~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ntfs3/ntfs.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  *
  4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
  5  *
  6  * on-disk ntfs structs
  7  */
  8 
  9 // clang-format off
 10 #ifndef _LINUX_NTFS3_NTFS_H
 11 #define _LINUX_NTFS3_NTFS_H
 12 
 13 #include <linux/blkdev.h>
 14 #include <linux/build_bug.h>
 15 #include <linux/kernel.h>
 16 #include <linux/stddef.h>
 17 #include <linux/string.h>
 18 #include <linux/types.h>
 19 
 20 #include "debug.h"
 21 
 22 /* TODO: Check 4K MFT record and 512 bytes cluster. */
 23 
 24 /* Check each run for marked clusters. */
 25 #define NTFS3_CHECK_FREE_CLST
 26 
 27 #define NTFS_NAME_LEN 255
 28 
 29 /*
 30  * ntfs.sys used 500 maximum links on-disk struct allows up to 0xffff.
 31  * xfstest generic/041 creates 3003 hardlinks.
 32  */
 33 #define NTFS_LINK_MAX 4000
 34 
 35 /*
 36  * Activate to use 64 bit clusters instead of 32 bits in ntfs.sys.
 37  * Logical and virtual cluster number if needed, may be
 38  * redefined to use 64 bit value.
 39  */
 40 //#define CONFIG_NTFS3_64BIT_CLUSTER
 41 
 42 #define NTFS_LZNT_MAX_CLUSTER   4096
 43 #define NTFS_LZNT_CUNIT         4
 44 #define NTFS_LZNT_CLUSTERS      (1u<<NTFS_LZNT_CUNIT)
 45 
 46 struct GUID {
 47         __le32 Data1;
 48         __le16 Data2;
 49         __le16 Data3;
 50         u8 Data4[8];
 51 };
 52 
 53 /*
 54  * This struct repeats layout of ATTR_FILE_NAME
 55  * at offset 0x40.
 56  * It used to store global constants NAME_MFT/NAME_MIRROR...
 57  * most constant names are shorter than 10.
 58  */
 59 struct cpu_str {
 60         u8 len;
 61         u8 unused;
 62         u16 name[];
 63 };
 64 
 65 struct le_str {
 66         u8 len;
 67         u8 unused;
 68         __le16 name[];
 69 };
 70 
 71 static_assert(SECTOR_SHIFT == 9);
 72 
 73 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
 74 typedef u64 CLST;
 75 static_assert(sizeof(size_t) == 8);
 76 #else
 77 typedef u32 CLST;
 78 #endif
 79 
 80 #define SPARSE_LCN64   ((u64)-1)
 81 #define SPARSE_LCN     ((CLST)-1)
 82 #define RESIDENT_LCN   ((CLST)-2)
 83 #define COMPRESSED_LCN ((CLST)-3)
 84 
 85 enum RECORD_NUM {
 86         MFT_REC_MFT             = 0,
 87         MFT_REC_MIRR            = 1,
 88         MFT_REC_LOG             = 2,
 89         MFT_REC_VOL             = 3,
 90         MFT_REC_ATTR            = 4,
 91         MFT_REC_ROOT            = 5,
 92         MFT_REC_BITMAP          = 6,
 93         MFT_REC_BOOT            = 7,
 94         MFT_REC_BADCLUST        = 8,
 95         MFT_REC_SECURE          = 9,
 96         MFT_REC_UPCASE          = 10,
 97         MFT_REC_EXTEND          = 11,
 98         MFT_REC_RESERVED        = 12,
 99         MFT_REC_FREE            = 16,
100         MFT_REC_USER            = 24,
101 };
102 
103 enum ATTR_TYPE {
104         ATTR_ZERO               = cpu_to_le32(0x00),
105         ATTR_STD                = cpu_to_le32(0x10),
106         ATTR_LIST               = cpu_to_le32(0x20),
107         ATTR_NAME               = cpu_to_le32(0x30),
108         ATTR_ID                 = cpu_to_le32(0x40),
109         ATTR_SECURE             = cpu_to_le32(0x50),
110         ATTR_LABEL              = cpu_to_le32(0x60),
111         ATTR_VOL_INFO           = cpu_to_le32(0x70),
112         ATTR_DATA               = cpu_to_le32(0x80),
113         ATTR_ROOT               = cpu_to_le32(0x90),
114         ATTR_ALLOC              = cpu_to_le32(0xA0),
115         ATTR_BITMAP             = cpu_to_le32(0xB0),
116         ATTR_REPARSE            = cpu_to_le32(0xC0),
117         ATTR_EA_INFO            = cpu_to_le32(0xD0),
118         ATTR_EA                 = cpu_to_le32(0xE0),
119         ATTR_PROPERTYSET        = cpu_to_le32(0xF0),
120         ATTR_LOGGED_UTILITY_STREAM = cpu_to_le32(0x100),
121         ATTR_END                = cpu_to_le32(0xFFFFFFFF)
122 };
123 
124 static_assert(sizeof(enum ATTR_TYPE) == 4);
125 
126 enum FILE_ATTRIBUTE {
127         FILE_ATTRIBUTE_READONLY         = cpu_to_le32(0x00000001),
128         FILE_ATTRIBUTE_HIDDEN           = cpu_to_le32(0x00000002),
129         FILE_ATTRIBUTE_SYSTEM           = cpu_to_le32(0x00000004),
130         FILE_ATTRIBUTE_ARCHIVE          = cpu_to_le32(0x00000020),
131         FILE_ATTRIBUTE_DEVICE           = cpu_to_le32(0x00000040),
132         FILE_ATTRIBUTE_TEMPORARY        = cpu_to_le32(0x00000100),
133         FILE_ATTRIBUTE_SPARSE_FILE      = cpu_to_le32(0x00000200),
134         FILE_ATTRIBUTE_REPARSE_POINT    = cpu_to_le32(0x00000400),
135         FILE_ATTRIBUTE_COMPRESSED       = cpu_to_le32(0x00000800),
136         FILE_ATTRIBUTE_OFFLINE          = cpu_to_le32(0x00001000),
137         FILE_ATTRIBUTE_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000),
138         FILE_ATTRIBUTE_ENCRYPTED        = cpu_to_le32(0x00004000),
139         FILE_ATTRIBUTE_VALID_FLAGS      = cpu_to_le32(0x00007fb7),
140         FILE_ATTRIBUTE_DIRECTORY        = cpu_to_le32(0x10000000),
141         FILE_ATTRIBUTE_INDEX            = cpu_to_le32(0x20000000)
142 };
143 
144 static_assert(sizeof(enum FILE_ATTRIBUTE) == 4);
145 
146 extern const struct cpu_str NAME_MFT;
147 extern const struct cpu_str NAME_MIRROR;
148 extern const struct cpu_str NAME_LOGFILE;
149 extern const struct cpu_str NAME_VOLUME;
150 extern const struct cpu_str NAME_ATTRDEF;
151 extern const struct cpu_str NAME_ROOT;
152 extern const struct cpu_str NAME_BITMAP;
153 extern const struct cpu_str NAME_BOOT;
154 extern const struct cpu_str NAME_BADCLUS;
155 extern const struct cpu_str NAME_QUOTA;
156 extern const struct cpu_str NAME_SECURE;
157 extern const struct cpu_str NAME_UPCASE;
158 extern const struct cpu_str NAME_EXTEND;
159 extern const struct cpu_str NAME_OBJID;
160 extern const struct cpu_str NAME_REPARSE;
161 extern const struct cpu_str NAME_USNJRNL;
162 
163 extern const __le16 I30_NAME[4];
164 extern const __le16 SII_NAME[4];
165 extern const __le16 SDH_NAME[4];
166 extern const __le16 SO_NAME[2];
167 extern const __le16 SQ_NAME[2];
168 extern const __le16 SR_NAME[2];
169 
170 extern const __le16 BAD_NAME[4];
171 extern const __le16 SDS_NAME[4];
172 extern const __le16 WOF_NAME[17];       /* WofCompressedData */
173 
174 /* MFT record number structure. */
175 struct MFT_REF {
176         __le32 low;     // The low part of the number.
177         __le16 high;    // The high part of the number.
178         __le16 seq;     // The sequence number of MFT record.
179 };
180 
181 static_assert(sizeof(__le64) == sizeof(struct MFT_REF));
182 
183 static inline CLST ino_get(const struct MFT_REF *ref)
184 {
185 #ifdef CONFIG_NTFS3_64BIT_CLUSTER
186         return le32_to_cpu(ref->low) | ((u64)le16_to_cpu(ref->high) << 32);
187 #else
188         return le32_to_cpu(ref->low);
189 #endif
190 }
191 
192 struct NTFS_BOOT {
193         u8 jump_code[3];        // 0x00: Jump to boot code.
194         u8 system_id[8];        // 0x03: System ID, equals "NTFS    "
195 
196         // NOTE: This member is not aligned(!)
197         // bytes_per_sector[0] must be 0.
198         // bytes_per_sector[1] must be multiplied by 256.
199         u8 bytes_per_sector[2]; // 0x0B: Bytes per sector.
200 
201         u8 sectors_per_clusters;// 0x0D: Sectors per cluster.
202         u8 unused1[7];
203         u8 media_type;          // 0x15: Media type (0xF8 - harddisk)
204         u8 unused2[2];
205         __le16 sct_per_track;   // 0x18: number of sectors per track.
206         __le16 heads;           // 0x1A: number of heads per cylinder.
207         __le32 hidden_sectors;  // 0x1C: number of 'hidden' sectors.
208         u8 unused3[4];
209         u8 bios_drive_num;      // 0x24: BIOS drive number =0x80.
210         u8 unused4;
211         u8 signature_ex;        // 0x26: Extended BOOT signature =0x80.
212         u8 unused5;
213         __le64 sectors_per_volume;// 0x28: Size of volume in sectors.
214         __le64 mft_clst;        // 0x30: First cluster of $MFT
215         __le64 mft2_clst;       // 0x38: First cluster of $MFTMirr
216         s8 record_size;         // 0x40: Size of MFT record in clusters(sectors).
217         u8 unused6[3];
218         s8 index_size;          // 0x44: Size of INDX record in clusters(sectors).
219         u8 unused7[3];
220         __le64 serial_num;      // 0x48: Volume serial number
221         __le32 check_sum;       // 0x50: Simple additive checksum of all
222                                 // of the u32's which precede the 'check_sum'.
223 
224         u8 boot_code[0x200 - 0x50 - 2 - 4]; // 0x54:
225         u8 boot_magic[2];       // 0x1FE: Boot signature =0x55 + 0xAA
226 };
227 
228 static_assert(sizeof(struct NTFS_BOOT) == 0x200);
229 
230 enum NTFS_SIGNATURE {
231         NTFS_FILE_SIGNATURE = cpu_to_le32(0x454C4946), // 'FILE'
232         NTFS_INDX_SIGNATURE = cpu_to_le32(0x58444E49), // 'INDX'
233         NTFS_CHKD_SIGNATURE = cpu_to_le32(0x444B4843), // 'CHKD'
234         NTFS_RSTR_SIGNATURE = cpu_to_le32(0x52545352), // 'RSTR'
235         NTFS_RCRD_SIGNATURE = cpu_to_le32(0x44524352), // 'RCRD'
236         NTFS_BAAD_SIGNATURE = cpu_to_le32(0x44414142), // 'BAAD'
237         NTFS_HOLE_SIGNATURE = cpu_to_le32(0x454C4F48), // 'HOLE'
238         NTFS_FFFF_SIGNATURE = cpu_to_le32(0xffffffff),
239 };
240 
241 static_assert(sizeof(enum NTFS_SIGNATURE) == 4);
242 
243 /* MFT Record header structure. */
244 struct NTFS_RECORD_HEADER {
245         /* Record magic number, equals 'FILE'/'INDX'/'RSTR'/'RCRD'. */
246         enum NTFS_SIGNATURE sign; // 0x00:
247         __le16 fix_off;         // 0x04:
248         __le16 fix_num;         // 0x06:
249         __le64 lsn;             // 0x08: Log file sequence number,
250 };
251 
252 static_assert(sizeof(struct NTFS_RECORD_HEADER) == 0x10);
253 
254 static inline int is_baad(const struct NTFS_RECORD_HEADER *hdr)
255 {
256         return hdr->sign == NTFS_BAAD_SIGNATURE;
257 }
258 
259 /* Possible bits in struct MFT_REC.flags. */
260 enum RECORD_FLAG {
261         RECORD_FLAG_IN_USE      = cpu_to_le16(0x0001),
262         RECORD_FLAG_DIR         = cpu_to_le16(0x0002),
263         RECORD_FLAG_SYSTEM      = cpu_to_le16(0x0004),
264         RECORD_FLAG_INDEX       = cpu_to_le16(0x0008),
265 };
266 
267 /* MFT Record structure. */
268 struct MFT_REC {
269         struct NTFS_RECORD_HEADER rhdr; // 'FILE'
270 
271         __le16 seq;             // 0x10: Sequence number for this record.
272         __le16 hard_links;      // 0x12: The number of hard links to record.
273         __le16 attr_off;        // 0x14: Offset to attributes.
274         __le16 flags;           // 0x16: See RECORD_FLAG.
275         __le32 used;            // 0x18: The size of used part.
276         __le32 total;           // 0x1C: Total record size.
277 
278         struct MFT_REF parent_ref; // 0x20: Parent MFT record.
279         __le16 next_attr_id;    // 0x28: The next attribute Id.
280 
281         __le16 res;             // 0x2A: High part of MFT record?
282         __le32 mft_record;      // 0x2C: Current MFT record number.
283         __le16 fixups[];        // 0x30:
284 };
285 
286 #define MFTRECORD_FIXUP_OFFSET_1 offsetof(struct MFT_REC, res)
287 #define MFTRECORD_FIXUP_OFFSET_3 offsetof(struct MFT_REC, fixups)
288 /*
289  * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_3 (0x30)
290  * to format new mft records with bigger header (as current ntfs.sys does)
291  *
292  * define MFTRECORD_FIXUP_OFFSET as MFTRECORD_FIXUP_OFFSET_1 (0x2A)
293  * to format new mft records with smaller header (as old ntfs.sys did)
294  * Both variants are valid.
295  */
296 #define MFTRECORD_FIXUP_OFFSET  MFTRECORD_FIXUP_OFFSET_1
297 
298 static_assert(MFTRECORD_FIXUP_OFFSET_1 == 0x2A);
299 static_assert(MFTRECORD_FIXUP_OFFSET_3 == 0x30);
300 
301 static inline bool is_rec_base(const struct MFT_REC *rec)
302 {
303         const struct MFT_REF *r = &rec->parent_ref;
304 
305         return !r->low && !r->high && !r->seq;
306 }
307 
308 static inline bool is_mft_rec5(const struct MFT_REC *rec)
309 {
310         return le16_to_cpu(rec->rhdr.fix_off) >=
311                offsetof(struct MFT_REC, fixups);
312 }
313 
314 static inline bool is_rec_inuse(const struct MFT_REC *rec)
315 {
316         return rec->flags & RECORD_FLAG_IN_USE;
317 }
318 
319 static inline bool clear_rec_inuse(struct MFT_REC *rec)
320 {
321         return rec->flags &= ~RECORD_FLAG_IN_USE;
322 }
323 
324 /* Possible values of ATTR_RESIDENT.flags */
325 #define RESIDENT_FLAG_INDEXED 0x01
326 
327 struct ATTR_RESIDENT {
328         __le32 data_size;       // 0x10: The size of data.
329         __le16 data_off;        // 0x14: Offset to data.
330         u8 flags;               // 0x16: Resident flags ( 1 - indexed ).
331         u8 res;                 // 0x17:
332 }; // sizeof() = 0x18
333 
334 struct ATTR_NONRESIDENT {
335         __le64 svcn;            // 0x10: Starting VCN of this segment.
336         __le64 evcn;            // 0x18: End VCN of this segment.
337         __le16 run_off;         // 0x20: Offset to packed runs.
338         // Unit of Compression size for this stream, expressed
339         // as a log of the cluster size.
340         //
341         // 0 means file is not compressed
342         // 1, 2, 3, and 4 are potentially legal values if the
343         // stream is compressed, however the implementation
344         // may only choose to use 4, or possibly 3.
345         // Note that 4 means cluster size time 16.
346         // If convenient the implementation may wish to accept a
347         // reasonable range of legal values here (1-5?),
348         // even if the implementation only generates
349         // a smaller set of values itself.
350         u8 c_unit;              // 0x22:
351         u8 res1[5];             // 0x23:
352         __le64 alloc_size;      // 0x28: The allocated size of attribute in bytes.
353                                 // (multiple of cluster size)
354         __le64 data_size;       // 0x30: The size of attribute  in bytes <= alloc_size.
355         __le64 valid_size;      // 0x38: The size of valid part in bytes <= data_size.
356         __le64 total_size;      // 0x40: The sum of the allocated clusters for a file.
357                                 // (present only for the first segment (0 == vcn)
358                                 // of compressed attribute)
359 
360 }; // sizeof()=0x40 or 0x48 (if compressed)
361 
362 /* Possible values of ATTRIB.flags: */
363 #define ATTR_FLAG_COMPRESSED      cpu_to_le16(0x0001)
364 #define ATTR_FLAG_COMPRESSED_MASK cpu_to_le16(0x00FF)
365 #define ATTR_FLAG_ENCRYPTED       cpu_to_le16(0x4000)
366 #define ATTR_FLAG_SPARSED         cpu_to_le16(0x8000)
367 
368 struct ATTRIB {
369         enum ATTR_TYPE type;    // 0x00: The type of this attribute.
370         __le32 size;            // 0x04: The size of this attribute.
371         u8 non_res;             // 0x08: Is this attribute non-resident?
372         u8 name_len;            // 0x09: This attribute name length.
373         __le16 name_off;        // 0x0A: Offset to the attribute name.
374         __le16 flags;           // 0x0C: See ATTR_FLAG_XXX.
375         __le16 id;              // 0x0E: Unique id (per record).
376 
377         union {
378                 struct ATTR_RESIDENT res;     // 0x10
379                 struct ATTR_NONRESIDENT nres; // 0x10
380         };
381 };
382 
383 /* Define attribute sizes. */
384 #define SIZEOF_RESIDENT                 0x18
385 #define SIZEOF_NONRESIDENT_EX           0x48
386 #define SIZEOF_NONRESIDENT              0x40
387 
388 #define SIZEOF_RESIDENT_LE              cpu_to_le16(0x18)
389 #define SIZEOF_NONRESIDENT_EX_LE        cpu_to_le16(0x48)
390 #define SIZEOF_NONRESIDENT_LE           cpu_to_le16(0x40)
391 
392 static inline u64 attr_ondisk_size(const struct ATTRIB *attr)
393 {
394         return attr->non_res ? ((attr->flags &
395                                  (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
396                                         le64_to_cpu(attr->nres.total_size) :
397                                         le64_to_cpu(attr->nres.alloc_size))
398                              : ALIGN(le32_to_cpu(attr->res.data_size), 8);
399 }
400 
401 static inline u64 attr_size(const struct ATTRIB *attr)
402 {
403         return attr->non_res ? le64_to_cpu(attr->nres.data_size) :
404                                le32_to_cpu(attr->res.data_size);
405 }
406 
407 static inline bool is_attr_encrypted(const struct ATTRIB *attr)
408 {
409         return attr->flags & ATTR_FLAG_ENCRYPTED;
410 }
411 
412 static inline bool is_attr_sparsed(const struct ATTRIB *attr)
413 {
414         return attr->flags & ATTR_FLAG_SPARSED;
415 }
416 
417 static inline bool is_attr_compressed(const struct ATTRIB *attr)
418 {
419         return attr->flags & ATTR_FLAG_COMPRESSED;
420 }
421 
422 static inline bool is_attr_ext(const struct ATTRIB *attr)
423 {
424         return attr->flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED);
425 }
426 
427 static inline bool is_attr_indexed(const struct ATTRIB *attr)
428 {
429         return !attr->non_res && (attr->res.flags & RESIDENT_FLAG_INDEXED);
430 }
431 
432 static inline __le16 const *attr_name(const struct ATTRIB *attr)
433 {
434         return Add2Ptr(attr, le16_to_cpu(attr->name_off));
435 }
436 
437 static inline u64 attr_svcn(const struct ATTRIB *attr)
438 {
439         return attr->non_res ? le64_to_cpu(attr->nres.svcn) : 0;
440 }
441 
442 static_assert(sizeof(struct ATTRIB) == 0x48);
443 static_assert(sizeof(((struct ATTRIB *)NULL)->res) == 0x08);
444 static_assert(sizeof(((struct ATTRIB *)NULL)->nres) == 0x38);
445 
446 static inline void *resident_data_ex(const struct ATTRIB *attr, u32 datasize)
447 {
448         u32 asize, rsize;
449         u16 off;
450 
451         if (attr->non_res)
452                 return NULL;
453 
454         asize = le32_to_cpu(attr->size);
455         off = le16_to_cpu(attr->res.data_off);
456 
457         if (asize < datasize + off)
458                 return NULL;
459 
460         rsize = le32_to_cpu(attr->res.data_size);
461         if (rsize < datasize)
462                 return NULL;
463 
464         return Add2Ptr(attr, off);
465 }
466 
467 static inline void *resident_data(const struct ATTRIB *attr)
468 {
469         return Add2Ptr(attr, le16_to_cpu(attr->res.data_off));
470 }
471 
472 static inline void *attr_run(const struct ATTRIB *attr)
473 {
474         return Add2Ptr(attr, le16_to_cpu(attr->nres.run_off));
475 }
476 
477 /* Standard information attribute (0x10). */
478 struct ATTR_STD_INFO {
479         __le64 cr_time;         // 0x00: File creation file.
480         __le64 m_time;          // 0x08: File modification time.
481         __le64 c_time;          // 0x10: Last time any attribute was modified.
482         __le64 a_time;          // 0x18: File last access time.
483         enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
484         __le32 max_ver_num;     // 0x24: Maximum Number of Versions.
485         __le32 ver_num;         // 0x28: Version Number.
486         __le32 class_id;        // 0x2C: Class Id from bidirectional Class Id index.
487 };
488 
489 static_assert(sizeof(struct ATTR_STD_INFO) == 0x30);
490 
491 #define SECURITY_ID_INVALID 0x00000000
492 #define SECURITY_ID_FIRST 0x00000100
493 
494 struct ATTR_STD_INFO5 {
495         __le64 cr_time;         // 0x00: File creation file.
496         __le64 m_time;          // 0x08: File modification time.
497         __le64 c_time;          // 0x10: Last time any attribute was modified.
498         __le64 a_time;          // 0x18: File last access time.
499         enum FILE_ATTRIBUTE fa; // 0x20: Standard DOS attributes & more.
500         __le32 max_ver_num;     // 0x24: Maximum Number of Versions.
501         __le32 ver_num;         // 0x28: Version Number.
502         __le32 class_id;        // 0x2C: Class Id from bidirectional Class Id index.
503 
504         __le32 owner_id;        // 0x30: Owner Id of the user owning the file.
505         __le32 security_id;     // 0x34: The Security Id is a key in the $SII Index and $SDS.
506         __le64 quota_charge;    // 0x38:
507         __le64 usn;             // 0x40: Last Update Sequence Number of the file. This is a direct
508                                 // index into the file $UsnJrnl. If zero, the USN Journal is
509                                 // disabled.
510 };
511 
512 static_assert(sizeof(struct ATTR_STD_INFO5) == 0x48);
513 
514 /* Attribute list entry structure (0x20) */
515 struct ATTR_LIST_ENTRY {
516         enum ATTR_TYPE type;    // 0x00: The type of attribute.
517         __le16 size;            // 0x04: The size of this record.
518         u8 name_len;            // 0x06: The length of attribute name.
519         u8 name_off;            // 0x07: The offset to attribute name.
520         __le64 vcn;             // 0x08: Starting VCN of this attribute.
521         struct MFT_REF ref;     // 0x10: MFT record number with attribute.
522         __le16 id;              // 0x18: struct ATTRIB ID.
523         __le16 name[];          // 0x1A: To get real name use name_off.
524 
525 }; // sizeof(0x20)
526 
527 static inline u32 le_size(u8 name_len)
528 {
529         return ALIGN(offsetof(struct ATTR_LIST_ENTRY, name) +
530                      name_len * sizeof(short), 8);
531 }
532 
533 /* Returns 0 if 'attr' has the same type and name. */
534 static inline int le_cmp(const struct ATTR_LIST_ENTRY *le,
535                          const struct ATTRIB *attr)
536 {
537         return le->type != attr->type || le->name_len != attr->name_len ||
538                (!le->name_len &&
539                 memcmp(Add2Ptr(le, le->name_off),
540                        Add2Ptr(attr, le16_to_cpu(attr->name_off)),
541                        le->name_len * sizeof(short)));
542 }
543 
544 static inline __le16 const *le_name(const struct ATTR_LIST_ENTRY *le)
545 {
546         return Add2Ptr(le, le->name_off);
547 }
548 
549 /* File name types (the field type in struct ATTR_FILE_NAME). */
550 #define FILE_NAME_POSIX   0
551 #define FILE_NAME_UNICODE 1
552 #define FILE_NAME_DOS     2
553 #define FILE_NAME_UNICODE_AND_DOS (FILE_NAME_DOS | FILE_NAME_UNICODE)
554 
555 /* Filename attribute structure (0x30). */
556 struct NTFS_DUP_INFO {
557         __le64 cr_time;         // 0x00: File creation file.
558         __le64 m_time;          // 0x08: File modification time.
559         __le64 c_time;          // 0x10: Last time any attribute was modified.
560         __le64 a_time;          // 0x18: File last access time.
561         __le64 alloc_size;      // 0x20: Data attribute allocated size, multiple of cluster size.
562         __le64 data_size;       // 0x28: Data attribute size <= Dataalloc_size.
563         enum FILE_ATTRIBUTE fa; // 0x30: Standard DOS attributes & more.
564         __le16 ea_size;         // 0x34: Packed EAs.
565         __le16 reparse;         // 0x36: Used by Reparse.
566 
567 }; // 0x38
568 
569 struct ATTR_FILE_NAME {
570         struct MFT_REF home;    // 0x00: MFT record for directory.
571         struct NTFS_DUP_INFO dup;// 0x08:
572         u8 name_len;            // 0x40: File name length in words.
573         u8 type;                // 0x41: File name type.
574         __le16 name[];          // 0x42: File name.
575 };
576 
577 static_assert(sizeof(((struct ATTR_FILE_NAME *)NULL)->dup) == 0x38);
578 static_assert(offsetof(struct ATTR_FILE_NAME, name) == 0x42);
579 #define SIZEOF_ATTRIBUTE_FILENAME     0x44
580 #define SIZEOF_ATTRIBUTE_FILENAME_MAX (0x42 + 255 * 2)
581 
582 static inline struct ATTRIB *attr_from_name(struct ATTR_FILE_NAME *fname)
583 {
584         return (struct ATTRIB *)((char *)fname - SIZEOF_RESIDENT);
585 }
586 
587 static inline u16 fname_full_size(const struct ATTR_FILE_NAME *fname)
588 {
589         /* Don't return struct_size(fname, name, fname->name_len); */
590         return offsetof(struct ATTR_FILE_NAME, name) +
591                fname->name_len * sizeof(short);
592 }
593 
594 static inline u8 paired_name(u8 type)
595 {
596         if (type == FILE_NAME_UNICODE)
597                 return FILE_NAME_DOS;
598         if (type == FILE_NAME_DOS)
599                 return FILE_NAME_UNICODE;
600         return FILE_NAME_POSIX;
601 }
602 
603 /* Index entry defines ( the field flags in NtfsDirEntry ). */
604 #define NTFS_IE_HAS_SUBNODES    cpu_to_le16(1)
605 #define NTFS_IE_LAST            cpu_to_le16(2)
606 
607 /* Directory entry structure. */
608 struct NTFS_DE {
609         union {
610                 struct MFT_REF ref; // 0x00: MFT record number with this file.
611                 struct {
612                         __le16 data_off;  // 0x00:
613                         __le16 data_size; // 0x02:
614                         __le32 res;       // 0x04: Must be 0.
615                 } view;
616         };
617         __le16 size;            // 0x08: The size of this entry.
618         __le16 key_size;        // 0x0A: The size of File name length in bytes + 0x42.
619         __le16 flags;           // 0x0C: Entry flags: NTFS_IE_XXX.
620         __le16 res;             // 0x0E:
621 
622         // Here any indexed attribute can be placed.
623         // One of them is:
624         // struct ATTR_FILE_NAME AttrFileName;
625         //
626 
627         // The last 8 bytes of this structure contains
628         // the VBN of subnode.
629         // !!! Note !!!
630         // This field is presented only if (flags & NTFS_IE_HAS_SUBNODES)
631         // __le64 vbn;
632 };
633 
634 static_assert(sizeof(struct NTFS_DE) == 0x10);
635 
636 static inline void de_set_vbn_le(struct NTFS_DE *e, __le64 vcn)
637 {
638         __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
639 
640         *v = vcn;
641 }
642 
643 static inline void de_set_vbn(struct NTFS_DE *e, CLST vcn)
644 {
645         __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
646 
647         *v = cpu_to_le64(vcn);
648 }
649 
650 static inline __le64 de_get_vbn_le(const struct NTFS_DE *e)
651 {
652         return *(__le64 *)Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
653 }
654 
655 static inline CLST de_get_vbn(const struct NTFS_DE *e)
656 {
657         __le64 *v = Add2Ptr(e, le16_to_cpu(e->size) - sizeof(__le64));
658 
659         return le64_to_cpu(*v);
660 }
661 
662 static inline struct NTFS_DE *de_get_next(const struct NTFS_DE *e)
663 {
664         return Add2Ptr(e, le16_to_cpu(e->size));
665 }
666 
667 static inline struct ATTR_FILE_NAME *de_get_fname(const struct NTFS_DE *e)
668 {
669         return le16_to_cpu(e->key_size) >= SIZEOF_ATTRIBUTE_FILENAME ?
670                        Add2Ptr(e, sizeof(struct NTFS_DE)) :
671                        NULL;
672 }
673 
674 static inline bool de_is_last(const struct NTFS_DE *e)
675 {
676         return e->flags & NTFS_IE_LAST;
677 }
678 
679 static inline bool de_has_vcn(const struct NTFS_DE *e)
680 {
681         return e->flags & NTFS_IE_HAS_SUBNODES;
682 }
683 
684 static inline bool de_has_vcn_ex(const struct NTFS_DE *e)
685 {
686         return (e->flags & NTFS_IE_HAS_SUBNODES) &&
687                (u64)(-1) != *((u64 *)Add2Ptr(e, le16_to_cpu(e->size) -
688                                                         sizeof(__le64)));
689 }
690 
691 #define MAX_BYTES_PER_NAME_ENTRY \
692         ALIGN(sizeof(struct NTFS_DE) + \
693               offsetof(struct ATTR_FILE_NAME, name) + \
694               NTFS_NAME_LEN * sizeof(short), 8)
695 
696 #define NTFS_INDEX_HDR_HAS_SUBNODES cpu_to_le32(1)
697 
698 struct INDEX_HDR {
699         __le32 de_off;  // 0x00: The offset from the start of this structure
700                         // to the first NTFS_DE.
701         __le32 used;    // 0x04: The size of this structure plus all
702                         // entries (quad-word aligned).
703         __le32 total;   // 0x08: The allocated size of for this structure plus all entries.
704         __le32 flags;   // 0x0C: 0x00 = Small directory, 0x01 = Large directory.
705 
706         //
707         // de_off + used <= total
708         //
709 };
710 
711 static_assert(sizeof(struct INDEX_HDR) == 0x10);
712 
713 static inline struct NTFS_DE *hdr_first_de(const struct INDEX_HDR *hdr)
714 {
715         u32 de_off = le32_to_cpu(hdr->de_off);
716         u32 used = le32_to_cpu(hdr->used);
717         struct NTFS_DE *e;
718         u16 esize;
719 
720         if (de_off >= used || de_off + sizeof(struct NTFS_DE) > used )
721                 return NULL;
722 
723         e = Add2Ptr(hdr, de_off);
724         esize = le16_to_cpu(e->size);
725         if (esize < sizeof(struct NTFS_DE) || de_off + esize > used)
726                 return NULL;
727 
728         return e;
729 }
730 
731 static inline struct NTFS_DE *hdr_next_de(const struct INDEX_HDR *hdr,
732                                           const struct NTFS_DE *e)
733 {
734         size_t off = PtrOffset(hdr, e);
735         u32 used = le32_to_cpu(hdr->used);
736         u16 esize;
737 
738         if (off >= used)
739                 return NULL;
740 
741         esize = le16_to_cpu(e->size);
742 
743         if (esize < sizeof(struct NTFS_DE) ||
744             off + esize + sizeof(struct NTFS_DE) > used)
745                 return NULL;
746 
747         return Add2Ptr(e, esize);
748 }
749 
750 static inline bool hdr_has_subnode(const struct INDEX_HDR *hdr)
751 {
752         return hdr->flags & NTFS_INDEX_HDR_HAS_SUBNODES;
753 }
754 
755 struct INDEX_BUFFER {
756         struct NTFS_RECORD_HEADER rhdr; // 'INDX'
757         __le64 vbn; // 0x10: vcn if index >= cluster or vsn id index < cluster
758         struct INDEX_HDR ihdr; // 0x18:
759 };
760 
761 static_assert(sizeof(struct INDEX_BUFFER) == 0x28);
762 
763 static inline bool ib_is_empty(const struct INDEX_BUFFER *ib)
764 {
765         const struct NTFS_DE *first = hdr_first_de(&ib->ihdr);
766 
767         return !first || de_is_last(first);
768 }
769 
770 static inline bool ib_is_leaf(const struct INDEX_BUFFER *ib)
771 {
772         return !(ib->ihdr.flags & NTFS_INDEX_HDR_HAS_SUBNODES);
773 }
774 
775 /* Index root structure ( 0x90 ). */
776 enum COLLATION_RULE {
777         NTFS_COLLATION_TYPE_BINARY      = cpu_to_le32(0),
778         // $I30
779         NTFS_COLLATION_TYPE_FILENAME    = cpu_to_le32(0x01),
780         // $SII of $Secure and $Q of Quota
781         NTFS_COLLATION_TYPE_UINT        = cpu_to_le32(0x10),
782         // $O of Quota
783         NTFS_COLLATION_TYPE_SID         = cpu_to_le32(0x11),
784         // $SDH of $Secure
785         NTFS_COLLATION_TYPE_SECURITY_HASH = cpu_to_le32(0x12),
786         // $O of ObjId and "$R" for Reparse
787         NTFS_COLLATION_TYPE_UINTS       = cpu_to_le32(0x13)
788 };
789 
790 static_assert(sizeof(enum COLLATION_RULE) == 4);
791 
792 //
793 struct INDEX_ROOT {
794         enum ATTR_TYPE type;    // 0x00: The type of attribute to index on.
795         enum COLLATION_RULE rule; // 0x04: The rule.
796         __le32 index_block_size;// 0x08: The size of index record.
797         u8 index_block_clst;    // 0x0C: The number of clusters or sectors per index.
798         u8 res[3];
799         struct INDEX_HDR ihdr;  // 0x10:
800 };
801 
802 static_assert(sizeof(struct INDEX_ROOT) == 0x20);
803 static_assert(offsetof(struct INDEX_ROOT, ihdr) == 0x10);
804 
805 #define VOLUME_FLAG_DIRTY           cpu_to_le16(0x0001)
806 #define VOLUME_FLAG_RESIZE_LOG_FILE cpu_to_le16(0x0002)
807 
808 struct VOLUME_INFO {
809         __le64 res1;    // 0x00
810         u8 major_ver;   // 0x08: NTFS major version number (before .)
811         u8 minor_ver;   // 0x09: NTFS minor version number (after .)
812         __le16 flags;   // 0x0A: Volume flags, see VOLUME_FLAG_XXX
813 
814 }; // sizeof=0xC
815 
816 #define SIZEOF_ATTRIBUTE_VOLUME_INFO 0xc
817 
818 #define NTFS_LABEL_MAX_LENGTH           (0x100 / sizeof(short))
819 #define NTFS_ATTR_INDEXABLE             cpu_to_le32(0x00000002)
820 #define NTFS_ATTR_DUPALLOWED            cpu_to_le32(0x00000004)
821 #define NTFS_ATTR_MUST_BE_INDEXED       cpu_to_le32(0x00000010)
822 #define NTFS_ATTR_MUST_BE_NAMED         cpu_to_le32(0x00000020)
823 #define NTFS_ATTR_MUST_BE_RESIDENT      cpu_to_le32(0x00000040)
824 #define NTFS_ATTR_LOG_ALWAYS            cpu_to_le32(0x00000080)
825 
826 /* $AttrDef file entry. */
827 struct ATTR_DEF_ENTRY {
828         __le16 name[0x40];      // 0x00: Attr name.
829         enum ATTR_TYPE type;    // 0x80: struct ATTRIB type.
830         __le32 res;             // 0x84:
831         enum COLLATION_RULE rule; // 0x88:
832         __le32 flags;           // 0x8C: NTFS_ATTR_XXX (see above).
833         __le64 min_sz;          // 0x90: Minimum attribute data size.
834         __le64 max_sz;          // 0x98: Maximum attribute data size.
835 };
836 
837 static_assert(sizeof(struct ATTR_DEF_ENTRY) == 0xa0);
838 
839 /* Object ID (0x40) */
840 struct OBJECT_ID {
841         struct GUID ObjId;      // 0x00: Unique Id assigned to file.
842 
843         // Birth Volume Id is the Object Id of the Volume on.
844         // which the Object Id was allocated. It never changes.
845         struct GUID BirthVolumeId; //0x10:
846 
847         // Birth Object Id is the first Object Id that was
848         // ever assigned to this MFT Record. I.e. If the Object Id
849         // is changed for some reason, this field will reflect the
850         // original value of the Object Id.
851         struct GUID BirthObjectId; // 0x20:
852 
853         // Domain Id is currently unused but it is intended to be
854         // used in a network environment where the local machine is
855         // part of a Windows 2000 Domain. This may be used in a Windows
856         // 2000 Advanced Server managed domain.
857         struct GUID DomainId;   // 0x30:
858 };
859 
860 static_assert(sizeof(struct OBJECT_ID) == 0x40);
861 
862 /* O Directory entry structure ( rule = 0x13 ) */
863 struct NTFS_DE_O {
864         struct NTFS_DE de;
865         struct GUID ObjId;      // 0x10: Unique Id assigned to file.
866         struct MFT_REF ref;     // 0x20: MFT record number with this file.
867 
868         // Birth Volume Id is the Object Id of the Volume on
869         // which the Object Id was allocated. It never changes.
870         struct GUID BirthVolumeId; // 0x28:
871 
872         // Birth Object Id is the first Object Id that was
873         // ever assigned to this MFT Record. I.e. If the Object Id
874         // is changed for some reason, this field will reflect the
875         // original value of the Object Id.
876         // This field is valid if data_size == 0x48.
877         struct GUID BirthObjectId; // 0x38:
878 
879         // Domain Id is currently unused but it is intended
880         // to be used in a network environment where the local
881         // machine is part of a Windows 2000 Domain. This may be
882         // used in a Windows 2000 Advanced Server managed domain.
883         struct GUID BirthDomainId; // 0x48:
884 };
885 
886 static_assert(sizeof(struct NTFS_DE_O) == 0x58);
887 
888 /* Q Directory entry structure ( rule = 0x11 ) */
889 struct NTFS_DE_Q {
890         struct NTFS_DE de;
891         __le32 owner_id;        // 0x10: Unique Id assigned to file
892 
893         /* here is 0x30 bytes of user quota. NOTE: 4 byte aligned! */
894         __le32 Version;         // 0x14: 0x02
895         __le32 Flags;           // 0x18: Quota flags, see above
896         __le64 BytesUsed;       // 0x1C:
897         __le64 ChangeTime;      // 0x24:
898         __le64 WarningLimit;    // 0x28:
899         __le64 HardLimit;       // 0x34:
900         __le64 ExceededTime;    // 0x3C:
901 
902         // SID is placed here
903 }__packed; // sizeof() = 0x44
904 
905 static_assert(sizeof(struct NTFS_DE_Q) == 0x44);
906 
907 #define SecurityDescriptorsBlockSize 0x40000 // 256K
908 #define SecurityDescriptorMaxSize    0x20000 // 128K
909 #define Log2OfSecurityDescriptorsBlockSize 18
910 
911 struct SECURITY_KEY {
912         __le32 hash; //  Hash value for descriptor
913         __le32 sec_id; //  Security Id (guaranteed unique)
914 };
915 
916 /* Security descriptors (the content of $Secure::SDS data stream) */
917 struct SECURITY_HDR {
918         struct SECURITY_KEY key;        // 0x00: Security Key.
919         __le64 off;                     // 0x08: Offset of this entry in the file.
920         __le32 size;                    // 0x10: Size of this entry, 8 byte aligned.
921         /*
922          * Security descriptor itself is placed here.
923          * Total size is 16 byte aligned.
924          */
925 } __packed;
926 
927 static_assert(sizeof(struct SECURITY_HDR) == 0x14);
928 
929 /* SII Directory entry structure */
930 struct NTFS_DE_SII {
931         struct NTFS_DE de;
932         __le32 sec_id;                  // 0x10: Key: sizeof(security_id) = wKeySize
933         struct SECURITY_HDR sec_hdr;    // 0x14:
934 } __packed;
935 
936 static_assert(offsetof(struct NTFS_DE_SII, sec_hdr) == 0x14);
937 static_assert(sizeof(struct NTFS_DE_SII) == 0x28);
938 
939 /* SDH Directory entry structure */
940 struct NTFS_DE_SDH {
941         struct NTFS_DE de;
942         struct SECURITY_KEY key;        // 0x10: Key
943         struct SECURITY_HDR sec_hdr;    // 0x18: Data
944         __le16 magic[2];                // 0x2C: 0x00490049 "I I"
945 };
946 
947 #define SIZEOF_SDH_DIRENTRY 0x30
948 
949 struct REPARSE_KEY {
950         __le32 ReparseTag;              // 0x00: Reparse Tag
951         struct MFT_REF ref;             // 0x04: MFT record number with this file
952 }; // sizeof() = 0x0C
953 
954 static_assert(offsetof(struct REPARSE_KEY, ref) == 0x04);
955 #define SIZEOF_REPARSE_KEY 0x0C
956 
957 /* Reparse Directory entry structure */
958 struct NTFS_DE_R {
959         struct NTFS_DE de;
960         struct REPARSE_KEY key;         // 0x10: Reparse Key.
961         u32 zero;                       // 0x1c:
962 }; // sizeof() = 0x20
963 
964 static_assert(sizeof(struct NTFS_DE_R) == 0x20);
965 
966 /* CompressReparseBuffer.WofVersion */
967 #define WOF_CURRENT_VERSION             cpu_to_le32(1)
968 /* CompressReparseBuffer.WofProvider */
969 #define WOF_PROVIDER_WIM                cpu_to_le32(1)
970 /* CompressReparseBuffer.WofProvider */
971 #define WOF_PROVIDER_SYSTEM             cpu_to_le32(2)
972 /* CompressReparseBuffer.ProviderVer */
973 #define WOF_PROVIDER_CURRENT_VERSION    cpu_to_le32(1)
974 
975 #define WOF_COMPRESSION_XPRESS4K        cpu_to_le32(0) // 4k
976 #define WOF_COMPRESSION_LZX32K          cpu_to_le32(1) // 32k
977 #define WOF_COMPRESSION_XPRESS8K        cpu_to_le32(2) // 8k
978 #define WOF_COMPRESSION_XPRESS16K       cpu_to_le32(3) // 16k
979 
980 /*
981  * ATTR_REPARSE (0xC0)
982  *
983  * The reparse struct GUID structure is used by all 3rd party layered drivers to
984  * store data in a reparse point. For non-Microsoft tags, The struct GUID field
985  * cannot be GUID_NULL.
986  * The constraints on reparse tags are defined below.
987  * Microsoft tags can also be used with this format of the reparse point buffer.
988  */
989 struct REPARSE_POINT {
990         __le32 ReparseTag;      // 0x00:
991         __le16 ReparseDataLength;// 0x04:
992         __le16 Reserved;
993 
994         struct GUID Guid;       // 0x08:
995 
996         //
997         // Here GenericReparseBuffer is placed
998         //
999 };
1000 
1001 static_assert(sizeof(struct REPARSE_POINT) == 0x18);
1002 
1003 /*
1004  * The value of the following constant needs to satisfy the following
1005  * conditions:
1006  *  (1) Be at least as large as the largest of the reserved tags.
1007  *  (2) Be strictly smaller than all the tags in use.
1008  */
1009 #define IO_REPARSE_TAG_RESERVED_RANGE           1
1010 
1011 /*
1012  * The reparse tags are a ULONG. The 32 bits are laid out as follows:
1013  *
1014  *   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
1015  *   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
1016  *  +-+-+-+-+-----------------------+-------------------------------+
1017  *  |M|R|N|R|     Reserved bits     |       Reparse Tag Value       |
1018  *  +-+-+-+-+-----------------------+-------------------------------+
1019  *
1020  * M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
1021  *   All ISVs must use a tag with a 0 in this position.
1022  *   Note: If a Microsoft tag is used by non-Microsoft software, the
1023  *   behavior is not defined.
1024  *
1025  * R is reserved.  Must be zero for non-Microsoft tags.
1026  *
1027  * N is name surrogate. When set to 1, the file represents another named
1028  *   entity in the system.
1029  *
1030  * The M and N bits are OR-able.
1031  * The following macros check for the M and N bit values:
1032  */
1033 
1034 /*
1035  * Macro to determine whether a reparse point tag corresponds to a tag
1036  * owned by Microsoft.
1037  */
1038 #define IsReparseTagMicrosoft(_tag)     (((_tag)&IO_REPARSE_TAG_MICROSOFT))
1039 
1040 /* Macro to determine whether a reparse point tag is a name surrogate. */
1041 #define IsReparseTagNameSurrogate(_tag) (((_tag)&IO_REPARSE_TAG_NAME_SURROGATE))
1042 
1043 /*
1044  * The following constant represents the bits that are valid to use in
1045  * reparse tags.
1046  */
1047 #define IO_REPARSE_TAG_VALID_VALUES     0xF000FFFF
1048 
1049 /*
1050  * Macro to determine whether a reparse tag is a valid tag.
1051  */
1052 #define IsReparseTagValid(_tag)                                                \
1053         (!((_tag) & ~IO_REPARSE_TAG_VALID_VALUES) &&                           \
1054          ((_tag) > IO_REPARSE_TAG_RESERVED_RANGE))
1055 
1056 /* Microsoft tags for reparse points. */
1057 
1058 enum IO_REPARSE_TAG {
1059         IO_REPARSE_TAG_SYMBOLIC_LINK    = cpu_to_le32(0),
1060         IO_REPARSE_TAG_NAME_SURROGATE   = cpu_to_le32(0x20000000),
1061         IO_REPARSE_TAG_MICROSOFT        = cpu_to_le32(0x80000000),
1062         IO_REPARSE_TAG_MOUNT_POINT      = cpu_to_le32(0xA0000003),
1063         IO_REPARSE_TAG_SYMLINK          = cpu_to_le32(0xA000000C),
1064         IO_REPARSE_TAG_HSM              = cpu_to_le32(0xC0000004),
1065         IO_REPARSE_TAG_SIS              = cpu_to_le32(0x80000007),
1066         IO_REPARSE_TAG_DEDUP            = cpu_to_le32(0x80000013),
1067         IO_REPARSE_TAG_COMPRESS         = cpu_to_le32(0x80000017),
1068 
1069         /*
1070          * The reparse tag 0x80000008 is reserved for Microsoft internal use.
1071          * May be published in the future.
1072          */
1073 
1074         /* Microsoft reparse tag reserved for DFS */
1075         IO_REPARSE_TAG_DFS      = cpu_to_le32(0x8000000A),
1076 
1077         /* Microsoft reparse tag reserved for the file system filter manager. */
1078         IO_REPARSE_TAG_FILTER_MANAGER   = cpu_to_le32(0x8000000B),
1079 
1080         /* Non-Microsoft tags for reparse points */
1081 
1082         /* Tag allocated to CONGRUENT, May 2000. Used by IFSTEST. */
1083         IO_REPARSE_TAG_IFSTEST_CONGRUENT = cpu_to_le32(0x00000009),
1084 
1085         /* Tag allocated to ARKIVIO. */
1086         IO_REPARSE_TAG_ARKIVIO  = cpu_to_le32(0x0000000C),
1087 
1088         /* Tag allocated to SOLUTIONSOFT. */
1089         IO_REPARSE_TAG_SOLUTIONSOFT     = cpu_to_le32(0x2000000D),
1090 
1091         /* Tag allocated to COMMVAULT. */
1092         IO_REPARSE_TAG_COMMVAULT        = cpu_to_le32(0x0000000E),
1093 
1094         /* OneDrive?? */
1095         IO_REPARSE_TAG_CLOUD    = cpu_to_le32(0x9000001A),
1096         IO_REPARSE_TAG_CLOUD_1  = cpu_to_le32(0x9000101A),
1097         IO_REPARSE_TAG_CLOUD_2  = cpu_to_le32(0x9000201A),
1098         IO_REPARSE_TAG_CLOUD_3  = cpu_to_le32(0x9000301A),
1099         IO_REPARSE_TAG_CLOUD_4  = cpu_to_le32(0x9000401A),
1100         IO_REPARSE_TAG_CLOUD_5  = cpu_to_le32(0x9000501A),
1101         IO_REPARSE_TAG_CLOUD_6  = cpu_to_le32(0x9000601A),
1102         IO_REPARSE_TAG_CLOUD_7  = cpu_to_le32(0x9000701A),
1103         IO_REPARSE_TAG_CLOUD_8  = cpu_to_le32(0x9000801A),
1104         IO_REPARSE_TAG_CLOUD_9  = cpu_to_le32(0x9000901A),
1105         IO_REPARSE_TAG_CLOUD_A  = cpu_to_le32(0x9000A01A),
1106         IO_REPARSE_TAG_CLOUD_B  = cpu_to_le32(0x9000B01A),
1107         IO_REPARSE_TAG_CLOUD_C  = cpu_to_le32(0x9000C01A),
1108         IO_REPARSE_TAG_CLOUD_D  = cpu_to_le32(0x9000D01A),
1109         IO_REPARSE_TAG_CLOUD_E  = cpu_to_le32(0x9000E01A),
1110         IO_REPARSE_TAG_CLOUD_F  = cpu_to_le32(0x9000F01A),
1111 
1112 };
1113 
1114 #define SYMLINK_FLAG_RELATIVE           1
1115 
1116 /* Microsoft reparse buffer. (see DDK for details) */
1117 struct REPARSE_DATA_BUFFER {
1118         __le32 ReparseTag;              // 0x00:
1119         __le16 ReparseDataLength;       // 0x04:
1120         __le16 Reserved;
1121 
1122         union {
1123                 /* If ReparseTag == 0xA0000003 (IO_REPARSE_TAG_MOUNT_POINT) */
1124                 struct {
1125                         __le16 SubstituteNameOffset; // 0x08
1126                         __le16 SubstituteNameLength; // 0x0A
1127                         __le16 PrintNameOffset;      // 0x0C
1128                         __le16 PrintNameLength;      // 0x0E
1129                         __le16 PathBuffer[];         // 0x10
1130                 } MountPointReparseBuffer;
1131 
1132                 /*
1133                  * If ReparseTag == 0xA000000C (IO_REPARSE_TAG_SYMLINK)
1134                  * https://msdn.microsoft.com/en-us/library/cc232006.aspx
1135                  */
1136                 struct {
1137                         __le16 SubstituteNameOffset; // 0x08
1138                         __le16 SubstituteNameLength; // 0x0A
1139                         __le16 PrintNameOffset;      // 0x0C
1140                         __le16 PrintNameLength;      // 0x0E
1141                         // 0-absolute path 1- relative path, SYMLINK_FLAG_RELATIVE
1142                         __le32 Flags;                // 0x10
1143                         __le16 PathBuffer[];         // 0x14
1144                 } SymbolicLinkReparseBuffer;
1145 
1146                 /* If ReparseTag == 0x80000017U */
1147                 struct {
1148                         __le32 WofVersion;  // 0x08 == 1
1149                         /*
1150                          * 1 - WIM backing provider ("WIMBoot"),
1151                          * 2 - System compressed file provider
1152                          */
1153                         __le32 WofProvider; // 0x0C:
1154                         __le32 ProviderVer; // 0x10: == 1 WOF_FILE_PROVIDER_CURRENT_VERSION == 1
1155                         __le32 CompressionFormat; // 0x14: 0, 1, 2, 3. See WOF_COMPRESSION_XXX
1156                 } CompressReparseBuffer;
1157 
1158                 struct {
1159                         u8 DataBuffer[1];   // 0x08:
1160                 } GenericReparseBuffer;
1161         };
1162 };
1163 
1164 /* ATTR_EA_INFO (0xD0) */
1165 
1166 #define FILE_NEED_EA 0x80 // See ntifs.h
1167 /*
1168  * FILE_NEED_EA, indicates that the file to which the EA belongs cannot be
1169  * interpreted without understanding the associated extended attributes.
1170  */
1171 struct EA_INFO {
1172         __le16 size_pack;       // 0x00: Size of buffer to hold in packed form.
1173         __le16 count;           // 0x02: Count of EA's with FILE_NEED_EA bit set.
1174         __le32 size;            // 0x04: Size of buffer to hold in unpacked form.
1175 };
1176 
1177 static_assert(sizeof(struct EA_INFO) == 8);
1178 
1179 /* ATTR_EA (0xE0) */
1180 struct EA_FULL {
1181         __le32 size;            // 0x00: (not in packed)
1182         u8 flags;               // 0x04:
1183         u8 name_len;            // 0x05:
1184         __le16 elength;         // 0x06:
1185         u8 name[];              // 0x08:
1186 };
1187 
1188 static_assert(offsetof(struct EA_FULL, name) == 8);
1189 
1190 #define ACL_REVISION    2
1191 #define ACL_REVISION_DS 4
1192 
1193 #define SE_SELF_RELATIVE cpu_to_le16(0x8000)
1194 
1195 struct SECURITY_DESCRIPTOR_RELATIVE {
1196         u8 Revision;
1197         u8 Sbz1;
1198         __le16 Control;
1199         __le32 Owner;
1200         __le32 Group;
1201         __le32 Sacl;
1202         __le32 Dacl;
1203 };
1204 static_assert(sizeof(struct SECURITY_DESCRIPTOR_RELATIVE) == 0x14);
1205 
1206 struct ACE_HEADER {
1207         u8 AceType;
1208         u8 AceFlags;
1209         __le16 AceSize;
1210 };
1211 static_assert(sizeof(struct ACE_HEADER) == 4);
1212 
1213 struct ACL {
1214         u8 AclRevision;
1215         u8 Sbz1;
1216         __le16 AclSize;
1217         __le16 AceCount;
1218         __le16 Sbz2;
1219 };
1220 static_assert(sizeof(struct ACL) == 8);
1221 
1222 struct SID {
1223         u8 Revision;
1224         u8 SubAuthorityCount;
1225         u8 IdentifierAuthority[6];
1226         __le32 SubAuthority[];
1227 };
1228 static_assert(offsetof(struct SID, SubAuthority) == 8);
1229 
1230 #endif /* _LINUX_NTFS3_NTFS_H */
1231 // clang-format on
1232 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php