~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ocfs2/aops.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
  4  */
  5 
  6 #include <linux/fs.h>
  7 #include <linux/slab.h>
  8 #include <linux/highmem.h>
  9 #include <linux/pagemap.h>
 10 #include <asm/byteorder.h>
 11 #include <linux/swap.h>
 12 #include <linux/mpage.h>
 13 #include <linux/quotaops.h>
 14 #include <linux/blkdev.h>
 15 #include <linux/uio.h>
 16 #include <linux/mm.h>
 17 
 18 #include <cluster/masklog.h>
 19 
 20 #include "ocfs2.h"
 21 
 22 #include "alloc.h"
 23 #include "aops.h"
 24 #include "dlmglue.h"
 25 #include "extent_map.h"
 26 #include "file.h"
 27 #include "inode.h"
 28 #include "journal.h"
 29 #include "suballoc.h"
 30 #include "super.h"
 31 #include "symlink.h"
 32 #include "refcounttree.h"
 33 #include "ocfs2_trace.h"
 34 
 35 #include "buffer_head_io.h"
 36 #include "dir.h"
 37 #include "namei.h"
 38 #include "sysfile.h"
 39 
 40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
 41                                    struct buffer_head *bh_result, int create)
 42 {
 43         int err = -EIO;
 44         int status;
 45         struct ocfs2_dinode *fe = NULL;
 46         struct buffer_head *bh = NULL;
 47         struct buffer_head *buffer_cache_bh = NULL;
 48         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
 49         void *kaddr;
 50 
 51         trace_ocfs2_symlink_get_block(
 52                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
 53                         (unsigned long long)iblock, bh_result, create);
 54 
 55         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
 56 
 57         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
 58                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
 59                      (unsigned long long)iblock);
 60                 goto bail;
 61         }
 62 
 63         status = ocfs2_read_inode_block(inode, &bh);
 64         if (status < 0) {
 65                 mlog_errno(status);
 66                 goto bail;
 67         }
 68         fe = (struct ocfs2_dinode *) bh->b_data;
 69 
 70         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
 71                                                     le32_to_cpu(fe->i_clusters))) {
 72                 err = -ENOMEM;
 73                 mlog(ML_ERROR, "block offset is outside the allocated size: "
 74                      "%llu\n", (unsigned long long)iblock);
 75                 goto bail;
 76         }
 77 
 78         /* We don't use the page cache to create symlink data, so if
 79          * need be, copy it over from the buffer cache. */
 80         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
 81                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
 82                             iblock;
 83                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
 84                 if (!buffer_cache_bh) {
 85                         err = -ENOMEM;
 86                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
 87                         goto bail;
 88                 }
 89 
 90                 /* we haven't locked out transactions, so a commit
 91                  * could've happened. Since we've got a reference on
 92                  * the bh, even if it commits while we're doing the
 93                  * copy, the data is still good. */
 94                 if (buffer_jbd(buffer_cache_bh)
 95                     && ocfs2_inode_is_new(inode)) {
 96                         kaddr = kmap_atomic(bh_result->b_page);
 97                         if (!kaddr) {
 98                                 mlog(ML_ERROR, "couldn't kmap!\n");
 99                                 goto bail;
100                         }
101                         memcpy(kaddr + (bh_result->b_size * iblock),
102                                buffer_cache_bh->b_data,
103                                bh_result->b_size);
104                         kunmap_atomic(kaddr);
105                         set_buffer_uptodate(bh_result);
106                 }
107                 brelse(buffer_cache_bh);
108         }
109 
110         map_bh(bh_result, inode->i_sb,
111                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
112 
113         err = 0;
114 
115 bail:
116         brelse(bh);
117 
118         return err;
119 }
120 
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122                     struct buffer_head *bh_result, int create)
123 {
124         int ret = 0;
125         struct ocfs2_inode_info *oi = OCFS2_I(inode);
126 
127         down_read(&oi->ip_alloc_sem);
128         ret = ocfs2_get_block(inode, iblock, bh_result, create);
129         up_read(&oi->ip_alloc_sem);
130 
131         return ret;
132 }
133 
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135                     struct buffer_head *bh_result, int create)
136 {
137         int err = 0;
138         unsigned int ext_flags;
139         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140         u64 p_blkno, count, past_eof;
141         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
142 
143         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144                               (unsigned long long)iblock, bh_result, create);
145 
146         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148                      inode, inode->i_ino);
149 
150         if (S_ISLNK(inode->i_mode)) {
151                 /* this always does I/O for some reason. */
152                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
153                 goto bail;
154         }
155 
156         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
157                                           &ext_flags);
158         if (err) {
159                 mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, "
160                      "block: %llu\n", inode, (unsigned long long)iblock);
161                 goto bail;
162         }
163 
164         if (max_blocks < count)
165                 count = max_blocks;
166 
167         /*
168          * ocfs2 never allocates in this function - the only time we
169          * need to use BH_New is when we're extending i_size on a file
170          * system which doesn't support holes, in which case BH_New
171          * allows __block_write_begin() to zero.
172          *
173          * If we see this on a sparse file system, then a truncate has
174          * raced us and removed the cluster. In this case, we clear
175          * the buffers dirty and uptodate bits and let the buffer code
176          * ignore it as a hole.
177          */
178         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
179                 clear_buffer_dirty(bh_result);
180                 clear_buffer_uptodate(bh_result);
181                 goto bail;
182         }
183 
184         /* Treat the unwritten extent as a hole for zeroing purposes. */
185         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
186                 map_bh(bh_result, inode->i_sb, p_blkno);
187 
188         bh_result->b_size = count << inode->i_blkbits;
189 
190         if (!ocfs2_sparse_alloc(osb)) {
191                 if (p_blkno == 0) {
192                         err = -EIO;
193                         mlog(ML_ERROR,
194                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
195                              (unsigned long long)iblock,
196                              (unsigned long long)p_blkno,
197                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
198                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
199                         dump_stack();
200                         goto bail;
201                 }
202         }
203 
204         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205 
206         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
207                                   (unsigned long long)past_eof);
208         if (create && (iblock >= past_eof))
209                 set_buffer_new(bh_result);
210 
211 bail:
212         if (err < 0)
213                 err = -EIO;
214 
215         return err;
216 }
217 
218 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
219                            struct buffer_head *di_bh)
220 {
221         void *kaddr;
222         loff_t size;
223         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
224 
225         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
226                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
227                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
228                 return -EROFS;
229         }
230 
231         size = i_size_read(inode);
232 
233         if (size > PAGE_SIZE ||
234             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
235                 ocfs2_error(inode->i_sb,
236                             "Inode %llu has with inline data has bad size: %Lu\n",
237                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
238                             (unsigned long long)size);
239                 return -EROFS;
240         }
241 
242         kaddr = kmap_atomic(page);
243         if (size)
244                 memcpy(kaddr, di->id2.i_data.id_data, size);
245         /* Clear the remaining part of the page */
246         memset(kaddr + size, 0, PAGE_SIZE - size);
247         flush_dcache_page(page);
248         kunmap_atomic(kaddr);
249 
250         SetPageUptodate(page);
251 
252         return 0;
253 }
254 
255 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
256 {
257         int ret;
258         struct buffer_head *di_bh = NULL;
259 
260         BUG_ON(!PageLocked(page));
261         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
262 
263         ret = ocfs2_read_inode_block(inode, &di_bh);
264         if (ret) {
265                 mlog_errno(ret);
266                 goto out;
267         }
268 
269         ret = ocfs2_read_inline_data(inode, page, di_bh);
270 out:
271         unlock_page(page);
272 
273         brelse(di_bh);
274         return ret;
275 }
276 
277 static int ocfs2_read_folio(struct file *file, struct folio *folio)
278 {
279         struct inode *inode = folio->mapping->host;
280         struct ocfs2_inode_info *oi = OCFS2_I(inode);
281         loff_t start = folio_pos(folio);
282         int ret, unlock = 1;
283 
284         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index);
285 
286         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page);
287         if (ret != 0) {
288                 if (ret == AOP_TRUNCATED_PAGE)
289                         unlock = 0;
290                 mlog_errno(ret);
291                 goto out;
292         }
293 
294         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
295                 /*
296                  * Unlock the folio and cycle ip_alloc_sem so that we don't
297                  * busyloop waiting for ip_alloc_sem to unlock
298                  */
299                 ret = AOP_TRUNCATED_PAGE;
300                 folio_unlock(folio);
301                 unlock = 0;
302                 down_read(&oi->ip_alloc_sem);
303                 up_read(&oi->ip_alloc_sem);
304                 goto out_inode_unlock;
305         }
306 
307         /*
308          * i_size might have just been updated as we grabed the meta lock.  We
309          * might now be discovering a truncate that hit on another node.
310          * block_read_full_folio->get_block freaks out if it is asked to read
311          * beyond the end of a file, so we check here.  Callers
312          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
313          * and notice that the folio they just read isn't needed.
314          *
315          * XXX sys_readahead() seems to get that wrong?
316          */
317         if (start >= i_size_read(inode)) {
318                 folio_zero_segment(folio, 0, folio_size(folio));
319                 folio_mark_uptodate(folio);
320                 ret = 0;
321                 goto out_alloc;
322         }
323 
324         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325                 ret = ocfs2_readpage_inline(inode, &folio->page);
326         else
327                 ret = block_read_full_folio(folio, ocfs2_get_block);
328         unlock = 0;
329 
330 out_alloc:
331         up_read(&oi->ip_alloc_sem);
332 out_inode_unlock:
333         ocfs2_inode_unlock(inode, 0);
334 out:
335         if (unlock)
336                 folio_unlock(folio);
337         return ret;
338 }
339 
340 /*
341  * This is used only for read-ahead. Failures or difficult to handle
342  * situations are safe to ignore.
343  *
344  * Right now, we don't bother with BH_Boundary - in-inode extent lists
345  * are quite large (243 extents on 4k blocks), so most inodes don't
346  * grow out to a tree. If need be, detecting boundary extents could
347  * trivially be added in a future version of ocfs2_get_block().
348  */
349 static void ocfs2_readahead(struct readahead_control *rac)
350 {
351         int ret;
352         struct inode *inode = rac->mapping->host;
353         struct ocfs2_inode_info *oi = OCFS2_I(inode);
354 
355         /*
356          * Use the nonblocking flag for the dlm code to avoid page
357          * lock inversion, but don't bother with retrying.
358          */
359         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
360         if (ret)
361                 return;
362 
363         if (down_read_trylock(&oi->ip_alloc_sem) == 0)
364                 goto out_unlock;
365 
366         /*
367          * Don't bother with inline-data. There isn't anything
368          * to read-ahead in that case anyway...
369          */
370         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
371                 goto out_up;
372 
373         /*
374          * Check whether a remote node truncated this file - we just
375          * drop out in that case as it's not worth handling here.
376          */
377         if (readahead_pos(rac) >= i_size_read(inode))
378                 goto out_up;
379 
380         mpage_readahead(rac, ocfs2_get_block);
381 
382 out_up:
383         up_read(&oi->ip_alloc_sem);
384 out_unlock:
385         ocfs2_inode_unlock(inode, 0);
386 }
387 
388 /* Note: Because we don't support holes, our allocation has
389  * already happened (allocation writes zeros to the file data)
390  * so we don't have to worry about ordered writes in
391  * ocfs2_writepages.
392  *
393  * ->writepages is called during the process of invalidating the page cache
394  * during blocked lock processing.  It can't block on any cluster locks
395  * to during block mapping.  It's relying on the fact that the block
396  * mapping can't have disappeared under the dirty pages that it is
397  * being asked to write back.
398  */
399 static int ocfs2_writepages(struct address_space *mapping,
400                 struct writeback_control *wbc)
401 {
402         return mpage_writepages(mapping, wbc, ocfs2_get_block);
403 }
404 
405 /* Taken from ext3. We don't necessarily need the full blown
406  * functionality yet, but IMHO it's better to cut and paste the whole
407  * thing so we can avoid introducing our own bugs (and easily pick up
408  * their fixes when they happen) --Mark */
409 int walk_page_buffers(  handle_t *handle,
410                         struct buffer_head *head,
411                         unsigned from,
412                         unsigned to,
413                         int *partial,
414                         int (*fn)(      handle_t *handle,
415                                         struct buffer_head *bh))
416 {
417         struct buffer_head *bh;
418         unsigned block_start, block_end;
419         unsigned blocksize = head->b_size;
420         int err, ret = 0;
421         struct buffer_head *next;
422 
423         for (   bh = head, block_start = 0;
424                 ret == 0 && (bh != head || !block_start);
425                 block_start = block_end, bh = next)
426         {
427                 next = bh->b_this_page;
428                 block_end = block_start + blocksize;
429                 if (block_end <= from || block_start >= to) {
430                         if (partial && !buffer_uptodate(bh))
431                                 *partial = 1;
432                         continue;
433                 }
434                 err = (*fn)(handle, bh);
435                 if (!ret)
436                         ret = err;
437         }
438         return ret;
439 }
440 
441 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
442 {
443         sector_t status;
444         u64 p_blkno = 0;
445         int err = 0;
446         struct inode *inode = mapping->host;
447 
448         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
449                          (unsigned long long)block);
450 
451         /*
452          * The swap code (ab-)uses ->bmap to get a block mapping and then
453          * bypasseѕ the file system for actual I/O.  We really can't allow
454          * that on refcounted inodes, so we have to skip out here.  And yes,
455          * 0 is the magic code for a bmap error..
456          */
457         if (ocfs2_is_refcount_inode(inode))
458                 return 0;
459 
460         /* We don't need to lock journal system files, since they aren't
461          * accessed concurrently from multiple nodes.
462          */
463         if (!INODE_JOURNAL(inode)) {
464                 err = ocfs2_inode_lock(inode, NULL, 0);
465                 if (err) {
466                         if (err != -ENOENT)
467                                 mlog_errno(err);
468                         goto bail;
469                 }
470                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471         }
472 
473         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475                                                   NULL);
476 
477         if (!INODE_JOURNAL(inode)) {
478                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
479                 ocfs2_inode_unlock(inode, 0);
480         }
481 
482         if (err) {
483                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484                      (unsigned long long)block);
485                 mlog_errno(err);
486                 goto bail;
487         }
488 
489 bail:
490         status = err ? 0 : p_blkno;
491 
492         return status;
493 }
494 
495 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait)
496 {
497         if (!folio_buffers(folio))
498                 return false;
499         return try_to_free_buffers(folio);
500 }
501 
502 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
503                                             u32 cpos,
504                                             unsigned int *start,
505                                             unsigned int *end)
506 {
507         unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
508 
509         if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
510                 unsigned int cpp;
511 
512                 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
513 
514                 cluster_start = cpos % cpp;
515                 cluster_start = cluster_start << osb->s_clustersize_bits;
516 
517                 cluster_end = cluster_start + osb->s_clustersize;
518         }
519 
520         BUG_ON(cluster_start > PAGE_SIZE);
521         BUG_ON(cluster_end > PAGE_SIZE);
522 
523         if (start)
524                 *start = cluster_start;
525         if (end)
526                 *end = cluster_end;
527 }
528 
529 /*
530  * 'from' and 'to' are the region in the page to avoid zeroing.
531  *
532  * If pagesize > clustersize, this function will avoid zeroing outside
533  * of the cluster boundary.
534  *
535  * from == to == 0 is code for "zero the entire cluster region"
536  */
537 static void ocfs2_clear_page_regions(struct page *page,
538                                      struct ocfs2_super *osb, u32 cpos,
539                                      unsigned from, unsigned to)
540 {
541         void *kaddr;
542         unsigned int cluster_start, cluster_end;
543 
544         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
545 
546         kaddr = kmap_atomic(page);
547 
548         if (from || to) {
549                 if (from > cluster_start)
550                         memset(kaddr + cluster_start, 0, from - cluster_start);
551                 if (to < cluster_end)
552                         memset(kaddr + to, 0, cluster_end - to);
553         } else {
554                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
555         }
556 
557         kunmap_atomic(kaddr);
558 }
559 
560 /*
561  * Nonsparse file systems fully allocate before we get to the write
562  * code. This prevents ocfs2_write() from tagging the write as an
563  * allocating one, which means ocfs2_map_page_blocks() might try to
564  * read-in the blocks at the tail of our file. Avoid reading them by
565  * testing i_size against each block offset.
566  */
567 static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio,
568                                  unsigned int block_start)
569 {
570         u64 offset = folio_pos(folio) + block_start;
571 
572         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
573                 return 1;
574 
575         if (i_size_read(inode) > offset)
576                 return 1;
577 
578         return 0;
579 }
580 
581 /*
582  * Some of this taken from __block_write_begin(). We already have our
583  * mapping by now though, and the entire write will be allocating or
584  * it won't, so not much need to use BH_New.
585  *
586  * This will also skip zeroing, which is handled externally.
587  */
588 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
589                           struct inode *inode, unsigned int from,
590                           unsigned int to, int new)
591 {
592         struct folio *folio = page_folio(page);
593         int ret = 0;
594         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
595         unsigned int block_end, block_start;
596         unsigned int bsize = i_blocksize(inode);
597 
598         head = folio_buffers(folio);
599         if (!head)
600                 head = create_empty_buffers(folio, bsize, 0);
601 
602         for (bh = head, block_start = 0; bh != head || !block_start;
603              bh = bh->b_this_page, block_start += bsize) {
604                 block_end = block_start + bsize;
605 
606                 clear_buffer_new(bh);
607 
608                 /*
609                  * Ignore blocks outside of our i/o range -
610                  * they may belong to unallocated clusters.
611                  */
612                 if (block_start >= to || block_end <= from) {
613                         if (folio_test_uptodate(folio))
614                                 set_buffer_uptodate(bh);
615                         continue;
616                 }
617 
618                 /*
619                  * For an allocating write with cluster size >= page
620                  * size, we always write the entire page.
621                  */
622                 if (new)
623                         set_buffer_new(bh);
624 
625                 if (!buffer_mapped(bh)) {
626                         map_bh(bh, inode->i_sb, *p_blkno);
627                         clean_bdev_bh_alias(bh);
628                 }
629 
630                 if (folio_test_uptodate(folio)) {
631                         set_buffer_uptodate(bh);
632                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
633                            !buffer_new(bh) &&
634                            ocfs2_should_read_blk(inode, folio, block_start) &&
635                            (block_start < from || block_end > to)) {
636                         bh_read_nowait(bh, 0);
637                         *wait_bh++=bh;
638                 }
639 
640                 *p_blkno = *p_blkno + 1;
641         }
642 
643         /*
644          * If we issued read requests - let them complete.
645          */
646         while(wait_bh > wait) {
647                 wait_on_buffer(*--wait_bh);
648                 if (!buffer_uptodate(*wait_bh))
649                         ret = -EIO;
650         }
651 
652         if (ret == 0 || !new)
653                 return ret;
654 
655         /*
656          * If we get -EIO above, zero out any newly allocated blocks
657          * to avoid exposing stale data.
658          */
659         bh = head;
660         block_start = 0;
661         do {
662                 block_end = block_start + bsize;
663                 if (block_end <= from)
664                         goto next_bh;
665                 if (block_start >= to)
666                         break;
667 
668                 folio_zero_range(folio, block_start, bh->b_size);
669                 set_buffer_uptodate(bh);
670                 mark_buffer_dirty(bh);
671 
672 next_bh:
673                 block_start = block_end;
674                 bh = bh->b_this_page;
675         } while (bh != head);
676 
677         return ret;
678 }
679 
680 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
681 #define OCFS2_MAX_CTXT_PAGES    1
682 #else
683 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
684 #endif
685 
686 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
687 
688 struct ocfs2_unwritten_extent {
689         struct list_head        ue_node;
690         struct list_head        ue_ip_node;
691         u32                     ue_cpos;
692         u32                     ue_phys;
693 };
694 
695 /*
696  * Describe the state of a single cluster to be written to.
697  */
698 struct ocfs2_write_cluster_desc {
699         u32             c_cpos;
700         u32             c_phys;
701         /*
702          * Give this a unique field because c_phys eventually gets
703          * filled.
704          */
705         unsigned        c_new;
706         unsigned        c_clear_unwritten;
707         unsigned        c_needs_zero;
708 };
709 
710 struct ocfs2_write_ctxt {
711         /* Logical cluster position / len of write */
712         u32                             w_cpos;
713         u32                             w_clen;
714 
715         /* First cluster allocated in a nonsparse extend */
716         u32                             w_first_new_cpos;
717 
718         /* Type of caller. Must be one of buffer, mmap, direct.  */
719         ocfs2_write_type_t              w_type;
720 
721         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
722 
723         /*
724          * This is true if page_size > cluster_size.
725          *
726          * It triggers a set of special cases during write which might
727          * have to deal with allocating writes to partial pages.
728          */
729         unsigned int                    w_large_pages;
730 
731         /*
732          * Pages involved in this write.
733          *
734          * w_target_page is the page being written to by the user.
735          *
736          * w_pages is an array of pages which always contains
737          * w_target_page, and in the case of an allocating write with
738          * page_size < cluster size, it will contain zero'd and mapped
739          * pages adjacent to w_target_page which need to be written
740          * out in so that future reads from that region will get
741          * zero's.
742          */
743         unsigned int                    w_num_pages;
744         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
745         struct page                     *w_target_page;
746 
747         /*
748          * w_target_locked is used for page_mkwrite path indicating no unlocking
749          * against w_target_page in ocfs2_write_end_nolock.
750          */
751         unsigned int                    w_target_locked:1;
752 
753         /*
754          * ocfs2_write_end() uses this to know what the real range to
755          * write in the target should be.
756          */
757         unsigned int                    w_target_from;
758         unsigned int                    w_target_to;
759 
760         /*
761          * We could use journal_current_handle() but this is cleaner,
762          * IMHO -Mark
763          */
764         handle_t                        *w_handle;
765 
766         struct buffer_head              *w_di_bh;
767 
768         struct ocfs2_cached_dealloc_ctxt w_dealloc;
769 
770         struct list_head                w_unwritten_list;
771         unsigned int                    w_unwritten_count;
772 };
773 
774 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
775 {
776         int i;
777 
778         for(i = 0; i < num_pages; i++) {
779                 if (pages[i]) {
780                         unlock_page(pages[i]);
781                         mark_page_accessed(pages[i]);
782                         put_page(pages[i]);
783                 }
784         }
785 }
786 
787 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
788 {
789         int i;
790 
791         /*
792          * w_target_locked is only set to true in the page_mkwrite() case.
793          * The intent is to allow us to lock the target page from write_begin()
794          * to write_end(). The caller must hold a ref on w_target_page.
795          */
796         if (wc->w_target_locked) {
797                 BUG_ON(!wc->w_target_page);
798                 for (i = 0; i < wc->w_num_pages; i++) {
799                         if (wc->w_target_page == wc->w_pages[i]) {
800                                 wc->w_pages[i] = NULL;
801                                 break;
802                         }
803                 }
804                 mark_page_accessed(wc->w_target_page);
805                 put_page(wc->w_target_page);
806         }
807         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
808 }
809 
810 static void ocfs2_free_unwritten_list(struct inode *inode,
811                                  struct list_head *head)
812 {
813         struct ocfs2_inode_info *oi = OCFS2_I(inode);
814         struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
815 
816         list_for_each_entry_safe(ue, tmp, head, ue_node) {
817                 list_del(&ue->ue_node);
818                 spin_lock(&oi->ip_lock);
819                 list_del(&ue->ue_ip_node);
820                 spin_unlock(&oi->ip_lock);
821                 kfree(ue);
822         }
823 }
824 
825 static void ocfs2_free_write_ctxt(struct inode *inode,
826                                   struct ocfs2_write_ctxt *wc)
827 {
828         ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
829         ocfs2_unlock_pages(wc);
830         brelse(wc->w_di_bh);
831         kfree(wc);
832 }
833 
834 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
835                                   struct ocfs2_super *osb, loff_t pos,
836                                   unsigned len, ocfs2_write_type_t type,
837                                   struct buffer_head *di_bh)
838 {
839         u32 cend;
840         struct ocfs2_write_ctxt *wc;
841 
842         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
843         if (!wc)
844                 return -ENOMEM;
845 
846         wc->w_cpos = pos >> osb->s_clustersize_bits;
847         wc->w_first_new_cpos = UINT_MAX;
848         cend = (pos + len - 1) >> osb->s_clustersize_bits;
849         wc->w_clen = cend - wc->w_cpos + 1;
850         get_bh(di_bh);
851         wc->w_di_bh = di_bh;
852         wc->w_type = type;
853 
854         if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
855                 wc->w_large_pages = 1;
856         else
857                 wc->w_large_pages = 0;
858 
859         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
860         INIT_LIST_HEAD(&wc->w_unwritten_list);
861 
862         *wcp = wc;
863 
864         return 0;
865 }
866 
867 /*
868  * If a page has any new buffers, zero them out here, and mark them uptodate
869  * and dirty so they'll be written out (in order to prevent uninitialised
870  * block data from leaking). And clear the new bit.
871  */
872 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
873 {
874         unsigned int block_start, block_end;
875         struct buffer_head *head, *bh;
876 
877         BUG_ON(!PageLocked(page));
878         if (!page_has_buffers(page))
879                 return;
880 
881         bh = head = page_buffers(page);
882         block_start = 0;
883         do {
884                 block_end = block_start + bh->b_size;
885 
886                 if (buffer_new(bh)) {
887                         if (block_end > from && block_start < to) {
888                                 if (!PageUptodate(page)) {
889                                         unsigned start, end;
890 
891                                         start = max(from, block_start);
892                                         end = min(to, block_end);
893 
894                                         zero_user_segment(page, start, end);
895                                         set_buffer_uptodate(bh);
896                                 }
897 
898                                 clear_buffer_new(bh);
899                                 mark_buffer_dirty(bh);
900                         }
901                 }
902 
903                 block_start = block_end;
904                 bh = bh->b_this_page;
905         } while (bh != head);
906 }
907 
908 /*
909  * Only called when we have a failure during allocating write to write
910  * zero's to the newly allocated region.
911  */
912 static void ocfs2_write_failure(struct inode *inode,
913                                 struct ocfs2_write_ctxt *wc,
914                                 loff_t user_pos, unsigned user_len)
915 {
916         int i;
917         unsigned from = user_pos & (PAGE_SIZE - 1),
918                 to = user_pos + user_len;
919         struct page *tmppage;
920 
921         if (wc->w_target_page)
922                 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
923 
924         for(i = 0; i < wc->w_num_pages; i++) {
925                 tmppage = wc->w_pages[i];
926 
927                 if (tmppage && page_has_buffers(tmppage)) {
928                         if (ocfs2_should_order_data(inode))
929                                 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
930                                                            user_pos, user_len);
931 
932                         block_commit_write(tmppage, from, to);
933                 }
934         }
935 }
936 
937 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
938                                         struct ocfs2_write_ctxt *wc,
939                                         struct page *page, u32 cpos,
940                                         loff_t user_pos, unsigned user_len,
941                                         int new)
942 {
943         int ret;
944         unsigned int map_from = 0, map_to = 0;
945         unsigned int cluster_start, cluster_end;
946         unsigned int user_data_from = 0, user_data_to = 0;
947 
948         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
949                                         &cluster_start, &cluster_end);
950 
951         /* treat the write as new if the a hole/lseek spanned across
952          * the page boundary.
953          */
954         new = new | ((i_size_read(inode) <= page_offset(page)) &&
955                         (page_offset(page) <= user_pos));
956 
957         if (page == wc->w_target_page) {
958                 map_from = user_pos & (PAGE_SIZE - 1);
959                 map_to = map_from + user_len;
960 
961                 if (new)
962                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
963                                                     cluster_start, cluster_end,
964                                                     new);
965                 else
966                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
967                                                     map_from, map_to, new);
968                 if (ret) {
969                         mlog_errno(ret);
970                         goto out;
971                 }
972 
973                 user_data_from = map_from;
974                 user_data_to = map_to;
975                 if (new) {
976                         map_from = cluster_start;
977                         map_to = cluster_end;
978                 }
979         } else {
980                 /*
981                  * If we haven't allocated the new page yet, we
982                  * shouldn't be writing it out without copying user
983                  * data. This is likely a math error from the caller.
984                  */
985                 BUG_ON(!new);
986 
987                 map_from = cluster_start;
988                 map_to = cluster_end;
989 
990                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
991                                             cluster_start, cluster_end, new);
992                 if (ret) {
993                         mlog_errno(ret);
994                         goto out;
995                 }
996         }
997 
998         /*
999          * Parts of newly allocated pages need to be zero'd.
1000          *
1001          * Above, we have also rewritten 'to' and 'from' - as far as
1002          * the rest of the function is concerned, the entire cluster
1003          * range inside of a page needs to be written.
1004          *
1005          * We can skip this if the page is up to date - it's already
1006          * been zero'd from being read in as a hole.
1007          */
1008         if (new && !PageUptodate(page))
1009                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1010                                          cpos, user_data_from, user_data_to);
1011 
1012         flush_dcache_page(page);
1013 
1014 out:
1015         return ret;
1016 }
1017 
1018 /*
1019  * This function will only grab one clusters worth of pages.
1020  */
1021 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1022                                       struct ocfs2_write_ctxt *wc,
1023                                       u32 cpos, loff_t user_pos,
1024                                       unsigned user_len, int new,
1025                                       struct page *mmap_page)
1026 {
1027         int ret = 0, i;
1028         unsigned long start, target_index, end_index, index;
1029         struct inode *inode = mapping->host;
1030         loff_t last_byte;
1031 
1032         target_index = user_pos >> PAGE_SHIFT;
1033 
1034         /*
1035          * Figure out how many pages we'll be manipulating here. For
1036          * non allocating write, we just change the one
1037          * page. Otherwise, we'll need a whole clusters worth.  If we're
1038          * writing past i_size, we only need enough pages to cover the
1039          * last page of the write.
1040          */
1041         if (new) {
1042                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1043                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1044                 /*
1045                  * We need the index *past* the last page we could possibly
1046                  * touch.  This is the page past the end of the write or
1047                  * i_size, whichever is greater.
1048                  */
1049                 last_byte = max(user_pos + user_len, i_size_read(inode));
1050                 BUG_ON(last_byte < 1);
1051                 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1052                 if ((start + wc->w_num_pages) > end_index)
1053                         wc->w_num_pages = end_index - start;
1054         } else {
1055                 wc->w_num_pages = 1;
1056                 start = target_index;
1057         }
1058         end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1059 
1060         for(i = 0; i < wc->w_num_pages; i++) {
1061                 index = start + i;
1062 
1063                 if (index >= target_index && index <= end_index &&
1064                     wc->w_type == OCFS2_WRITE_MMAP) {
1065                         /*
1066                          * ocfs2_pagemkwrite() is a little different
1067                          * and wants us to directly use the page
1068                          * passed in.
1069                          */
1070                         lock_page(mmap_page);
1071 
1072                         /* Exit and let the caller retry */
1073                         if (mmap_page->mapping != mapping) {
1074                                 WARN_ON(mmap_page->mapping);
1075                                 unlock_page(mmap_page);
1076                                 ret = -EAGAIN;
1077                                 goto out;
1078                         }
1079 
1080                         get_page(mmap_page);
1081                         wc->w_pages[i] = mmap_page;
1082                         wc->w_target_locked = true;
1083                 } else if (index >= target_index && index <= end_index &&
1084                            wc->w_type == OCFS2_WRITE_DIRECT) {
1085                         /* Direct write has no mapping page. */
1086                         wc->w_pages[i] = NULL;
1087                         continue;
1088                 } else {
1089                         wc->w_pages[i] = find_or_create_page(mapping, index,
1090                                                              GFP_NOFS);
1091                         if (!wc->w_pages[i]) {
1092                                 ret = -ENOMEM;
1093                                 mlog_errno(ret);
1094                                 goto out;
1095                         }
1096                 }
1097                 wait_for_stable_page(wc->w_pages[i]);
1098 
1099                 if (index == target_index)
1100                         wc->w_target_page = wc->w_pages[i];
1101         }
1102 out:
1103         if (ret)
1104                 wc->w_target_locked = false;
1105         return ret;
1106 }
1107 
1108 /*
1109  * Prepare a single cluster for write one cluster into the file.
1110  */
1111 static int ocfs2_write_cluster(struct address_space *mapping,
1112                                u32 *phys, unsigned int new,
1113                                unsigned int clear_unwritten,
1114                                unsigned int should_zero,
1115                                struct ocfs2_alloc_context *data_ac,
1116                                struct ocfs2_alloc_context *meta_ac,
1117                                struct ocfs2_write_ctxt *wc, u32 cpos,
1118                                loff_t user_pos, unsigned user_len)
1119 {
1120         int ret, i;
1121         u64 p_blkno;
1122         struct inode *inode = mapping->host;
1123         struct ocfs2_extent_tree et;
1124         int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1125 
1126         if (new) {
1127                 u32 tmp_pos;
1128 
1129                 /*
1130                  * This is safe to call with the page locks - it won't take
1131                  * any additional semaphores or cluster locks.
1132                  */
1133                 tmp_pos = cpos;
1134                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1135                                            &tmp_pos, 1, !clear_unwritten,
1136                                            wc->w_di_bh, wc->w_handle,
1137                                            data_ac, meta_ac, NULL);
1138                 /*
1139                  * This shouldn't happen because we must have already
1140                  * calculated the correct meta data allocation required. The
1141                  * internal tree allocation code should know how to increase
1142                  * transaction credits itself.
1143                  *
1144                  * If need be, we could handle -EAGAIN for a
1145                  * RESTART_TRANS here.
1146                  */
1147                 mlog_bug_on_msg(ret == -EAGAIN,
1148                                 "Inode %llu: EAGAIN return during allocation.\n",
1149                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1150                 if (ret < 0) {
1151                         mlog_errno(ret);
1152                         goto out;
1153                 }
1154         } else if (clear_unwritten) {
1155                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1156                                               wc->w_di_bh);
1157                 ret = ocfs2_mark_extent_written(inode, &et,
1158                                                 wc->w_handle, cpos, 1, *phys,
1159                                                 meta_ac, &wc->w_dealloc);
1160                 if (ret < 0) {
1161                         mlog_errno(ret);
1162                         goto out;
1163                 }
1164         }
1165 
1166         /*
1167          * The only reason this should fail is due to an inability to
1168          * find the extent added.
1169          */
1170         ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1171         if (ret < 0) {
1172                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1173                             "at logical cluster %u",
1174                             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1175                 goto out;
1176         }
1177 
1178         BUG_ON(*phys == 0);
1179 
1180         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1181         if (!should_zero)
1182                 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1183 
1184         for(i = 0; i < wc->w_num_pages; i++) {
1185                 int tmpret;
1186 
1187                 /* This is the direct io target page. */
1188                 if (wc->w_pages[i] == NULL) {
1189                         p_blkno++;
1190                         continue;
1191                 }
1192 
1193                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1194                                                       wc->w_pages[i], cpos,
1195                                                       user_pos, user_len,
1196                                                       should_zero);
1197                 if (tmpret) {
1198                         mlog_errno(tmpret);
1199                         if (ret == 0)
1200                                 ret = tmpret;
1201                 }
1202         }
1203 
1204         /*
1205          * We only have cleanup to do in case of allocating write.
1206          */
1207         if (ret && new)
1208                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1209 
1210 out:
1211 
1212         return ret;
1213 }
1214 
1215 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1216                                        struct ocfs2_alloc_context *data_ac,
1217                                        struct ocfs2_alloc_context *meta_ac,
1218                                        struct ocfs2_write_ctxt *wc,
1219                                        loff_t pos, unsigned len)
1220 {
1221         int ret, i;
1222         loff_t cluster_off;
1223         unsigned int local_len = len;
1224         struct ocfs2_write_cluster_desc *desc;
1225         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1226 
1227         for (i = 0; i < wc->w_clen; i++) {
1228                 desc = &wc->w_desc[i];
1229 
1230                 /*
1231                  * We have to make sure that the total write passed in
1232                  * doesn't extend past a single cluster.
1233                  */
1234                 local_len = len;
1235                 cluster_off = pos & (osb->s_clustersize - 1);
1236                 if ((cluster_off + local_len) > osb->s_clustersize)
1237                         local_len = osb->s_clustersize - cluster_off;
1238 
1239                 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1240                                           desc->c_new,
1241                                           desc->c_clear_unwritten,
1242                                           desc->c_needs_zero,
1243                                           data_ac, meta_ac,
1244                                           wc, desc->c_cpos, pos, local_len);
1245                 if (ret) {
1246                         mlog_errno(ret);
1247                         goto out;
1248                 }
1249 
1250                 len -= local_len;
1251                 pos += local_len;
1252         }
1253 
1254         ret = 0;
1255 out:
1256         return ret;
1257 }
1258 
1259 /*
1260  * ocfs2_write_end() wants to know which parts of the target page it
1261  * should complete the write on. It's easiest to compute them ahead of
1262  * time when a more complete view of the write is available.
1263  */
1264 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1265                                         struct ocfs2_write_ctxt *wc,
1266                                         loff_t pos, unsigned len, int alloc)
1267 {
1268         struct ocfs2_write_cluster_desc *desc;
1269 
1270         wc->w_target_from = pos & (PAGE_SIZE - 1);
1271         wc->w_target_to = wc->w_target_from + len;
1272 
1273         if (alloc == 0)
1274                 return;
1275 
1276         /*
1277          * Allocating write - we may have different boundaries based
1278          * on page size and cluster size.
1279          *
1280          * NOTE: We can no longer compute one value from the other as
1281          * the actual write length and user provided length may be
1282          * different.
1283          */
1284 
1285         if (wc->w_large_pages) {
1286                 /*
1287                  * We only care about the 1st and last cluster within
1288                  * our range and whether they should be zero'd or not. Either
1289                  * value may be extended out to the start/end of a
1290                  * newly allocated cluster.
1291                  */
1292                 desc = &wc->w_desc[0];
1293                 if (desc->c_needs_zero)
1294                         ocfs2_figure_cluster_boundaries(osb,
1295                                                         desc->c_cpos,
1296                                                         &wc->w_target_from,
1297                                                         NULL);
1298 
1299                 desc = &wc->w_desc[wc->w_clen - 1];
1300                 if (desc->c_needs_zero)
1301                         ocfs2_figure_cluster_boundaries(osb,
1302                                                         desc->c_cpos,
1303                                                         NULL,
1304                                                         &wc->w_target_to);
1305         } else {
1306                 wc->w_target_from = 0;
1307                 wc->w_target_to = PAGE_SIZE;
1308         }
1309 }
1310 
1311 /*
1312  * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1313  * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1314  * by the direct io procedure.
1315  * If this is a new extent that allocated by direct io, we should mark it in
1316  * the ip_unwritten_list.
1317  */
1318 static int ocfs2_unwritten_check(struct inode *inode,
1319                                  struct ocfs2_write_ctxt *wc,
1320                                  struct ocfs2_write_cluster_desc *desc)
1321 {
1322         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1323         struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1324         int ret = 0;
1325 
1326         if (!desc->c_needs_zero)
1327                 return 0;
1328 
1329 retry:
1330         spin_lock(&oi->ip_lock);
1331         /* Needs not to zero no metter buffer or direct. The one who is zero
1332          * the cluster is doing zero. And he will clear unwritten after all
1333          * cluster io finished. */
1334         list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1335                 if (desc->c_cpos == ue->ue_cpos) {
1336                         BUG_ON(desc->c_new);
1337                         desc->c_needs_zero = 0;
1338                         desc->c_clear_unwritten = 0;
1339                         goto unlock;
1340                 }
1341         }
1342 
1343         if (wc->w_type != OCFS2_WRITE_DIRECT)
1344                 goto unlock;
1345 
1346         if (new == NULL) {
1347                 spin_unlock(&oi->ip_lock);
1348                 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1349                              GFP_NOFS);
1350                 if (new == NULL) {
1351                         ret = -ENOMEM;
1352                         goto out;
1353                 }
1354                 goto retry;
1355         }
1356         /* This direct write will doing zero. */
1357         new->ue_cpos = desc->c_cpos;
1358         new->ue_phys = desc->c_phys;
1359         desc->c_clear_unwritten = 0;
1360         list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1361         list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1362         wc->w_unwritten_count++;
1363         new = NULL;
1364 unlock:
1365         spin_unlock(&oi->ip_lock);
1366 out:
1367         kfree(new);
1368         return ret;
1369 }
1370 
1371 /*
1372  * Populate each single-cluster write descriptor in the write context
1373  * with information about the i/o to be done.
1374  *
1375  * Returns the number of clusters that will have to be allocated, as
1376  * well as a worst case estimate of the number of extent records that
1377  * would have to be created during a write to an unwritten region.
1378  */
1379 static int ocfs2_populate_write_desc(struct inode *inode,
1380                                      struct ocfs2_write_ctxt *wc,
1381                                      unsigned int *clusters_to_alloc,
1382                                      unsigned int *extents_to_split)
1383 {
1384         int ret;
1385         struct ocfs2_write_cluster_desc *desc;
1386         unsigned int num_clusters = 0;
1387         unsigned int ext_flags = 0;
1388         u32 phys = 0;
1389         int i;
1390 
1391         *clusters_to_alloc = 0;
1392         *extents_to_split = 0;
1393 
1394         for (i = 0; i < wc->w_clen; i++) {
1395                 desc = &wc->w_desc[i];
1396                 desc->c_cpos = wc->w_cpos + i;
1397 
1398                 if (num_clusters == 0) {
1399                         /*
1400                          * Need to look up the next extent record.
1401                          */
1402                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1403                                                  &num_clusters, &ext_flags);
1404                         if (ret) {
1405                                 mlog_errno(ret);
1406                                 goto out;
1407                         }
1408 
1409                         /* We should already CoW the refcountd extent. */
1410                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1411 
1412                         /*
1413                          * Assume worst case - that we're writing in
1414                          * the middle of the extent.
1415                          *
1416                          * We can assume that the write proceeds from
1417                          * left to right, in which case the extent
1418                          * insert code is smart enough to coalesce the
1419                          * next splits into the previous records created.
1420                          */
1421                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1422                                 *extents_to_split = *extents_to_split + 2;
1423                 } else if (phys) {
1424                         /*
1425                          * Only increment phys if it doesn't describe
1426                          * a hole.
1427                          */
1428                         phys++;
1429                 }
1430 
1431                 /*
1432                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1433                  * file that got extended.  w_first_new_cpos tells us
1434                  * where the newly allocated clusters are so we can
1435                  * zero them.
1436                  */
1437                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1438                         BUG_ON(phys == 0);
1439                         desc->c_needs_zero = 1;
1440                 }
1441 
1442                 desc->c_phys = phys;
1443                 if (phys == 0) {
1444                         desc->c_new = 1;
1445                         desc->c_needs_zero = 1;
1446                         desc->c_clear_unwritten = 1;
1447                         *clusters_to_alloc = *clusters_to_alloc + 1;
1448                 }
1449 
1450                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1451                         desc->c_clear_unwritten = 1;
1452                         desc->c_needs_zero = 1;
1453                 }
1454 
1455                 ret = ocfs2_unwritten_check(inode, wc, desc);
1456                 if (ret) {
1457                         mlog_errno(ret);
1458                         goto out;
1459                 }
1460 
1461                 num_clusters--;
1462         }
1463 
1464         ret = 0;
1465 out:
1466         return ret;
1467 }
1468 
1469 static int ocfs2_write_begin_inline(struct address_space *mapping,
1470                                     struct inode *inode,
1471                                     struct ocfs2_write_ctxt *wc)
1472 {
1473         int ret;
1474         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1475         struct page *page;
1476         handle_t *handle;
1477         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1478 
1479         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1480         if (IS_ERR(handle)) {
1481                 ret = PTR_ERR(handle);
1482                 mlog_errno(ret);
1483                 goto out;
1484         }
1485 
1486         page = find_or_create_page(mapping, 0, GFP_NOFS);
1487         if (!page) {
1488                 ocfs2_commit_trans(osb, handle);
1489                 ret = -ENOMEM;
1490                 mlog_errno(ret);
1491                 goto out;
1492         }
1493         /*
1494          * If we don't set w_num_pages then this page won't get unlocked
1495          * and freed on cleanup of the write context.
1496          */
1497         wc->w_pages[0] = wc->w_target_page = page;
1498         wc->w_num_pages = 1;
1499 
1500         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1501                                       OCFS2_JOURNAL_ACCESS_WRITE);
1502         if (ret) {
1503                 ocfs2_commit_trans(osb, handle);
1504 
1505                 mlog_errno(ret);
1506                 goto out;
1507         }
1508 
1509         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1510                 ocfs2_set_inode_data_inline(inode, di);
1511 
1512         if (!PageUptodate(page)) {
1513                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1514                 if (ret) {
1515                         ocfs2_commit_trans(osb, handle);
1516 
1517                         goto out;
1518                 }
1519         }
1520 
1521         wc->w_handle = handle;
1522 out:
1523         return ret;
1524 }
1525 
1526 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1527 {
1528         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1529 
1530         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1531                 return 1;
1532         return 0;
1533 }
1534 
1535 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1536                                           struct inode *inode, loff_t pos,
1537                                           unsigned len, struct page *mmap_page,
1538                                           struct ocfs2_write_ctxt *wc)
1539 {
1540         int ret, written = 0;
1541         loff_t end = pos + len;
1542         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1543         struct ocfs2_dinode *di = NULL;
1544 
1545         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1546                                              len, (unsigned long long)pos,
1547                                              oi->ip_dyn_features);
1548 
1549         /*
1550          * Handle inodes which already have inline data 1st.
1551          */
1552         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1553                 if (mmap_page == NULL &&
1554                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1555                         goto do_inline_write;
1556 
1557                 /*
1558                  * The write won't fit - we have to give this inode an
1559                  * inline extent list now.
1560                  */
1561                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1562                 if (ret)
1563                         mlog_errno(ret);
1564                 goto out;
1565         }
1566 
1567         /*
1568          * Check whether the inode can accept inline data.
1569          */
1570         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1571                 return 0;
1572 
1573         /*
1574          * Check whether the write can fit.
1575          */
1576         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1577         if (mmap_page ||
1578             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1579                 return 0;
1580 
1581 do_inline_write:
1582         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1583         if (ret) {
1584                 mlog_errno(ret);
1585                 goto out;
1586         }
1587 
1588         /*
1589          * This signals to the caller that the data can be written
1590          * inline.
1591          */
1592         written = 1;
1593 out:
1594         return written ? written : ret;
1595 }
1596 
1597 /*
1598  * This function only does anything for file systems which can't
1599  * handle sparse files.
1600  *
1601  * What we want to do here is fill in any hole between the current end
1602  * of allocation and the end of our write. That way the rest of the
1603  * write path can treat it as an non-allocating write, which has no
1604  * special case code for sparse/nonsparse files.
1605  */
1606 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1607                                         struct buffer_head *di_bh,
1608                                         loff_t pos, unsigned len,
1609                                         struct ocfs2_write_ctxt *wc)
1610 {
1611         int ret;
1612         loff_t newsize = pos + len;
1613 
1614         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1615 
1616         if (newsize <= i_size_read(inode))
1617                 return 0;
1618 
1619         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1620         if (ret)
1621                 mlog_errno(ret);
1622 
1623         /* There is no wc if this is call from direct. */
1624         if (wc)
1625                 wc->w_first_new_cpos =
1626                         ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1627 
1628         return ret;
1629 }
1630 
1631 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1632                            loff_t pos)
1633 {
1634         int ret = 0;
1635 
1636         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1637         if (pos > i_size_read(inode))
1638                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1639 
1640         return ret;
1641 }
1642 
1643 int ocfs2_write_begin_nolock(struct address_space *mapping,
1644                              loff_t pos, unsigned len, ocfs2_write_type_t type,
1645                              struct page **pagep, void **fsdata,
1646                              struct buffer_head *di_bh, struct page *mmap_page)
1647 {
1648         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1649         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1650         struct ocfs2_write_ctxt *wc;
1651         struct inode *inode = mapping->host;
1652         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1653         struct ocfs2_dinode *di;
1654         struct ocfs2_alloc_context *data_ac = NULL;
1655         struct ocfs2_alloc_context *meta_ac = NULL;
1656         handle_t *handle;
1657         struct ocfs2_extent_tree et;
1658         int try_free = 1, ret1;
1659 
1660 try_again:
1661         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1662         if (ret) {
1663                 mlog_errno(ret);
1664                 return ret;
1665         }
1666 
1667         if (ocfs2_supports_inline_data(osb)) {
1668                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1669                                                      mmap_page, wc);
1670                 if (ret == 1) {
1671                         ret = 0;
1672                         goto success;
1673                 }
1674                 if (ret < 0) {
1675                         mlog_errno(ret);
1676                         goto out;
1677                 }
1678         }
1679 
1680         /* Direct io change i_size late, should not zero tail here. */
1681         if (type != OCFS2_WRITE_DIRECT) {
1682                 if (ocfs2_sparse_alloc(osb))
1683                         ret = ocfs2_zero_tail(inode, di_bh, pos);
1684                 else
1685                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1686                                                            len, wc);
1687                 if (ret) {
1688                         mlog_errno(ret);
1689                         goto out;
1690                 }
1691         }
1692 
1693         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1694         if (ret < 0) {
1695                 mlog_errno(ret);
1696                 goto out;
1697         } else if (ret == 1) {
1698                 clusters_need = wc->w_clen;
1699                 ret = ocfs2_refcount_cow(inode, di_bh,
1700                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1701                 if (ret) {
1702                         mlog_errno(ret);
1703                         goto out;
1704                 }
1705         }
1706 
1707         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1708                                         &extents_to_split);
1709         if (ret) {
1710                 mlog_errno(ret);
1711                 goto out;
1712         }
1713         clusters_need += clusters_to_alloc;
1714 
1715         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1716 
1717         trace_ocfs2_write_begin_nolock(
1718                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1719                         (long long)i_size_read(inode),
1720                         le32_to_cpu(di->i_clusters),
1721                         pos, len, type, mmap_page,
1722                         clusters_to_alloc, extents_to_split);
1723 
1724         /*
1725          * We set w_target_from, w_target_to here so that
1726          * ocfs2_write_end() knows which range in the target page to
1727          * write out. An allocation requires that we write the entire
1728          * cluster range.
1729          */
1730         if (clusters_to_alloc || extents_to_split) {
1731                 /*
1732                  * XXX: We are stretching the limits of
1733                  * ocfs2_lock_allocators(). It greatly over-estimates
1734                  * the work to be done.
1735                  */
1736                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1737                                               wc->w_di_bh);
1738                 ret = ocfs2_lock_allocators(inode, &et,
1739                                             clusters_to_alloc, extents_to_split,
1740                                             &data_ac, &meta_ac);
1741                 if (ret) {
1742                         mlog_errno(ret);
1743                         goto out;
1744                 }
1745 
1746                 if (data_ac)
1747                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1748 
1749                 credits = ocfs2_calc_extend_credits(inode->i_sb,
1750                                                     &di->id2.i_list);
1751         } else if (type == OCFS2_WRITE_DIRECT)
1752                 /* direct write needs not to start trans if no extents alloc. */
1753                 goto success;
1754 
1755         /*
1756          * We have to zero sparse allocated clusters, unwritten extent clusters,
1757          * and non-sparse clusters we just extended.  For non-sparse writes,
1758          * we know zeros will only be needed in the first and/or last cluster.
1759          */
1760         if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1761                            wc->w_desc[wc->w_clen - 1].c_needs_zero))
1762                 cluster_of_pages = 1;
1763         else
1764                 cluster_of_pages = 0;
1765 
1766         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1767 
1768         handle = ocfs2_start_trans(osb, credits);
1769         if (IS_ERR(handle)) {
1770                 ret = PTR_ERR(handle);
1771                 mlog_errno(ret);
1772                 goto out;
1773         }
1774 
1775         wc->w_handle = handle;
1776 
1777         if (clusters_to_alloc) {
1778                 ret = dquot_alloc_space_nodirty(inode,
1779                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1780                 if (ret)
1781                         goto out_commit;
1782         }
1783 
1784         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1785                                       OCFS2_JOURNAL_ACCESS_WRITE);
1786         if (ret) {
1787                 mlog_errno(ret);
1788                 goto out_quota;
1789         }
1790 
1791         /*
1792          * Fill our page array first. That way we've grabbed enough so
1793          * that we can zero and flush if we error after adding the
1794          * extent.
1795          */
1796         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1797                                          cluster_of_pages, mmap_page);
1798         if (ret) {
1799                 /*
1800                  * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1801                  * the target page. In this case, we exit with no error and no target
1802                  * page. This will trigger the caller, page_mkwrite(), to re-try
1803                  * the operation.
1804                  */
1805                 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1806                         BUG_ON(wc->w_target_page);
1807                         ret = 0;
1808                         goto out_quota;
1809                 }
1810 
1811                 mlog_errno(ret);
1812                 goto out_quota;
1813         }
1814 
1815         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1816                                           len);
1817         if (ret) {
1818                 mlog_errno(ret);
1819                 goto out_quota;
1820         }
1821 
1822         if (data_ac)
1823                 ocfs2_free_alloc_context(data_ac);
1824         if (meta_ac)
1825                 ocfs2_free_alloc_context(meta_ac);
1826 
1827 success:
1828         if (pagep)
1829                 *pagep = wc->w_target_page;
1830         *fsdata = wc;
1831         return 0;
1832 out_quota:
1833         if (clusters_to_alloc)
1834                 dquot_free_space(inode,
1835                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1836 out_commit:
1837         ocfs2_commit_trans(osb, handle);
1838 
1839 out:
1840         /*
1841          * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1842          * even in case of error here like ENOSPC and ENOMEM. So, we need
1843          * to unlock the target page manually to prevent deadlocks when
1844          * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1845          * to VM code.
1846          */
1847         if (wc->w_target_locked)
1848                 unlock_page(mmap_page);
1849 
1850         ocfs2_free_write_ctxt(inode, wc);
1851 
1852         if (data_ac) {
1853                 ocfs2_free_alloc_context(data_ac);
1854                 data_ac = NULL;
1855         }
1856         if (meta_ac) {
1857                 ocfs2_free_alloc_context(meta_ac);
1858                 meta_ac = NULL;
1859         }
1860 
1861         if (ret == -ENOSPC && try_free) {
1862                 /*
1863                  * Try to free some truncate log so that we can have enough
1864                  * clusters to allocate.
1865                  */
1866                 try_free = 0;
1867 
1868                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1869                 if (ret1 == 1)
1870                         goto try_again;
1871 
1872                 if (ret1 < 0)
1873                         mlog_errno(ret1);
1874         }
1875 
1876         return ret;
1877 }
1878 
1879 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1880                              loff_t pos, unsigned len,
1881                              struct page **pagep, void **fsdata)
1882 {
1883         int ret;
1884         struct buffer_head *di_bh = NULL;
1885         struct inode *inode = mapping->host;
1886 
1887         ret = ocfs2_inode_lock(inode, &di_bh, 1);
1888         if (ret) {
1889                 mlog_errno(ret);
1890                 return ret;
1891         }
1892 
1893         /*
1894          * Take alloc sem here to prevent concurrent lookups. That way
1895          * the mapping, zeroing and tree manipulation within
1896          * ocfs2_write() will be safe against ->read_folio(). This
1897          * should also serve to lock out allocation from a shared
1898          * writeable region.
1899          */
1900         down_write(&OCFS2_I(inode)->ip_alloc_sem);
1901 
1902         ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1903                                        pagep, fsdata, di_bh, NULL);
1904         if (ret) {
1905                 mlog_errno(ret);
1906                 goto out_fail;
1907         }
1908 
1909         brelse(di_bh);
1910 
1911         return 0;
1912 
1913 out_fail:
1914         up_write(&OCFS2_I(inode)->ip_alloc_sem);
1915 
1916         brelse(di_bh);
1917         ocfs2_inode_unlock(inode, 1);
1918 
1919         return ret;
1920 }
1921 
1922 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1923                                    unsigned len, unsigned *copied,
1924                                    struct ocfs2_dinode *di,
1925                                    struct ocfs2_write_ctxt *wc)
1926 {
1927         void *kaddr;
1928 
1929         if (unlikely(*copied < len)) {
1930                 if (!PageUptodate(wc->w_target_page)) {
1931                         *copied = 0;
1932                         return;
1933                 }
1934         }
1935 
1936         kaddr = kmap_atomic(wc->w_target_page);
1937         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1938         kunmap_atomic(kaddr);
1939 
1940         trace_ocfs2_write_end_inline(
1941              (unsigned long long)OCFS2_I(inode)->ip_blkno,
1942              (unsigned long long)pos, *copied,
1943              le16_to_cpu(di->id2.i_data.id_count),
1944              le16_to_cpu(di->i_dyn_features));
1945 }
1946 
1947 int ocfs2_write_end_nolock(struct address_space *mapping,
1948                            loff_t pos, unsigned len, unsigned copied, void *fsdata)
1949 {
1950         int i, ret;
1951         unsigned from, to, start = pos & (PAGE_SIZE - 1);
1952         struct inode *inode = mapping->host;
1953         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1954         struct ocfs2_write_ctxt *wc = fsdata;
1955         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1956         handle_t *handle = wc->w_handle;
1957         struct page *tmppage;
1958 
1959         BUG_ON(!list_empty(&wc->w_unwritten_list));
1960 
1961         if (handle) {
1962                 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1963                                 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1964                 if (ret) {
1965                         copied = ret;
1966                         mlog_errno(ret);
1967                         goto out;
1968                 }
1969         }
1970 
1971         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1972                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1973                 goto out_write_size;
1974         }
1975 
1976         if (unlikely(copied < len) && wc->w_target_page) {
1977                 loff_t new_isize;
1978 
1979                 if (!PageUptodate(wc->w_target_page))
1980                         copied = 0;
1981 
1982                 new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
1983                 if (new_isize > page_offset(wc->w_target_page))
1984                         ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1985                                                start+len);
1986                 else {
1987                         /*
1988                          * When page is fully beyond new isize (data copy
1989                          * failed), do not bother zeroing the page. Invalidate
1990                          * it instead so that writeback does not get confused
1991                          * put page & buffer dirty bits into inconsistent
1992                          * state.
1993                          */
1994                         block_invalidate_folio(page_folio(wc->w_target_page),
1995                                                 0, PAGE_SIZE);
1996                 }
1997         }
1998         if (wc->w_target_page)
1999                 flush_dcache_page(wc->w_target_page);
2000 
2001         for(i = 0; i < wc->w_num_pages; i++) {
2002                 tmppage = wc->w_pages[i];
2003 
2004                 /* This is the direct io target page. */
2005                 if (tmppage == NULL)
2006                         continue;
2007 
2008                 if (tmppage == wc->w_target_page) {
2009                         from = wc->w_target_from;
2010                         to = wc->w_target_to;
2011 
2012                         BUG_ON(from > PAGE_SIZE ||
2013                                to > PAGE_SIZE ||
2014                                to < from);
2015                 } else {
2016                         /*
2017                          * Pages adjacent to the target (if any) imply
2018                          * a hole-filling write in which case we want
2019                          * to flush their entire range.
2020                          */
2021                         from = 0;
2022                         to = PAGE_SIZE;
2023                 }
2024 
2025                 if (page_has_buffers(tmppage)) {
2026                         if (handle && ocfs2_should_order_data(inode)) {
2027                                 loff_t start_byte =
2028                                         ((loff_t)tmppage->index << PAGE_SHIFT) +
2029                                         from;
2030                                 loff_t length = to - from;
2031                                 ocfs2_jbd2_inode_add_write(handle, inode,
2032                                                            start_byte, length);
2033                         }
2034                         block_commit_write(tmppage, from, to);
2035                 }
2036         }
2037 
2038 out_write_size:
2039         /* Direct io do not update i_size here. */
2040         if (wc->w_type != OCFS2_WRITE_DIRECT) {
2041                 pos += copied;
2042                 if (pos > i_size_read(inode)) {
2043                         i_size_write(inode, pos);
2044                         mark_inode_dirty(inode);
2045                 }
2046                 inode->i_blocks = ocfs2_inode_sector_count(inode);
2047                 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2048                 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2049                 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode));
2050                 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
2051                 if (handle)
2052                         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2053         }
2054         if (handle)
2055                 ocfs2_journal_dirty(handle, wc->w_di_bh);
2056 
2057 out:
2058         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2059          * lock, or it will cause a deadlock since journal commit threads holds
2060          * this lock and will ask for the page lock when flushing the data.
2061          * put it here to preserve the unlock order.
2062          */
2063         ocfs2_unlock_pages(wc);
2064 
2065         if (handle)
2066                 ocfs2_commit_trans(osb, handle);
2067 
2068         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2069 
2070         brelse(wc->w_di_bh);
2071         kfree(wc);
2072 
2073         return copied;
2074 }
2075 
2076 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2077                            loff_t pos, unsigned len, unsigned copied,
2078                            struct page *page, void *fsdata)
2079 {
2080         int ret;
2081         struct inode *inode = mapping->host;
2082 
2083         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2084 
2085         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2086         ocfs2_inode_unlock(inode, 1);
2087 
2088         return ret;
2089 }
2090 
2091 struct ocfs2_dio_write_ctxt {
2092         struct list_head        dw_zero_list;
2093         unsigned                dw_zero_count;
2094         int                     dw_orphaned;
2095         pid_t                   dw_writer_pid;
2096 };
2097 
2098 static struct ocfs2_dio_write_ctxt *
2099 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2100 {
2101         struct ocfs2_dio_write_ctxt *dwc = NULL;
2102 
2103         if (bh->b_private)
2104                 return bh->b_private;
2105 
2106         dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2107         if (dwc == NULL)
2108                 return NULL;
2109         INIT_LIST_HEAD(&dwc->dw_zero_list);
2110         dwc->dw_zero_count = 0;
2111         dwc->dw_orphaned = 0;
2112         dwc->dw_writer_pid = task_pid_nr(current);
2113         bh->b_private = dwc;
2114         *alloc = 1;
2115 
2116         return dwc;
2117 }
2118 
2119 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2120                                      struct ocfs2_dio_write_ctxt *dwc)
2121 {
2122         ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2123         kfree(dwc);
2124 }
2125 
2126 /*
2127  * TODO: Make this into a generic get_blocks function.
2128  *
2129  * From do_direct_io in direct-io.c:
2130  *  "So what we do is to permit the ->get_blocks function to populate
2131  *   bh.b_size with the size of IO which is permitted at this offset and
2132  *   this i_blkbits."
2133  *
2134  * This function is called directly from get_more_blocks in direct-io.c.
2135  *
2136  * called like this: dio->get_blocks(dio->inode, fs_startblk,
2137  *                                      fs_count, map_bh, dio->rw == WRITE);
2138  */
2139 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2140                                struct buffer_head *bh_result, int create)
2141 {
2142         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2143         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2144         struct ocfs2_write_ctxt *wc;
2145         struct ocfs2_write_cluster_desc *desc = NULL;
2146         struct ocfs2_dio_write_ctxt *dwc = NULL;
2147         struct buffer_head *di_bh = NULL;
2148         u64 p_blkno;
2149         unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2150         loff_t pos = iblock << i_blkbits;
2151         sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2152         unsigned len, total_len = bh_result->b_size;
2153         int ret = 0, first_get_block = 0;
2154 
2155         len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2156         len = min(total_len, len);
2157 
2158         /*
2159          * bh_result->b_size is count in get_more_blocks according to write
2160          * "pos" and "end", we need map twice to return different buffer state:
2161          * 1. area in file size, not set NEW;
2162          * 2. area out file size, set  NEW.
2163          *
2164          *                 iblock    endblk
2165          * |--------|---------|---------|---------
2166          * |<-------area in file------->|
2167          */
2168 
2169         if ((iblock <= endblk) &&
2170             ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2171                 len = (endblk - iblock + 1) << i_blkbits;
2172 
2173         mlog(0, "get block of %lu at %llu:%u req %u\n",
2174                         inode->i_ino, pos, len, total_len);
2175 
2176         /*
2177          * Because we need to change file size in ocfs2_dio_end_io_write(), or
2178          * we may need to add it to orphan dir. So can not fall to fast path
2179          * while file size will be changed.
2180          */
2181         if (pos + total_len <= i_size_read(inode)) {
2182 
2183                 /* This is the fast path for re-write. */
2184                 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2185                 if (buffer_mapped(bh_result) &&
2186                     !buffer_new(bh_result) &&
2187                     ret == 0)
2188                         goto out;
2189 
2190                 /* Clear state set by ocfs2_get_block. */
2191                 bh_result->b_state = 0;
2192         }
2193 
2194         dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2195         if (unlikely(dwc == NULL)) {
2196                 ret = -ENOMEM;
2197                 mlog_errno(ret);
2198                 goto out;
2199         }
2200 
2201         if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2202             ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2203             !dwc->dw_orphaned) {
2204                 /*
2205                  * when we are going to alloc extents beyond file size, add the
2206                  * inode to orphan dir, so we can recall those spaces when
2207                  * system crashed during write.
2208                  */
2209                 ret = ocfs2_add_inode_to_orphan(osb, inode);
2210                 if (ret < 0) {
2211                         mlog_errno(ret);
2212                         goto out;
2213                 }
2214                 dwc->dw_orphaned = 1;
2215         }
2216 
2217         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2218         if (ret) {
2219                 mlog_errno(ret);
2220                 goto out;
2221         }
2222 
2223         down_write(&oi->ip_alloc_sem);
2224 
2225         if (first_get_block) {
2226                 if (ocfs2_sparse_alloc(osb))
2227                         ret = ocfs2_zero_tail(inode, di_bh, pos);
2228                 else
2229                         ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2230                                                            total_len, NULL);
2231                 if (ret < 0) {
2232                         mlog_errno(ret);
2233                         goto unlock;
2234                 }
2235         }
2236 
2237         ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2238                                        OCFS2_WRITE_DIRECT, NULL,
2239                                        (void **)&wc, di_bh, NULL);
2240         if (ret) {
2241                 mlog_errno(ret);
2242                 goto unlock;
2243         }
2244 
2245         desc = &wc->w_desc[0];
2246 
2247         p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2248         BUG_ON(p_blkno == 0);
2249         p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2250 
2251         map_bh(bh_result, inode->i_sb, p_blkno);
2252         bh_result->b_size = len;
2253         if (desc->c_needs_zero)
2254                 set_buffer_new(bh_result);
2255 
2256         if (iblock > endblk)
2257                 set_buffer_new(bh_result);
2258 
2259         /* May sleep in end_io. It should not happen in a irq context. So defer
2260          * it to dio work queue. */
2261         set_buffer_defer_completion(bh_result);
2262 
2263         if (!list_empty(&wc->w_unwritten_list)) {
2264                 struct ocfs2_unwritten_extent *ue = NULL;
2265 
2266                 ue = list_first_entry(&wc->w_unwritten_list,
2267                                       struct ocfs2_unwritten_extent,
2268                                       ue_node);
2269                 BUG_ON(ue->ue_cpos != desc->c_cpos);
2270                 /* The physical address may be 0, fill it. */
2271                 ue->ue_phys = desc->c_phys;
2272 
2273                 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2274                 dwc->dw_zero_count += wc->w_unwritten_count;
2275         }
2276 
2277         ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2278         BUG_ON(ret != len);
2279         ret = 0;
2280 unlock:
2281         up_write(&oi->ip_alloc_sem);
2282         ocfs2_inode_unlock(inode, 1);
2283         brelse(di_bh);
2284 out:
2285         return ret;
2286 }
2287 
2288 static int ocfs2_dio_end_io_write(struct inode *inode,
2289                                   struct ocfs2_dio_write_ctxt *dwc,
2290                                   loff_t offset,
2291                                   ssize_t bytes)
2292 {
2293         struct ocfs2_cached_dealloc_ctxt dealloc;
2294         struct ocfs2_extent_tree et;
2295         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2296         struct ocfs2_inode_info *oi = OCFS2_I(inode);
2297         struct ocfs2_unwritten_extent *ue = NULL;
2298         struct buffer_head *di_bh = NULL;
2299         struct ocfs2_dinode *di;
2300         struct ocfs2_alloc_context *data_ac = NULL;
2301         struct ocfs2_alloc_context *meta_ac = NULL;
2302         handle_t *handle = NULL;
2303         loff_t end = offset + bytes;
2304         int ret = 0, credits = 0;
2305 
2306         ocfs2_init_dealloc_ctxt(&dealloc);
2307 
2308         /* We do clear unwritten, delete orphan, change i_size here. If neither
2309          * of these happen, we can skip all this. */
2310         if (list_empty(&dwc->dw_zero_list) &&
2311             end <= i_size_read(inode) &&
2312             !dwc->dw_orphaned)
2313                 goto out;
2314 
2315         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2316         if (ret < 0) {
2317                 mlog_errno(ret);
2318                 goto out;
2319         }
2320 
2321         down_write(&oi->ip_alloc_sem);
2322 
2323         /* Delete orphan before acquire i_rwsem. */
2324         if (dwc->dw_orphaned) {
2325                 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2326 
2327                 end = end > i_size_read(inode) ? end : 0;
2328 
2329                 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2330                                 !!end, end);
2331                 if (ret < 0)
2332                         mlog_errno(ret);
2333         }
2334 
2335         di = (struct ocfs2_dinode *)di_bh->b_data;
2336 
2337         ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2338 
2339         /* Attach dealloc with extent tree in case that we may reuse extents
2340          * which are already unlinked from current extent tree due to extent
2341          * rotation and merging.
2342          */
2343         et.et_dealloc = &dealloc;
2344 
2345         ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2346                                     &data_ac, &meta_ac);
2347         if (ret) {
2348                 mlog_errno(ret);
2349                 goto unlock;
2350         }
2351 
2352         credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2353 
2354         handle = ocfs2_start_trans(osb, credits);
2355         if (IS_ERR(handle)) {
2356                 ret = PTR_ERR(handle);
2357                 mlog_errno(ret);
2358                 goto unlock;
2359         }
2360         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2361                                       OCFS2_JOURNAL_ACCESS_WRITE);
2362         if (ret) {
2363                 mlog_errno(ret);
2364                 goto commit;
2365         }
2366 
2367         list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2368                 ret = ocfs2_assure_trans_credits(handle, credits);
2369                 if (ret < 0) {
2370                         mlog_errno(ret);
2371                         break;
2372                 }
2373                 ret = ocfs2_mark_extent_written(inode, &et, handle,
2374                                                 ue->ue_cpos, 1,
2375                                                 ue->ue_phys,
2376                                                 meta_ac, &dealloc);
2377                 if (ret < 0) {
2378                         mlog_errno(ret);
2379                         break;
2380                 }
2381         }
2382 
2383         if (end > i_size_read(inode)) {
2384                 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2385                 if (ret < 0)
2386                         mlog_errno(ret);
2387         }
2388 commit:
2389         ocfs2_commit_trans(osb, handle);
2390 unlock:
2391         up_write(&oi->ip_alloc_sem);
2392         ocfs2_inode_unlock(inode, 1);
2393         brelse(di_bh);
2394 out:
2395         if (data_ac)
2396                 ocfs2_free_alloc_context(data_ac);
2397         if (meta_ac)
2398                 ocfs2_free_alloc_context(meta_ac);
2399         ocfs2_run_deallocs(osb, &dealloc);
2400         ocfs2_dio_free_write_ctx(inode, dwc);
2401 
2402         return ret;
2403 }
2404 
2405 /*
2406  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
2407  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
2408  * to protect io on one node from truncation on another.
2409  */
2410 static int ocfs2_dio_end_io(struct kiocb *iocb,
2411                             loff_t offset,
2412                             ssize_t bytes,
2413                             void *private)
2414 {
2415         struct inode *inode = file_inode(iocb->ki_filp);
2416         int level;
2417         int ret = 0;
2418 
2419         /* this io's submitter should not have unlocked this before we could */
2420         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2421 
2422         if (bytes <= 0)
2423                 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2424                                  (long long)bytes);
2425         if (private) {
2426                 if (bytes > 0)
2427                         ret = ocfs2_dio_end_io_write(inode, private, offset,
2428                                                      bytes);
2429                 else
2430                         ocfs2_dio_free_write_ctx(inode, private);
2431         }
2432 
2433         ocfs2_iocb_clear_rw_locked(iocb);
2434 
2435         level = ocfs2_iocb_rw_locked_level(iocb);
2436         ocfs2_rw_unlock(inode, level);
2437         return ret;
2438 }
2439 
2440 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2441 {
2442         struct file *file = iocb->ki_filp;
2443         struct inode *inode = file->f_mapping->host;
2444         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2445         get_block_t *get_block;
2446 
2447         /*
2448          * Fallback to buffered I/O if we see an inode without
2449          * extents.
2450          */
2451         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2452                 return 0;
2453 
2454         /* Fallback to buffered I/O if we do not support append dio. */
2455         if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2456             !ocfs2_supports_append_dio(osb))
2457                 return 0;
2458 
2459         if (iov_iter_rw(iter) == READ)
2460                 get_block = ocfs2_lock_get_block;
2461         else
2462                 get_block = ocfs2_dio_wr_get_block;
2463 
2464         return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2465                                     iter, get_block,
2466                                     ocfs2_dio_end_io, 0);
2467 }
2468 
2469 const struct address_space_operations ocfs2_aops = {
2470         .dirty_folio            = block_dirty_folio,
2471         .read_folio             = ocfs2_read_folio,
2472         .readahead              = ocfs2_readahead,
2473         .writepages             = ocfs2_writepages,
2474         .write_begin            = ocfs2_write_begin,
2475         .write_end              = ocfs2_write_end,
2476         .bmap                   = ocfs2_bmap,
2477         .direct_IO              = ocfs2_direct_IO,
2478         .invalidate_folio       = block_invalidate_folio,
2479         .release_folio          = ocfs2_release_folio,
2480         .migrate_folio          = buffer_migrate_folio,
2481         .is_partially_uptodate  = block_is_partially_uptodate,
2482         .error_remove_folio     = generic_error_remove_folio,
2483 };
2484 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php