1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/highmem.h> 9 #include <linux/pagemap.h> 10 #include <asm/byteorder.h> 11 #include <linux/swap.h> 12 #include <linux/mpage.h> 13 #include <linux/quotaops.h> 14 #include <linux/blkdev.h> 15 #include <linux/uio.h> 16 #include <linux/mm.h> 17 18 #include <cluster/masklog.h> 19 20 #include "ocfs2.h" 21 22 #include "alloc.h" 23 #include "aops.h" 24 #include "dlmglue.h" 25 #include "extent_map.h" 26 #include "file.h" 27 #include "inode.h" 28 #include "journal.h" 29 #include "suballoc.h" 30 #include "super.h" 31 #include "symlink.h" 32 #include "refcounttree.h" 33 #include "ocfs2_trace.h" 34 35 #include "buffer_head_io.h" 36 #include "dir.h" 37 #include "namei.h" 38 #include "sysfile.h" 39 40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock, 41 struct buffer_head *bh_result, int create) 42 { 43 int err = -EIO; 44 int status; 45 struct ocfs2_dinode *fe = NULL; 46 struct buffer_head *bh = NULL; 47 struct buffer_head *buffer_cache_bh = NULL; 48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 49 void *kaddr; 50 51 trace_ocfs2_symlink_get_block( 52 (unsigned long long)OCFS2_I(inode)->ip_blkno, 53 (unsigned long long)iblock, bh_result, create); 54 55 BUG_ON(ocfs2_inode_is_fast_symlink(inode)); 56 57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) { 58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu", 59 (unsigned long long)iblock); 60 goto bail; 61 } 62 63 status = ocfs2_read_inode_block(inode, &bh); 64 if (status < 0) { 65 mlog_errno(status); 66 goto bail; 67 } 68 fe = (struct ocfs2_dinode *) bh->b_data; 69 70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb, 71 le32_to_cpu(fe->i_clusters))) { 72 err = -ENOMEM; 73 mlog(ML_ERROR, "block offset is outside the allocated size: " 74 "%llu\n", (unsigned long long)iblock); 75 goto bail; 76 } 77 78 /* We don't use the page cache to create symlink data, so if 79 * need be, copy it over from the buffer cache. */ 80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) { 81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + 82 iblock; 83 buffer_cache_bh = sb_getblk(osb->sb, blkno); 84 if (!buffer_cache_bh) { 85 err = -ENOMEM; 86 mlog(ML_ERROR, "couldn't getblock for symlink!\n"); 87 goto bail; 88 } 89 90 /* we haven't locked out transactions, so a commit 91 * could've happened. Since we've got a reference on 92 * the bh, even if it commits while we're doing the 93 * copy, the data is still good. */ 94 if (buffer_jbd(buffer_cache_bh) 95 && ocfs2_inode_is_new(inode)) { 96 kaddr = kmap_atomic(bh_result->b_page); 97 if (!kaddr) { 98 mlog(ML_ERROR, "couldn't kmap!\n"); 99 goto bail; 100 } 101 memcpy(kaddr + (bh_result->b_size * iblock), 102 buffer_cache_bh->b_data, 103 bh_result->b_size); 104 kunmap_atomic(kaddr); 105 set_buffer_uptodate(bh_result); 106 } 107 brelse(buffer_cache_bh); 108 } 109 110 map_bh(bh_result, inode->i_sb, 111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock); 112 113 err = 0; 114 115 bail: 116 brelse(bh); 117 118 return err; 119 } 120 121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock, 122 struct buffer_head *bh_result, int create) 123 { 124 int ret = 0; 125 struct ocfs2_inode_info *oi = OCFS2_I(inode); 126 127 down_read(&oi->ip_alloc_sem); 128 ret = ocfs2_get_block(inode, iblock, bh_result, create); 129 up_read(&oi->ip_alloc_sem); 130 131 return ret; 132 } 133 134 int ocfs2_get_block(struct inode *inode, sector_t iblock, 135 struct buffer_head *bh_result, int create) 136 { 137 int err = 0; 138 unsigned int ext_flags; 139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits; 140 u64 p_blkno, count, past_eof; 141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 142 143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno, 144 (unsigned long long)iblock, bh_result, create); 145 146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE) 147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n", 148 inode, inode->i_ino); 149 150 if (S_ISLNK(inode->i_mode)) { 151 /* this always does I/O for some reason. */ 152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create); 153 goto bail; 154 } 155 156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count, 157 &ext_flags); 158 if (err) { 159 mlog(ML_ERROR, "get_blocks() failed, inode: 0x%p, " 160 "block: %llu\n", inode, (unsigned long long)iblock); 161 goto bail; 162 } 163 164 if (max_blocks < count) 165 count = max_blocks; 166 167 /* 168 * ocfs2 never allocates in this function - the only time we 169 * need to use BH_New is when we're extending i_size on a file 170 * system which doesn't support holes, in which case BH_New 171 * allows __block_write_begin() to zero. 172 * 173 * If we see this on a sparse file system, then a truncate has 174 * raced us and removed the cluster. In this case, we clear 175 * the buffers dirty and uptodate bits and let the buffer code 176 * ignore it as a hole. 177 */ 178 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) { 179 clear_buffer_dirty(bh_result); 180 clear_buffer_uptodate(bh_result); 181 goto bail; 182 } 183 184 /* Treat the unwritten extent as a hole for zeroing purposes. */ 185 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN)) 186 map_bh(bh_result, inode->i_sb, p_blkno); 187 188 bh_result->b_size = count << inode->i_blkbits; 189 190 if (!ocfs2_sparse_alloc(osb)) { 191 if (p_blkno == 0) { 192 err = -EIO; 193 mlog(ML_ERROR, 194 "iblock = %llu p_blkno = %llu blkno=(%llu)\n", 195 (unsigned long long)iblock, 196 (unsigned long long)p_blkno, 197 (unsigned long long)OCFS2_I(inode)->ip_blkno); 198 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters); 199 dump_stack(); 200 goto bail; 201 } 202 } 203 204 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode)); 205 206 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno, 207 (unsigned long long)past_eof); 208 if (create && (iblock >= past_eof)) 209 set_buffer_new(bh_result); 210 211 bail: 212 if (err < 0) 213 err = -EIO; 214 215 return err; 216 } 217 218 int ocfs2_read_inline_data(struct inode *inode, struct page *page, 219 struct buffer_head *di_bh) 220 { 221 void *kaddr; 222 loff_t size; 223 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 224 225 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) { 226 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n", 227 (unsigned long long)OCFS2_I(inode)->ip_blkno); 228 return -EROFS; 229 } 230 231 size = i_size_read(inode); 232 233 if (size > PAGE_SIZE || 234 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) { 235 ocfs2_error(inode->i_sb, 236 "Inode %llu has with inline data has bad size: %Lu\n", 237 (unsigned long long)OCFS2_I(inode)->ip_blkno, 238 (unsigned long long)size); 239 return -EROFS; 240 } 241 242 kaddr = kmap_atomic(page); 243 if (size) 244 memcpy(kaddr, di->id2.i_data.id_data, size); 245 /* Clear the remaining part of the page */ 246 memset(kaddr + size, 0, PAGE_SIZE - size); 247 flush_dcache_page(page); 248 kunmap_atomic(kaddr); 249 250 SetPageUptodate(page); 251 252 return 0; 253 } 254 255 static int ocfs2_readpage_inline(struct inode *inode, struct page *page) 256 { 257 int ret; 258 struct buffer_head *di_bh = NULL; 259 260 BUG_ON(!PageLocked(page)); 261 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)); 262 263 ret = ocfs2_read_inode_block(inode, &di_bh); 264 if (ret) { 265 mlog_errno(ret); 266 goto out; 267 } 268 269 ret = ocfs2_read_inline_data(inode, page, di_bh); 270 out: 271 unlock_page(page); 272 273 brelse(di_bh); 274 return ret; 275 } 276 277 static int ocfs2_read_folio(struct file *file, struct folio *folio) 278 { 279 struct inode *inode = folio->mapping->host; 280 struct ocfs2_inode_info *oi = OCFS2_I(inode); 281 loff_t start = folio_pos(folio); 282 int ret, unlock = 1; 283 284 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno, folio->index); 285 286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, &folio->page); 287 if (ret != 0) { 288 if (ret == AOP_TRUNCATED_PAGE) 289 unlock = 0; 290 mlog_errno(ret); 291 goto out; 292 } 293 294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) { 295 /* 296 * Unlock the folio and cycle ip_alloc_sem so that we don't 297 * busyloop waiting for ip_alloc_sem to unlock 298 */ 299 ret = AOP_TRUNCATED_PAGE; 300 folio_unlock(folio); 301 unlock = 0; 302 down_read(&oi->ip_alloc_sem); 303 up_read(&oi->ip_alloc_sem); 304 goto out_inode_unlock; 305 } 306 307 /* 308 * i_size might have just been updated as we grabed the meta lock. We 309 * might now be discovering a truncate that hit on another node. 310 * block_read_full_folio->get_block freaks out if it is asked to read 311 * beyond the end of a file, so we check here. Callers 312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size 313 * and notice that the folio they just read isn't needed. 314 * 315 * XXX sys_readahead() seems to get that wrong? 316 */ 317 if (start >= i_size_read(inode)) { 318 folio_zero_segment(folio, 0, folio_size(folio)); 319 folio_mark_uptodate(folio); 320 ret = 0; 321 goto out_alloc; 322 } 323 324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 325 ret = ocfs2_readpage_inline(inode, &folio->page); 326 else 327 ret = block_read_full_folio(folio, ocfs2_get_block); 328 unlock = 0; 329 330 out_alloc: 331 up_read(&oi->ip_alloc_sem); 332 out_inode_unlock: 333 ocfs2_inode_unlock(inode, 0); 334 out: 335 if (unlock) 336 folio_unlock(folio); 337 return ret; 338 } 339 340 /* 341 * This is used only for read-ahead. Failures or difficult to handle 342 * situations are safe to ignore. 343 * 344 * Right now, we don't bother with BH_Boundary - in-inode extent lists 345 * are quite large (243 extents on 4k blocks), so most inodes don't 346 * grow out to a tree. If need be, detecting boundary extents could 347 * trivially be added in a future version of ocfs2_get_block(). 348 */ 349 static void ocfs2_readahead(struct readahead_control *rac) 350 { 351 int ret; 352 struct inode *inode = rac->mapping->host; 353 struct ocfs2_inode_info *oi = OCFS2_I(inode); 354 355 /* 356 * Use the nonblocking flag for the dlm code to avoid page 357 * lock inversion, but don't bother with retrying. 358 */ 359 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK); 360 if (ret) 361 return; 362 363 if (down_read_trylock(&oi->ip_alloc_sem) == 0) 364 goto out_unlock; 365 366 /* 367 * Don't bother with inline-data. There isn't anything 368 * to read-ahead in that case anyway... 369 */ 370 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) 371 goto out_up; 372 373 /* 374 * Check whether a remote node truncated this file - we just 375 * drop out in that case as it's not worth handling here. 376 */ 377 if (readahead_pos(rac) >= i_size_read(inode)) 378 goto out_up; 379 380 mpage_readahead(rac, ocfs2_get_block); 381 382 out_up: 383 up_read(&oi->ip_alloc_sem); 384 out_unlock: 385 ocfs2_inode_unlock(inode, 0); 386 } 387 388 /* Note: Because we don't support holes, our allocation has 389 * already happened (allocation writes zeros to the file data) 390 * so we don't have to worry about ordered writes in 391 * ocfs2_writepages. 392 * 393 * ->writepages is called during the process of invalidating the page cache 394 * during blocked lock processing. It can't block on any cluster locks 395 * to during block mapping. It's relying on the fact that the block 396 * mapping can't have disappeared under the dirty pages that it is 397 * being asked to write back. 398 */ 399 static int ocfs2_writepages(struct address_space *mapping, 400 struct writeback_control *wbc) 401 { 402 return mpage_writepages(mapping, wbc, ocfs2_get_block); 403 } 404 405 /* Taken from ext3. We don't necessarily need the full blown 406 * functionality yet, but IMHO it's better to cut and paste the whole 407 * thing so we can avoid introducing our own bugs (and easily pick up 408 * their fixes when they happen) --Mark */ 409 int walk_page_buffers( handle_t *handle, 410 struct buffer_head *head, 411 unsigned from, 412 unsigned to, 413 int *partial, 414 int (*fn)( handle_t *handle, 415 struct buffer_head *bh)) 416 { 417 struct buffer_head *bh; 418 unsigned block_start, block_end; 419 unsigned blocksize = head->b_size; 420 int err, ret = 0; 421 struct buffer_head *next; 422 423 for ( bh = head, block_start = 0; 424 ret == 0 && (bh != head || !block_start); 425 block_start = block_end, bh = next) 426 { 427 next = bh->b_this_page; 428 block_end = block_start + blocksize; 429 if (block_end <= from || block_start >= to) { 430 if (partial && !buffer_uptodate(bh)) 431 *partial = 1; 432 continue; 433 } 434 err = (*fn)(handle, bh); 435 if (!ret) 436 ret = err; 437 } 438 return ret; 439 } 440 441 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block) 442 { 443 sector_t status; 444 u64 p_blkno = 0; 445 int err = 0; 446 struct inode *inode = mapping->host; 447 448 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)block); 450 451 /* 452 * The swap code (ab-)uses ->bmap to get a block mapping and then 453 * bypasseѕ the file system for actual I/O. We really can't allow 454 * that on refcounted inodes, so we have to skip out here. And yes, 455 * 0 is the magic code for a bmap error.. 456 */ 457 if (ocfs2_is_refcount_inode(inode)) 458 return 0; 459 460 /* We don't need to lock journal system files, since they aren't 461 * accessed concurrently from multiple nodes. 462 */ 463 if (!INODE_JOURNAL(inode)) { 464 err = ocfs2_inode_lock(inode, NULL, 0); 465 if (err) { 466 if (err != -ENOENT) 467 mlog_errno(err); 468 goto bail; 469 } 470 down_read(&OCFS2_I(inode)->ip_alloc_sem); 471 } 472 473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, 475 NULL); 476 477 if (!INODE_JOURNAL(inode)) { 478 up_read(&OCFS2_I(inode)->ip_alloc_sem); 479 ocfs2_inode_unlock(inode, 0); 480 } 481 482 if (err) { 483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n", 484 (unsigned long long)block); 485 mlog_errno(err); 486 goto bail; 487 } 488 489 bail: 490 status = err ? 0 : p_blkno; 491 492 return status; 493 } 494 495 static bool ocfs2_release_folio(struct folio *folio, gfp_t wait) 496 { 497 if (!folio_buffers(folio)) 498 return false; 499 return try_to_free_buffers(folio); 500 } 501 502 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb, 503 u32 cpos, 504 unsigned int *start, 505 unsigned int *end) 506 { 507 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE; 508 509 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) { 510 unsigned int cpp; 511 512 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits); 513 514 cluster_start = cpos % cpp; 515 cluster_start = cluster_start << osb->s_clustersize_bits; 516 517 cluster_end = cluster_start + osb->s_clustersize; 518 } 519 520 BUG_ON(cluster_start > PAGE_SIZE); 521 BUG_ON(cluster_end > PAGE_SIZE); 522 523 if (start) 524 *start = cluster_start; 525 if (end) 526 *end = cluster_end; 527 } 528 529 /* 530 * 'from' and 'to' are the region in the page to avoid zeroing. 531 * 532 * If pagesize > clustersize, this function will avoid zeroing outside 533 * of the cluster boundary. 534 * 535 * from == to == 0 is code for "zero the entire cluster region" 536 */ 537 static void ocfs2_clear_page_regions(struct page *page, 538 struct ocfs2_super *osb, u32 cpos, 539 unsigned from, unsigned to) 540 { 541 void *kaddr; 542 unsigned int cluster_start, cluster_end; 543 544 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end); 545 546 kaddr = kmap_atomic(page); 547 548 if (from || to) { 549 if (from > cluster_start) 550 memset(kaddr + cluster_start, 0, from - cluster_start); 551 if (to < cluster_end) 552 memset(kaddr + to, 0, cluster_end - to); 553 } else { 554 memset(kaddr + cluster_start, 0, cluster_end - cluster_start); 555 } 556 557 kunmap_atomic(kaddr); 558 } 559 560 /* 561 * Nonsparse file systems fully allocate before we get to the write 562 * code. This prevents ocfs2_write() from tagging the write as an 563 * allocating one, which means ocfs2_map_page_blocks() might try to 564 * read-in the blocks at the tail of our file. Avoid reading them by 565 * testing i_size against each block offset. 566 */ 567 static int ocfs2_should_read_blk(struct inode *inode, struct folio *folio, 568 unsigned int block_start) 569 { 570 u64 offset = folio_pos(folio) + block_start; 571 572 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 573 return 1; 574 575 if (i_size_read(inode) > offset) 576 return 1; 577 578 return 0; 579 } 580 581 /* 582 * Some of this taken from __block_write_begin(). We already have our 583 * mapping by now though, and the entire write will be allocating or 584 * it won't, so not much need to use BH_New. 585 * 586 * This will also skip zeroing, which is handled externally. 587 */ 588 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno, 589 struct inode *inode, unsigned int from, 590 unsigned int to, int new) 591 { 592 struct folio *folio = page_folio(page); 593 int ret = 0; 594 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait; 595 unsigned int block_end, block_start; 596 unsigned int bsize = i_blocksize(inode); 597 598 head = folio_buffers(folio); 599 if (!head) 600 head = create_empty_buffers(folio, bsize, 0); 601 602 for (bh = head, block_start = 0; bh != head || !block_start; 603 bh = bh->b_this_page, block_start += bsize) { 604 block_end = block_start + bsize; 605 606 clear_buffer_new(bh); 607 608 /* 609 * Ignore blocks outside of our i/o range - 610 * they may belong to unallocated clusters. 611 */ 612 if (block_start >= to || block_end <= from) { 613 if (folio_test_uptodate(folio)) 614 set_buffer_uptodate(bh); 615 continue; 616 } 617 618 /* 619 * For an allocating write with cluster size >= page 620 * size, we always write the entire page. 621 */ 622 if (new) 623 set_buffer_new(bh); 624 625 if (!buffer_mapped(bh)) { 626 map_bh(bh, inode->i_sb, *p_blkno); 627 clean_bdev_bh_alias(bh); 628 } 629 630 if (folio_test_uptodate(folio)) { 631 set_buffer_uptodate(bh); 632 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) && 633 !buffer_new(bh) && 634 ocfs2_should_read_blk(inode, folio, block_start) && 635 (block_start < from || block_end > to)) { 636 bh_read_nowait(bh, 0); 637 *wait_bh++=bh; 638 } 639 640 *p_blkno = *p_blkno + 1; 641 } 642 643 /* 644 * If we issued read requests - let them complete. 645 */ 646 while(wait_bh > wait) { 647 wait_on_buffer(*--wait_bh); 648 if (!buffer_uptodate(*wait_bh)) 649 ret = -EIO; 650 } 651 652 if (ret == 0 || !new) 653 return ret; 654 655 /* 656 * If we get -EIO above, zero out any newly allocated blocks 657 * to avoid exposing stale data. 658 */ 659 bh = head; 660 block_start = 0; 661 do { 662 block_end = block_start + bsize; 663 if (block_end <= from) 664 goto next_bh; 665 if (block_start >= to) 666 break; 667 668 folio_zero_range(folio, block_start, bh->b_size); 669 set_buffer_uptodate(bh); 670 mark_buffer_dirty(bh); 671 672 next_bh: 673 block_start = block_end; 674 bh = bh->b_this_page; 675 } while (bh != head); 676 677 return ret; 678 } 679 680 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE) 681 #define OCFS2_MAX_CTXT_PAGES 1 682 #else 683 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE) 684 #endif 685 686 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE) 687 688 struct ocfs2_unwritten_extent { 689 struct list_head ue_node; 690 struct list_head ue_ip_node; 691 u32 ue_cpos; 692 u32 ue_phys; 693 }; 694 695 /* 696 * Describe the state of a single cluster to be written to. 697 */ 698 struct ocfs2_write_cluster_desc { 699 u32 c_cpos; 700 u32 c_phys; 701 /* 702 * Give this a unique field because c_phys eventually gets 703 * filled. 704 */ 705 unsigned c_new; 706 unsigned c_clear_unwritten; 707 unsigned c_needs_zero; 708 }; 709 710 struct ocfs2_write_ctxt { 711 /* Logical cluster position / len of write */ 712 u32 w_cpos; 713 u32 w_clen; 714 715 /* First cluster allocated in a nonsparse extend */ 716 u32 w_first_new_cpos; 717 718 /* Type of caller. Must be one of buffer, mmap, direct. */ 719 ocfs2_write_type_t w_type; 720 721 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE]; 722 723 /* 724 * This is true if page_size > cluster_size. 725 * 726 * It triggers a set of special cases during write which might 727 * have to deal with allocating writes to partial pages. 728 */ 729 unsigned int w_large_pages; 730 731 /* 732 * Pages involved in this write. 733 * 734 * w_target_page is the page being written to by the user. 735 * 736 * w_pages is an array of pages which always contains 737 * w_target_page, and in the case of an allocating write with 738 * page_size < cluster size, it will contain zero'd and mapped 739 * pages adjacent to w_target_page which need to be written 740 * out in so that future reads from that region will get 741 * zero's. 742 */ 743 unsigned int w_num_pages; 744 struct page *w_pages[OCFS2_MAX_CTXT_PAGES]; 745 struct page *w_target_page; 746 747 /* 748 * w_target_locked is used for page_mkwrite path indicating no unlocking 749 * against w_target_page in ocfs2_write_end_nolock. 750 */ 751 unsigned int w_target_locked:1; 752 753 /* 754 * ocfs2_write_end() uses this to know what the real range to 755 * write in the target should be. 756 */ 757 unsigned int w_target_from; 758 unsigned int w_target_to; 759 760 /* 761 * We could use journal_current_handle() but this is cleaner, 762 * IMHO -Mark 763 */ 764 handle_t *w_handle; 765 766 struct buffer_head *w_di_bh; 767 768 struct ocfs2_cached_dealloc_ctxt w_dealloc; 769 770 struct list_head w_unwritten_list; 771 unsigned int w_unwritten_count; 772 }; 773 774 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages) 775 { 776 int i; 777 778 for(i = 0; i < num_pages; i++) { 779 if (pages[i]) { 780 unlock_page(pages[i]); 781 mark_page_accessed(pages[i]); 782 put_page(pages[i]); 783 } 784 } 785 } 786 787 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc) 788 { 789 int i; 790 791 /* 792 * w_target_locked is only set to true in the page_mkwrite() case. 793 * The intent is to allow us to lock the target page from write_begin() 794 * to write_end(). The caller must hold a ref on w_target_page. 795 */ 796 if (wc->w_target_locked) { 797 BUG_ON(!wc->w_target_page); 798 for (i = 0; i < wc->w_num_pages; i++) { 799 if (wc->w_target_page == wc->w_pages[i]) { 800 wc->w_pages[i] = NULL; 801 break; 802 } 803 } 804 mark_page_accessed(wc->w_target_page); 805 put_page(wc->w_target_page); 806 } 807 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages); 808 } 809 810 static void ocfs2_free_unwritten_list(struct inode *inode, 811 struct list_head *head) 812 { 813 struct ocfs2_inode_info *oi = OCFS2_I(inode); 814 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL; 815 816 list_for_each_entry_safe(ue, tmp, head, ue_node) { 817 list_del(&ue->ue_node); 818 spin_lock(&oi->ip_lock); 819 list_del(&ue->ue_ip_node); 820 spin_unlock(&oi->ip_lock); 821 kfree(ue); 822 } 823 } 824 825 static void ocfs2_free_write_ctxt(struct inode *inode, 826 struct ocfs2_write_ctxt *wc) 827 { 828 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list); 829 ocfs2_unlock_pages(wc); 830 brelse(wc->w_di_bh); 831 kfree(wc); 832 } 833 834 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp, 835 struct ocfs2_super *osb, loff_t pos, 836 unsigned len, ocfs2_write_type_t type, 837 struct buffer_head *di_bh) 838 { 839 u32 cend; 840 struct ocfs2_write_ctxt *wc; 841 842 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS); 843 if (!wc) 844 return -ENOMEM; 845 846 wc->w_cpos = pos >> osb->s_clustersize_bits; 847 wc->w_first_new_cpos = UINT_MAX; 848 cend = (pos + len - 1) >> osb->s_clustersize_bits; 849 wc->w_clen = cend - wc->w_cpos + 1; 850 get_bh(di_bh); 851 wc->w_di_bh = di_bh; 852 wc->w_type = type; 853 854 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) 855 wc->w_large_pages = 1; 856 else 857 wc->w_large_pages = 0; 858 859 ocfs2_init_dealloc_ctxt(&wc->w_dealloc); 860 INIT_LIST_HEAD(&wc->w_unwritten_list); 861 862 *wcp = wc; 863 864 return 0; 865 } 866 867 /* 868 * If a page has any new buffers, zero them out here, and mark them uptodate 869 * and dirty so they'll be written out (in order to prevent uninitialised 870 * block data from leaking). And clear the new bit. 871 */ 872 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to) 873 { 874 unsigned int block_start, block_end; 875 struct buffer_head *head, *bh; 876 877 BUG_ON(!PageLocked(page)); 878 if (!page_has_buffers(page)) 879 return; 880 881 bh = head = page_buffers(page); 882 block_start = 0; 883 do { 884 block_end = block_start + bh->b_size; 885 886 if (buffer_new(bh)) { 887 if (block_end > from && block_start < to) { 888 if (!PageUptodate(page)) { 889 unsigned start, end; 890 891 start = max(from, block_start); 892 end = min(to, block_end); 893 894 zero_user_segment(page, start, end); 895 set_buffer_uptodate(bh); 896 } 897 898 clear_buffer_new(bh); 899 mark_buffer_dirty(bh); 900 } 901 } 902 903 block_start = block_end; 904 bh = bh->b_this_page; 905 } while (bh != head); 906 } 907 908 /* 909 * Only called when we have a failure during allocating write to write 910 * zero's to the newly allocated region. 911 */ 912 static void ocfs2_write_failure(struct inode *inode, 913 struct ocfs2_write_ctxt *wc, 914 loff_t user_pos, unsigned user_len) 915 { 916 int i; 917 unsigned from = user_pos & (PAGE_SIZE - 1), 918 to = user_pos + user_len; 919 struct page *tmppage; 920 921 if (wc->w_target_page) 922 ocfs2_zero_new_buffers(wc->w_target_page, from, to); 923 924 for(i = 0; i < wc->w_num_pages; i++) { 925 tmppage = wc->w_pages[i]; 926 927 if (tmppage && page_has_buffers(tmppage)) { 928 if (ocfs2_should_order_data(inode)) 929 ocfs2_jbd2_inode_add_write(wc->w_handle, inode, 930 user_pos, user_len); 931 932 block_commit_write(tmppage, from, to); 933 } 934 } 935 } 936 937 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno, 938 struct ocfs2_write_ctxt *wc, 939 struct page *page, u32 cpos, 940 loff_t user_pos, unsigned user_len, 941 int new) 942 { 943 int ret; 944 unsigned int map_from = 0, map_to = 0; 945 unsigned int cluster_start, cluster_end; 946 unsigned int user_data_from = 0, user_data_to = 0; 947 948 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos, 949 &cluster_start, &cluster_end); 950 951 /* treat the write as new if the a hole/lseek spanned across 952 * the page boundary. 953 */ 954 new = new | ((i_size_read(inode) <= page_offset(page)) && 955 (page_offset(page) <= user_pos)); 956 957 if (page == wc->w_target_page) { 958 map_from = user_pos & (PAGE_SIZE - 1); 959 map_to = map_from + user_len; 960 961 if (new) 962 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 963 cluster_start, cluster_end, 964 new); 965 else 966 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 967 map_from, map_to, new); 968 if (ret) { 969 mlog_errno(ret); 970 goto out; 971 } 972 973 user_data_from = map_from; 974 user_data_to = map_to; 975 if (new) { 976 map_from = cluster_start; 977 map_to = cluster_end; 978 } 979 } else { 980 /* 981 * If we haven't allocated the new page yet, we 982 * shouldn't be writing it out without copying user 983 * data. This is likely a math error from the caller. 984 */ 985 BUG_ON(!new); 986 987 map_from = cluster_start; 988 map_to = cluster_end; 989 990 ret = ocfs2_map_page_blocks(page, p_blkno, inode, 991 cluster_start, cluster_end, new); 992 if (ret) { 993 mlog_errno(ret); 994 goto out; 995 } 996 } 997 998 /* 999 * Parts of newly allocated pages need to be zero'd. 1000 * 1001 * Above, we have also rewritten 'to' and 'from' - as far as 1002 * the rest of the function is concerned, the entire cluster 1003 * range inside of a page needs to be written. 1004 * 1005 * We can skip this if the page is up to date - it's already 1006 * been zero'd from being read in as a hole. 1007 */ 1008 if (new && !PageUptodate(page)) 1009 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb), 1010 cpos, user_data_from, user_data_to); 1011 1012 flush_dcache_page(page); 1013 1014 out: 1015 return ret; 1016 } 1017 1018 /* 1019 * This function will only grab one clusters worth of pages. 1020 */ 1021 static int ocfs2_grab_pages_for_write(struct address_space *mapping, 1022 struct ocfs2_write_ctxt *wc, 1023 u32 cpos, loff_t user_pos, 1024 unsigned user_len, int new, 1025 struct page *mmap_page) 1026 { 1027 int ret = 0, i; 1028 unsigned long start, target_index, end_index, index; 1029 struct inode *inode = mapping->host; 1030 loff_t last_byte; 1031 1032 target_index = user_pos >> PAGE_SHIFT; 1033 1034 /* 1035 * Figure out how many pages we'll be manipulating here. For 1036 * non allocating write, we just change the one 1037 * page. Otherwise, we'll need a whole clusters worth. If we're 1038 * writing past i_size, we only need enough pages to cover the 1039 * last page of the write. 1040 */ 1041 if (new) { 1042 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb); 1043 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos); 1044 /* 1045 * We need the index *past* the last page we could possibly 1046 * touch. This is the page past the end of the write or 1047 * i_size, whichever is greater. 1048 */ 1049 last_byte = max(user_pos + user_len, i_size_read(inode)); 1050 BUG_ON(last_byte < 1); 1051 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1; 1052 if ((start + wc->w_num_pages) > end_index) 1053 wc->w_num_pages = end_index - start; 1054 } else { 1055 wc->w_num_pages = 1; 1056 start = target_index; 1057 } 1058 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT; 1059 1060 for(i = 0; i < wc->w_num_pages; i++) { 1061 index = start + i; 1062 1063 if (index >= target_index && index <= end_index && 1064 wc->w_type == OCFS2_WRITE_MMAP) { 1065 /* 1066 * ocfs2_pagemkwrite() is a little different 1067 * and wants us to directly use the page 1068 * passed in. 1069 */ 1070 lock_page(mmap_page); 1071 1072 /* Exit and let the caller retry */ 1073 if (mmap_page->mapping != mapping) { 1074 WARN_ON(mmap_page->mapping); 1075 unlock_page(mmap_page); 1076 ret = -EAGAIN; 1077 goto out; 1078 } 1079 1080 get_page(mmap_page); 1081 wc->w_pages[i] = mmap_page; 1082 wc->w_target_locked = true; 1083 } else if (index >= target_index && index <= end_index && 1084 wc->w_type == OCFS2_WRITE_DIRECT) { 1085 /* Direct write has no mapping page. */ 1086 wc->w_pages[i] = NULL; 1087 continue; 1088 } else { 1089 wc->w_pages[i] = find_or_create_page(mapping, index, 1090 GFP_NOFS); 1091 if (!wc->w_pages[i]) { 1092 ret = -ENOMEM; 1093 mlog_errno(ret); 1094 goto out; 1095 } 1096 } 1097 wait_for_stable_page(wc->w_pages[i]); 1098 1099 if (index == target_index) 1100 wc->w_target_page = wc->w_pages[i]; 1101 } 1102 out: 1103 if (ret) 1104 wc->w_target_locked = false; 1105 return ret; 1106 } 1107 1108 /* 1109 * Prepare a single cluster for write one cluster into the file. 1110 */ 1111 static int ocfs2_write_cluster(struct address_space *mapping, 1112 u32 *phys, unsigned int new, 1113 unsigned int clear_unwritten, 1114 unsigned int should_zero, 1115 struct ocfs2_alloc_context *data_ac, 1116 struct ocfs2_alloc_context *meta_ac, 1117 struct ocfs2_write_ctxt *wc, u32 cpos, 1118 loff_t user_pos, unsigned user_len) 1119 { 1120 int ret, i; 1121 u64 p_blkno; 1122 struct inode *inode = mapping->host; 1123 struct ocfs2_extent_tree et; 1124 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1); 1125 1126 if (new) { 1127 u32 tmp_pos; 1128 1129 /* 1130 * This is safe to call with the page locks - it won't take 1131 * any additional semaphores or cluster locks. 1132 */ 1133 tmp_pos = cpos; 1134 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode, 1135 &tmp_pos, 1, !clear_unwritten, 1136 wc->w_di_bh, wc->w_handle, 1137 data_ac, meta_ac, NULL); 1138 /* 1139 * This shouldn't happen because we must have already 1140 * calculated the correct meta data allocation required. The 1141 * internal tree allocation code should know how to increase 1142 * transaction credits itself. 1143 * 1144 * If need be, we could handle -EAGAIN for a 1145 * RESTART_TRANS here. 1146 */ 1147 mlog_bug_on_msg(ret == -EAGAIN, 1148 "Inode %llu: EAGAIN return during allocation.\n", 1149 (unsigned long long)OCFS2_I(inode)->ip_blkno); 1150 if (ret < 0) { 1151 mlog_errno(ret); 1152 goto out; 1153 } 1154 } else if (clear_unwritten) { 1155 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1156 wc->w_di_bh); 1157 ret = ocfs2_mark_extent_written(inode, &et, 1158 wc->w_handle, cpos, 1, *phys, 1159 meta_ac, &wc->w_dealloc); 1160 if (ret < 0) { 1161 mlog_errno(ret); 1162 goto out; 1163 } 1164 } 1165 1166 /* 1167 * The only reason this should fail is due to an inability to 1168 * find the extent added. 1169 */ 1170 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL); 1171 if (ret < 0) { 1172 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, " 1173 "at logical cluster %u", 1174 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos); 1175 goto out; 1176 } 1177 1178 BUG_ON(*phys == 0); 1179 1180 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys); 1181 if (!should_zero) 1182 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1); 1183 1184 for(i = 0; i < wc->w_num_pages; i++) { 1185 int tmpret; 1186 1187 /* This is the direct io target page. */ 1188 if (wc->w_pages[i] == NULL) { 1189 p_blkno++; 1190 continue; 1191 } 1192 1193 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc, 1194 wc->w_pages[i], cpos, 1195 user_pos, user_len, 1196 should_zero); 1197 if (tmpret) { 1198 mlog_errno(tmpret); 1199 if (ret == 0) 1200 ret = tmpret; 1201 } 1202 } 1203 1204 /* 1205 * We only have cleanup to do in case of allocating write. 1206 */ 1207 if (ret && new) 1208 ocfs2_write_failure(inode, wc, user_pos, user_len); 1209 1210 out: 1211 1212 return ret; 1213 } 1214 1215 static int ocfs2_write_cluster_by_desc(struct address_space *mapping, 1216 struct ocfs2_alloc_context *data_ac, 1217 struct ocfs2_alloc_context *meta_ac, 1218 struct ocfs2_write_ctxt *wc, 1219 loff_t pos, unsigned len) 1220 { 1221 int ret, i; 1222 loff_t cluster_off; 1223 unsigned int local_len = len; 1224 struct ocfs2_write_cluster_desc *desc; 1225 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb); 1226 1227 for (i = 0; i < wc->w_clen; i++) { 1228 desc = &wc->w_desc[i]; 1229 1230 /* 1231 * We have to make sure that the total write passed in 1232 * doesn't extend past a single cluster. 1233 */ 1234 local_len = len; 1235 cluster_off = pos & (osb->s_clustersize - 1); 1236 if ((cluster_off + local_len) > osb->s_clustersize) 1237 local_len = osb->s_clustersize - cluster_off; 1238 1239 ret = ocfs2_write_cluster(mapping, &desc->c_phys, 1240 desc->c_new, 1241 desc->c_clear_unwritten, 1242 desc->c_needs_zero, 1243 data_ac, meta_ac, 1244 wc, desc->c_cpos, pos, local_len); 1245 if (ret) { 1246 mlog_errno(ret); 1247 goto out; 1248 } 1249 1250 len -= local_len; 1251 pos += local_len; 1252 } 1253 1254 ret = 0; 1255 out: 1256 return ret; 1257 } 1258 1259 /* 1260 * ocfs2_write_end() wants to know which parts of the target page it 1261 * should complete the write on. It's easiest to compute them ahead of 1262 * time when a more complete view of the write is available. 1263 */ 1264 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb, 1265 struct ocfs2_write_ctxt *wc, 1266 loff_t pos, unsigned len, int alloc) 1267 { 1268 struct ocfs2_write_cluster_desc *desc; 1269 1270 wc->w_target_from = pos & (PAGE_SIZE - 1); 1271 wc->w_target_to = wc->w_target_from + len; 1272 1273 if (alloc == 0) 1274 return; 1275 1276 /* 1277 * Allocating write - we may have different boundaries based 1278 * on page size and cluster size. 1279 * 1280 * NOTE: We can no longer compute one value from the other as 1281 * the actual write length and user provided length may be 1282 * different. 1283 */ 1284 1285 if (wc->w_large_pages) { 1286 /* 1287 * We only care about the 1st and last cluster within 1288 * our range and whether they should be zero'd or not. Either 1289 * value may be extended out to the start/end of a 1290 * newly allocated cluster. 1291 */ 1292 desc = &wc->w_desc[0]; 1293 if (desc->c_needs_zero) 1294 ocfs2_figure_cluster_boundaries(osb, 1295 desc->c_cpos, 1296 &wc->w_target_from, 1297 NULL); 1298 1299 desc = &wc->w_desc[wc->w_clen - 1]; 1300 if (desc->c_needs_zero) 1301 ocfs2_figure_cluster_boundaries(osb, 1302 desc->c_cpos, 1303 NULL, 1304 &wc->w_target_to); 1305 } else { 1306 wc->w_target_from = 0; 1307 wc->w_target_to = PAGE_SIZE; 1308 } 1309 } 1310 1311 /* 1312 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to 1313 * do the zero work. And should not to clear UNWRITTEN since it will be cleared 1314 * by the direct io procedure. 1315 * If this is a new extent that allocated by direct io, we should mark it in 1316 * the ip_unwritten_list. 1317 */ 1318 static int ocfs2_unwritten_check(struct inode *inode, 1319 struct ocfs2_write_ctxt *wc, 1320 struct ocfs2_write_cluster_desc *desc) 1321 { 1322 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1323 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL; 1324 int ret = 0; 1325 1326 if (!desc->c_needs_zero) 1327 return 0; 1328 1329 retry: 1330 spin_lock(&oi->ip_lock); 1331 /* Needs not to zero no metter buffer or direct. The one who is zero 1332 * the cluster is doing zero. And he will clear unwritten after all 1333 * cluster io finished. */ 1334 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) { 1335 if (desc->c_cpos == ue->ue_cpos) { 1336 BUG_ON(desc->c_new); 1337 desc->c_needs_zero = 0; 1338 desc->c_clear_unwritten = 0; 1339 goto unlock; 1340 } 1341 } 1342 1343 if (wc->w_type != OCFS2_WRITE_DIRECT) 1344 goto unlock; 1345 1346 if (new == NULL) { 1347 spin_unlock(&oi->ip_lock); 1348 new = kmalloc(sizeof(struct ocfs2_unwritten_extent), 1349 GFP_NOFS); 1350 if (new == NULL) { 1351 ret = -ENOMEM; 1352 goto out; 1353 } 1354 goto retry; 1355 } 1356 /* This direct write will doing zero. */ 1357 new->ue_cpos = desc->c_cpos; 1358 new->ue_phys = desc->c_phys; 1359 desc->c_clear_unwritten = 0; 1360 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list); 1361 list_add_tail(&new->ue_node, &wc->w_unwritten_list); 1362 wc->w_unwritten_count++; 1363 new = NULL; 1364 unlock: 1365 spin_unlock(&oi->ip_lock); 1366 out: 1367 kfree(new); 1368 return ret; 1369 } 1370 1371 /* 1372 * Populate each single-cluster write descriptor in the write context 1373 * with information about the i/o to be done. 1374 * 1375 * Returns the number of clusters that will have to be allocated, as 1376 * well as a worst case estimate of the number of extent records that 1377 * would have to be created during a write to an unwritten region. 1378 */ 1379 static int ocfs2_populate_write_desc(struct inode *inode, 1380 struct ocfs2_write_ctxt *wc, 1381 unsigned int *clusters_to_alloc, 1382 unsigned int *extents_to_split) 1383 { 1384 int ret; 1385 struct ocfs2_write_cluster_desc *desc; 1386 unsigned int num_clusters = 0; 1387 unsigned int ext_flags = 0; 1388 u32 phys = 0; 1389 int i; 1390 1391 *clusters_to_alloc = 0; 1392 *extents_to_split = 0; 1393 1394 for (i = 0; i < wc->w_clen; i++) { 1395 desc = &wc->w_desc[i]; 1396 desc->c_cpos = wc->w_cpos + i; 1397 1398 if (num_clusters == 0) { 1399 /* 1400 * Need to look up the next extent record. 1401 */ 1402 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys, 1403 &num_clusters, &ext_flags); 1404 if (ret) { 1405 mlog_errno(ret); 1406 goto out; 1407 } 1408 1409 /* We should already CoW the refcountd extent. */ 1410 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED); 1411 1412 /* 1413 * Assume worst case - that we're writing in 1414 * the middle of the extent. 1415 * 1416 * We can assume that the write proceeds from 1417 * left to right, in which case the extent 1418 * insert code is smart enough to coalesce the 1419 * next splits into the previous records created. 1420 */ 1421 if (ext_flags & OCFS2_EXT_UNWRITTEN) 1422 *extents_to_split = *extents_to_split + 2; 1423 } else if (phys) { 1424 /* 1425 * Only increment phys if it doesn't describe 1426 * a hole. 1427 */ 1428 phys++; 1429 } 1430 1431 /* 1432 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse 1433 * file that got extended. w_first_new_cpos tells us 1434 * where the newly allocated clusters are so we can 1435 * zero them. 1436 */ 1437 if (desc->c_cpos >= wc->w_first_new_cpos) { 1438 BUG_ON(phys == 0); 1439 desc->c_needs_zero = 1; 1440 } 1441 1442 desc->c_phys = phys; 1443 if (phys == 0) { 1444 desc->c_new = 1; 1445 desc->c_needs_zero = 1; 1446 desc->c_clear_unwritten = 1; 1447 *clusters_to_alloc = *clusters_to_alloc + 1; 1448 } 1449 1450 if (ext_flags & OCFS2_EXT_UNWRITTEN) { 1451 desc->c_clear_unwritten = 1; 1452 desc->c_needs_zero = 1; 1453 } 1454 1455 ret = ocfs2_unwritten_check(inode, wc, desc); 1456 if (ret) { 1457 mlog_errno(ret); 1458 goto out; 1459 } 1460 1461 num_clusters--; 1462 } 1463 1464 ret = 0; 1465 out: 1466 return ret; 1467 } 1468 1469 static int ocfs2_write_begin_inline(struct address_space *mapping, 1470 struct inode *inode, 1471 struct ocfs2_write_ctxt *wc) 1472 { 1473 int ret; 1474 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1475 struct page *page; 1476 handle_t *handle; 1477 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1478 1479 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1480 if (IS_ERR(handle)) { 1481 ret = PTR_ERR(handle); 1482 mlog_errno(ret); 1483 goto out; 1484 } 1485 1486 page = find_or_create_page(mapping, 0, GFP_NOFS); 1487 if (!page) { 1488 ocfs2_commit_trans(osb, handle); 1489 ret = -ENOMEM; 1490 mlog_errno(ret); 1491 goto out; 1492 } 1493 /* 1494 * If we don't set w_num_pages then this page won't get unlocked 1495 * and freed on cleanup of the write context. 1496 */ 1497 wc->w_pages[0] = wc->w_target_page = page; 1498 wc->w_num_pages = 1; 1499 1500 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1501 OCFS2_JOURNAL_ACCESS_WRITE); 1502 if (ret) { 1503 ocfs2_commit_trans(osb, handle); 1504 1505 mlog_errno(ret); 1506 goto out; 1507 } 1508 1509 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1510 ocfs2_set_inode_data_inline(inode, di); 1511 1512 if (!PageUptodate(page)) { 1513 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh); 1514 if (ret) { 1515 ocfs2_commit_trans(osb, handle); 1516 1517 goto out; 1518 } 1519 } 1520 1521 wc->w_handle = handle; 1522 out: 1523 return ret; 1524 } 1525 1526 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size) 1527 { 1528 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1529 1530 if (new_size <= le16_to_cpu(di->id2.i_data.id_count)) 1531 return 1; 1532 return 0; 1533 } 1534 1535 static int ocfs2_try_to_write_inline_data(struct address_space *mapping, 1536 struct inode *inode, loff_t pos, 1537 unsigned len, struct page *mmap_page, 1538 struct ocfs2_write_ctxt *wc) 1539 { 1540 int ret, written = 0; 1541 loff_t end = pos + len; 1542 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1543 struct ocfs2_dinode *di = NULL; 1544 1545 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno, 1546 len, (unsigned long long)pos, 1547 oi->ip_dyn_features); 1548 1549 /* 1550 * Handle inodes which already have inline data 1st. 1551 */ 1552 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1553 if (mmap_page == NULL && 1554 ocfs2_size_fits_inline_data(wc->w_di_bh, end)) 1555 goto do_inline_write; 1556 1557 /* 1558 * The write won't fit - we have to give this inode an 1559 * inline extent list now. 1560 */ 1561 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh); 1562 if (ret) 1563 mlog_errno(ret); 1564 goto out; 1565 } 1566 1567 /* 1568 * Check whether the inode can accept inline data. 1569 */ 1570 if (oi->ip_clusters != 0 || i_size_read(inode) != 0) 1571 return 0; 1572 1573 /* 1574 * Check whether the write can fit. 1575 */ 1576 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1577 if (mmap_page || 1578 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) 1579 return 0; 1580 1581 do_inline_write: 1582 ret = ocfs2_write_begin_inline(mapping, inode, wc); 1583 if (ret) { 1584 mlog_errno(ret); 1585 goto out; 1586 } 1587 1588 /* 1589 * This signals to the caller that the data can be written 1590 * inline. 1591 */ 1592 written = 1; 1593 out: 1594 return written ? written : ret; 1595 } 1596 1597 /* 1598 * This function only does anything for file systems which can't 1599 * handle sparse files. 1600 * 1601 * What we want to do here is fill in any hole between the current end 1602 * of allocation and the end of our write. That way the rest of the 1603 * write path can treat it as an non-allocating write, which has no 1604 * special case code for sparse/nonsparse files. 1605 */ 1606 static int ocfs2_expand_nonsparse_inode(struct inode *inode, 1607 struct buffer_head *di_bh, 1608 loff_t pos, unsigned len, 1609 struct ocfs2_write_ctxt *wc) 1610 { 1611 int ret; 1612 loff_t newsize = pos + len; 1613 1614 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1615 1616 if (newsize <= i_size_read(inode)) 1617 return 0; 1618 1619 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos); 1620 if (ret) 1621 mlog_errno(ret); 1622 1623 /* There is no wc if this is call from direct. */ 1624 if (wc) 1625 wc->w_first_new_cpos = 1626 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)); 1627 1628 return ret; 1629 } 1630 1631 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh, 1632 loff_t pos) 1633 { 1634 int ret = 0; 1635 1636 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))); 1637 if (pos > i_size_read(inode)) 1638 ret = ocfs2_zero_extend(inode, di_bh, pos); 1639 1640 return ret; 1641 } 1642 1643 int ocfs2_write_begin_nolock(struct address_space *mapping, 1644 loff_t pos, unsigned len, ocfs2_write_type_t type, 1645 struct page **pagep, void **fsdata, 1646 struct buffer_head *di_bh, struct page *mmap_page) 1647 { 1648 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS; 1649 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0; 1650 struct ocfs2_write_ctxt *wc; 1651 struct inode *inode = mapping->host; 1652 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1653 struct ocfs2_dinode *di; 1654 struct ocfs2_alloc_context *data_ac = NULL; 1655 struct ocfs2_alloc_context *meta_ac = NULL; 1656 handle_t *handle; 1657 struct ocfs2_extent_tree et; 1658 int try_free = 1, ret1; 1659 1660 try_again: 1661 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh); 1662 if (ret) { 1663 mlog_errno(ret); 1664 return ret; 1665 } 1666 1667 if (ocfs2_supports_inline_data(osb)) { 1668 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len, 1669 mmap_page, wc); 1670 if (ret == 1) { 1671 ret = 0; 1672 goto success; 1673 } 1674 if (ret < 0) { 1675 mlog_errno(ret); 1676 goto out; 1677 } 1678 } 1679 1680 /* Direct io change i_size late, should not zero tail here. */ 1681 if (type != OCFS2_WRITE_DIRECT) { 1682 if (ocfs2_sparse_alloc(osb)) 1683 ret = ocfs2_zero_tail(inode, di_bh, pos); 1684 else 1685 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 1686 len, wc); 1687 if (ret) { 1688 mlog_errno(ret); 1689 goto out; 1690 } 1691 } 1692 1693 ret = ocfs2_check_range_for_refcount(inode, pos, len); 1694 if (ret < 0) { 1695 mlog_errno(ret); 1696 goto out; 1697 } else if (ret == 1) { 1698 clusters_need = wc->w_clen; 1699 ret = ocfs2_refcount_cow(inode, di_bh, 1700 wc->w_cpos, wc->w_clen, UINT_MAX); 1701 if (ret) { 1702 mlog_errno(ret); 1703 goto out; 1704 } 1705 } 1706 1707 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc, 1708 &extents_to_split); 1709 if (ret) { 1710 mlog_errno(ret); 1711 goto out; 1712 } 1713 clusters_need += clusters_to_alloc; 1714 1715 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1716 1717 trace_ocfs2_write_begin_nolock( 1718 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1719 (long long)i_size_read(inode), 1720 le32_to_cpu(di->i_clusters), 1721 pos, len, type, mmap_page, 1722 clusters_to_alloc, extents_to_split); 1723 1724 /* 1725 * We set w_target_from, w_target_to here so that 1726 * ocfs2_write_end() knows which range in the target page to 1727 * write out. An allocation requires that we write the entire 1728 * cluster range. 1729 */ 1730 if (clusters_to_alloc || extents_to_split) { 1731 /* 1732 * XXX: We are stretching the limits of 1733 * ocfs2_lock_allocators(). It greatly over-estimates 1734 * the work to be done. 1735 */ 1736 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), 1737 wc->w_di_bh); 1738 ret = ocfs2_lock_allocators(inode, &et, 1739 clusters_to_alloc, extents_to_split, 1740 &data_ac, &meta_ac); 1741 if (ret) { 1742 mlog_errno(ret); 1743 goto out; 1744 } 1745 1746 if (data_ac) 1747 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv; 1748 1749 credits = ocfs2_calc_extend_credits(inode->i_sb, 1750 &di->id2.i_list); 1751 } else if (type == OCFS2_WRITE_DIRECT) 1752 /* direct write needs not to start trans if no extents alloc. */ 1753 goto success; 1754 1755 /* 1756 * We have to zero sparse allocated clusters, unwritten extent clusters, 1757 * and non-sparse clusters we just extended. For non-sparse writes, 1758 * we know zeros will only be needed in the first and/or last cluster. 1759 */ 1760 if (wc->w_clen && (wc->w_desc[0].c_needs_zero || 1761 wc->w_desc[wc->w_clen - 1].c_needs_zero)) 1762 cluster_of_pages = 1; 1763 else 1764 cluster_of_pages = 0; 1765 1766 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages); 1767 1768 handle = ocfs2_start_trans(osb, credits); 1769 if (IS_ERR(handle)) { 1770 ret = PTR_ERR(handle); 1771 mlog_errno(ret); 1772 goto out; 1773 } 1774 1775 wc->w_handle = handle; 1776 1777 if (clusters_to_alloc) { 1778 ret = dquot_alloc_space_nodirty(inode, 1779 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1780 if (ret) 1781 goto out_commit; 1782 } 1783 1784 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh, 1785 OCFS2_JOURNAL_ACCESS_WRITE); 1786 if (ret) { 1787 mlog_errno(ret); 1788 goto out_quota; 1789 } 1790 1791 /* 1792 * Fill our page array first. That way we've grabbed enough so 1793 * that we can zero and flush if we error after adding the 1794 * extent. 1795 */ 1796 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len, 1797 cluster_of_pages, mmap_page); 1798 if (ret) { 1799 /* 1800 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock 1801 * the target page. In this case, we exit with no error and no target 1802 * page. This will trigger the caller, page_mkwrite(), to re-try 1803 * the operation. 1804 */ 1805 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) { 1806 BUG_ON(wc->w_target_page); 1807 ret = 0; 1808 goto out_quota; 1809 } 1810 1811 mlog_errno(ret); 1812 goto out_quota; 1813 } 1814 1815 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos, 1816 len); 1817 if (ret) { 1818 mlog_errno(ret); 1819 goto out_quota; 1820 } 1821 1822 if (data_ac) 1823 ocfs2_free_alloc_context(data_ac); 1824 if (meta_ac) 1825 ocfs2_free_alloc_context(meta_ac); 1826 1827 success: 1828 if (pagep) 1829 *pagep = wc->w_target_page; 1830 *fsdata = wc; 1831 return 0; 1832 out_quota: 1833 if (clusters_to_alloc) 1834 dquot_free_space(inode, 1835 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc)); 1836 out_commit: 1837 ocfs2_commit_trans(osb, handle); 1838 1839 out: 1840 /* 1841 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(), 1842 * even in case of error here like ENOSPC and ENOMEM. So, we need 1843 * to unlock the target page manually to prevent deadlocks when 1844 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED 1845 * to VM code. 1846 */ 1847 if (wc->w_target_locked) 1848 unlock_page(mmap_page); 1849 1850 ocfs2_free_write_ctxt(inode, wc); 1851 1852 if (data_ac) { 1853 ocfs2_free_alloc_context(data_ac); 1854 data_ac = NULL; 1855 } 1856 if (meta_ac) { 1857 ocfs2_free_alloc_context(meta_ac); 1858 meta_ac = NULL; 1859 } 1860 1861 if (ret == -ENOSPC && try_free) { 1862 /* 1863 * Try to free some truncate log so that we can have enough 1864 * clusters to allocate. 1865 */ 1866 try_free = 0; 1867 1868 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need); 1869 if (ret1 == 1) 1870 goto try_again; 1871 1872 if (ret1 < 0) 1873 mlog_errno(ret1); 1874 } 1875 1876 return ret; 1877 } 1878 1879 static int ocfs2_write_begin(struct file *file, struct address_space *mapping, 1880 loff_t pos, unsigned len, 1881 struct page **pagep, void **fsdata) 1882 { 1883 int ret; 1884 struct buffer_head *di_bh = NULL; 1885 struct inode *inode = mapping->host; 1886 1887 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1888 if (ret) { 1889 mlog_errno(ret); 1890 return ret; 1891 } 1892 1893 /* 1894 * Take alloc sem here to prevent concurrent lookups. That way 1895 * the mapping, zeroing and tree manipulation within 1896 * ocfs2_write() will be safe against ->read_folio(). This 1897 * should also serve to lock out allocation from a shared 1898 * writeable region. 1899 */ 1900 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1901 1902 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER, 1903 pagep, fsdata, di_bh, NULL); 1904 if (ret) { 1905 mlog_errno(ret); 1906 goto out_fail; 1907 } 1908 1909 brelse(di_bh); 1910 1911 return 0; 1912 1913 out_fail: 1914 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1915 1916 brelse(di_bh); 1917 ocfs2_inode_unlock(inode, 1); 1918 1919 return ret; 1920 } 1921 1922 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos, 1923 unsigned len, unsigned *copied, 1924 struct ocfs2_dinode *di, 1925 struct ocfs2_write_ctxt *wc) 1926 { 1927 void *kaddr; 1928 1929 if (unlikely(*copied < len)) { 1930 if (!PageUptodate(wc->w_target_page)) { 1931 *copied = 0; 1932 return; 1933 } 1934 } 1935 1936 kaddr = kmap_atomic(wc->w_target_page); 1937 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied); 1938 kunmap_atomic(kaddr); 1939 1940 trace_ocfs2_write_end_inline( 1941 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1942 (unsigned long long)pos, *copied, 1943 le16_to_cpu(di->id2.i_data.id_count), 1944 le16_to_cpu(di->i_dyn_features)); 1945 } 1946 1947 int ocfs2_write_end_nolock(struct address_space *mapping, 1948 loff_t pos, unsigned len, unsigned copied, void *fsdata) 1949 { 1950 int i, ret; 1951 unsigned from, to, start = pos & (PAGE_SIZE - 1); 1952 struct inode *inode = mapping->host; 1953 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1954 struct ocfs2_write_ctxt *wc = fsdata; 1955 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data; 1956 handle_t *handle = wc->w_handle; 1957 struct page *tmppage; 1958 1959 BUG_ON(!list_empty(&wc->w_unwritten_list)); 1960 1961 if (handle) { 1962 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), 1963 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE); 1964 if (ret) { 1965 copied = ret; 1966 mlog_errno(ret); 1967 goto out; 1968 } 1969 } 1970 1971 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1972 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc); 1973 goto out_write_size; 1974 } 1975 1976 if (unlikely(copied < len) && wc->w_target_page) { 1977 loff_t new_isize; 1978 1979 if (!PageUptodate(wc->w_target_page)) 1980 copied = 0; 1981 1982 new_isize = max_t(loff_t, i_size_read(inode), pos + copied); 1983 if (new_isize > page_offset(wc->w_target_page)) 1984 ocfs2_zero_new_buffers(wc->w_target_page, start+copied, 1985 start+len); 1986 else { 1987 /* 1988 * When page is fully beyond new isize (data copy 1989 * failed), do not bother zeroing the page. Invalidate 1990 * it instead so that writeback does not get confused 1991 * put page & buffer dirty bits into inconsistent 1992 * state. 1993 */ 1994 block_invalidate_folio(page_folio(wc->w_target_page), 1995 0, PAGE_SIZE); 1996 } 1997 } 1998 if (wc->w_target_page) 1999 flush_dcache_page(wc->w_target_page); 2000 2001 for(i = 0; i < wc->w_num_pages; i++) { 2002 tmppage = wc->w_pages[i]; 2003 2004 /* This is the direct io target page. */ 2005 if (tmppage == NULL) 2006 continue; 2007 2008 if (tmppage == wc->w_target_page) { 2009 from = wc->w_target_from; 2010 to = wc->w_target_to; 2011 2012 BUG_ON(from > PAGE_SIZE || 2013 to > PAGE_SIZE || 2014 to < from); 2015 } else { 2016 /* 2017 * Pages adjacent to the target (if any) imply 2018 * a hole-filling write in which case we want 2019 * to flush their entire range. 2020 */ 2021 from = 0; 2022 to = PAGE_SIZE; 2023 } 2024 2025 if (page_has_buffers(tmppage)) { 2026 if (handle && ocfs2_should_order_data(inode)) { 2027 loff_t start_byte = 2028 ((loff_t)tmppage->index << PAGE_SHIFT) + 2029 from; 2030 loff_t length = to - from; 2031 ocfs2_jbd2_inode_add_write(handle, inode, 2032 start_byte, length); 2033 } 2034 block_commit_write(tmppage, from, to); 2035 } 2036 } 2037 2038 out_write_size: 2039 /* Direct io do not update i_size here. */ 2040 if (wc->w_type != OCFS2_WRITE_DIRECT) { 2041 pos += copied; 2042 if (pos > i_size_read(inode)) { 2043 i_size_write(inode, pos); 2044 mark_inode_dirty(inode); 2045 } 2046 inode->i_blocks = ocfs2_inode_sector_count(inode); 2047 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 2048 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 2049 di->i_mtime = di->i_ctime = cpu_to_le64(inode_get_mtime_sec(inode)); 2050 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode)); 2051 if (handle) 2052 ocfs2_update_inode_fsync_trans(handle, inode, 1); 2053 } 2054 if (handle) 2055 ocfs2_journal_dirty(handle, wc->w_di_bh); 2056 2057 out: 2058 /* unlock pages before dealloc since it needs acquiring j_trans_barrier 2059 * lock, or it will cause a deadlock since journal commit threads holds 2060 * this lock and will ask for the page lock when flushing the data. 2061 * put it here to preserve the unlock order. 2062 */ 2063 ocfs2_unlock_pages(wc); 2064 2065 if (handle) 2066 ocfs2_commit_trans(osb, handle); 2067 2068 ocfs2_run_deallocs(osb, &wc->w_dealloc); 2069 2070 brelse(wc->w_di_bh); 2071 kfree(wc); 2072 2073 return copied; 2074 } 2075 2076 static int ocfs2_write_end(struct file *file, struct address_space *mapping, 2077 loff_t pos, unsigned len, unsigned copied, 2078 struct page *page, void *fsdata) 2079 { 2080 int ret; 2081 struct inode *inode = mapping->host; 2082 2083 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata); 2084 2085 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2086 ocfs2_inode_unlock(inode, 1); 2087 2088 return ret; 2089 } 2090 2091 struct ocfs2_dio_write_ctxt { 2092 struct list_head dw_zero_list; 2093 unsigned dw_zero_count; 2094 int dw_orphaned; 2095 pid_t dw_writer_pid; 2096 }; 2097 2098 static struct ocfs2_dio_write_ctxt * 2099 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc) 2100 { 2101 struct ocfs2_dio_write_ctxt *dwc = NULL; 2102 2103 if (bh->b_private) 2104 return bh->b_private; 2105 2106 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS); 2107 if (dwc == NULL) 2108 return NULL; 2109 INIT_LIST_HEAD(&dwc->dw_zero_list); 2110 dwc->dw_zero_count = 0; 2111 dwc->dw_orphaned = 0; 2112 dwc->dw_writer_pid = task_pid_nr(current); 2113 bh->b_private = dwc; 2114 *alloc = 1; 2115 2116 return dwc; 2117 } 2118 2119 static void ocfs2_dio_free_write_ctx(struct inode *inode, 2120 struct ocfs2_dio_write_ctxt *dwc) 2121 { 2122 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list); 2123 kfree(dwc); 2124 } 2125 2126 /* 2127 * TODO: Make this into a generic get_blocks function. 2128 * 2129 * From do_direct_io in direct-io.c: 2130 * "So what we do is to permit the ->get_blocks function to populate 2131 * bh.b_size with the size of IO which is permitted at this offset and 2132 * this i_blkbits." 2133 * 2134 * This function is called directly from get_more_blocks in direct-io.c. 2135 * 2136 * called like this: dio->get_blocks(dio->inode, fs_startblk, 2137 * fs_count, map_bh, dio->rw == WRITE); 2138 */ 2139 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock, 2140 struct buffer_head *bh_result, int create) 2141 { 2142 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2143 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2144 struct ocfs2_write_ctxt *wc; 2145 struct ocfs2_write_cluster_desc *desc = NULL; 2146 struct ocfs2_dio_write_ctxt *dwc = NULL; 2147 struct buffer_head *di_bh = NULL; 2148 u64 p_blkno; 2149 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits; 2150 loff_t pos = iblock << i_blkbits; 2151 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits; 2152 unsigned len, total_len = bh_result->b_size; 2153 int ret = 0, first_get_block = 0; 2154 2155 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1)); 2156 len = min(total_len, len); 2157 2158 /* 2159 * bh_result->b_size is count in get_more_blocks according to write 2160 * "pos" and "end", we need map twice to return different buffer state: 2161 * 1. area in file size, not set NEW; 2162 * 2. area out file size, set NEW. 2163 * 2164 * iblock endblk 2165 * |--------|---------|---------|--------- 2166 * |<-------area in file------->| 2167 */ 2168 2169 if ((iblock <= endblk) && 2170 ((iblock + ((len - 1) >> i_blkbits)) > endblk)) 2171 len = (endblk - iblock + 1) << i_blkbits; 2172 2173 mlog(0, "get block of %lu at %llu:%u req %u\n", 2174 inode->i_ino, pos, len, total_len); 2175 2176 /* 2177 * Because we need to change file size in ocfs2_dio_end_io_write(), or 2178 * we may need to add it to orphan dir. So can not fall to fast path 2179 * while file size will be changed. 2180 */ 2181 if (pos + total_len <= i_size_read(inode)) { 2182 2183 /* This is the fast path for re-write. */ 2184 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create); 2185 if (buffer_mapped(bh_result) && 2186 !buffer_new(bh_result) && 2187 ret == 0) 2188 goto out; 2189 2190 /* Clear state set by ocfs2_get_block. */ 2191 bh_result->b_state = 0; 2192 } 2193 2194 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block); 2195 if (unlikely(dwc == NULL)) { 2196 ret = -ENOMEM; 2197 mlog_errno(ret); 2198 goto out; 2199 } 2200 2201 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) > 2202 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) && 2203 !dwc->dw_orphaned) { 2204 /* 2205 * when we are going to alloc extents beyond file size, add the 2206 * inode to orphan dir, so we can recall those spaces when 2207 * system crashed during write. 2208 */ 2209 ret = ocfs2_add_inode_to_orphan(osb, inode); 2210 if (ret < 0) { 2211 mlog_errno(ret); 2212 goto out; 2213 } 2214 dwc->dw_orphaned = 1; 2215 } 2216 2217 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2218 if (ret) { 2219 mlog_errno(ret); 2220 goto out; 2221 } 2222 2223 down_write(&oi->ip_alloc_sem); 2224 2225 if (first_get_block) { 2226 if (ocfs2_sparse_alloc(osb)) 2227 ret = ocfs2_zero_tail(inode, di_bh, pos); 2228 else 2229 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, 2230 total_len, NULL); 2231 if (ret < 0) { 2232 mlog_errno(ret); 2233 goto unlock; 2234 } 2235 } 2236 2237 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len, 2238 OCFS2_WRITE_DIRECT, NULL, 2239 (void **)&wc, di_bh, NULL); 2240 if (ret) { 2241 mlog_errno(ret); 2242 goto unlock; 2243 } 2244 2245 desc = &wc->w_desc[0]; 2246 2247 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys); 2248 BUG_ON(p_blkno == 0); 2249 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1); 2250 2251 map_bh(bh_result, inode->i_sb, p_blkno); 2252 bh_result->b_size = len; 2253 if (desc->c_needs_zero) 2254 set_buffer_new(bh_result); 2255 2256 if (iblock > endblk) 2257 set_buffer_new(bh_result); 2258 2259 /* May sleep in end_io. It should not happen in a irq context. So defer 2260 * it to dio work queue. */ 2261 set_buffer_defer_completion(bh_result); 2262 2263 if (!list_empty(&wc->w_unwritten_list)) { 2264 struct ocfs2_unwritten_extent *ue = NULL; 2265 2266 ue = list_first_entry(&wc->w_unwritten_list, 2267 struct ocfs2_unwritten_extent, 2268 ue_node); 2269 BUG_ON(ue->ue_cpos != desc->c_cpos); 2270 /* The physical address may be 0, fill it. */ 2271 ue->ue_phys = desc->c_phys; 2272 2273 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list); 2274 dwc->dw_zero_count += wc->w_unwritten_count; 2275 } 2276 2277 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc); 2278 BUG_ON(ret != len); 2279 ret = 0; 2280 unlock: 2281 up_write(&oi->ip_alloc_sem); 2282 ocfs2_inode_unlock(inode, 1); 2283 brelse(di_bh); 2284 out: 2285 return ret; 2286 } 2287 2288 static int ocfs2_dio_end_io_write(struct inode *inode, 2289 struct ocfs2_dio_write_ctxt *dwc, 2290 loff_t offset, 2291 ssize_t bytes) 2292 { 2293 struct ocfs2_cached_dealloc_ctxt dealloc; 2294 struct ocfs2_extent_tree et; 2295 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2296 struct ocfs2_inode_info *oi = OCFS2_I(inode); 2297 struct ocfs2_unwritten_extent *ue = NULL; 2298 struct buffer_head *di_bh = NULL; 2299 struct ocfs2_dinode *di; 2300 struct ocfs2_alloc_context *data_ac = NULL; 2301 struct ocfs2_alloc_context *meta_ac = NULL; 2302 handle_t *handle = NULL; 2303 loff_t end = offset + bytes; 2304 int ret = 0, credits = 0; 2305 2306 ocfs2_init_dealloc_ctxt(&dealloc); 2307 2308 /* We do clear unwritten, delete orphan, change i_size here. If neither 2309 * of these happen, we can skip all this. */ 2310 if (list_empty(&dwc->dw_zero_list) && 2311 end <= i_size_read(inode) && 2312 !dwc->dw_orphaned) 2313 goto out; 2314 2315 ret = ocfs2_inode_lock(inode, &di_bh, 1); 2316 if (ret < 0) { 2317 mlog_errno(ret); 2318 goto out; 2319 } 2320 2321 down_write(&oi->ip_alloc_sem); 2322 2323 /* Delete orphan before acquire i_rwsem. */ 2324 if (dwc->dw_orphaned) { 2325 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current)); 2326 2327 end = end > i_size_read(inode) ? end : 0; 2328 2329 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh, 2330 !!end, end); 2331 if (ret < 0) 2332 mlog_errno(ret); 2333 } 2334 2335 di = (struct ocfs2_dinode *)di_bh->b_data; 2336 2337 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 2338 2339 /* Attach dealloc with extent tree in case that we may reuse extents 2340 * which are already unlinked from current extent tree due to extent 2341 * rotation and merging. 2342 */ 2343 et.et_dealloc = &dealloc; 2344 2345 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2, 2346 &data_ac, &meta_ac); 2347 if (ret) { 2348 mlog_errno(ret); 2349 goto unlock; 2350 } 2351 2352 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list); 2353 2354 handle = ocfs2_start_trans(osb, credits); 2355 if (IS_ERR(handle)) { 2356 ret = PTR_ERR(handle); 2357 mlog_errno(ret); 2358 goto unlock; 2359 } 2360 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 2361 OCFS2_JOURNAL_ACCESS_WRITE); 2362 if (ret) { 2363 mlog_errno(ret); 2364 goto commit; 2365 } 2366 2367 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) { 2368 ret = ocfs2_assure_trans_credits(handle, credits); 2369 if (ret < 0) { 2370 mlog_errno(ret); 2371 break; 2372 } 2373 ret = ocfs2_mark_extent_written(inode, &et, handle, 2374 ue->ue_cpos, 1, 2375 ue->ue_phys, 2376 meta_ac, &dealloc); 2377 if (ret < 0) { 2378 mlog_errno(ret); 2379 break; 2380 } 2381 } 2382 2383 if (end > i_size_read(inode)) { 2384 ret = ocfs2_set_inode_size(handle, inode, di_bh, end); 2385 if (ret < 0) 2386 mlog_errno(ret); 2387 } 2388 commit: 2389 ocfs2_commit_trans(osb, handle); 2390 unlock: 2391 up_write(&oi->ip_alloc_sem); 2392 ocfs2_inode_unlock(inode, 1); 2393 brelse(di_bh); 2394 out: 2395 if (data_ac) 2396 ocfs2_free_alloc_context(data_ac); 2397 if (meta_ac) 2398 ocfs2_free_alloc_context(meta_ac); 2399 ocfs2_run_deallocs(osb, &dealloc); 2400 ocfs2_dio_free_write_ctx(inode, dwc); 2401 2402 return ret; 2403 } 2404 2405 /* 2406 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're 2407 * particularly interested in the aio/dio case. We use the rw_lock DLM lock 2408 * to protect io on one node from truncation on another. 2409 */ 2410 static int ocfs2_dio_end_io(struct kiocb *iocb, 2411 loff_t offset, 2412 ssize_t bytes, 2413 void *private) 2414 { 2415 struct inode *inode = file_inode(iocb->ki_filp); 2416 int level; 2417 int ret = 0; 2418 2419 /* this io's submitter should not have unlocked this before we could */ 2420 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb)); 2421 2422 if (bytes <= 0) 2423 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld", 2424 (long long)bytes); 2425 if (private) { 2426 if (bytes > 0) 2427 ret = ocfs2_dio_end_io_write(inode, private, offset, 2428 bytes); 2429 else 2430 ocfs2_dio_free_write_ctx(inode, private); 2431 } 2432 2433 ocfs2_iocb_clear_rw_locked(iocb); 2434 2435 level = ocfs2_iocb_rw_locked_level(iocb); 2436 ocfs2_rw_unlock(inode, level); 2437 return ret; 2438 } 2439 2440 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2441 { 2442 struct file *file = iocb->ki_filp; 2443 struct inode *inode = file->f_mapping->host; 2444 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2445 get_block_t *get_block; 2446 2447 /* 2448 * Fallback to buffered I/O if we see an inode without 2449 * extents. 2450 */ 2451 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2452 return 0; 2453 2454 /* Fallback to buffered I/O if we do not support append dio. */ 2455 if (iocb->ki_pos + iter->count > i_size_read(inode) && 2456 !ocfs2_supports_append_dio(osb)) 2457 return 0; 2458 2459 if (iov_iter_rw(iter) == READ) 2460 get_block = ocfs2_lock_get_block; 2461 else 2462 get_block = ocfs2_dio_wr_get_block; 2463 2464 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, 2465 iter, get_block, 2466 ocfs2_dio_end_io, 0); 2467 } 2468 2469 const struct address_space_operations ocfs2_aops = { 2470 .dirty_folio = block_dirty_folio, 2471 .read_folio = ocfs2_read_folio, 2472 .readahead = ocfs2_readahead, 2473 .writepages = ocfs2_writepages, 2474 .write_begin = ocfs2_write_begin, 2475 .write_end = ocfs2_write_end, 2476 .bmap = ocfs2_bmap, 2477 .direct_IO = ocfs2_direct_IO, 2478 .invalidate_folio = block_invalidate_folio, 2479 .release_folio = ocfs2_release_folio, 2480 .migrate_folio = buffer_migrate_folio, 2481 .is_partially_uptodate = block_is_partially_uptodate, 2482 .error_remove_folio = generic_error_remove_folio, 2483 }; 2484
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.