1624                 return 0;
1625         }
1626 
1627         /* Make a copy of root attribute to restore if error. */
1628         a_root = kmemdup(attr, asize, GFP_NOFS);
1629         if (!a_root)
1630                 return -ENOMEM;
1631 
1632         /*
1633          * Copy all the non-end entries from
1634          * the index root to the new buffer.
1635          */
1636         to_move = 0;
1637         e0 = hdr_first_de(hdr);
1638 
1639         /* Calculate the size to copy. */
1640         for (e = e0;; e = hdr_next_de(hdr, e)) {
1641                 if (!e) {
1642                         err = -EINVAL;
1643                         goto out_free_root;
1644                 }
1645 
1646                 if (de_is_last(e))
1647                         break;
1648                 to_move += le16_to_cpu(e->size);
1649         }
1650 
1651         if (!to_move) {
1652                 re = NULL;
1653         } else {
1654                 re = kmemdup(e0, to_move, GFP_NOFS);
1655                 if (!re) {
1656                         err = -ENOMEM;
1657                         goto out_free_root;
1658                 }
1659         }
1660 
1661         sub_vbn = NULL;
1662         if (de_has_vcn(e)) {
1663                 t_vbn = de_get_vbn_le(e);
1664                 sub_vbn = &t_vbn;
1665         }
1666 
1667         new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1668                         sizeof(u64);
1669         ds_root = new_root_size - root_size;
1670 
1671         if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1672                 /* Make root external. */
1673                 err = -EOPNOTSUPP;
1674                 goto out_free_re;
1675         }
1676 
1677         if (ds_root)
1678                 mi_resize_attr(mi, attr, ds_root);
1679 
1680         /* Fill first entry (vcn will be set later). */
1681         e = (struct NTFS_DE *)(root + 1);
1682         memset(e, 0, sizeof(struct NTFS_DE));
1683         e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1684         e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1685 
1686         hdr->flags = NTFS_INDEX_HDR_HAS_SUBNODES;
1687         hdr->used = hdr->total =
1688                 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1689 
1690         fnd->root_de = hdr_first_de(hdr);
1691         mi->dirty = true;
1692 
1693         /* Create alloc and bitmap attributes (if not). */
1694         err = run_is_empty(&indx->alloc_run) ?
1695                       indx_create_allocate(indx, ni, &new_vbn) :
1696                       indx_add_allocate(indx, ni, &new_vbn);
1697 
1698         /* Layout of record may be changed, so rescan root. */
1699         root = indx_get_root(indx, ni, &attr, &mi);
1700         if (!root) {
1701                 /* Bug? */
1702                 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1703                 err = -EINVAL;
1704                 goto out_free_re;
1705         }
1706 
1707         if (err) {
1708                 /* Restore root. */
1709                 if (mi_resize_attr(mi, attr, -ds_root)) {
1710                         memcpy(attr, a_root, asize);
1711                 } else {
1712                         /* Bug? */
1713                         ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1714                 }
1715                 goto out_free_re;
1716         }
1717 
1718         e = (struct NTFS_DE *)(root + 1);
1719         *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1720         mi->dirty = true;
1721 
1722         /* Now we can create/format the new buffer and copy the entries into. */
1723         n = indx_new(indx, ni, new_vbn, sub_vbn);
1724         if (IS_ERR(n)) {
1725                 err = PTR_ERR(n);
1726                 goto out_free_re;
1727         }
1728 
1729         hdr = &n->index->ihdr;
1730         hdr_used = le32_to_cpu(hdr->used);
1731         hdr_total = le32_to_cpu(hdr->total);
1732 
1733         /* Copy root entries into new buffer. */
1734         hdr_insert_head(hdr, re, to_move);
1735 
1736         /* Update bitmap attribute. */
1737         indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1738 
1739         /* Check if we can insert new entry new index buffer. */
1740         if (hdr_used + new_de_size > hdr_total) {
1741                 /*
1742                  * This occurs if MFT record is the same or bigger than index
1743                  * buffer. Move all root new index and have no space to add
1744                  * new entry classic case when MFT record is 1K and index
1745                  * buffer 4K the problem should not occurs.
1746                  */
1747                 kfree(re);
1748                 indx_write(indx, ni, n, 0);
1749 
1750                 put_indx_node(n);
1751                 fnd_clear(fnd);
1752                 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1753                 goto out_free_root;
1754         }
1755 
1756         /*
1757          * Now root is a parent for new index buffer.
1758          * Insert NewEntry a new buffer.
1759          */
1760         e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1761         if (!e) {
1762                 err = -EINVAL;
1763                 goto out_put_n;
1764         }
1765         fnd_push(fnd, n, e);
1766 
1767         /* Just write updates index into disk. */
1768         indx_write(indx, ni, n, 0);
1769 
1770         n = NULL;
1771 
1772 out_put_n:
1773         put_indx_node(n);
1774 out_free_re:
1775         kfree(re);
1776 out_free_root:
1777         kfree(a_root);
1778         return err;
1779 }
1780 
1781 /*
1782  * indx_insert_into_buffer
1783  *
1784  * Attempt to insert an entry into an Index Allocation Buffer.
1785  * If necessary, it will split the buffer.
1786  */
1787 static int
1788 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1789                         struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1790                         const void *ctx, int level, struct ntfs_fnd *fnd)
1791 {
1792         int err;
1793         const struct NTFS_DE *sp;
1794         struct NTFS_DE *e, *de_t, *up_e;
1795         struct indx_node *n2;
1796         struct indx_node *n1 = fnd->nodes[level];
1797         struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1798         struct INDEX_HDR *hdr2;
1799         u32 to_copy, used, used1;
1800         CLST new_vbn;
1801         __le64 t_vbn, *sub_vbn;
1802         u16 sp_size;
1803         void *hdr1_saved = NULL;
1804 
1805         /* Try the most easy case. */
1806         e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1807         e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1808         fnd->de[level] = e;
1809         if (e) {
1810                 /* Just write updated index into disk. */
1811                 indx_write(indx, ni, n1, 0);
1812                 return 0;
1813         }
1814 
1815         /*
1816          * No space to insert into buffer. Split it.
1817          * To split we:
1818          *  - Save split point ('cause index buffers will be changed)
1819          * - Allocate NewBuffer and copy all entries <= sp into new buffer
1820          * - Remove all entries (sp including) from TargetBuffer
1821          * - Insert NewEntry into left or right buffer (depending on sp <=>
1822          *     NewEntry)
1823          * - Insert sp into parent buffer (or root)
1824          * - Make sp a parent for new buffer
1825          */
1826         sp = hdr_find_split(hdr1);
1827         if (!sp)
1828                 return -EINVAL;
1829 
1830         sp_size = le16_to_cpu(sp->size);
1831         up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1832         if (!up_e)
1833                 return -ENOMEM;
1834         memcpy(up_e, sp, sp_size);
1835 
1836         used1 = le32_to_cpu(hdr1->used);
1837         hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS);
1838         if (!hdr1_saved) {
1839                 err = -ENOMEM;
1840                 goto out;
1841         }
1842 
1843         if (!hdr1->flags) {
1844                 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1845                 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1846                 sub_vbn = NULL;
1847         } else {
1848                 t_vbn = de_get_vbn_le(up_e);
1849                 sub_vbn = &t_vbn;
1850         }
1851 
1852         /* Allocate on disk a new index allocation buffer. */
1853         err = indx_add_allocate(indx, ni, &new_vbn);
1854         if (err)
1855                 goto out;
1856 
1857         /* Allocate and format memory a new index buffer. */
1858         n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1859         if (IS_ERR(n2)) {
1860                 err = PTR_ERR(n2);
1861                 goto out;
1862         }
1863 
1864         hdr2 = &n2->index->ihdr;
1865 
1866         /* Make sp a parent for new buffer. */
1867         de_set_vbn(up_e, new_vbn);
1868 
1869         /* Copy all the entries <= sp into the new buffer. */
1870         de_t = hdr_first_de(hdr1);
1871         to_copy = PtrOffset(de_t, sp);
1872         hdr_insert_head(hdr2, de_t, to_copy);
1873 
1874         /* Remove all entries (sp including) from hdr1. */
1875         used = used1 - to_copy - sp_size;
1876         memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1877         hdr1->used = cpu_to_le32(used);
1878 
1879         /*
1880          * Insert new entry into left or right buffer
1881          * (depending on sp <=> new_de).
1882          */
1883         hdr_insert_de(indx,
1884                       (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1885                                    up_e + 1, le16_to_cpu(up_e->key_size),
1886                                    ctx) < 0 ?
1887                               hdr2 :
1888                               hdr1,
1889                       new_de, NULL, ctx);
1890 
1891         indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1892 
1893         indx_write(indx, ni, n1, 0);
1894         indx_write(indx, ni, n2, 0);
1895 
1896         put_indx_node(n2);
1897 
1898         /*
1899          * We've finished splitting everybody, so we are ready to
1900          * insert the promoted entry into the parent.
1901          */
1902         if (!level) {
1903                 /* Insert in root. */
1904                 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1905         } else {
1906                 /*
1907                  * The target buffer's parent is another index buffer.
1908                  * TODO: Remove recursion.
1909                  */
1910                 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1911                                               level - 1, fnd);
1912         }
1913 
1914         if (err) {
1915                 /*
1916                  * Undo critical operations.
1917                  */
1918                 indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits);
1919                 memcpy(hdr1, hdr1_saved, used1);
1920                 indx_write(indx, ni, n1, 0);
1921         }
1922 
1923 out:
1924         kfree(up_e);
1925         kfree(hdr1_saved);
1926 
1927         return err;
1928 }
1929 
1930 /*
1931  * indx_insert_entry - Insert new entry into index.
1932  *
1933  * @undo - True if we undoing previous remove.
1934  */
1935 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1936                       const struct NTFS_DE *new_de, const void *ctx,
1937                       struct ntfs_fnd *fnd, bool undo)
1938 {
1939         int err;
1940         int diff;
1941         struct NTFS_DE *e;
1942         struct ntfs_fnd *fnd_a = NULL;
1943         struct INDEX_ROOT *root;
1944 
1945         if (!fnd) {
1946                 fnd_a = fnd_get();
1947                 if (!fnd_a) {
1948                         err = -ENOMEM;
1949                         goto out1;
1950                 }
1951                 fnd = fnd_a;
1952         }
1953 
1954         root = indx_get_root(indx, ni, NULL, NULL);
1955         if (!root) {
1956                 err = -EINVAL;
1957                 goto out;
1958         }
1959 
1960         if (fnd_is_empty(fnd)) {
1961                 /*
1962                  * Find the spot the tree where we want to
1963                  * insert the new entry.
1964                  */
1965                 err = indx_find(indx, ni, root, new_de + 1,
1966                                 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1967                                 fnd);
1968                 if (err)
1969                         goto out;
1970 
1971                 if (!diff) {
1972                         err = -EEXIST;
1973                         goto out;
1974                 }
1975         }
1976 
1977         if (!fnd->level) {
1978                 /*
1979                  * The root is also a leaf, so we'll insert the
1980                  * new entry into it.
1981                  */
1982                 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1983                                             fnd, undo);
1984         } else {
1985                 /*
1986                  * Found a leaf buffer, so we'll insert the new entry into it.
1987                  */
1988                 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1989                                               fnd->level - 1, fnd);
1990         }
1991 
1992 out:
1993         fnd_put(fnd_a);
1994 out1:
1995         return err;
1996 }
1997 
1998 /*
1999  * indx_find_buffer - Locate a buffer from the tree.
2000  */
2001 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
2002                                           struct ntfs_inode *ni,
2003                                           const struct INDEX_ROOT *root,
2004                                           __le64 vbn, struct indx_node *n)
2005 {
2006         int err;
2007         const struct NTFS_DE *e;
2008         struct indx_node *r;
2009         const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
2010 
2011         /* Step 1: Scan one level. */
2012         for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2013                 if (!e)
2014                         return ERR_PTR(-EINVAL);
2015 
2016                 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2017                         return n;
2018 
2019                 if (de_is_last(e))
2020                         break;
2021         }
2022 
2023         /* Step2: Do recursion. */
2024         e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2025         for (;;) {
2026                 if (de_has_vcn_ex(e)) {
2027                         err = indx_read(indx, ni, de_get_vbn(e), &n);
2028                         if (err)
2029                                 return ERR_PTR(err);
2030 
2031                         r = indx_find_buffer(indx, ni, root, vbn, n);
2032                         if (r)
2033                                 return r;
2034                 }
2035 
2036                 if (de_is_last(e))
2037                         break;
2038 
2039                 e = Add2Ptr(e, le16_to_cpu(e->size));
2040         }
2041 
2042         return NULL;
2043 }
2044 
2045 /*
2046  * indx_shrink - Deallocate unused tail indexes.
2047  */
2048 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2049                        size_t bit)
2050 {
2051         int err = 0;
2052         u64 bpb, new_data;
2053         size_t nbits;
2054         struct ATTRIB *b;
2055         struct ATTR_LIST_ENTRY *le = NULL;
2056         const struct INDEX_NAMES *in = &s_index_names[indx->type];
2057 
2058         b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2059                          NULL, NULL);
2060 
2061         if (!b)
2062                 return -ENOENT;
2063 
2064         if (!b->non_res) {
2065                 unsigned long pos;
2066                 const unsigned long *bm = resident_data(b);
2067 
2068                 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2069 
2070                 if (bit >= nbits)
2071                         return 0;
2072 
2073                 pos = find_next_bit_le(bm, nbits, bit);
2074                 if (pos < nbits)
2075                         return 0;
2076         } else {
2077                 size_t used = MINUS_ONE_T;
2078 
2079                 nbits = le64_to_cpu(b->nres.data_size) * 8;
2080 
2081                 if (bit >= nbits)
2082                         return 0;
2083 
2084                 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2085                 if (err)
2086                         return err;
2087 
2088                 if (used != MINUS_ONE_T)
2089                         return 0;
2090         }
2091 
2092         new_data = (u64)bit << indx->index_bits;
2093 
2094         err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2095                             &indx->alloc_run, new_data, &new_data, false, NULL);
2096         if (err)
2097                 return err;
2098 
2099         if (in->name == I30_NAME)
2100                 i_size_write(&ni->vfs_inode, new_data);
2101 
2102         bpb = ntfs3_bitmap_size(bit);
2103         if (bpb * 8 == nbits)
2104                 return 0;
2105 
2106         err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2107                             &indx->bitmap_run, bpb, &bpb, false, NULL);
2108 
2109         return err;
2110 }
2111 
2112 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2113                               const struct NTFS_DE *e, bool trim)
2114 {
2115         int err;
2116         struct indx_node *n = NULL;
2117         struct INDEX_HDR *hdr;
2118         CLST vbn = de_get_vbn(e);
2119         size_t i;
2120 
2121         err = indx_read(indx, ni, vbn, &n);
2122         if (err)
2123                 return err;
2124 
2125         hdr = &n->index->ihdr;
2126         /* First, recurse into the children, if any. */
2127         if (hdr_has_subnode(hdr)) {
2128                 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2129                         indx_free_children(indx, ni, e, false);
2130                         if (de_is_last(e))
2131                                 break;
2132                 }
2133         }
2134 
2135         put_indx_node(n);
2136 
2137         i = vbn >> indx->idx2vbn_bits;
2138         /*
2139          * We've gotten rid of the children; add this buffer to the free list.
2140          */
2141         indx_mark_free(indx, ni, i);
2142 
2143         if (!trim)
2144                 return 0;
2145 
2146         /*
2147          * If there are no used indexes after current free index
2148          * then we can truncate allocation and bitmap.
2149          * Use bitmap to estimate the case.
2150          */
2151         indx_shrink(indx, ni, i + 1);
2152         return 0;
2153 }
2154 
2155 /*
2156  * indx_get_entry_to_replace
2157  *
2158  * Find a replacement entry for a deleted entry.
2159  * Always returns a node entry:
2160  * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2161  */
2162 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2163                                      struct ntfs_inode *ni,
2164                                      const struct NTFS_DE *de_next,
2165                                      struct NTFS_DE **de_to_replace,
2166                                      struct ntfs_fnd *fnd)
2167 {
2168         int err;
2169         int level = -1;
2170         CLST vbn;
2171         struct NTFS_DE *e, *te, *re;
2172         struct indx_node *n;
2173         struct INDEX_BUFFER *ib;
2174 
2175         *de_to_replace = NULL;
2176 
2177         /* Find first leaf entry down from de_next. */
2178         vbn = de_get_vbn(de_next);
2179         for (;;) {
2180                 n = NULL;
2181                 err = indx_read(indx, ni, vbn, &n);
2182                 if (err)
2183                         goto out;
2184 
2185                 e = hdr_first_de(&n->index->ihdr);
2186                 fnd_push(fnd, n, e);
2187 
2188                 if (!de_is_last(e)) {
2189                         /*
2190                          * This buffer is non-empty, so its first entry
2191                          * could be used as the replacement entry.
2192                          */
2193                         level = fnd->level - 1;
2194                 }
2195 
2196                 if (!de_has_vcn(e))
2197                         break;
2198 
2199                 /* This buffer is a node. Continue to go down. */
2200                 vbn = de_get_vbn(e);
2201         }
2202 
2203         if (level == -1)
2204                 goto out;
2205 
2206         n = fnd->nodes[level];
2207         te = hdr_first_de(&n->index->ihdr);
2208         /* Copy the candidate entry into the replacement entry buffer. */
2209         re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2210         if (!re) {
2211                 err = -ENOMEM;
2212                 goto out;
2213         }
2214 
2215         *de_to_replace = re;
2216         memcpy(re, te, le16_to_cpu(te->size));
2217 
2218         if (!de_has_vcn(re)) {
2219                 /*
2220                  * The replacement entry we found doesn't have a sub_vcn.
2221                  * increase its size to hold one.
2222                  */
2223                 le16_add_cpu(&re->size, sizeof(u64));
2224                 re->flags |= NTFS_IE_HAS_SUBNODES;
2225         } else {
2226                 /*
2227                  * The replacement entry we found was a node entry, which
2228                  * means that all its child buffers are empty. Return them
2229                  * to the free pool.
2230                  */
2231                 indx_free_children(indx, ni, te, true);
2232         }
2233 
2234         /*
2235          * Expunge the replacement entry from its former location,
2236          * and then write that buffer.
2237          */
2238         ib = n->index;
2239         e = hdr_delete_de(&ib->ihdr, te);
2240 
2241         fnd->de[level] = e;
2242         indx_write(indx, ni, n, 0);
2243 
2244         if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2245                 /* An empty leaf. */
2246                 return 0;
2247         }
2248 
2249 out:
2250         fnd_clear(fnd);
2251         return err;
2252 }
2253 
2254 /*
2255  * indx_delete_entry - Delete an entry from the index.
2256  */
2257 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2258                       const void *key, u32 key_len, const void *ctx)
2259 {
2260         int err, diff;
2261         struct INDEX_ROOT *root;
2262         struct INDEX_HDR *hdr;
2263         struct ntfs_fnd *fnd, *fnd2;
2264         struct INDEX_BUFFER *ib;
2265         struct NTFS_DE *e, *re, *next, *prev, *me;
2266         struct indx_node *n, *n2d = NULL;
2267         __le64 sub_vbn;
2268         int level, level2;
2269         struct ATTRIB *attr;
2270         struct mft_inode *mi;
2271         u32 e_size, root_size, new_root_size;
2272         size_t trim_bit;
2273         const struct INDEX_NAMES *in;
2274 
2275         fnd = fnd_get();
2276         if (!fnd) {
2277                 err = -ENOMEM;
2278                 goto out2;
2279         }
2280 
2281         fnd2 = fnd_get();
2282         if (!fnd2) {
2283                 err = -ENOMEM;
2284                 goto out1;
2285         }
2286 
2287         root = indx_get_root(indx, ni, &attr, &mi);
2288         if (!root) {
2289                 err = -EINVAL;
2290                 goto out;
2291         }
2292 
2293         /* Locate the entry to remove. */
2294         err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2295         if (err)
2296                 goto out;
2297 
2298         if (!e || diff) {
2299                 err = -ENOENT;
2300                 goto out;
2301         }
2302 
2303         level = fnd->level;
2304 
2305         if (level) {
2306                 n = fnd->nodes[level - 1];
2307                 e = fnd->de[level - 1];
2308                 ib = n->index;
2309                 hdr = &ib->ihdr;
2310         } else {
2311                 hdr = &root->ihdr;
2312                 e = fnd->root_de;
2313                 n = NULL;
2314         }
2315 
2316         e_size = le16_to_cpu(e->size);
2317 
2318         if (!de_has_vcn_ex(e)) {
2319                 /* The entry to delete is a leaf, so we can just rip it out. */
2320                 hdr_delete_de(hdr, e);
2321 
2322                 if (!level) {
2323                         hdr->total = hdr->used;
2324 
2325                         /* Shrink resident root attribute. */
2326                         mi_resize_attr(mi, attr, 0 - e_size);
2327                         goto out;
2328                 }
2329 
2330                 indx_write(indx, ni, n, 0);
2331 
2332                 /*
2333                  * Check to see if removing that entry made
2334                  * the leaf empty.
2335                  */
2336                 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2337                         fnd_pop(fnd);
2338                         fnd_push(fnd2, n, e);
2339                 }
2340         } else {
2341                 /*
2342                  * The entry we wish to delete is a node buffer, so we
2343                  * have to find a replacement for it.
2344                  */
2345                 next = de_get_next(e);
2346 
2347                 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2348                 if (err)
2349                         goto out;
2350 
2351                 if (re) {
2352                         de_set_vbn_le(re, de_get_vbn_le(e));
2353                         hdr_delete_de(hdr, e);
2354 
2355                         err = level ? indx_insert_into_buffer(indx, ni, root,
2356                                                               re, ctx,
2357                                                               fnd->level - 1,
2358                                                               fnd) :
2359                                       indx_insert_into_root(indx, ni, re, e,
2360                                                             ctx, fnd, 0);
2361                         kfree(re);
2362 
2363                         if (err)
2364                                 goto out;
2365                 } else {
2366                         /*
2367                          * There is no replacement for the current entry.
2368                          * This means that the subtree rooted at its node
2369                          * is empty, and can be deleted, which turn means
2370                          * that the node can just inherit the deleted
2371                          * entry sub_vcn.
2372                          */
2373                         indx_free_children(indx, ni, next, true);
2374 
2375                         de_set_vbn_le(next, de_get_vbn_le(e));
2376                         hdr_delete_de(hdr, e);
2377                         if (level) {
2378                                 indx_write(indx, ni, n, 0);
2379                         } else {
2380                                 hdr->total = hdr->used;
2381 
2382                                 /* Shrink resident root attribute. */
2383                                 mi_resize_attr(mi, attr, 0 - e_size);
2384                         }
2385                 }
2386         }
2387 
2388         /* Delete a branch of tree. */
2389         if (!fnd2 || !fnd2->level)
2390                 goto out;
2391 
2392         /* Reinit root 'cause it can be changed. */
2393         root = indx_get_root(indx, ni, &attr, &mi);
2394         if (!root) {
2395                 err = -EINVAL;
2396                 goto out;
2397         }
2398 
2399         n2d = NULL;
2400         sub_vbn = fnd2->nodes[0]->index->vbn;
2401         level2 = 0;
2402         level = fnd->level;
2403 
2404         hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2405 
2406         /* Scan current level. */
2407         for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2408                 if (!e) {
2409                         err = -EINVAL;
2410                         goto out;
2411                 }
2412 
2413                 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2414                         break;
2415 
2416                 if (de_is_last(e)) {
2417                         e = NULL;
2418                         break;
2419                 }
2420         }
2421 
2422         if (!e) {
2423                 /* Do slow search from root. */
2424                 struct indx_node *in;
2425 
2426                 fnd_clear(fnd);
2427 
2428                 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2429                 if (IS_ERR(in)) {
2430                         err = PTR_ERR(in);
2431                         goto out;
2432                 }
2433 
2434                 if (in)
2435                         fnd_push(fnd, in, NULL);
2436         }
2437 
2438         /* Merge fnd2 -> fnd. */
2439         for (level = 0; level < fnd2->level; level++) {
2440                 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2441                 fnd2->nodes[level] = NULL;
2442         }
2443         fnd2->level = 0;
2444 
2445         hdr = NULL;
2446         for (level = fnd->level; level; level--) {
2447                 struct indx_node *in = fnd->nodes[level - 1];
2448 
2449                 ib = in->index;
2450                 if (ib_is_empty(ib)) {
2451                         sub_vbn = ib->vbn;
2452                 } else {
2453                         hdr = &ib->ihdr;
2454                         n2d = in;
2455                         level2 = level;
2456                         break;
2457                 }
2458         }
2459 
2460         if (!hdr)
2461                 hdr = &root->ihdr;
2462 
2463         e = hdr_first_de(hdr);
2464         if (!e) {
2465                 err = -EINVAL;
2466                 goto out;
2467         }
2468 
2469         if (hdr != &root->ihdr || !de_is_last(e)) {
2470                 prev = NULL;
2471                 while (!de_is_last(e)) {
2472                         if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2473                                 break;
2474                         prev = e;
2475                         e = hdr_next_de(hdr, e);
2476                         if (!e) {
2477                                 err = -EINVAL;
2478                                 goto out;
2479                         }
2480                 }
2481 
2482                 if (sub_vbn != de_get_vbn_le(e)) {
2483                         /*
2484                          * Didn't find the parent entry, although this buffer
2485                          * is the parent trail. Something is corrupt.
2486                          */
2487                         err = -EINVAL;
2488                         goto out;
2489                 }
2490 
2491                 if (de_is_last(e)) {
2492                         /*
2493                          * Since we can't remove the end entry, we'll remove
2494                          * its predecessor instead. This means we have to
2495                          * transfer the predecessor's sub_vcn to the end entry.
2496                          * Note: This index block is not empty, so the
2497                          * predecessor must exist.
2498                          */
2499                         if (!prev) {
2500                                 err = -EINVAL;
2501                                 goto out;
2502                         }
2503 
2504                         if (de_has_vcn(prev)) {
2505                                 de_set_vbn_le(e, de_get_vbn_le(prev));
2506                         } else if (de_has_vcn(e)) {
2507                                 le16_sub_cpu(&e->size, sizeof(u64));
2508                                 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2509                                 le32_sub_cpu(&hdr->used, sizeof(u64));
2510                         }
2511                         e = prev;
2512                 }
2513 
2514                 /*
2515                  * Copy the current entry into a temporary buffer (stripping
2516                  * off its down-pointer, if any) and delete it from the current
2517                  * buffer or root, as appropriate.
2518                  */
2519                 e_size = le16_to_cpu(e->size);
2520                 me = kmemdup(e, e_size, GFP_NOFS);
2521                 if (!me) {
2522                         err = -ENOMEM;
2523                         goto out;
2524                 }
2525 
2526                 if (de_has_vcn(me)) {
2527                         me->flags &= ~NTFS_IE_HAS_SUBNODES;
2528                         le16_sub_cpu(&me->size, sizeof(u64));
2529                 }
2530 
2531                 hdr_delete_de(hdr, e);
2532 
2533                 if (hdr == &root->ihdr) {
2534                         level = 0;
2535                         hdr->total = hdr->used;
2536 
2537                         /* Shrink resident root attribute. */
2538                         mi_resize_attr(mi, attr, 0 - e_size);
2539                 } else {
2540                         indx_write(indx, ni, n2d, 0);
2541                         level = level2;
2542                 }
2543 
2544                 /* Mark unused buffers as free. */
2545                 trim_bit = -1;
2546                 for (; level < fnd->level; level++) {
2547                         ib = fnd->nodes[level]->index;
2548                         if (ib_is_empty(ib)) {
2549                                 size_t k = le64_to_cpu(ib->vbn) >>
2550                                            indx->idx2vbn_bits;
2551 
2552                                 indx_mark_free(indx, ni, k);
2553                                 if (k < trim_bit)
2554                                         trim_bit = k;
2555                         }
2556                 }
2557 
2558                 fnd_clear(fnd);
2559                 /*fnd->root_de = NULL;*/
2560 
2561                 /*
2562                  * Re-insert the entry into the tree.
2563                  * Find the spot the tree where we want to insert the new entry.
2564                  */
2565                 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2566                 kfree(me);
2567                 if (err)
2568                         goto out;
2569 
2570                 if (trim_bit != -1)
2571                         indx_shrink(indx, ni, trim_bit);
2572         } else {
2573                 /*
2574                  * This tree needs to be collapsed down to an empty root.
2575                  * Recreate the index root as an empty leaf and free all
2576                  * the bits the index allocation bitmap.
2577                  */
2578                 fnd_clear(fnd);
2579                 fnd_clear(fnd2);
2580 
2581                 in = &s_index_names[indx->type];
2582 
2583                 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2584                                     &indx->alloc_run, 0, NULL, false, NULL);
2585                 if (in->name == I30_NAME)
2586                         i_size_write(&ni->vfs_inode, 0);
2587 
2588                 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2589                                      false, NULL);
2590                 run_close(&indx->alloc_run);
2591 
2592                 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2593                                     &indx->bitmap_run, 0, NULL, false, NULL);
2594                 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2595                                      false, NULL);
2596                 run_close(&indx->bitmap_run);
2597 
2598                 root = indx_get_root(indx, ni, &attr, &mi);
2599                 if (!root) {
2600                         err = -EINVAL;
2601                         goto out;
2602                 }
2603 
2604                 root_size = le32_to_cpu(attr->res.data_size);
2605                 new_root_size =
2606                         sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2607 
2608                 if (new_root_size != root_size &&
2609                     !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2610                         err = -EINVAL;
2611                         goto out;
2612                 }
2613 
2614                 /* Fill first entry. */
2615                 e = (struct NTFS_DE *)(root + 1);
2616                 e->ref.low = 0;
2617                 e->ref.high = 0;
2618                 e->ref.seq = 0;
2619                 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2620                 e->flags = NTFS_IE_LAST; // 0x02
2621                 e->key_size = 0;
2622                 e->res = 0;
2623 
2624                 hdr = &root->ihdr;
2625                 hdr->flags = 0;
2626                 hdr->used = hdr->total = cpu_to_le32(
2627                         new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2628                 mi->dirty = true;
2629         }
2630 
2631 out:
2632         fnd_put(fnd2);
2633 out1:
2634         fnd_put(fnd);
2635 out2:
2636         return err;
2637 }
2638 
2639 /*
2640  * Update duplicated information in directory entry
2641  * 'dup' - info from MFT record
2642  */
2643 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2644                     const struct ATTR_FILE_NAME *fname,
2645                     const struct NTFS_DUP_INFO *dup, int sync)
2646 {
2647         int err, diff;
2648         struct NTFS_DE *e = NULL;
2649         struct ATTR_FILE_NAME *e_fname;
2650         struct ntfs_fnd *fnd;
2651         struct INDEX_ROOT *root;
2652         struct mft_inode *mi;
2653         struct ntfs_index *indx = &ni->dir;
2654 
2655         fnd = fnd_get();
2656         if (!fnd)
2657                 return -ENOMEM;
2658 
2659         root = indx_get_root(indx, ni, NULL, &mi);
2660         if (!root) {
2661                 err = -EINVAL;
2662                 goto out;
2663         }
2664 
2665         /* Find entry in directory. */
2666         err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2667                         &diff, &e, fnd);
2668         if (err)
2669                 goto out;
2670 
2671         if (!e) {
2672                 err = -EINVAL;
2673                 goto out;
2674         }
2675 
2676         if (diff) {
2677                 err = -EINVAL;
2678                 goto out;
2679         }
2680 
2681         e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2682 
2683         if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2684                 /*
2685                  * Nothing to update in index! Try to avoid this call.
2686                  */
2687                 goto out;
2688         }
2689 
2690         memcpy(&e_fname->dup, dup, sizeof(*dup));
2691 
2692         if (fnd->level) {
2693                 /* Directory entry in index. */
2694                 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2695         } else {
2696                 /* Directory entry in directory MFT record. */
2697                 mi->dirty = true;
2698                 if (sync)
2699                         err = mi_write(mi, 1);
2700                 else
2701                         mark_inode_dirty(&ni->vfs_inode);
2702         }
2703 
2704 out:
2705         fnd_put(fnd);
2706         return err;
2707 }
2708 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php