~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ntfs3/lib/decompress_common.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * decompress_common.c - Code shared by the XPRESS and LZX decompressors
  4  *
  5  * Copyright (C) 2015 Eric Biggers
  6  */
  7 
  8 #include "decompress_common.h"
  9 
 10 /*
 11  * make_huffman_decode_table() -
 12  *
 13  * Build a decoding table for a canonical prefix code, or "Huffman code".
 14  *
 15  * This is an internal function, not part of the library API!
 16  *
 17  * This takes as input the length of the codeword for each symbol in the
 18  * alphabet and produces as output a table that can be used for fast
 19  * decoding of prefix-encoded symbols using read_huffsym().
 20  *
 21  * Strictly speaking, a canonical prefix code might not be a Huffman
 22  * code.  But this algorithm will work either way; and in fact, since
 23  * Huffman codes are defined in terms of symbol frequencies, there is no
 24  * way for the decompressor to know whether the code is a true Huffman
 25  * code or not until all symbols have been decoded.
 26  *
 27  * Because the prefix code is assumed to be "canonical", it can be
 28  * reconstructed directly from the codeword lengths.  A prefix code is
 29  * canonical if and only if a longer codeword never lexicographically
 30  * precedes a shorter codeword, and the lexicographic ordering of
 31  * codewords of the same length is the same as the lexicographic ordering
 32  * of the corresponding symbols.  Consequently, we can sort the symbols
 33  * primarily by codeword length and secondarily by symbol value, then
 34  * reconstruct the prefix code by generating codewords lexicographically
 35  * in that order.
 36  *
 37  * This function does not, however, generate the prefix code explicitly.
 38  * Instead, it directly builds a table for decoding symbols using the
 39  * code.  The basic idea is this: given the next 'max_codeword_len' bits
 40  * in the input, we can look up the decoded symbol by indexing a table
 41  * containing 2**max_codeword_len entries.  A codeword with length
 42  * 'max_codeword_len' will have exactly one entry in this table, whereas
 43  * a codeword shorter than 'max_codeword_len' will have multiple entries
 44  * in this table.  Precisely, a codeword of length n will be represented
 45  * by 2**(max_codeword_len - n) entries in this table.  The 0-based index
 46  * of each such entry will contain the corresponding codeword as a prefix
 47  * when zero-padded on the left to 'max_codeword_len' binary digits.
 48  *
 49  * That's the basic idea, but we implement two optimizations regarding
 50  * the format of the decode table itself:
 51  *
 52  * - For many compression formats, the maximum codeword length is too
 53  *   long for it to be efficient to build the full decoding table
 54  *   whenever a new prefix code is used.  Instead, we can build the table
 55  *   using only 2**table_bits entries, where 'table_bits' is some number
 56  *   less than or equal to 'max_codeword_len'.  Then, only codewords of
 57  *   length 'table_bits' and shorter can be directly looked up.  For
 58  *   longer codewords, the direct lookup instead produces the root of a
 59  *   binary tree.  Using this tree, the decoder can do traditional
 60  *   bit-by-bit decoding of the remainder of the codeword.  Child nodes
 61  *   are allocated in extra entries at the end of the table; leaf nodes
 62  *   contain symbols.  Note that the long-codeword case is, in general,
 63  *   not performance critical, since in Huffman codes the most frequently
 64  *   used symbols are assigned the shortest codeword lengths.
 65  *
 66  * - When we decode a symbol using a direct lookup of the table, we still
 67  *   need to know its length so that the bitstream can be advanced by the
 68  *   appropriate number of bits.  The simple solution is to simply retain
 69  *   the 'lens' array and use the decoded symbol as an index into it.
 70  *   However, this requires two separate array accesses in the fast path.
 71  *   The optimization is to store the length directly in the decode
 72  *   table.  We use the bottom 11 bits for the symbol and the top 5 bits
 73  *   for the length.  In addition, to combine this optimization with the
 74  *   previous one, we introduce a special case where the top 2 bits of
 75  *   the length are both set if the entry is actually the root of a
 76  *   binary tree.
 77  *
 78  * @decode_table:
 79  *      The array in which to create the decoding table.  This must have
 80  *      a length of at least ((2**table_bits) + 2 * num_syms) entries.
 81  *
 82  * @num_syms:
 83  *      The number of symbols in the alphabet; also, the length of the
 84  *      'lens' array.  Must be less than or equal to 2048.
 85  *
 86  * @table_bits:
 87  *      The order of the decode table size, as explained above.  Must be
 88  *      less than or equal to 13.
 89  *
 90  * @lens:
 91  *      An array of length @num_syms, indexable by symbol, that gives the
 92  *      length of the codeword, in bits, for that symbol.  The length can
 93  *      be 0, which means that the symbol does not have a codeword
 94  *      assigned.
 95  *
 96  * @max_codeword_len:
 97  *      The longest codeword length allowed in the compression format.
 98  *      All entries in 'lens' must be less than or equal to this value.
 99  *      This must be less than or equal to 23.
100  *
101  * @working_space
102  *      A temporary array of length '2 * (max_codeword_len + 1) +
103  *      num_syms'.
104  *
105  * Returns 0 on success, or -1 if the lengths do not form a valid prefix
106  * code.
107  */
108 int make_huffman_decode_table(u16 decode_table[], const u32 num_syms,
109                               const u32 table_bits, const u8 lens[],
110                               const u32 max_codeword_len,
111                               u16 working_space[])
112 {
113         const u32 table_num_entries = 1 << table_bits;
114         u16 * const len_counts = &working_space[0];
115         u16 * const offsets = &working_space[1 * (max_codeword_len + 1)];
116         u16 * const sorted_syms = &working_space[2 * (max_codeword_len + 1)];
117         int left;
118         void *decode_table_ptr;
119         u32 sym_idx;
120         u32 codeword_len;
121         u32 stores_per_loop;
122         u32 decode_table_pos;
123         u32 len;
124         u32 sym;
125 
126         /* Count how many symbols have each possible codeword length.
127          * Note that a length of 0 indicates the corresponding symbol is not
128          * used in the code and therefore does not have a codeword.
129          */
130         for (len = 0; len <= max_codeword_len; len++)
131                 len_counts[len] = 0;
132         for (sym = 0; sym < num_syms; sym++)
133                 len_counts[lens[sym]]++;
134 
135         /* We can assume all lengths are <= max_codeword_len, but we
136          * cannot assume they form a valid prefix code.  A codeword of
137          * length n should require a proportion of the codespace equaling
138          * (1/2)^n.  The code is valid if and only if the codespace is
139          * exactly filled by the lengths, by this measure.
140          */
141         left = 1;
142         for (len = 1; len <= max_codeword_len; len++) {
143                 left <<= 1;
144                 left -= len_counts[len];
145                 if (left < 0) {
146                         /* The lengths overflow the codespace; that is, the code
147                          * is over-subscribed.
148                          */
149                         return -1;
150                 }
151         }
152 
153         if (left) {
154                 /* The lengths do not fill the codespace; that is, they form an
155                  * incomplete set.
156                  */
157                 if (left == (1 << max_codeword_len)) {
158                         /* The code is completely empty.  This is arguably
159                          * invalid, but in fact it is valid in LZX and XPRESS,
160                          * so we must allow it.  By definition, no symbols can
161                          * be decoded with an empty code.  Consequently, we
162                          * technically don't even need to fill in the decode
163                          * table.  However, to avoid accessing uninitialized
164                          * memory if the algorithm nevertheless attempts to
165                          * decode symbols using such a code, we zero out the
166                          * decode table.
167                          */
168                         memset(decode_table, 0,
169                                table_num_entries * sizeof(decode_table[0]));
170                         return 0;
171                 }
172                 return -1;
173         }
174 
175         /* Sort the symbols primarily by length and secondarily by symbol order.
176          */
177 
178         /* Initialize 'offsets' so that offsets[len] for 1 <= len <=
179          * max_codeword_len is the number of codewords shorter than 'len' bits.
180          */
181         offsets[1] = 0;
182         for (len = 1; len < max_codeword_len; len++)
183                 offsets[len + 1] = offsets[len] + len_counts[len];
184 
185         /* Use the 'offsets' array to sort the symbols.  Note that we do not
186          * include symbols that are not used in the code.  Consequently, fewer
187          * than 'num_syms' entries in 'sorted_syms' may be filled.
188          */
189         for (sym = 0; sym < num_syms; sym++)
190                 if (lens[sym])
191                         sorted_syms[offsets[lens[sym]]++] = sym;
192 
193         /* Fill entries for codewords with length <= table_bits
194          * --- that is, those short enough for a direct mapping.
195          *
196          * The table will start with entries for the shortest codeword(s), which
197          * have the most entries.  From there, the number of entries per
198          * codeword will decrease.
199          */
200         decode_table_ptr = decode_table;
201         sym_idx = 0;
202         codeword_len = 1;
203         stores_per_loop = (1 << (table_bits - codeword_len));
204         for (; stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1) {
205                 u32 end_sym_idx = sym_idx + len_counts[codeword_len];
206 
207                 for (; sym_idx < end_sym_idx; sym_idx++) {
208                         u16 entry;
209                         u16 *p;
210                         u32 n;
211 
212                         entry = ((u32)codeword_len << 11) | sorted_syms[sym_idx];
213                         p = (u16 *)decode_table_ptr;
214                         n = stores_per_loop;
215 
216                         do {
217                                 *p++ = entry;
218                         } while (--n);
219 
220                         decode_table_ptr = p;
221                 }
222         }
223 
224         /* If we've filled in the entire table, we are done.  Otherwise,
225          * there are codewords longer than table_bits for which we must
226          * generate binary trees.
227          */
228         decode_table_pos = (u16 *)decode_table_ptr - decode_table;
229         if (decode_table_pos != table_num_entries) {
230                 u32 j;
231                 u32 next_free_tree_slot;
232                 u32 cur_codeword;
233 
234                 /* First, zero out the remaining entries.  This is
235                  * necessary so that these entries appear as
236                  * "unallocated" in the next part.  Each of these entries
237                  * will eventually be filled with the representation of
238                  * the root node of a binary tree.
239                  */
240                 j = decode_table_pos;
241                 do {
242                         decode_table[j] = 0;
243                 } while (++j != table_num_entries);
244 
245                 /* We allocate child nodes starting at the end of the
246                  * direct lookup table.  Note that there should be
247                  * 2*num_syms extra entries for this purpose, although
248                  * fewer than this may actually be needed.
249                  */
250                 next_free_tree_slot = table_num_entries;
251 
252                 /* Iterate through each codeword with length greater than
253                  * 'table_bits', primarily in order of codeword length
254                  * and secondarily in order of symbol.
255                  */
256                 for (cur_codeword = decode_table_pos << 1;
257                      codeword_len <= max_codeword_len;
258                      codeword_len++, cur_codeword <<= 1) {
259                         u32 end_sym_idx = sym_idx + len_counts[codeword_len];
260 
261                         for (; sym_idx < end_sym_idx; sym_idx++, cur_codeword++) {
262                                 /* 'sorted_sym' is the symbol represented by the
263                                  * codeword.
264                                  */
265                                 u32 sorted_sym = sorted_syms[sym_idx];
266                                 u32 extra_bits = codeword_len - table_bits;
267                                 u32 node_idx = cur_codeword >> extra_bits;
268 
269                                 /* Go through each bit of the current codeword
270                                  * beyond the prefix of length @table_bits and
271                                  * walk the appropriate binary tree, allocating
272                                  * any slots that have not yet been allocated.
273                                  *
274                                  * Note that the 'pointer' entry to the binary
275                                  * tree, which is stored in the direct lookup
276                                  * portion of the table, is represented
277                                  * identically to other internal (non-leaf)
278                                  * nodes of the binary tree; it can be thought
279                                  * of as simply the root of the tree.  The
280                                  * representation of these internal nodes is
281                                  * simply the index of the left child combined
282                                  * with the special bits 0xC000 to distinguish
283                                  * the entry from direct mapping and leaf node
284                                  * entries.
285                                  */
286                                 do {
287                                         /* At least one bit remains in the
288                                          * codeword, but the current node is an
289                                          * unallocated leaf.  Change it to an
290                                          * internal node.
291                                          */
292                                         if (decode_table[node_idx] == 0) {
293                                                 decode_table[node_idx] =
294                                                         next_free_tree_slot | 0xC000;
295                                                 decode_table[next_free_tree_slot++] = 0;
296                                                 decode_table[next_free_tree_slot++] = 0;
297                                         }
298 
299                                         /* Go to the left child if the next bit
300                                          * in the codeword is 0; otherwise go to
301                                          * the right child.
302                                          */
303                                         node_idx = decode_table[node_idx] & 0x3FFF;
304                                         --extra_bits;
305                                         node_idx += (cur_codeword >> extra_bits) & 1;
306                                 } while (extra_bits != 0);
307 
308                                 /* We've traversed the tree using the entire
309                                  * codeword, and we're now at the entry where
310                                  * the actual symbol will be stored.  This is
311                                  * distinguished from internal nodes by not
312                                  * having its high two bits set.
313                                  */
314                                 decode_table[node_idx] = sorted_sym;
315                         }
316                 }
317         }
318         return 0;
319 }
320 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php