1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* 3 * alloc.h 4 * 5 * Function prototypes 6 * 7 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 8 */ 9 10 #ifndef OCFS2_ALLOC_H 11 #define OCFS2_ALLOC_H 12 13 14 /* 15 * For xattr tree leaf, we limit the leaf byte size to be 64K. 16 */ 17 #define OCFS2_MAX_XATTR_TREE_LEAF_SIZE 65536 18 19 /* 20 * ocfs2_extent_tree and ocfs2_extent_tree_operations are used to abstract 21 * the b-tree operations in ocfs2. Now all the b-tree operations are not 22 * limited to ocfs2_dinode only. Any data which need to allocate clusters 23 * to store can use b-tree. And it only needs to implement its ocfs2_extent_tree 24 * and operation. 25 * 26 * ocfs2_extent_tree becomes the first-class object for extent tree 27 * manipulation. Callers of the alloc.c code need to fill it via one of 28 * the ocfs2_init_*_extent_tree() operations below. 29 * 30 * ocfs2_extent_tree contains info for the root of the b-tree, it must have a 31 * root ocfs2_extent_list and a root_bh so that they can be used in the b-tree 32 * functions. It needs the ocfs2_caching_info structure associated with 33 * I/O on the tree. With metadata ecc, we now call different journal_access 34 * functions for each type of metadata, so it must have the 35 * root_journal_access function. 36 * ocfs2_extent_tree_operations abstract the normal operations we do for 37 * the root of extent b-tree. 38 */ 39 struct ocfs2_extent_tree_operations; 40 struct ocfs2_extent_tree { 41 const struct ocfs2_extent_tree_operations *et_ops; 42 struct buffer_head *et_root_bh; 43 struct ocfs2_extent_list *et_root_el; 44 struct ocfs2_caching_info *et_ci; 45 ocfs2_journal_access_func et_root_journal_access; 46 void *et_object; 47 unsigned int et_max_leaf_clusters; 48 struct ocfs2_cached_dealloc_ctxt *et_dealloc; 49 }; 50 51 /* 52 * ocfs2_init_*_extent_tree() will fill an ocfs2_extent_tree from the 53 * specified object buffer. 54 */ 55 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et, 56 struct ocfs2_caching_info *ci, 57 struct buffer_head *bh); 58 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et, 59 struct ocfs2_caching_info *ci, 60 struct buffer_head *bh); 61 struct ocfs2_xattr_value_buf; 62 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et, 63 struct ocfs2_caching_info *ci, 64 struct ocfs2_xattr_value_buf *vb); 65 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree *et, 66 struct ocfs2_caching_info *ci, 67 struct buffer_head *bh); 68 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree *et, 69 struct ocfs2_caching_info *ci, 70 struct buffer_head *bh); 71 72 /* 73 * Read an extent block into *bh. If *bh is NULL, a bh will be 74 * allocated. This is a cached read. The extent block will be validated 75 * with ocfs2_validate_extent_block(). 76 */ 77 int ocfs2_read_extent_block(struct ocfs2_caching_info *ci, u64 eb_blkno, 78 struct buffer_head **bh); 79 80 struct ocfs2_alloc_context; 81 int ocfs2_insert_extent(handle_t *handle, 82 struct ocfs2_extent_tree *et, 83 u32 cpos, 84 u64 start_blk, 85 u32 new_clusters, 86 u8 flags, 87 struct ocfs2_alloc_context *meta_ac); 88 89 enum ocfs2_alloc_restarted { 90 RESTART_NONE = 0, 91 RESTART_TRANS, 92 RESTART_META 93 }; 94 int ocfs2_add_clusters_in_btree(handle_t *handle, 95 struct ocfs2_extent_tree *et, 96 u32 *logical_offset, 97 u32 clusters_to_add, 98 int mark_unwritten, 99 struct ocfs2_alloc_context *data_ac, 100 struct ocfs2_alloc_context *meta_ac, 101 enum ocfs2_alloc_restarted *reason_ret); 102 struct ocfs2_cached_dealloc_ctxt; 103 struct ocfs2_path; 104 int ocfs2_split_extent(handle_t *handle, 105 struct ocfs2_extent_tree *et, 106 struct ocfs2_path *path, 107 int split_index, 108 struct ocfs2_extent_rec *split_rec, 109 struct ocfs2_alloc_context *meta_ac, 110 struct ocfs2_cached_dealloc_ctxt *dealloc); 111 int ocfs2_mark_extent_written(struct inode *inode, 112 struct ocfs2_extent_tree *et, 113 handle_t *handle, u32 cpos, u32 len, u32 phys, 114 struct ocfs2_alloc_context *meta_ac, 115 struct ocfs2_cached_dealloc_ctxt *dealloc); 116 int ocfs2_change_extent_flag(handle_t *handle, 117 struct ocfs2_extent_tree *et, 118 u32 cpos, u32 len, u32 phys, 119 struct ocfs2_alloc_context *meta_ac, 120 struct ocfs2_cached_dealloc_ctxt *dealloc, 121 int new_flags, int clear_flags); 122 int ocfs2_remove_extent(handle_t *handle, struct ocfs2_extent_tree *et, 123 u32 cpos, u32 len, 124 struct ocfs2_alloc_context *meta_ac, 125 struct ocfs2_cached_dealloc_ctxt *dealloc); 126 int ocfs2_remove_btree_range(struct inode *inode, 127 struct ocfs2_extent_tree *et, 128 u32 cpos, u32 phys_cpos, u32 len, int flags, 129 struct ocfs2_cached_dealloc_ctxt *dealloc, 130 u64 refcount_loc, bool refcount_tree_locked); 131 132 int ocfs2_num_free_extents(struct ocfs2_extent_tree *et); 133 134 /* 135 * how many new metadata chunks would an allocation need at maximum? 136 * 137 * Please note that the caller must make sure that root_el is the root 138 * of extent tree. So for an inode, it should be &fe->id2.i_list. Otherwise 139 * the result may be wrong. 140 */ 141 static inline int ocfs2_extend_meta_needed(struct ocfs2_extent_list *root_el) 142 { 143 /* 144 * Rather than do all the work of determining how much we need 145 * (involves a ton of reads and locks), just ask for the 146 * maximal limit. That's a tree depth shift. So, one block for 147 * level of the tree (current l_tree_depth), one block for the 148 * new tree_depth==0 extent_block, and one block at the new 149 * top-of-the tree. 150 */ 151 return le16_to_cpu(root_el->l_tree_depth) + 2; 152 } 153 154 void ocfs2_dinode_new_extent_list(struct inode *inode, struct ocfs2_dinode *di); 155 void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di); 156 int ocfs2_convert_inline_data_to_extents(struct inode *inode, 157 struct buffer_head *di_bh); 158 159 int ocfs2_truncate_log_init(struct ocfs2_super *osb); 160 void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb); 161 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb, 162 int cancel); 163 int ocfs2_flush_truncate_log(struct ocfs2_super *osb); 164 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb, 165 int slot_num, 166 struct ocfs2_dinode **tl_copy); 167 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb, 168 struct ocfs2_dinode *tl_copy); 169 int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb); 170 int ocfs2_truncate_log_append(struct ocfs2_super *osb, 171 handle_t *handle, 172 u64 start_blk, 173 unsigned int num_clusters); 174 int __ocfs2_flush_truncate_log(struct ocfs2_super *osb); 175 int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb, 176 unsigned int needed); 177 178 /* 179 * Process local structure which describes the block unlinks done 180 * during an operation. This is populated via 181 * ocfs2_cache_block_dealloc(). 182 * 183 * ocfs2_run_deallocs() should be called after the potentially 184 * de-allocating routines. No journal handles should be open, and most 185 * locks should have been dropped. 186 */ 187 struct ocfs2_cached_dealloc_ctxt { 188 struct ocfs2_per_slot_free_list *c_first_suballocator; 189 struct ocfs2_cached_block_free *c_global_allocator; 190 }; 191 static inline void ocfs2_init_dealloc_ctxt(struct ocfs2_cached_dealloc_ctxt *c) 192 { 193 c->c_first_suballocator = NULL; 194 c->c_global_allocator = NULL; 195 } 196 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 197 u64 blkno, unsigned int bit); 198 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt, 199 int type, int slot, u64 suballoc, u64 blkno, 200 unsigned int bit); 201 static inline int ocfs2_dealloc_has_cluster(struct ocfs2_cached_dealloc_ctxt *c) 202 { 203 return c->c_global_allocator != NULL; 204 } 205 int ocfs2_run_deallocs(struct ocfs2_super *osb, 206 struct ocfs2_cached_dealloc_ctxt *ctxt); 207 208 struct ocfs2_truncate_context { 209 struct ocfs2_cached_dealloc_ctxt tc_dealloc; 210 int tc_ext_alloc_locked; /* is it cluster locked? */ 211 /* these get destroyed once it's passed to ocfs2_commit_truncate. */ 212 struct buffer_head *tc_last_eb_bh; 213 }; 214 215 int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle, 216 u64 range_start, u64 range_end); 217 int ocfs2_commit_truncate(struct ocfs2_super *osb, 218 struct inode *inode, 219 struct buffer_head *di_bh); 220 int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh, 221 unsigned int start, unsigned int end, int trunc); 222 223 int ocfs2_find_leaf(struct ocfs2_caching_info *ci, 224 struct ocfs2_extent_list *root_el, u32 cpos, 225 struct buffer_head **leaf_bh); 226 int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster); 227 228 int ocfs2_trim_fs(struct super_block *sb, struct fstrim_range *range); 229 /* 230 * Helper function to look at the # of clusters in an extent record. 231 */ 232 static inline unsigned int ocfs2_rec_clusters(struct ocfs2_extent_list *el, 233 struct ocfs2_extent_rec *rec) 234 { 235 /* 236 * Cluster count in extent records is slightly different 237 * between interior nodes and leaf nodes. This is to support 238 * unwritten extents which need a flags field in leaf node 239 * records, thus shrinking the available space for a clusters 240 * field. 241 */ 242 if (el->l_tree_depth) 243 return le32_to_cpu(rec->e_int_clusters); 244 else 245 return le16_to_cpu(rec->e_leaf_clusters); 246 } 247 248 /* 249 * This is only valid for leaf nodes, which are the only ones that can 250 * have empty extents anyway. 251 */ 252 static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec) 253 { 254 return !rec->e_leaf_clusters; 255 } 256 257 int ocfs2_grab_pages(struct inode *inode, loff_t start, loff_t end, 258 struct page **pages, int *num); 259 void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle, 260 unsigned int from, unsigned int to, 261 struct page *page, int zero, u64 *phys); 262 /* 263 * Structures which describe a path through a btree, and functions to 264 * manipulate them. 265 * 266 * The idea here is to be as generic as possible with the tree 267 * manipulation code. 268 */ 269 struct ocfs2_path_item { 270 struct buffer_head *bh; 271 struct ocfs2_extent_list *el; 272 }; 273 274 #define OCFS2_MAX_PATH_DEPTH 5 275 276 struct ocfs2_path { 277 int p_tree_depth; 278 ocfs2_journal_access_func p_root_access; 279 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH]; 280 }; 281 282 #define path_root_bh(_path) ((_path)->p_node[0].bh) 283 #define path_root_el(_path) ((_path)->p_node[0].el) 284 #define path_root_access(_path)((_path)->p_root_access) 285 #define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh) 286 #define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el) 287 #define path_num_items(_path) ((_path)->p_tree_depth + 1) 288 289 void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root); 290 void ocfs2_free_path(struct ocfs2_path *path); 291 int ocfs2_find_path(struct ocfs2_caching_info *ci, 292 struct ocfs2_path *path, 293 u32 cpos); 294 struct ocfs2_path *ocfs2_new_path_from_path(struct ocfs2_path *path); 295 struct ocfs2_path *ocfs2_new_path_from_et(struct ocfs2_extent_tree *et); 296 int ocfs2_path_bh_journal_access(handle_t *handle, 297 struct ocfs2_caching_info *ci, 298 struct ocfs2_path *path, 299 int idx); 300 int ocfs2_journal_access_path(struct ocfs2_caching_info *ci, 301 handle_t *handle, 302 struct ocfs2_path *path); 303 int ocfs2_find_cpos_for_right_leaf(struct super_block *sb, 304 struct ocfs2_path *path, u32 *cpos); 305 int ocfs2_find_cpos_for_left_leaf(struct super_block *sb, 306 struct ocfs2_path *path, u32 *cpos); 307 int ocfs2_find_subtree_root(struct ocfs2_extent_tree *et, 308 struct ocfs2_path *left, 309 struct ocfs2_path *right); 310 #endif /* OCFS2_ALLOC_H */ 311
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.