~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/pipe.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/fs/pipe.c
  4  *
  5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
  6  */
  7 
  8 #include <linux/mm.h>
  9 #include <linux/file.h>
 10 #include <linux/poll.h>
 11 #include <linux/slab.h>
 12 #include <linux/module.h>
 13 #include <linux/init.h>
 14 #include <linux/fs.h>
 15 #include <linux/log2.h>
 16 #include <linux/mount.h>
 17 #include <linux/pseudo_fs.h>
 18 #include <linux/magic.h>
 19 #include <linux/pipe_fs_i.h>
 20 #include <linux/uio.h>
 21 #include <linux/highmem.h>
 22 #include <linux/pagemap.h>
 23 #include <linux/audit.h>
 24 #include <linux/syscalls.h>
 25 #include <linux/fcntl.h>
 26 #include <linux/memcontrol.h>
 27 #include <linux/watch_queue.h>
 28 #include <linux/sysctl.h>
 29 
 30 #include <linux/uaccess.h>
 31 #include <asm/ioctls.h>
 32 
 33 #include "internal.h"
 34 
 35 /*
 36  * New pipe buffers will be restricted to this size while the user is exceeding
 37  * their pipe buffer quota. The general pipe use case needs at least two
 38  * buffers: one for data yet to be read, and one for new data. If this is less
 39  * than two, then a write to a non-empty pipe may block even if the pipe is not
 40  * full. This can occur with GNU make jobserver or similar uses of pipes as
 41  * semaphores: multiple processes may be waiting to write tokens back to the
 42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
 43  *
 44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
 45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
 46  * emptied.
 47  */
 48 #define PIPE_MIN_DEF_BUFFERS 2
 49 
 50 /*
 51  * The max size that a non-root user is allowed to grow the pipe. Can
 52  * be set by root in /proc/sys/fs/pipe-max-size
 53  */
 54 static unsigned int pipe_max_size = 1048576;
 55 
 56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
 57  * matches default values.
 58  */
 59 static unsigned long pipe_user_pages_hard;
 60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
 61 
 62 /*
 63  * We use head and tail indices that aren't masked off, except at the point of
 64  * dereference, but rather they're allowed to wrap naturally.  This means there
 65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
 66  * <= 2^31.
 67  * -- David Howells 2019-09-23.
 68  *
 69  * Reads with count = 0 should always return 0.
 70  * -- Julian Bradfield 1999-06-07.
 71  *
 72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
 73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
 74  *
 75  * pipe_read & write cleanup
 76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
 77  */
 78 
 79 #define cmp_int(l, r)           ((l > r) - (l < r))
 80 
 81 #ifdef CONFIG_PROVE_LOCKING
 82 static int pipe_lock_cmp_fn(const struct lockdep_map *a,
 83                             const struct lockdep_map *b)
 84 {
 85         return cmp_int((unsigned long) a, (unsigned long) b);
 86 }
 87 #endif
 88 
 89 void pipe_lock(struct pipe_inode_info *pipe)
 90 {
 91         if (pipe->files)
 92                 mutex_lock(&pipe->mutex);
 93 }
 94 EXPORT_SYMBOL(pipe_lock);
 95 
 96 void pipe_unlock(struct pipe_inode_info *pipe)
 97 {
 98         if (pipe->files)
 99                 mutex_unlock(&pipe->mutex);
100 }
101 EXPORT_SYMBOL(pipe_unlock);
102 
103 void pipe_double_lock(struct pipe_inode_info *pipe1,
104                       struct pipe_inode_info *pipe2)
105 {
106         BUG_ON(pipe1 == pipe2);
107 
108         if (pipe1 > pipe2)
109                 swap(pipe1, pipe2);
110 
111         pipe_lock(pipe1);
112         pipe_lock(pipe2);
113 }
114 
115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
116                                   struct pipe_buffer *buf)
117 {
118         struct page *page = buf->page;
119 
120         /*
121          * If nobody else uses this page, and we don't already have a
122          * temporary page, let's keep track of it as a one-deep
123          * allocation cache. (Otherwise just release our reference to it)
124          */
125         if (page_count(page) == 1 && !pipe->tmp_page)
126                 pipe->tmp_page = page;
127         else
128                 put_page(page);
129 }
130 
131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
132                 struct pipe_buffer *buf)
133 {
134         struct page *page = buf->page;
135 
136         if (page_count(page) != 1)
137                 return false;
138         memcg_kmem_uncharge_page(page, 0);
139         __SetPageLocked(page);
140         return true;
141 }
142 
143 /**
144  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
145  * @pipe:       the pipe that the buffer belongs to
146  * @buf:        the buffer to attempt to steal
147  *
148  * Description:
149  *      This function attempts to steal the &struct page attached to
150  *      @buf. If successful, this function returns 0 and returns with
151  *      the page locked. The caller may then reuse the page for whatever
152  *      he wishes; the typical use is insertion into a different file
153  *      page cache.
154  */
155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
156                 struct pipe_buffer *buf)
157 {
158         struct page *page = buf->page;
159 
160         /*
161          * A reference of one is golden, that means that the owner of this
162          * page is the only one holding a reference to it. lock the page
163          * and return OK.
164          */
165         if (page_count(page) == 1) {
166                 lock_page(page);
167                 return true;
168         }
169         return false;
170 }
171 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
172 
173 /**
174  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
175  * @pipe:       the pipe that the buffer belongs to
176  * @buf:        the buffer to get a reference to
177  *
178  * Description:
179  *      This function grabs an extra reference to @buf. It's used in
180  *      the tee() system call, when we duplicate the buffers in one
181  *      pipe into another.
182  */
183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
184 {
185         return try_get_page(buf->page);
186 }
187 EXPORT_SYMBOL(generic_pipe_buf_get);
188 
189 /**
190  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
191  * @pipe:       the pipe that the buffer belongs to
192  * @buf:        the buffer to put a reference to
193  *
194  * Description:
195  *      This function releases a reference to @buf.
196  */
197 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
198                               struct pipe_buffer *buf)
199 {
200         put_page(buf->page);
201 }
202 EXPORT_SYMBOL(generic_pipe_buf_release);
203 
204 static const struct pipe_buf_operations anon_pipe_buf_ops = {
205         .release        = anon_pipe_buf_release,
206         .try_steal      = anon_pipe_buf_try_steal,
207         .get            = generic_pipe_buf_get,
208 };
209 
210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
211 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
212 {
213         unsigned int head = READ_ONCE(pipe->head);
214         unsigned int tail = READ_ONCE(pipe->tail);
215         unsigned int writers = READ_ONCE(pipe->writers);
216 
217         return !pipe_empty(head, tail) || !writers;
218 }
219 
220 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe,
221                                             struct pipe_buffer *buf,
222                                             unsigned int tail)
223 {
224         pipe_buf_release(pipe, buf);
225 
226         /*
227          * If the pipe has a watch_queue, we need additional protection
228          * by the spinlock because notifications get posted with only
229          * this spinlock, no mutex
230          */
231         if (pipe_has_watch_queue(pipe)) {
232                 spin_lock_irq(&pipe->rd_wait.lock);
233 #ifdef CONFIG_WATCH_QUEUE
234                 if (buf->flags & PIPE_BUF_FLAG_LOSS)
235                         pipe->note_loss = true;
236 #endif
237                 pipe->tail = ++tail;
238                 spin_unlock_irq(&pipe->rd_wait.lock);
239                 return tail;
240         }
241 
242         /*
243          * Without a watch_queue, we can simply increment the tail
244          * without the spinlock - the mutex is enough.
245          */
246         pipe->tail = ++tail;
247         return tail;
248 }
249 
250 static ssize_t
251 pipe_read(struct kiocb *iocb, struct iov_iter *to)
252 {
253         size_t total_len = iov_iter_count(to);
254         struct file *filp = iocb->ki_filp;
255         struct pipe_inode_info *pipe = filp->private_data;
256         bool was_full, wake_next_reader = false;
257         ssize_t ret;
258 
259         /* Null read succeeds. */
260         if (unlikely(total_len == 0))
261                 return 0;
262 
263         ret = 0;
264         mutex_lock(&pipe->mutex);
265 
266         /*
267          * We only wake up writers if the pipe was full when we started
268          * reading in order to avoid unnecessary wakeups.
269          *
270          * But when we do wake up writers, we do so using a sync wakeup
271          * (WF_SYNC), because we want them to get going and generate more
272          * data for us.
273          */
274         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
275         for (;;) {
276                 /* Read ->head with a barrier vs post_one_notification() */
277                 unsigned int head = smp_load_acquire(&pipe->head);
278                 unsigned int tail = pipe->tail;
279                 unsigned int mask = pipe->ring_size - 1;
280 
281 #ifdef CONFIG_WATCH_QUEUE
282                 if (pipe->note_loss) {
283                         struct watch_notification n;
284 
285                         if (total_len < 8) {
286                                 if (ret == 0)
287                                         ret = -ENOBUFS;
288                                 break;
289                         }
290 
291                         n.type = WATCH_TYPE_META;
292                         n.subtype = WATCH_META_LOSS_NOTIFICATION;
293                         n.info = watch_sizeof(n);
294                         if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
295                                 if (ret == 0)
296                                         ret = -EFAULT;
297                                 break;
298                         }
299                         ret += sizeof(n);
300                         total_len -= sizeof(n);
301                         pipe->note_loss = false;
302                 }
303 #endif
304 
305                 if (!pipe_empty(head, tail)) {
306                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
307                         size_t chars = buf->len;
308                         size_t written;
309                         int error;
310 
311                         if (chars > total_len) {
312                                 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
313                                         if (ret == 0)
314                                                 ret = -ENOBUFS;
315                                         break;
316                                 }
317                                 chars = total_len;
318                         }
319 
320                         error = pipe_buf_confirm(pipe, buf);
321                         if (error) {
322                                 if (!ret)
323                                         ret = error;
324                                 break;
325                         }
326 
327                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
328                         if (unlikely(written < chars)) {
329                                 if (!ret)
330                                         ret = -EFAULT;
331                                 break;
332                         }
333                         ret += chars;
334                         buf->offset += chars;
335                         buf->len -= chars;
336 
337                         /* Was it a packet buffer? Clean up and exit */
338                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
339                                 total_len = chars;
340                                 buf->len = 0;
341                         }
342 
343                         if (!buf->len)
344                                 tail = pipe_update_tail(pipe, buf, tail);
345                         total_len -= chars;
346                         if (!total_len)
347                                 break;  /* common path: read succeeded */
348                         if (!pipe_empty(head, tail))    /* More to do? */
349                                 continue;
350                 }
351 
352                 if (!pipe->writers)
353                         break;
354                 if (ret)
355                         break;
356                 if ((filp->f_flags & O_NONBLOCK) ||
357                     (iocb->ki_flags & IOCB_NOWAIT)) {
358                         ret = -EAGAIN;
359                         break;
360                 }
361                 mutex_unlock(&pipe->mutex);
362 
363                 /*
364                  * We only get here if we didn't actually read anything.
365                  *
366                  * However, we could have seen (and removed) a zero-sized
367                  * pipe buffer, and might have made space in the buffers
368                  * that way.
369                  *
370                  * You can't make zero-sized pipe buffers by doing an empty
371                  * write (not even in packet mode), but they can happen if
372                  * the writer gets an EFAULT when trying to fill a buffer
373                  * that already got allocated and inserted in the buffer
374                  * array.
375                  *
376                  * So we still need to wake up any pending writers in the
377                  * _very_ unlikely case that the pipe was full, but we got
378                  * no data.
379                  */
380                 if (unlikely(was_full))
381                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
382                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
383 
384                 /*
385                  * But because we didn't read anything, at this point we can
386                  * just return directly with -ERESTARTSYS if we're interrupted,
387                  * since we've done any required wakeups and there's no need
388                  * to mark anything accessed. And we've dropped the lock.
389                  */
390                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
391                         return -ERESTARTSYS;
392 
393                 mutex_lock(&pipe->mutex);
394                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
395                 wake_next_reader = true;
396         }
397         if (pipe_empty(pipe->head, pipe->tail))
398                 wake_next_reader = false;
399         mutex_unlock(&pipe->mutex);
400 
401         if (was_full)
402                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
403         if (wake_next_reader)
404                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
405         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
406         if (ret > 0)
407                 file_accessed(filp);
408         return ret;
409 }
410 
411 static inline int is_packetized(struct file *file)
412 {
413         return (file->f_flags & O_DIRECT) != 0;
414 }
415 
416 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
417 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
418 {
419         unsigned int head = READ_ONCE(pipe->head);
420         unsigned int tail = READ_ONCE(pipe->tail);
421         unsigned int max_usage = READ_ONCE(pipe->max_usage);
422 
423         return !pipe_full(head, tail, max_usage) ||
424                 !READ_ONCE(pipe->readers);
425 }
426 
427 static ssize_t
428 pipe_write(struct kiocb *iocb, struct iov_iter *from)
429 {
430         struct file *filp = iocb->ki_filp;
431         struct pipe_inode_info *pipe = filp->private_data;
432         unsigned int head;
433         ssize_t ret = 0;
434         size_t total_len = iov_iter_count(from);
435         ssize_t chars;
436         bool was_empty = false;
437         bool wake_next_writer = false;
438 
439         /*
440          * Reject writing to watch queue pipes before the point where we lock
441          * the pipe.
442          * Otherwise, lockdep would be unhappy if the caller already has another
443          * pipe locked.
444          * If we had to support locking a normal pipe and a notification pipe at
445          * the same time, we could set up lockdep annotations for that, but
446          * since we don't actually need that, it's simpler to just bail here.
447          */
448         if (pipe_has_watch_queue(pipe))
449                 return -EXDEV;
450 
451         /* Null write succeeds. */
452         if (unlikely(total_len == 0))
453                 return 0;
454 
455         mutex_lock(&pipe->mutex);
456 
457         if (!pipe->readers) {
458                 send_sig(SIGPIPE, current, 0);
459                 ret = -EPIPE;
460                 goto out;
461         }
462 
463         /*
464          * If it wasn't empty we try to merge new data into
465          * the last buffer.
466          *
467          * That naturally merges small writes, but it also
468          * page-aligns the rest of the writes for large writes
469          * spanning multiple pages.
470          */
471         head = pipe->head;
472         was_empty = pipe_empty(head, pipe->tail);
473         chars = total_len & (PAGE_SIZE-1);
474         if (chars && !was_empty) {
475                 unsigned int mask = pipe->ring_size - 1;
476                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
477                 int offset = buf->offset + buf->len;
478 
479                 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
480                     offset + chars <= PAGE_SIZE) {
481                         ret = pipe_buf_confirm(pipe, buf);
482                         if (ret)
483                                 goto out;
484 
485                         ret = copy_page_from_iter(buf->page, offset, chars, from);
486                         if (unlikely(ret < chars)) {
487                                 ret = -EFAULT;
488                                 goto out;
489                         }
490 
491                         buf->len += ret;
492                         if (!iov_iter_count(from))
493                                 goto out;
494                 }
495         }
496 
497         for (;;) {
498                 if (!pipe->readers) {
499                         send_sig(SIGPIPE, current, 0);
500                         if (!ret)
501                                 ret = -EPIPE;
502                         break;
503                 }
504 
505                 head = pipe->head;
506                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
507                         unsigned int mask = pipe->ring_size - 1;
508                         struct pipe_buffer *buf;
509                         struct page *page = pipe->tmp_page;
510                         int copied;
511 
512                         if (!page) {
513                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
514                                 if (unlikely(!page)) {
515                                         ret = ret ? : -ENOMEM;
516                                         break;
517                                 }
518                                 pipe->tmp_page = page;
519                         }
520 
521                         /* Allocate a slot in the ring in advance and attach an
522                          * empty buffer.  If we fault or otherwise fail to use
523                          * it, either the reader will consume it or it'll still
524                          * be there for the next write.
525                          */
526                         pipe->head = head + 1;
527 
528                         /* Insert it into the buffer array */
529                         buf = &pipe->bufs[head & mask];
530                         buf->page = page;
531                         buf->ops = &anon_pipe_buf_ops;
532                         buf->offset = 0;
533                         buf->len = 0;
534                         if (is_packetized(filp))
535                                 buf->flags = PIPE_BUF_FLAG_PACKET;
536                         else
537                                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
538                         pipe->tmp_page = NULL;
539 
540                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
541                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
542                                 if (!ret)
543                                         ret = -EFAULT;
544                                 break;
545                         }
546                         ret += copied;
547                         buf->len = copied;
548 
549                         if (!iov_iter_count(from))
550                                 break;
551                 }
552 
553                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
554                         continue;
555 
556                 /* Wait for buffer space to become available. */
557                 if ((filp->f_flags & O_NONBLOCK) ||
558                     (iocb->ki_flags & IOCB_NOWAIT)) {
559                         if (!ret)
560                                 ret = -EAGAIN;
561                         break;
562                 }
563                 if (signal_pending(current)) {
564                         if (!ret)
565                                 ret = -ERESTARTSYS;
566                         break;
567                 }
568 
569                 /*
570                  * We're going to release the pipe lock and wait for more
571                  * space. We wake up any readers if necessary, and then
572                  * after waiting we need to re-check whether the pipe
573                  * become empty while we dropped the lock.
574                  */
575                 mutex_unlock(&pipe->mutex);
576                 if (was_empty)
577                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
578                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
579                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
580                 mutex_lock(&pipe->mutex);
581                 was_empty = pipe_empty(pipe->head, pipe->tail);
582                 wake_next_writer = true;
583         }
584 out:
585         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
586                 wake_next_writer = false;
587         mutex_unlock(&pipe->mutex);
588 
589         /*
590          * If we do do a wakeup event, we do a 'sync' wakeup, because we
591          * want the reader to start processing things asap, rather than
592          * leave the data pending.
593          *
594          * This is particularly important for small writes, because of
595          * how (for example) the GNU make jobserver uses small writes to
596          * wake up pending jobs
597          *
598          * Epoll nonsensically wants a wakeup whether the pipe
599          * was already empty or not.
600          */
601         if (was_empty || pipe->poll_usage)
602                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
603         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
604         if (wake_next_writer)
605                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
606         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
607                 int err = file_update_time(filp);
608                 if (err)
609                         ret = err;
610                 sb_end_write(file_inode(filp)->i_sb);
611         }
612         return ret;
613 }
614 
615 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
616 {
617         struct pipe_inode_info *pipe = filp->private_data;
618         unsigned int count, head, tail, mask;
619 
620         switch (cmd) {
621         case FIONREAD:
622                 mutex_lock(&pipe->mutex);
623                 count = 0;
624                 head = pipe->head;
625                 tail = pipe->tail;
626                 mask = pipe->ring_size - 1;
627 
628                 while (tail != head) {
629                         count += pipe->bufs[tail & mask].len;
630                         tail++;
631                 }
632                 mutex_unlock(&pipe->mutex);
633 
634                 return put_user(count, (int __user *)arg);
635 
636 #ifdef CONFIG_WATCH_QUEUE
637         case IOC_WATCH_QUEUE_SET_SIZE: {
638                 int ret;
639                 mutex_lock(&pipe->mutex);
640                 ret = watch_queue_set_size(pipe, arg);
641                 mutex_unlock(&pipe->mutex);
642                 return ret;
643         }
644 
645         case IOC_WATCH_QUEUE_SET_FILTER:
646                 return watch_queue_set_filter(
647                         pipe, (struct watch_notification_filter __user *)arg);
648 #endif
649 
650         default:
651                 return -ENOIOCTLCMD;
652         }
653 }
654 
655 /* No kernel lock held - fine */
656 static __poll_t
657 pipe_poll(struct file *filp, poll_table *wait)
658 {
659         __poll_t mask;
660         struct pipe_inode_info *pipe = filp->private_data;
661         unsigned int head, tail;
662 
663         /* Epoll has some historical nasty semantics, this enables them */
664         WRITE_ONCE(pipe->poll_usage, true);
665 
666         /*
667          * Reading pipe state only -- no need for acquiring the semaphore.
668          *
669          * But because this is racy, the code has to add the
670          * entry to the poll table _first_ ..
671          */
672         if (filp->f_mode & FMODE_READ)
673                 poll_wait(filp, &pipe->rd_wait, wait);
674         if (filp->f_mode & FMODE_WRITE)
675                 poll_wait(filp, &pipe->wr_wait, wait);
676 
677         /*
678          * .. and only then can you do the racy tests. That way,
679          * if something changes and you got it wrong, the poll
680          * table entry will wake you up and fix it.
681          */
682         head = READ_ONCE(pipe->head);
683         tail = READ_ONCE(pipe->tail);
684 
685         mask = 0;
686         if (filp->f_mode & FMODE_READ) {
687                 if (!pipe_empty(head, tail))
688                         mask |= EPOLLIN | EPOLLRDNORM;
689                 if (!pipe->writers && filp->f_version != pipe->w_counter)
690                         mask |= EPOLLHUP;
691         }
692 
693         if (filp->f_mode & FMODE_WRITE) {
694                 if (!pipe_full(head, tail, pipe->max_usage))
695                         mask |= EPOLLOUT | EPOLLWRNORM;
696                 /*
697                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
698                  * behave exactly like pipes for poll().
699                  */
700                 if (!pipe->readers)
701                         mask |= EPOLLERR;
702         }
703 
704         return mask;
705 }
706 
707 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
708 {
709         int kill = 0;
710 
711         spin_lock(&inode->i_lock);
712         if (!--pipe->files) {
713                 inode->i_pipe = NULL;
714                 kill = 1;
715         }
716         spin_unlock(&inode->i_lock);
717 
718         if (kill)
719                 free_pipe_info(pipe);
720 }
721 
722 static int
723 pipe_release(struct inode *inode, struct file *file)
724 {
725         struct pipe_inode_info *pipe = file->private_data;
726 
727         mutex_lock(&pipe->mutex);
728         if (file->f_mode & FMODE_READ)
729                 pipe->readers--;
730         if (file->f_mode & FMODE_WRITE)
731                 pipe->writers--;
732 
733         /* Was that the last reader or writer, but not the other side? */
734         if (!pipe->readers != !pipe->writers) {
735                 wake_up_interruptible_all(&pipe->rd_wait);
736                 wake_up_interruptible_all(&pipe->wr_wait);
737                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
738                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
739         }
740         mutex_unlock(&pipe->mutex);
741 
742         put_pipe_info(inode, pipe);
743         return 0;
744 }
745 
746 static int
747 pipe_fasync(int fd, struct file *filp, int on)
748 {
749         struct pipe_inode_info *pipe = filp->private_data;
750         int retval = 0;
751 
752         mutex_lock(&pipe->mutex);
753         if (filp->f_mode & FMODE_READ)
754                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
755         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
756                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
757                 if (retval < 0 && (filp->f_mode & FMODE_READ))
758                         /* this can happen only if on == T */
759                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
760         }
761         mutex_unlock(&pipe->mutex);
762         return retval;
763 }
764 
765 unsigned long account_pipe_buffers(struct user_struct *user,
766                                    unsigned long old, unsigned long new)
767 {
768         return atomic_long_add_return(new - old, &user->pipe_bufs);
769 }
770 
771 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
772 {
773         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
774 
775         return soft_limit && user_bufs > soft_limit;
776 }
777 
778 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
779 {
780         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
781 
782         return hard_limit && user_bufs > hard_limit;
783 }
784 
785 bool pipe_is_unprivileged_user(void)
786 {
787         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
788 }
789 
790 struct pipe_inode_info *alloc_pipe_info(void)
791 {
792         struct pipe_inode_info *pipe;
793         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
794         struct user_struct *user = get_current_user();
795         unsigned long user_bufs;
796         unsigned int max_size = READ_ONCE(pipe_max_size);
797 
798         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
799         if (pipe == NULL)
800                 goto out_free_uid;
801 
802         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
803                 pipe_bufs = max_size >> PAGE_SHIFT;
804 
805         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
806 
807         if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
808                 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
809                 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
810         }
811 
812         if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
813                 goto out_revert_acct;
814 
815         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
816                              GFP_KERNEL_ACCOUNT);
817 
818         if (pipe->bufs) {
819                 init_waitqueue_head(&pipe->rd_wait);
820                 init_waitqueue_head(&pipe->wr_wait);
821                 pipe->r_counter = pipe->w_counter = 1;
822                 pipe->max_usage = pipe_bufs;
823                 pipe->ring_size = pipe_bufs;
824                 pipe->nr_accounted = pipe_bufs;
825                 pipe->user = user;
826                 mutex_init(&pipe->mutex);
827                 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL);
828                 return pipe;
829         }
830 
831 out_revert_acct:
832         (void) account_pipe_buffers(user, pipe_bufs, 0);
833         kfree(pipe);
834 out_free_uid:
835         free_uid(user);
836         return NULL;
837 }
838 
839 void free_pipe_info(struct pipe_inode_info *pipe)
840 {
841         unsigned int i;
842 
843 #ifdef CONFIG_WATCH_QUEUE
844         if (pipe->watch_queue)
845                 watch_queue_clear(pipe->watch_queue);
846 #endif
847 
848         (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
849         free_uid(pipe->user);
850         for (i = 0; i < pipe->ring_size; i++) {
851                 struct pipe_buffer *buf = pipe->bufs + i;
852                 if (buf->ops)
853                         pipe_buf_release(pipe, buf);
854         }
855 #ifdef CONFIG_WATCH_QUEUE
856         if (pipe->watch_queue)
857                 put_watch_queue(pipe->watch_queue);
858 #endif
859         if (pipe->tmp_page)
860                 __free_page(pipe->tmp_page);
861         kfree(pipe->bufs);
862         kfree(pipe);
863 }
864 
865 static struct vfsmount *pipe_mnt __ro_after_init;
866 
867 /*
868  * pipefs_dname() is called from d_path().
869  */
870 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
871 {
872         return dynamic_dname(buffer, buflen, "pipe:[%lu]",
873                                 d_inode(dentry)->i_ino);
874 }
875 
876 static const struct dentry_operations pipefs_dentry_operations = {
877         .d_dname        = pipefs_dname,
878 };
879 
880 static struct inode * get_pipe_inode(void)
881 {
882         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
883         struct pipe_inode_info *pipe;
884 
885         if (!inode)
886                 goto fail_inode;
887 
888         inode->i_ino = get_next_ino();
889 
890         pipe = alloc_pipe_info();
891         if (!pipe)
892                 goto fail_iput;
893 
894         inode->i_pipe = pipe;
895         pipe->files = 2;
896         pipe->readers = pipe->writers = 1;
897         inode->i_fop = &pipefifo_fops;
898 
899         /*
900          * Mark the inode dirty from the very beginning,
901          * that way it will never be moved to the dirty
902          * list because "mark_inode_dirty()" will think
903          * that it already _is_ on the dirty list.
904          */
905         inode->i_state = I_DIRTY;
906         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
907         inode->i_uid = current_fsuid();
908         inode->i_gid = current_fsgid();
909         simple_inode_init_ts(inode);
910 
911         return inode;
912 
913 fail_iput:
914         iput(inode);
915 
916 fail_inode:
917         return NULL;
918 }
919 
920 int create_pipe_files(struct file **res, int flags)
921 {
922         struct inode *inode = get_pipe_inode();
923         struct file *f;
924         int error;
925 
926         if (!inode)
927                 return -ENFILE;
928 
929         if (flags & O_NOTIFICATION_PIPE) {
930                 error = watch_queue_init(inode->i_pipe);
931                 if (error) {
932                         free_pipe_info(inode->i_pipe);
933                         iput(inode);
934                         return error;
935                 }
936         }
937 
938         f = alloc_file_pseudo(inode, pipe_mnt, "",
939                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
940                                 &pipefifo_fops);
941         if (IS_ERR(f)) {
942                 free_pipe_info(inode->i_pipe);
943                 iput(inode);
944                 return PTR_ERR(f);
945         }
946 
947         f->private_data = inode->i_pipe;
948 
949         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
950                                   &pipefifo_fops);
951         if (IS_ERR(res[0])) {
952                 put_pipe_info(inode, inode->i_pipe);
953                 fput(f);
954                 return PTR_ERR(res[0]);
955         }
956         res[0]->private_data = inode->i_pipe;
957         res[1] = f;
958         stream_open(inode, res[0]);
959         stream_open(inode, res[1]);
960         return 0;
961 }
962 
963 static int __do_pipe_flags(int *fd, struct file **files, int flags)
964 {
965         int error;
966         int fdw, fdr;
967 
968         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
969                 return -EINVAL;
970 
971         error = create_pipe_files(files, flags);
972         if (error)
973                 return error;
974 
975         error = get_unused_fd_flags(flags);
976         if (error < 0)
977                 goto err_read_pipe;
978         fdr = error;
979 
980         error = get_unused_fd_flags(flags);
981         if (error < 0)
982                 goto err_fdr;
983         fdw = error;
984 
985         audit_fd_pair(fdr, fdw);
986         fd[0] = fdr;
987         fd[1] = fdw;
988         /* pipe groks IOCB_NOWAIT */
989         files[0]->f_mode |= FMODE_NOWAIT;
990         files[1]->f_mode |= FMODE_NOWAIT;
991         return 0;
992 
993  err_fdr:
994         put_unused_fd(fdr);
995  err_read_pipe:
996         fput(files[0]);
997         fput(files[1]);
998         return error;
999 }
1000 
1001 int do_pipe_flags(int *fd, int flags)
1002 {
1003         struct file *files[2];
1004         int error = __do_pipe_flags(fd, files, flags);
1005         if (!error) {
1006                 fd_install(fd[0], files[0]);
1007                 fd_install(fd[1], files[1]);
1008         }
1009         return error;
1010 }
1011 
1012 /*
1013  * sys_pipe() is the normal C calling standard for creating
1014  * a pipe. It's not the way Unix traditionally does this, though.
1015  */
1016 static int do_pipe2(int __user *fildes, int flags)
1017 {
1018         struct file *files[2];
1019         int fd[2];
1020         int error;
1021 
1022         error = __do_pipe_flags(fd, files, flags);
1023         if (!error) {
1024                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1025                         fput(files[0]);
1026                         fput(files[1]);
1027                         put_unused_fd(fd[0]);
1028                         put_unused_fd(fd[1]);
1029                         error = -EFAULT;
1030                 } else {
1031                         fd_install(fd[0], files[0]);
1032                         fd_install(fd[1], files[1]);
1033                 }
1034         }
1035         return error;
1036 }
1037 
1038 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1039 {
1040         return do_pipe2(fildes, flags);
1041 }
1042 
1043 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1044 {
1045         return do_pipe2(fildes, 0);
1046 }
1047 
1048 /*
1049  * This is the stupid "wait for pipe to be readable or writable"
1050  * model.
1051  *
1052  * See pipe_read/write() for the proper kind of exclusive wait,
1053  * but that requires that we wake up any other readers/writers
1054  * if we then do not end up reading everything (ie the whole
1055  * "wake_next_reader/writer" logic in pipe_read/write()).
1056  */
1057 void pipe_wait_readable(struct pipe_inode_info *pipe)
1058 {
1059         pipe_unlock(pipe);
1060         wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1061         pipe_lock(pipe);
1062 }
1063 
1064 void pipe_wait_writable(struct pipe_inode_info *pipe)
1065 {
1066         pipe_unlock(pipe);
1067         wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1068         pipe_lock(pipe);
1069 }
1070 
1071 /*
1072  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1073  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1074  * race with the count check and waitqueue prep.
1075  *
1076  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1077  * then check the condition you're waiting for, and only then sleep. But
1078  * because of the pipe lock, we can check the condition before being on
1079  * the wait queue.
1080  *
1081  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1082  */
1083 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1084 {
1085         DEFINE_WAIT(rdwait);
1086         int cur = *cnt;
1087 
1088         while (cur == *cnt) {
1089                 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1090                 pipe_unlock(pipe);
1091                 schedule();
1092                 finish_wait(&pipe->rd_wait, &rdwait);
1093                 pipe_lock(pipe);
1094                 if (signal_pending(current))
1095                         break;
1096         }
1097         return cur == *cnt ? -ERESTARTSYS : 0;
1098 }
1099 
1100 static void wake_up_partner(struct pipe_inode_info *pipe)
1101 {
1102         wake_up_interruptible_all(&pipe->rd_wait);
1103 }
1104 
1105 static int fifo_open(struct inode *inode, struct file *filp)
1106 {
1107         struct pipe_inode_info *pipe;
1108         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1109         int ret;
1110 
1111         filp->f_version = 0;
1112 
1113         spin_lock(&inode->i_lock);
1114         if (inode->i_pipe) {
1115                 pipe = inode->i_pipe;
1116                 pipe->files++;
1117                 spin_unlock(&inode->i_lock);
1118         } else {
1119                 spin_unlock(&inode->i_lock);
1120                 pipe = alloc_pipe_info();
1121                 if (!pipe)
1122                         return -ENOMEM;
1123                 pipe->files = 1;
1124                 spin_lock(&inode->i_lock);
1125                 if (unlikely(inode->i_pipe)) {
1126                         inode->i_pipe->files++;
1127                         spin_unlock(&inode->i_lock);
1128                         free_pipe_info(pipe);
1129                         pipe = inode->i_pipe;
1130                 } else {
1131                         inode->i_pipe = pipe;
1132                         spin_unlock(&inode->i_lock);
1133                 }
1134         }
1135         filp->private_data = pipe;
1136         /* OK, we have a pipe and it's pinned down */
1137 
1138         mutex_lock(&pipe->mutex);
1139 
1140         /* We can only do regular read/write on fifos */
1141         stream_open(inode, filp);
1142 
1143         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1144         case FMODE_READ:
1145         /*
1146          *  O_RDONLY
1147          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1148          *  opened, even when there is no process writing the FIFO.
1149          */
1150                 pipe->r_counter++;
1151                 if (pipe->readers++ == 0)
1152                         wake_up_partner(pipe);
1153 
1154                 if (!is_pipe && !pipe->writers) {
1155                         if ((filp->f_flags & O_NONBLOCK)) {
1156                                 /* suppress EPOLLHUP until we have
1157                                  * seen a writer */
1158                                 filp->f_version = pipe->w_counter;
1159                         } else {
1160                                 if (wait_for_partner(pipe, &pipe->w_counter))
1161                                         goto err_rd;
1162                         }
1163                 }
1164                 break;
1165 
1166         case FMODE_WRITE:
1167         /*
1168          *  O_WRONLY
1169          *  POSIX.1 says that O_NONBLOCK means return -1 with
1170          *  errno=ENXIO when there is no process reading the FIFO.
1171          */
1172                 ret = -ENXIO;
1173                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1174                         goto err;
1175 
1176                 pipe->w_counter++;
1177                 if (!pipe->writers++)
1178                         wake_up_partner(pipe);
1179 
1180                 if (!is_pipe && !pipe->readers) {
1181                         if (wait_for_partner(pipe, &pipe->r_counter))
1182                                 goto err_wr;
1183                 }
1184                 break;
1185 
1186         case FMODE_READ | FMODE_WRITE:
1187         /*
1188          *  O_RDWR
1189          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1190          *  This implementation will NEVER block on a O_RDWR open, since
1191          *  the process can at least talk to itself.
1192          */
1193 
1194                 pipe->readers++;
1195                 pipe->writers++;
1196                 pipe->r_counter++;
1197                 pipe->w_counter++;
1198                 if (pipe->readers == 1 || pipe->writers == 1)
1199                         wake_up_partner(pipe);
1200                 break;
1201 
1202         default:
1203                 ret = -EINVAL;
1204                 goto err;
1205         }
1206 
1207         /* Ok! */
1208         mutex_unlock(&pipe->mutex);
1209         return 0;
1210 
1211 err_rd:
1212         if (!--pipe->readers)
1213                 wake_up_interruptible(&pipe->wr_wait);
1214         ret = -ERESTARTSYS;
1215         goto err;
1216 
1217 err_wr:
1218         if (!--pipe->writers)
1219                 wake_up_interruptible_all(&pipe->rd_wait);
1220         ret = -ERESTARTSYS;
1221         goto err;
1222 
1223 err:
1224         mutex_unlock(&pipe->mutex);
1225 
1226         put_pipe_info(inode, pipe);
1227         return ret;
1228 }
1229 
1230 const struct file_operations pipefifo_fops = {
1231         .open           = fifo_open,
1232         .llseek         = no_llseek,
1233         .read_iter      = pipe_read,
1234         .write_iter     = pipe_write,
1235         .poll           = pipe_poll,
1236         .unlocked_ioctl = pipe_ioctl,
1237         .release        = pipe_release,
1238         .fasync         = pipe_fasync,
1239         .splice_write   = iter_file_splice_write,
1240 };
1241 
1242 /*
1243  * Currently we rely on the pipe array holding a power-of-2 number
1244  * of pages. Returns 0 on error.
1245  */
1246 unsigned int round_pipe_size(unsigned int size)
1247 {
1248         if (size > (1U << 31))
1249                 return 0;
1250 
1251         /* Minimum pipe size, as required by POSIX */
1252         if (size < PAGE_SIZE)
1253                 return PAGE_SIZE;
1254 
1255         return roundup_pow_of_two(size);
1256 }
1257 
1258 /*
1259  * Resize the pipe ring to a number of slots.
1260  *
1261  * Note the pipe can be reduced in capacity, but only if the current
1262  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1263  * returned instead.
1264  */
1265 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1266 {
1267         struct pipe_buffer *bufs;
1268         unsigned int head, tail, mask, n;
1269 
1270         bufs = kcalloc(nr_slots, sizeof(*bufs),
1271                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1272         if (unlikely(!bufs))
1273                 return -ENOMEM;
1274 
1275         spin_lock_irq(&pipe->rd_wait.lock);
1276         mask = pipe->ring_size - 1;
1277         head = pipe->head;
1278         tail = pipe->tail;
1279 
1280         n = pipe_occupancy(head, tail);
1281         if (nr_slots < n) {
1282                 spin_unlock_irq(&pipe->rd_wait.lock);
1283                 kfree(bufs);
1284                 return -EBUSY;
1285         }
1286 
1287         /*
1288          * The pipe array wraps around, so just start the new one at zero
1289          * and adjust the indices.
1290          */
1291         if (n > 0) {
1292                 unsigned int h = head & mask;
1293                 unsigned int t = tail & mask;
1294                 if (h > t) {
1295                         memcpy(bufs, pipe->bufs + t,
1296                                n * sizeof(struct pipe_buffer));
1297                 } else {
1298                         unsigned int tsize = pipe->ring_size - t;
1299                         if (h > 0)
1300                                 memcpy(bufs + tsize, pipe->bufs,
1301                                        h * sizeof(struct pipe_buffer));
1302                         memcpy(bufs, pipe->bufs + t,
1303                                tsize * sizeof(struct pipe_buffer));
1304                 }
1305         }
1306 
1307         head = n;
1308         tail = 0;
1309 
1310         kfree(pipe->bufs);
1311         pipe->bufs = bufs;
1312         pipe->ring_size = nr_slots;
1313         if (pipe->max_usage > nr_slots)
1314                 pipe->max_usage = nr_slots;
1315         pipe->tail = tail;
1316         pipe->head = head;
1317 
1318         if (!pipe_has_watch_queue(pipe)) {
1319                 pipe->max_usage = nr_slots;
1320                 pipe->nr_accounted = nr_slots;
1321         }
1322 
1323         spin_unlock_irq(&pipe->rd_wait.lock);
1324 
1325         /* This might have made more room for writers */
1326         wake_up_interruptible(&pipe->wr_wait);
1327         return 0;
1328 }
1329 
1330 /*
1331  * Allocate a new array of pipe buffers and copy the info over. Returns the
1332  * pipe size if successful, or return -ERROR on error.
1333  */
1334 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1335 {
1336         unsigned long user_bufs;
1337         unsigned int nr_slots, size;
1338         long ret = 0;
1339 
1340         if (pipe_has_watch_queue(pipe))
1341                 return -EBUSY;
1342 
1343         size = round_pipe_size(arg);
1344         nr_slots = size >> PAGE_SHIFT;
1345 
1346         if (!nr_slots)
1347                 return -EINVAL;
1348 
1349         /*
1350          * If trying to increase the pipe capacity, check that an
1351          * unprivileged user is not trying to exceed various limits
1352          * (soft limit check here, hard limit check just below).
1353          * Decreasing the pipe capacity is always permitted, even
1354          * if the user is currently over a limit.
1355          */
1356         if (nr_slots > pipe->max_usage &&
1357                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1358                 return -EPERM;
1359 
1360         user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1361 
1362         if (nr_slots > pipe->max_usage &&
1363                         (too_many_pipe_buffers_hard(user_bufs) ||
1364                          too_many_pipe_buffers_soft(user_bufs)) &&
1365                         pipe_is_unprivileged_user()) {
1366                 ret = -EPERM;
1367                 goto out_revert_acct;
1368         }
1369 
1370         ret = pipe_resize_ring(pipe, nr_slots);
1371         if (ret < 0)
1372                 goto out_revert_acct;
1373 
1374         return pipe->max_usage * PAGE_SIZE;
1375 
1376 out_revert_acct:
1377         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1378         return ret;
1379 }
1380 
1381 /*
1382  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1383  * not enough to verify that this is a pipe.
1384  */
1385 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1386 {
1387         struct pipe_inode_info *pipe = file->private_data;
1388 
1389         if (file->f_op != &pipefifo_fops || !pipe)
1390                 return NULL;
1391         if (for_splice && pipe_has_watch_queue(pipe))
1392                 return NULL;
1393         return pipe;
1394 }
1395 
1396 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1397 {
1398         struct pipe_inode_info *pipe;
1399         long ret;
1400 
1401         pipe = get_pipe_info(file, false);
1402         if (!pipe)
1403                 return -EBADF;
1404 
1405         mutex_lock(&pipe->mutex);
1406 
1407         switch (cmd) {
1408         case F_SETPIPE_SZ:
1409                 ret = pipe_set_size(pipe, arg);
1410                 break;
1411         case F_GETPIPE_SZ:
1412                 ret = pipe->max_usage * PAGE_SIZE;
1413                 break;
1414         default:
1415                 ret = -EINVAL;
1416                 break;
1417         }
1418 
1419         mutex_unlock(&pipe->mutex);
1420         return ret;
1421 }
1422 
1423 static const struct super_operations pipefs_ops = {
1424         .destroy_inode = free_inode_nonrcu,
1425         .statfs = simple_statfs,
1426 };
1427 
1428 /*
1429  * pipefs should _never_ be mounted by userland - too much of security hassle,
1430  * no real gain from having the whole whorehouse mounted. So we don't need
1431  * any operations on the root directory. However, we need a non-trivial
1432  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1433  */
1434 
1435 static int pipefs_init_fs_context(struct fs_context *fc)
1436 {
1437         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1438         if (!ctx)
1439                 return -ENOMEM;
1440         ctx->ops = &pipefs_ops;
1441         ctx->dops = &pipefs_dentry_operations;
1442         return 0;
1443 }
1444 
1445 static struct file_system_type pipe_fs_type = {
1446         .name           = "pipefs",
1447         .init_fs_context = pipefs_init_fs_context,
1448         .kill_sb        = kill_anon_super,
1449 };
1450 
1451 #ifdef CONFIG_SYSCTL
1452 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1453                                         unsigned int *valp,
1454                                         int write, void *data)
1455 {
1456         if (write) {
1457                 unsigned int val;
1458 
1459                 val = round_pipe_size(*lvalp);
1460                 if (val == 0)
1461                         return -EINVAL;
1462 
1463                 *valp = val;
1464         } else {
1465                 unsigned int val = *valp;
1466                 *lvalp = (unsigned long) val;
1467         }
1468 
1469         return 0;
1470 }
1471 
1472 static int proc_dopipe_max_size(const struct ctl_table *table, int write,
1473                                 void *buffer, size_t *lenp, loff_t *ppos)
1474 {
1475         return do_proc_douintvec(table, write, buffer, lenp, ppos,
1476                                  do_proc_dopipe_max_size_conv, NULL);
1477 }
1478 
1479 static struct ctl_table fs_pipe_sysctls[] = {
1480         {
1481                 .procname       = "pipe-max-size",
1482                 .data           = &pipe_max_size,
1483                 .maxlen         = sizeof(pipe_max_size),
1484                 .mode           = 0644,
1485                 .proc_handler   = proc_dopipe_max_size,
1486         },
1487         {
1488                 .procname       = "pipe-user-pages-hard",
1489                 .data           = &pipe_user_pages_hard,
1490                 .maxlen         = sizeof(pipe_user_pages_hard),
1491                 .mode           = 0644,
1492                 .proc_handler   = proc_doulongvec_minmax,
1493         },
1494         {
1495                 .procname       = "pipe-user-pages-soft",
1496                 .data           = &pipe_user_pages_soft,
1497                 .maxlen         = sizeof(pipe_user_pages_soft),
1498                 .mode           = 0644,
1499                 .proc_handler   = proc_doulongvec_minmax,
1500         },
1501 };
1502 #endif
1503 
1504 static int __init init_pipe_fs(void)
1505 {
1506         int err = register_filesystem(&pipe_fs_type);
1507 
1508         if (!err) {
1509                 pipe_mnt = kern_mount(&pipe_fs_type);
1510                 if (IS_ERR(pipe_mnt)) {
1511                         err = PTR_ERR(pipe_mnt);
1512                         unregister_filesystem(&pipe_fs_type);
1513                 }
1514         }
1515 #ifdef CONFIG_SYSCTL
1516         register_sysctl_init("fs", fs_pipe_sysctls);
1517 #endif
1518         return err;
1519 }
1520 
1521 fs_initcall(init_pipe_fs);
1522 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php