~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ocfs2/blockcheck.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * blockcheck.c
  4  *
  5  * Checksum and ECC codes for the OCFS2 userspace library.
  6  *
  7  * Copyright (C) 2006, 2008 Oracle.  All rights reserved.
  8  */
  9 
 10 #include <linux/kernel.h>
 11 #include <linux/types.h>
 12 #include <linux/crc32.h>
 13 #include <linux/buffer_head.h>
 14 #include <linux/bitops.h>
 15 #include <linux/debugfs.h>
 16 #include <linux/module.h>
 17 #include <linux/fs.h>
 18 #include <asm/byteorder.h>
 19 
 20 #include <cluster/masklog.h>
 21 
 22 #include "ocfs2.h"
 23 
 24 #include "blockcheck.h"
 25 
 26 
 27 /*
 28  * We use the following conventions:
 29  *
 30  * d = # data bits
 31  * p = # parity bits
 32  * c = # total code bits (d + p)
 33  */
 34 
 35 
 36 /*
 37  * Calculate the bit offset in the hamming code buffer based on the bit's
 38  * offset in the data buffer.  Since the hamming code reserves all
 39  * power-of-two bits for parity, the data bit number and the code bit
 40  * number are offset by all the parity bits beforehand.
 41  *
 42  * Recall that bit numbers in hamming code are 1-based.  This function
 43  * takes the 0-based data bit from the caller.
 44  *
 45  * An example.  Take bit 1 of the data buffer.  1 is a power of two (2^0),
 46  * so it's a parity bit.  2 is a power of two (2^1), so it's a parity bit.
 47  * 3 is not a power of two.  So bit 1 of the data buffer ends up as bit 3
 48  * in the code buffer.
 49  *
 50  * The caller can pass in *p if it wants to keep track of the most recent
 51  * number of parity bits added.  This allows the function to start the
 52  * calculation at the last place.
 53  */
 54 static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
 55 {
 56         unsigned int b, p = 0;
 57 
 58         /*
 59          * Data bits are 0-based, but we're talking code bits, which
 60          * are 1-based.
 61          */
 62         b = i + 1;
 63 
 64         /* Use the cache if it is there */
 65         if (p_cache)
 66                 p = *p_cache;
 67         b += p;
 68 
 69         /*
 70          * For every power of two below our bit number, bump our bit.
 71          *
 72          * We compare with (b + 1) because we have to compare with what b
 73          * would be _if_ it were bumped up by the parity bit.  Capice?
 74          *
 75          * p is set above.
 76          */
 77         for (; (1 << p) < (b + 1); p++)
 78                 b++;
 79 
 80         if (p_cache)
 81                 *p_cache = p;
 82 
 83         return b;
 84 }
 85 
 86 /*
 87  * This is the low level encoder function.  It can be called across
 88  * multiple hunks just like the crc32 code.  'd' is the number of bits
 89  * _in_this_hunk_.  nr is the bit offset of this hunk.  So, if you had
 90  * two 512B buffers, you would do it like so:
 91  *
 92  * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
 93  * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
 94  *
 95  * If you just have one buffer, use ocfs2_hamming_encode_block().
 96  */
 97 u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
 98 {
 99         unsigned int i, b, p = 0;
100 
101         BUG_ON(!d);
102 
103         /*
104          * b is the hamming code bit number.  Hamming code specifies a
105          * 1-based array, but C uses 0-based.  So 'i' is for C, and 'b' is
106          * for the algorithm.
107          *
108          * The i++ in the for loop is so that the start offset passed
109          * to ocfs2_find_next_bit_set() is one greater than the previously
110          * found bit.
111          */
112         for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
113         {
114                 /*
115                  * i is the offset in this hunk, nr + i is the total bit
116                  * offset.
117                  */
118                 b = calc_code_bit(nr + i, &p);
119 
120                 /*
121                  * Data bits in the resultant code are checked by
122                  * parity bits that are part of the bit number
123                  * representation.  Huh?
124                  *
125                  * <wikipedia href="https://en.wikipedia.org/wiki/Hamming_code">
126                  * In other words, the parity bit at position 2^k
127                  * checks bits in positions having bit k set in
128                  * their binary representation.  Conversely, for
129                  * instance, bit 13, i.e. 1101(2), is checked by
130                  * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
131                  * </wikipedia>
132                  *
133                  * Note that 'k' is the _code_ bit number.  'b' in
134                  * our loop.
135                  */
136                 parity ^= b;
137         }
138 
139         /* While the data buffer was treated as little endian, the
140          * return value is in host endian. */
141         return parity;
142 }
143 
144 u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
145 {
146         return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
147 }
148 
149 /*
150  * Like ocfs2_hamming_encode(), this can handle hunks.  nr is the bit
151  * offset of the current hunk.  If bit to be fixed is not part of the
152  * current hunk, this does nothing.
153  *
154  * If you only have one hunk, use ocfs2_hamming_fix_block().
155  */
156 void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
157                        unsigned int fix)
158 {
159         unsigned int i, b;
160 
161         BUG_ON(!d);
162 
163         /*
164          * If the bit to fix has an hweight of 1, it's a parity bit.  One
165          * busted parity bit is its own error.  Nothing to do here.
166          */
167         if (hweight32(fix) == 1)
168                 return;
169 
170         /*
171          * nr + d is the bit right past the data hunk we're looking at.
172          * If fix after that, nothing to do
173          */
174         if (fix >= calc_code_bit(nr + d, NULL))
175                 return;
176 
177         /*
178          * nr is the offset in the data hunk we're starting at.  Let's
179          * start b at the offset in the code buffer.  See hamming_encode()
180          * for a more detailed description of 'b'.
181          */
182         b = calc_code_bit(nr, NULL);
183         /* If the fix is before this hunk, nothing to do */
184         if (fix < b)
185                 return;
186 
187         for (i = 0; i < d; i++, b++)
188         {
189                 /* Skip past parity bits */
190                 while (hweight32(b) == 1)
191                         b++;
192 
193                 /*
194                  * i is the offset in this data hunk.
195                  * nr + i is the offset in the total data buffer.
196                  * b is the offset in the total code buffer.
197                  *
198                  * Thus, when b == fix, bit i in the current hunk needs
199                  * fixing.
200                  */
201                 if (b == fix)
202                 {
203                         if (ocfs2_test_bit(i, data))
204                                 ocfs2_clear_bit(i, data);
205                         else
206                                 ocfs2_set_bit(i, data);
207                         break;
208                 }
209         }
210 }
211 
212 void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
213                              unsigned int fix)
214 {
215         ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
216 }
217 
218 
219 /*
220  * Debugfs handling.
221  */
222 
223 #ifdef CONFIG_DEBUG_FS
224 
225 static int blockcheck_u64_get(void *data, u64 *val)
226 {
227         *val = *(u64 *)data;
228         return 0;
229 }
230 DEFINE_DEBUGFS_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
231 
232 static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
233 {
234         if (stats) {
235                 debugfs_remove_recursive(stats->b_debug_dir);
236                 stats->b_debug_dir = NULL;
237         }
238 }
239 
240 static void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
241                                            struct dentry *parent)
242 {
243         struct dentry *dir;
244 
245         dir = debugfs_create_dir("blockcheck", parent);
246         stats->b_debug_dir = dir;
247 
248         debugfs_create_file("blocks_checked", S_IFREG | S_IRUSR, dir,
249                             &stats->b_check_count, &blockcheck_fops);
250 
251         debugfs_create_file("checksums_failed", S_IFREG | S_IRUSR, dir,
252                             &stats->b_failure_count, &blockcheck_fops);
253 
254         debugfs_create_file("ecc_recoveries", S_IFREG | S_IRUSR, dir,
255                             &stats->b_recover_count, &blockcheck_fops);
256 
257 }
258 #else
259 static inline void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
260                                                   struct dentry *parent)
261 {
262 }
263 
264 static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
265 {
266 }
267 #endif  /* CONFIG_DEBUG_FS */
268 
269 /* Always-called wrappers for starting and stopping the debugfs files */
270 void ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
271                                             struct dentry *parent)
272 {
273         ocfs2_blockcheck_debug_install(stats, parent);
274 }
275 
276 void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
277 {
278         ocfs2_blockcheck_debug_remove(stats);
279 }
280 
281 static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
282 {
283         u64 new_count;
284 
285         if (!stats)
286                 return;
287 
288         spin_lock(&stats->b_lock);
289         stats->b_check_count++;
290         new_count = stats->b_check_count;
291         spin_unlock(&stats->b_lock);
292 
293         if (!new_count)
294                 mlog(ML_NOTICE, "Block check count has wrapped\n");
295 }
296 
297 static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
298 {
299         u64 new_count;
300 
301         if (!stats)
302                 return;
303 
304         spin_lock(&stats->b_lock);
305         stats->b_failure_count++;
306         new_count = stats->b_failure_count;
307         spin_unlock(&stats->b_lock);
308 
309         if (!new_count)
310                 mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
311 }
312 
313 static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
314 {
315         u64 new_count;
316 
317         if (!stats)
318                 return;
319 
320         spin_lock(&stats->b_lock);
321         stats->b_recover_count++;
322         new_count = stats->b_recover_count;
323         spin_unlock(&stats->b_lock);
324 
325         if (!new_count)
326                 mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
327 }
328 
329 
330 
331 /*
332  * These are the low-level APIs for using the ocfs2_block_check structure.
333  */
334 
335 /*
336  * This function generates check information for a block.
337  * data is the block to be checked.  bc is a pointer to the
338  * ocfs2_block_check structure describing the crc32 and the ecc.
339  *
340  * bc should be a pointer inside data, as the function will
341  * take care of zeroing it before calculating the check information.  If
342  * bc does not point inside data, the caller must make sure any inline
343  * ocfs2_block_check structures are zeroed.
344  *
345  * The data buffer must be in on-disk endian (little endian for ocfs2).
346  * bc will be filled with little-endian values and will be ready to go to
347  * disk.
348  */
349 void ocfs2_block_check_compute(void *data, size_t blocksize,
350                                struct ocfs2_block_check *bc)
351 {
352         u32 crc;
353         u32 ecc;
354 
355         memset(bc, 0, sizeof(struct ocfs2_block_check));
356 
357         crc = crc32_le(~0, data, blocksize);
358         ecc = ocfs2_hamming_encode_block(data, blocksize);
359 
360         /*
361          * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
362          * larger than 16 bits.
363          */
364         BUG_ON(ecc > USHRT_MAX);
365 
366         bc->bc_crc32e = cpu_to_le32(crc);
367         bc->bc_ecc = cpu_to_le16((u16)ecc);
368 }
369 
370 /*
371  * This function validates existing check information.  Like _compute,
372  * the function will take care of zeroing bc before calculating check codes.
373  * If bc is not a pointer inside data, the caller must have zeroed any
374  * inline ocfs2_block_check structures.
375  *
376  * Again, the data passed in should be the on-disk endian.
377  */
378 int ocfs2_block_check_validate(void *data, size_t blocksize,
379                                struct ocfs2_block_check *bc,
380                                struct ocfs2_blockcheck_stats *stats)
381 {
382         int rc = 0;
383         u32 bc_crc32e;
384         u16 bc_ecc;
385         u32 crc, ecc;
386 
387         ocfs2_blockcheck_inc_check(stats);
388 
389         bc_crc32e = le32_to_cpu(bc->bc_crc32e);
390         bc_ecc = le16_to_cpu(bc->bc_ecc);
391 
392         memset(bc, 0, sizeof(struct ocfs2_block_check));
393 
394         /* Fast path - if the crc32 validates, we're good to go */
395         crc = crc32_le(~0, data, blocksize);
396         if (crc == bc_crc32e)
397                 goto out;
398 
399         ocfs2_blockcheck_inc_failure(stats);
400         mlog(ML_ERROR,
401              "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
402              (unsigned int)bc_crc32e, (unsigned int)crc);
403 
404         /* Ok, try ECC fixups */
405         ecc = ocfs2_hamming_encode_block(data, blocksize);
406         ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc);
407 
408         /* And check the crc32 again */
409         crc = crc32_le(~0, data, blocksize);
410         if (crc == bc_crc32e) {
411                 ocfs2_blockcheck_inc_recover(stats);
412                 goto out;
413         }
414 
415         mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
416              (unsigned int)bc_crc32e, (unsigned int)crc);
417 
418         rc = -EIO;
419 
420 out:
421         bc->bc_crc32e = cpu_to_le32(bc_crc32e);
422         bc->bc_ecc = cpu_to_le16(bc_ecc);
423 
424         return rc;
425 }
426 
427 /*
428  * This function generates check information for a list of buffer_heads.
429  * bhs is the blocks to be checked.  bc is a pointer to the
430  * ocfs2_block_check structure describing the crc32 and the ecc.
431  *
432  * bc should be a pointer inside data, as the function will
433  * take care of zeroing it before calculating the check information.  If
434  * bc does not point inside data, the caller must make sure any inline
435  * ocfs2_block_check structures are zeroed.
436  *
437  * The data buffer must be in on-disk endian (little endian for ocfs2).
438  * bc will be filled with little-endian values and will be ready to go to
439  * disk.
440  */
441 void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
442                                    struct ocfs2_block_check *bc)
443 {
444         int i;
445         u32 crc, ecc;
446 
447         BUG_ON(nr < 0);
448 
449         if (!nr)
450                 return;
451 
452         memset(bc, 0, sizeof(struct ocfs2_block_check));
453 
454         for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
455                 crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
456                 /*
457                  * The number of bits in a buffer is obviously b_size*8.
458                  * The offset of this buffer is b_size*i, so the bit offset
459                  * of this buffer is b_size*8*i.
460                  */
461                 ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
462                                                 bhs[i]->b_size * 8,
463                                                 bhs[i]->b_size * 8 * i);
464         }
465 
466         /*
467          * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
468          * larger than 16 bits.
469          */
470         BUG_ON(ecc > USHRT_MAX);
471 
472         bc->bc_crc32e = cpu_to_le32(crc);
473         bc->bc_ecc = cpu_to_le16((u16)ecc);
474 }
475 
476 /*
477  * This function validates existing check information on a list of
478  * buffer_heads.  Like _compute_bhs, the function will take care of
479  * zeroing bc before calculating check codes.  If bc is not a pointer
480  * inside data, the caller must have zeroed any inline
481  * ocfs2_block_check structures.
482  *
483  * Again, the data passed in should be the on-disk endian.
484  */
485 int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
486                                    struct ocfs2_block_check *bc,
487                                    struct ocfs2_blockcheck_stats *stats)
488 {
489         int i, rc = 0;
490         u32 bc_crc32e;
491         u16 bc_ecc;
492         u32 crc, ecc, fix;
493 
494         BUG_ON(nr < 0);
495 
496         if (!nr)
497                 return 0;
498 
499         ocfs2_blockcheck_inc_check(stats);
500 
501         bc_crc32e = le32_to_cpu(bc->bc_crc32e);
502         bc_ecc = le16_to_cpu(bc->bc_ecc);
503 
504         memset(bc, 0, sizeof(struct ocfs2_block_check));
505 
506         /* Fast path - if the crc32 validates, we're good to go */
507         for (i = 0, crc = ~0; i < nr; i++)
508                 crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
509         if (crc == bc_crc32e)
510                 goto out;
511 
512         ocfs2_blockcheck_inc_failure(stats);
513         mlog(ML_ERROR,
514              "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
515              (unsigned int)bc_crc32e, (unsigned int)crc);
516 
517         /* Ok, try ECC fixups */
518         for (i = 0, ecc = 0; i < nr; i++) {
519                 /*
520                  * The number of bits in a buffer is obviously b_size*8.
521                  * The offset of this buffer is b_size*i, so the bit offset
522                  * of this buffer is b_size*8*i.
523                  */
524                 ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
525                                                 bhs[i]->b_size * 8,
526                                                 bhs[i]->b_size * 8 * i);
527         }
528         fix = ecc ^ bc_ecc;
529         for (i = 0; i < nr; i++) {
530                 /*
531                  * Try the fix against each buffer.  It will only affect
532                  * one of them.
533                  */
534                 ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
535                                   bhs[i]->b_size * 8 * i, fix);
536         }
537 
538         /* And check the crc32 again */
539         for (i = 0, crc = ~0; i < nr; i++)
540                 crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
541         if (crc == bc_crc32e) {
542                 ocfs2_blockcheck_inc_recover(stats);
543                 goto out;
544         }
545 
546         mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
547              (unsigned int)bc_crc32e, (unsigned int)crc);
548 
549         rc = -EIO;
550 
551 out:
552         bc->bc_crc32e = cpu_to_le32(bc_crc32e);
553         bc->bc_ecc = cpu_to_le16(bc_ecc);
554 
555         return rc;
556 }
557 
558 /*
559  * These are the main API.  They check the superblock flag before
560  * calling the underlying operations.
561  *
562  * They expect the buffer(s) to be in disk format.
563  */
564 void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
565                             struct ocfs2_block_check *bc)
566 {
567         if (ocfs2_meta_ecc(OCFS2_SB(sb)))
568                 ocfs2_block_check_compute(data, sb->s_blocksize, bc);
569 }
570 
571 int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
572                             struct ocfs2_block_check *bc)
573 {
574         int rc = 0;
575         struct ocfs2_super *osb = OCFS2_SB(sb);
576 
577         if (ocfs2_meta_ecc(osb))
578                 rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
579                                                 &osb->osb_ecc_stats);
580 
581         return rc;
582 }
583 
584 void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
585                                 struct buffer_head **bhs, int nr,
586                                 struct ocfs2_block_check *bc)
587 {
588         if (ocfs2_meta_ecc(OCFS2_SB(sb)))
589                 ocfs2_block_check_compute_bhs(bhs, nr, bc);
590 }
591 
592 int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
593                                 struct buffer_head **bhs, int nr,
594                                 struct ocfs2_block_check *bc)
595 {
596         int rc = 0;
597         struct ocfs2_super *osb = OCFS2_SB(sb);
598 
599         if (ocfs2_meta_ecc(osb))
600                 rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
601                                                     &osb->osb_ecc_stats);
602 
603         return rc;
604 }
605 
606 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php