1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/pipe.c 4 * 5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds 6 */ 7 8 #include <linux/mm.h> 9 #include <linux/file.h> 10 #include <linux/poll.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/fs.h> 15 #include <linux/log2.h> 16 #include <linux/mount.h> 17 #include <linux/pseudo_fs.h> 18 #include <linux/magic.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/uio.h> 21 #include <linux/highmem.h> 22 #include <linux/pagemap.h> 23 #include <linux/audit.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/memcontrol.h> 27 #include <linux/watch_queue.h> 28 #include <linux/sysctl.h> 29 30 #include <linux/uaccess.h> 31 #include <asm/ioctls.h> 32 33 #include "internal.h" 34 35 /* 36 * New pipe buffers will be restricted to this size while the user is exceeding 37 * their pipe buffer quota. The general pipe use case needs at least two 38 * buffers: one for data yet to be read, and one for new data. If this is less 39 * than two, then a write to a non-empty pipe may block even if the pipe is not 40 * full. This can occur with GNU make jobserver or similar uses of pipes as 41 * semaphores: multiple processes may be waiting to write tokens back to the 42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/. 43 * 44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their 45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is 46 * emptied. 47 */ 48 #define PIPE_MIN_DEF_BUFFERS 2 49 50 /* 51 * The max size that a non-root user is allowed to grow the pipe. Can 52 * be set by root in /proc/sys/fs/pipe-max-size 53 */ 54 static unsigned int pipe_max_size = 1048576; 55 56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft 57 * matches default values. 58 */ 59 static unsigned long pipe_user_pages_hard; 60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR; 61 62 /* 63 * We use head and tail indices that aren't masked off, except at the point of 64 * dereference, but rather they're allowed to wrap naturally. This means there 65 * isn't a dead spot in the buffer, but the ring has to be a power of two and 66 * <= 2^31. 67 * -- David Howells 2019-09-23. 68 * 69 * Reads with count = 0 should always return 0. 70 * -- Julian Bradfield 1999-06-07. 71 * 72 * FIFOs and Pipes now generate SIGIO for both readers and writers. 73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16 74 * 75 * pipe_read & write cleanup 76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09 77 */ 78 79 #define cmp_int(l, r) ((l > r) - (l < r)) 80 81 #ifdef CONFIG_PROVE_LOCKING 82 static int pipe_lock_cmp_fn(const struct lockdep_map *a, 83 const struct lockdep_map *b) 84 { 85 return cmp_int((unsigned long) a, (unsigned long) b); 86 } 87 #endif 88 89 void pipe_lock(struct pipe_inode_info *pipe) 90 { 91 if (pipe->files) 92 mutex_lock(&pipe->mutex); 93 } 94 EXPORT_SYMBOL(pipe_lock); 95 96 void pipe_unlock(struct pipe_inode_info *pipe) 97 { 98 if (pipe->files) 99 mutex_unlock(&pipe->mutex); 100 } 101 EXPORT_SYMBOL(pipe_unlock); 102 103 void pipe_double_lock(struct pipe_inode_info *pipe1, 104 struct pipe_inode_info *pipe2) 105 { 106 BUG_ON(pipe1 == pipe2); 107 108 if (pipe1 > pipe2) 109 swap(pipe1, pipe2); 110 111 pipe_lock(pipe1); 112 pipe_lock(pipe2); 113 } 114 115 static void anon_pipe_buf_release(struct pipe_inode_info *pipe, 116 struct pipe_buffer *buf) 117 { 118 struct page *page = buf->page; 119 120 /* 121 * If nobody else uses this page, and we don't already have a 122 * temporary page, let's keep track of it as a one-deep 123 * allocation cache. (Otherwise just release our reference to it) 124 */ 125 if (page_count(page) == 1 && !pipe->tmp_page) 126 pipe->tmp_page = page; 127 else 128 put_page(page); 129 } 130 131 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe, 132 struct pipe_buffer *buf) 133 { 134 struct page *page = buf->page; 135 136 if (page_count(page) != 1) 137 return false; 138 memcg_kmem_uncharge_page(page, 0); 139 __SetPageLocked(page); 140 return true; 141 } 142 143 /** 144 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer 145 * @pipe: the pipe that the buffer belongs to 146 * @buf: the buffer to attempt to steal 147 * 148 * Description: 149 * This function attempts to steal the &struct page attached to 150 * @buf. If successful, this function returns 0 and returns with 151 * the page locked. The caller may then reuse the page for whatever 152 * he wishes; the typical use is insertion into a different file 153 * page cache. 154 */ 155 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe, 156 struct pipe_buffer *buf) 157 { 158 struct page *page = buf->page; 159 160 /* 161 * A reference of one is golden, that means that the owner of this 162 * page is the only one holding a reference to it. lock the page 163 * and return OK. 164 */ 165 if (page_count(page) == 1) { 166 lock_page(page); 167 return true; 168 } 169 return false; 170 } 171 EXPORT_SYMBOL(generic_pipe_buf_try_steal); 172 173 /** 174 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer 175 * @pipe: the pipe that the buffer belongs to 176 * @buf: the buffer to get a reference to 177 * 178 * Description: 179 * This function grabs an extra reference to @buf. It's used in 180 * the tee() system call, when we duplicate the buffers in one 181 * pipe into another. 182 */ 183 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf) 184 { 185 return try_get_page(buf->page); 186 } 187 EXPORT_SYMBOL(generic_pipe_buf_get); 188 189 /** 190 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer 191 * @pipe: the pipe that the buffer belongs to 192 * @buf: the buffer to put a reference to 193 * 194 * Description: 195 * This function releases a reference to @buf. 196 */ 197 void generic_pipe_buf_release(struct pipe_inode_info *pipe, 198 struct pipe_buffer *buf) 199 { 200 put_page(buf->page); 201 } 202 EXPORT_SYMBOL(generic_pipe_buf_release); 203 204 static const struct pipe_buf_operations anon_pipe_buf_ops = { 205 .release = anon_pipe_buf_release, 206 .try_steal = anon_pipe_buf_try_steal, 207 .get = generic_pipe_buf_get, 208 }; 209 210 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 211 static inline bool pipe_readable(const struct pipe_inode_info *pipe) 212 { 213 unsigned int head = READ_ONCE(pipe->head); 214 unsigned int tail = READ_ONCE(pipe->tail); 215 unsigned int writers = READ_ONCE(pipe->writers); 216 217 return !pipe_empty(head, tail) || !writers; 218 } 219 220 static inline unsigned int pipe_update_tail(struct pipe_inode_info *pipe, 221 struct pipe_buffer *buf, 222 unsigned int tail) 223 { 224 pipe_buf_release(pipe, buf); 225 226 /* 227 * If the pipe has a watch_queue, we need additional protection 228 * by the spinlock because notifications get posted with only 229 * this spinlock, no mutex 230 */ 231 if (pipe_has_watch_queue(pipe)) { 232 spin_lock_irq(&pipe->rd_wait.lock); 233 #ifdef CONFIG_WATCH_QUEUE 234 if (buf->flags & PIPE_BUF_FLAG_LOSS) 235 pipe->note_loss = true; 236 #endif 237 pipe->tail = ++tail; 238 spin_unlock_irq(&pipe->rd_wait.lock); 239 return tail; 240 } 241 242 /* 243 * Without a watch_queue, we can simply increment the tail 244 * without the spinlock - the mutex is enough. 245 */ 246 pipe->tail = ++tail; 247 return tail; 248 } 249 250 static ssize_t 251 pipe_read(struct kiocb *iocb, struct iov_iter *to) 252 { 253 size_t total_len = iov_iter_count(to); 254 struct file *filp = iocb->ki_filp; 255 struct pipe_inode_info *pipe = filp->private_data; 256 bool was_full, wake_next_reader = false; 257 ssize_t ret; 258 259 /* Null read succeeds. */ 260 if (unlikely(total_len == 0)) 261 return 0; 262 263 ret = 0; 264 mutex_lock(&pipe->mutex); 265 266 /* 267 * We only wake up writers if the pipe was full when we started 268 * reading in order to avoid unnecessary wakeups. 269 * 270 * But when we do wake up writers, we do so using a sync wakeup 271 * (WF_SYNC), because we want them to get going and generate more 272 * data for us. 273 */ 274 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 275 for (;;) { 276 /* Read ->head with a barrier vs post_one_notification() */ 277 unsigned int head = smp_load_acquire(&pipe->head); 278 unsigned int tail = pipe->tail; 279 unsigned int mask = pipe->ring_size - 1; 280 281 #ifdef CONFIG_WATCH_QUEUE 282 if (pipe->note_loss) { 283 struct watch_notification n; 284 285 if (total_len < 8) { 286 if (ret == 0) 287 ret = -ENOBUFS; 288 break; 289 } 290 291 n.type = WATCH_TYPE_META; 292 n.subtype = WATCH_META_LOSS_NOTIFICATION; 293 n.info = watch_sizeof(n); 294 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) { 295 if (ret == 0) 296 ret = -EFAULT; 297 break; 298 } 299 ret += sizeof(n); 300 total_len -= sizeof(n); 301 pipe->note_loss = false; 302 } 303 #endif 304 305 if (!pipe_empty(head, tail)) { 306 struct pipe_buffer *buf = &pipe->bufs[tail & mask]; 307 size_t chars = buf->len; 308 size_t written; 309 int error; 310 311 if (chars > total_len) { 312 if (buf->flags & PIPE_BUF_FLAG_WHOLE) { 313 if (ret == 0) 314 ret = -ENOBUFS; 315 break; 316 } 317 chars = total_len; 318 } 319 320 error = pipe_buf_confirm(pipe, buf); 321 if (error) { 322 if (!ret) 323 ret = error; 324 break; 325 } 326 327 written = copy_page_to_iter(buf->page, buf->offset, chars, to); 328 if (unlikely(written < chars)) { 329 if (!ret) 330 ret = -EFAULT; 331 break; 332 } 333 ret += chars; 334 buf->offset += chars; 335 buf->len -= chars; 336 337 /* Was it a packet buffer? Clean up and exit */ 338 if (buf->flags & PIPE_BUF_FLAG_PACKET) { 339 total_len = chars; 340 buf->len = 0; 341 } 342 343 if (!buf->len) 344 tail = pipe_update_tail(pipe, buf, tail); 345 total_len -= chars; 346 if (!total_len) 347 break; /* common path: read succeeded */ 348 if (!pipe_empty(head, tail)) /* More to do? */ 349 continue; 350 } 351 352 if (!pipe->writers) 353 break; 354 if (ret) 355 break; 356 if ((filp->f_flags & O_NONBLOCK) || 357 (iocb->ki_flags & IOCB_NOWAIT)) { 358 ret = -EAGAIN; 359 break; 360 } 361 mutex_unlock(&pipe->mutex); 362 363 /* 364 * We only get here if we didn't actually read anything. 365 * 366 * However, we could have seen (and removed) a zero-sized 367 * pipe buffer, and might have made space in the buffers 368 * that way. 369 * 370 * You can't make zero-sized pipe buffers by doing an empty 371 * write (not even in packet mode), but they can happen if 372 * the writer gets an EFAULT when trying to fill a buffer 373 * that already got allocated and inserted in the buffer 374 * array. 375 * 376 * So we still need to wake up any pending writers in the 377 * _very_ unlikely case that the pipe was full, but we got 378 * no data. 379 */ 380 if (unlikely(was_full)) 381 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 382 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 383 384 /* 385 * But because we didn't read anything, at this point we can 386 * just return directly with -ERESTARTSYS if we're interrupted, 387 * since we've done any required wakeups and there's no need 388 * to mark anything accessed. And we've dropped the lock. 389 */ 390 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0) 391 return -ERESTARTSYS; 392 393 mutex_lock(&pipe->mutex); 394 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage); 395 wake_next_reader = true; 396 } 397 if (pipe_empty(pipe->head, pipe->tail)) 398 wake_next_reader = false; 399 mutex_unlock(&pipe->mutex); 400 401 if (was_full) 402 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 403 if (wake_next_reader) 404 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 405 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 406 if (ret > 0) 407 file_accessed(filp); 408 return ret; 409 } 410 411 static inline int is_packetized(struct file *file) 412 { 413 return (file->f_flags & O_DIRECT) != 0; 414 } 415 416 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */ 417 static inline bool pipe_writable(const struct pipe_inode_info *pipe) 418 { 419 unsigned int head = READ_ONCE(pipe->head); 420 unsigned int tail = READ_ONCE(pipe->tail); 421 unsigned int max_usage = READ_ONCE(pipe->max_usage); 422 423 return !pipe_full(head, tail, max_usage) || 424 !READ_ONCE(pipe->readers); 425 } 426 427 static ssize_t 428 pipe_write(struct kiocb *iocb, struct iov_iter *from) 429 { 430 struct file *filp = iocb->ki_filp; 431 struct pipe_inode_info *pipe = filp->private_data; 432 unsigned int head; 433 ssize_t ret = 0; 434 size_t total_len = iov_iter_count(from); 435 ssize_t chars; 436 bool was_empty = false; 437 bool wake_next_writer = false; 438 439 /* 440 * Reject writing to watch queue pipes before the point where we lock 441 * the pipe. 442 * Otherwise, lockdep would be unhappy if the caller already has another 443 * pipe locked. 444 * If we had to support locking a normal pipe and a notification pipe at 445 * the same time, we could set up lockdep annotations for that, but 446 * since we don't actually need that, it's simpler to just bail here. 447 */ 448 if (pipe_has_watch_queue(pipe)) 449 return -EXDEV; 450 451 /* Null write succeeds. */ 452 if (unlikely(total_len == 0)) 453 return 0; 454 455 mutex_lock(&pipe->mutex); 456 457 if (!pipe->readers) { 458 send_sig(SIGPIPE, current, 0); 459 ret = -EPIPE; 460 goto out; 461 } 462 463 /* 464 * If it wasn't empty we try to merge new data into 465 * the last buffer. 466 * 467 * That naturally merges small writes, but it also 468 * page-aligns the rest of the writes for large writes 469 * spanning multiple pages. 470 */ 471 head = pipe->head; 472 was_empty = pipe_empty(head, pipe->tail); 473 chars = total_len & (PAGE_SIZE-1); 474 if (chars && !was_empty) { 475 unsigned int mask = pipe->ring_size - 1; 476 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask]; 477 int offset = buf->offset + buf->len; 478 479 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) && 480 offset + chars <= PAGE_SIZE) { 481 ret = pipe_buf_confirm(pipe, buf); 482 if (ret) 483 goto out; 484 485 ret = copy_page_from_iter(buf->page, offset, chars, from); 486 if (unlikely(ret < chars)) { 487 ret = -EFAULT; 488 goto out; 489 } 490 491 buf->len += ret; 492 if (!iov_iter_count(from)) 493 goto out; 494 } 495 } 496 497 for (;;) { 498 if (!pipe->readers) { 499 send_sig(SIGPIPE, current, 0); 500 if (!ret) 501 ret = -EPIPE; 502 break; 503 } 504 505 head = pipe->head; 506 if (!pipe_full(head, pipe->tail, pipe->max_usage)) { 507 unsigned int mask = pipe->ring_size - 1; 508 struct pipe_buffer *buf; 509 struct page *page = pipe->tmp_page; 510 int copied; 511 512 if (!page) { 513 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT); 514 if (unlikely(!page)) { 515 ret = ret ? : -ENOMEM; 516 break; 517 } 518 pipe->tmp_page = page; 519 } 520 521 /* Allocate a slot in the ring in advance and attach an 522 * empty buffer. If we fault or otherwise fail to use 523 * it, either the reader will consume it or it'll still 524 * be there for the next write. 525 */ 526 pipe->head = head + 1; 527 528 /* Insert it into the buffer array */ 529 buf = &pipe->bufs[head & mask]; 530 buf->page = page; 531 buf->ops = &anon_pipe_buf_ops; 532 buf->offset = 0; 533 buf->len = 0; 534 if (is_packetized(filp)) 535 buf->flags = PIPE_BUF_FLAG_PACKET; 536 else 537 buf->flags = PIPE_BUF_FLAG_CAN_MERGE; 538 pipe->tmp_page = NULL; 539 540 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from); 541 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) { 542 if (!ret) 543 ret = -EFAULT; 544 break; 545 } 546 ret += copied; 547 buf->len = copied; 548 549 if (!iov_iter_count(from)) 550 break; 551 } 552 553 if (!pipe_full(head, pipe->tail, pipe->max_usage)) 554 continue; 555 556 /* Wait for buffer space to become available. */ 557 if ((filp->f_flags & O_NONBLOCK) || 558 (iocb->ki_flags & IOCB_NOWAIT)) { 559 if (!ret) 560 ret = -EAGAIN; 561 break; 562 } 563 if (signal_pending(current)) { 564 if (!ret) 565 ret = -ERESTARTSYS; 566 break; 567 } 568 569 /* 570 * We're going to release the pipe lock and wait for more 571 * space. We wake up any readers if necessary, and then 572 * after waiting we need to re-check whether the pipe 573 * become empty while we dropped the lock. 574 */ 575 mutex_unlock(&pipe->mutex); 576 if (was_empty) 577 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 578 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 579 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe)); 580 mutex_lock(&pipe->mutex); 581 was_empty = pipe_empty(pipe->head, pipe->tail); 582 wake_next_writer = true; 583 } 584 out: 585 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 586 wake_next_writer = false; 587 mutex_unlock(&pipe->mutex); 588 589 /* 590 * If we do do a wakeup event, we do a 'sync' wakeup, because we 591 * want the reader to start processing things asap, rather than 592 * leave the data pending. 593 * 594 * This is particularly important for small writes, because of 595 * how (for example) the GNU make jobserver uses small writes to 596 * wake up pending jobs 597 * 598 * Epoll nonsensically wants a wakeup whether the pipe 599 * was already empty or not. 600 */ 601 if (was_empty || pipe->poll_usage) 602 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM); 603 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 604 if (wake_next_writer) 605 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM); 606 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) { 607 int err = file_update_time(filp); 608 if (err) 609 ret = err; 610 sb_end_write(file_inode(filp)->i_sb); 611 } 612 return ret; 613 } 614 615 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) 616 { 617 struct pipe_inode_info *pipe = filp->private_data; 618 unsigned int count, head, tail, mask; 619 620 switch (cmd) { 621 case FIONREAD: 622 mutex_lock(&pipe->mutex); 623 count = 0; 624 head = pipe->head; 625 tail = pipe->tail; 626 mask = pipe->ring_size - 1; 627 628 while (tail != head) { 629 count += pipe->bufs[tail & mask].len; 630 tail++; 631 } 632 mutex_unlock(&pipe->mutex); 633 634 return put_user(count, (int __user *)arg); 635 636 #ifdef CONFIG_WATCH_QUEUE 637 case IOC_WATCH_QUEUE_SET_SIZE: { 638 int ret; 639 mutex_lock(&pipe->mutex); 640 ret = watch_queue_set_size(pipe, arg); 641 mutex_unlock(&pipe->mutex); 642 return ret; 643 } 644 645 case IOC_WATCH_QUEUE_SET_FILTER: 646 return watch_queue_set_filter( 647 pipe, (struct watch_notification_filter __user *)arg); 648 #endif 649 650 default: 651 return -ENOIOCTLCMD; 652 } 653 } 654 655 /* No kernel lock held - fine */ 656 static __poll_t 657 pipe_poll(struct file *filp, poll_table *wait) 658 { 659 __poll_t mask; 660 struct pipe_inode_info *pipe = filp->private_data; 661 unsigned int head, tail; 662 663 /* Epoll has some historical nasty semantics, this enables them */ 664 WRITE_ONCE(pipe->poll_usage, true); 665 666 /* 667 * Reading pipe state only -- no need for acquiring the semaphore. 668 * 669 * But because this is racy, the code has to add the 670 * entry to the poll table _first_ .. 671 */ 672 if (filp->f_mode & FMODE_READ) 673 poll_wait(filp, &pipe->rd_wait, wait); 674 if (filp->f_mode & FMODE_WRITE) 675 poll_wait(filp, &pipe->wr_wait, wait); 676 677 /* 678 * .. and only then can you do the racy tests. That way, 679 * if something changes and you got it wrong, the poll 680 * table entry will wake you up and fix it. 681 */ 682 head = READ_ONCE(pipe->head); 683 tail = READ_ONCE(pipe->tail); 684 685 mask = 0; 686 if (filp->f_mode & FMODE_READ) { 687 if (!pipe_empty(head, tail)) 688 mask |= EPOLLIN | EPOLLRDNORM; 689 if (!pipe->writers && filp->f_version != pipe->w_counter) 690 mask |= EPOLLHUP; 691 } 692 693 if (filp->f_mode & FMODE_WRITE) { 694 if (!pipe_full(head, tail, pipe->max_usage)) 695 mask |= EPOLLOUT | EPOLLWRNORM; 696 /* 697 * Most Unices do not set EPOLLERR for FIFOs but on Linux they 698 * behave exactly like pipes for poll(). 699 */ 700 if (!pipe->readers) 701 mask |= EPOLLERR; 702 } 703 704 return mask; 705 } 706 707 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe) 708 { 709 int kill = 0; 710 711 spin_lock(&inode->i_lock); 712 if (!--pipe->files) { 713 inode->i_pipe = NULL; 714 kill = 1; 715 } 716 spin_unlock(&inode->i_lock); 717 718 if (kill) 719 free_pipe_info(pipe); 720 } 721 722 static int 723 pipe_release(struct inode *inode, struct file *file) 724 { 725 struct pipe_inode_info *pipe = file->private_data; 726 727 mutex_lock(&pipe->mutex); 728 if (file->f_mode & FMODE_READ) 729 pipe->readers--; 730 if (file->f_mode & FMODE_WRITE) 731 pipe->writers--; 732 733 /* Was that the last reader or writer, but not the other side? */ 734 if (!pipe->readers != !pipe->writers) { 735 wake_up_interruptible_all(&pipe->rd_wait); 736 wake_up_interruptible_all(&pipe->wr_wait); 737 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 738 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT); 739 } 740 mutex_unlock(&pipe->mutex); 741 742 put_pipe_info(inode, pipe); 743 return 0; 744 } 745 746 static int 747 pipe_fasync(int fd, struct file *filp, int on) 748 { 749 struct pipe_inode_info *pipe = filp->private_data; 750 int retval = 0; 751 752 mutex_lock(&pipe->mutex); 753 if (filp->f_mode & FMODE_READ) 754 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers); 755 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) { 756 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers); 757 if (retval < 0 && (filp->f_mode & FMODE_READ)) 758 /* this can happen only if on == T */ 759 fasync_helper(-1, filp, 0, &pipe->fasync_readers); 760 } 761 mutex_unlock(&pipe->mutex); 762 return retval; 763 } 764 765 unsigned long account_pipe_buffers(struct user_struct *user, 766 unsigned long old, unsigned long new) 767 { 768 return atomic_long_add_return(new - old, &user->pipe_bufs); 769 } 770 771 bool too_many_pipe_buffers_soft(unsigned long user_bufs) 772 { 773 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft); 774 775 return soft_limit && user_bufs > soft_limit; 776 } 777 778 bool too_many_pipe_buffers_hard(unsigned long user_bufs) 779 { 780 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard); 781 782 return hard_limit && user_bufs > hard_limit; 783 } 784 785 bool pipe_is_unprivileged_user(void) 786 { 787 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN); 788 } 789 790 struct pipe_inode_info *alloc_pipe_info(void) 791 { 792 struct pipe_inode_info *pipe; 793 unsigned long pipe_bufs = PIPE_DEF_BUFFERS; 794 struct user_struct *user = get_current_user(); 795 unsigned long user_bufs; 796 unsigned int max_size = READ_ONCE(pipe_max_size); 797 798 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT); 799 if (pipe == NULL) 800 goto out_free_uid; 801 802 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE)) 803 pipe_bufs = max_size >> PAGE_SHIFT; 804 805 user_bufs = account_pipe_buffers(user, 0, pipe_bufs); 806 807 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) { 808 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS); 809 pipe_bufs = PIPE_MIN_DEF_BUFFERS; 810 } 811 812 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user()) 813 goto out_revert_acct; 814 815 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer), 816 GFP_KERNEL_ACCOUNT); 817 818 if (pipe->bufs) { 819 init_waitqueue_head(&pipe->rd_wait); 820 init_waitqueue_head(&pipe->wr_wait); 821 pipe->r_counter = pipe->w_counter = 1; 822 pipe->max_usage = pipe_bufs; 823 pipe->ring_size = pipe_bufs; 824 pipe->nr_accounted = pipe_bufs; 825 pipe->user = user; 826 mutex_init(&pipe->mutex); 827 lock_set_cmp_fn(&pipe->mutex, pipe_lock_cmp_fn, NULL); 828 return pipe; 829 } 830 831 out_revert_acct: 832 (void) account_pipe_buffers(user, pipe_bufs, 0); 833 kfree(pipe); 834 out_free_uid: 835 free_uid(user); 836 return NULL; 837 } 838 839 void free_pipe_info(struct pipe_inode_info *pipe) 840 { 841 unsigned int i; 842 843 #ifdef CONFIG_WATCH_QUEUE 844 if (pipe->watch_queue) 845 watch_queue_clear(pipe->watch_queue); 846 #endif 847 848 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0); 849 free_uid(pipe->user); 850 for (i = 0; i < pipe->ring_size; i++) { 851 struct pipe_buffer *buf = pipe->bufs + i; 852 if (buf->ops) 853 pipe_buf_release(pipe, buf); 854 } 855 #ifdef CONFIG_WATCH_QUEUE 856 if (pipe->watch_queue) 857 put_watch_queue(pipe->watch_queue); 858 #endif 859 if (pipe->tmp_page) 860 __free_page(pipe->tmp_page); 861 kfree(pipe->bufs); 862 kfree(pipe); 863 } 864 865 static struct vfsmount *pipe_mnt __ro_after_init; 866 867 /* 868 * pipefs_dname() is called from d_path(). 869 */ 870 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen) 871 { 872 return dynamic_dname(buffer, buflen, "pipe:[%lu]", 873 d_inode(dentry)->i_ino); 874 } 875 876 static const struct dentry_operations pipefs_dentry_operations = { 877 .d_dname = pipefs_dname, 878 }; 879 880 static struct inode * get_pipe_inode(void) 881 { 882 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb); 883 struct pipe_inode_info *pipe; 884 885 if (!inode) 886 goto fail_inode; 887 888 inode->i_ino = get_next_ino(); 889 890 pipe = alloc_pipe_info(); 891 if (!pipe) 892 goto fail_iput; 893 894 inode->i_pipe = pipe; 895 pipe->files = 2; 896 pipe->readers = pipe->writers = 1; 897 inode->i_fop = &pipefifo_fops; 898 899 /* 900 * Mark the inode dirty from the very beginning, 901 * that way it will never be moved to the dirty 902 * list because "mark_inode_dirty()" will think 903 * that it already _is_ on the dirty list. 904 */ 905 inode->i_state = I_DIRTY; 906 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR; 907 inode->i_uid = current_fsuid(); 908 inode->i_gid = current_fsgid(); 909 simple_inode_init_ts(inode); 910 911 return inode; 912 913 fail_iput: 914 iput(inode); 915 916 fail_inode: 917 return NULL; 918 } 919 920 int create_pipe_files(struct file **res, int flags) 921 { 922 struct inode *inode = get_pipe_inode(); 923 struct file *f; 924 int error; 925 926 if (!inode) 927 return -ENFILE; 928 929 if (flags & O_NOTIFICATION_PIPE) { 930 error = watch_queue_init(inode->i_pipe); 931 if (error) { 932 free_pipe_info(inode->i_pipe); 933 iput(inode); 934 return error; 935 } 936 } 937 938 f = alloc_file_pseudo(inode, pipe_mnt, "", 939 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)), 940 &pipefifo_fops); 941 if (IS_ERR(f)) { 942 free_pipe_info(inode->i_pipe); 943 iput(inode); 944 return PTR_ERR(f); 945 } 946 947 f->private_data = inode->i_pipe; 948 949 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK), 950 &pipefifo_fops); 951 if (IS_ERR(res[0])) { 952 put_pipe_info(inode, inode->i_pipe); 953 fput(f); 954 return PTR_ERR(res[0]); 955 } 956 res[0]->private_data = inode->i_pipe; 957 res[1] = f; 958 stream_open(inode, res[0]); 959 stream_open(inode, res[1]); 960 return 0; 961 } 962 963 static int __do_pipe_flags(int *fd, struct file **files, int flags) 964 { 965 int error; 966 int fdw, fdr; 967 968 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE)) 969 return -EINVAL; 970 971 error = create_pipe_files(files, flags); 972 if (error) 973 return error; 974 975 error = get_unused_fd_flags(flags); 976 if (error < 0) 977 goto err_read_pipe; 978 fdr = error; 979 980 error = get_unused_fd_flags(flags); 981 if (error < 0) 982 goto err_fdr; 983 fdw = error; 984 985 audit_fd_pair(fdr, fdw); 986 fd[0] = fdr; 987 fd[1] = fdw; 988 /* pipe groks IOCB_NOWAIT */ 989 files[0]->f_mode |= FMODE_NOWAIT; 990 files[1]->f_mode |= FMODE_NOWAIT; 991 return 0; 992 993 err_fdr: 994 put_unused_fd(fdr); 995 err_read_pipe: 996 fput(files[0]); 997 fput(files[1]); 998 return error; 999 } 1000 1001 int do_pipe_flags(int *fd, int flags) 1002 { 1003 struct file *files[2]; 1004 int error = __do_pipe_flags(fd, files, flags); 1005 if (!error) { 1006 fd_install(fd[0], files[0]); 1007 fd_install(fd[1], files[1]); 1008 } 1009 return error; 1010 } 1011 1012 /* 1013 * sys_pipe() is the normal C calling standard for creating 1014 * a pipe. It's not the way Unix traditionally does this, though. 1015 */ 1016 static int do_pipe2(int __user *fildes, int flags) 1017 { 1018 struct file *files[2]; 1019 int fd[2]; 1020 int error; 1021 1022 error = __do_pipe_flags(fd, files, flags); 1023 if (!error) { 1024 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) { 1025 fput(files[0]); 1026 fput(files[1]); 1027 put_unused_fd(fd[0]); 1028 put_unused_fd(fd[1]); 1029 error = -EFAULT; 1030 } else { 1031 fd_install(fd[0], files[0]); 1032 fd_install(fd[1], files[1]); 1033 } 1034 } 1035 return error; 1036 } 1037 1038 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags) 1039 { 1040 return do_pipe2(fildes, flags); 1041 } 1042 1043 SYSCALL_DEFINE1(pipe, int __user *, fildes) 1044 { 1045 return do_pipe2(fildes, 0); 1046 } 1047 1048 /* 1049 * This is the stupid "wait for pipe to be readable or writable" 1050 * model. 1051 * 1052 * See pipe_read/write() for the proper kind of exclusive wait, 1053 * but that requires that we wake up any other readers/writers 1054 * if we then do not end up reading everything (ie the whole 1055 * "wake_next_reader/writer" logic in pipe_read/write()). 1056 */ 1057 void pipe_wait_readable(struct pipe_inode_info *pipe) 1058 { 1059 pipe_unlock(pipe); 1060 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe)); 1061 pipe_lock(pipe); 1062 } 1063 1064 void pipe_wait_writable(struct pipe_inode_info *pipe) 1065 { 1066 pipe_unlock(pipe); 1067 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe)); 1068 pipe_lock(pipe); 1069 } 1070 1071 /* 1072 * This depends on both the wait (here) and the wakeup (wake_up_partner) 1073 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot 1074 * race with the count check and waitqueue prep. 1075 * 1076 * Normally in order to avoid races, you'd do the prepare_to_wait() first, 1077 * then check the condition you're waiting for, and only then sleep. But 1078 * because of the pipe lock, we can check the condition before being on 1079 * the wait queue. 1080 * 1081 * We use the 'rd_wait' waitqueue for pipe partner waiting. 1082 */ 1083 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt) 1084 { 1085 DEFINE_WAIT(rdwait); 1086 int cur = *cnt; 1087 1088 while (cur == *cnt) { 1089 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE); 1090 pipe_unlock(pipe); 1091 schedule(); 1092 finish_wait(&pipe->rd_wait, &rdwait); 1093 pipe_lock(pipe); 1094 if (signal_pending(current)) 1095 break; 1096 } 1097 return cur == *cnt ? -ERESTARTSYS : 0; 1098 } 1099 1100 static void wake_up_partner(struct pipe_inode_info *pipe) 1101 { 1102 wake_up_interruptible_all(&pipe->rd_wait); 1103 } 1104 1105 static int fifo_open(struct inode *inode, struct file *filp) 1106 { 1107 struct pipe_inode_info *pipe; 1108 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC; 1109 int ret; 1110 1111 filp->f_version = 0; 1112 1113 spin_lock(&inode->i_lock); 1114 if (inode->i_pipe) { 1115 pipe = inode->i_pipe; 1116 pipe->files++; 1117 spin_unlock(&inode->i_lock); 1118 } else { 1119 spin_unlock(&inode->i_lock); 1120 pipe = alloc_pipe_info(); 1121 if (!pipe) 1122 return -ENOMEM; 1123 pipe->files = 1; 1124 spin_lock(&inode->i_lock); 1125 if (unlikely(inode->i_pipe)) { 1126 inode->i_pipe->files++; 1127 spin_unlock(&inode->i_lock); 1128 free_pipe_info(pipe); 1129 pipe = inode->i_pipe; 1130 } else { 1131 inode->i_pipe = pipe; 1132 spin_unlock(&inode->i_lock); 1133 } 1134 } 1135 filp->private_data = pipe; 1136 /* OK, we have a pipe and it's pinned down */ 1137 1138 mutex_lock(&pipe->mutex); 1139 1140 /* We can only do regular read/write on fifos */ 1141 stream_open(inode, filp); 1142 1143 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) { 1144 case FMODE_READ: 1145 /* 1146 * O_RDONLY 1147 * POSIX.1 says that O_NONBLOCK means return with the FIFO 1148 * opened, even when there is no process writing the FIFO. 1149 */ 1150 pipe->r_counter++; 1151 if (pipe->readers++ == 0) 1152 wake_up_partner(pipe); 1153 1154 if (!is_pipe && !pipe->writers) { 1155 if ((filp->f_flags & O_NONBLOCK)) { 1156 /* suppress EPOLLHUP until we have 1157 * seen a writer */ 1158 filp->f_version = pipe->w_counter; 1159 } else { 1160 if (wait_for_partner(pipe, &pipe->w_counter)) 1161 goto err_rd; 1162 } 1163 } 1164 break; 1165 1166 case FMODE_WRITE: 1167 /* 1168 * O_WRONLY 1169 * POSIX.1 says that O_NONBLOCK means return -1 with 1170 * errno=ENXIO when there is no process reading the FIFO. 1171 */ 1172 ret = -ENXIO; 1173 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers) 1174 goto err; 1175 1176 pipe->w_counter++; 1177 if (!pipe->writers++) 1178 wake_up_partner(pipe); 1179 1180 if (!is_pipe && !pipe->readers) { 1181 if (wait_for_partner(pipe, &pipe->r_counter)) 1182 goto err_wr; 1183 } 1184 break; 1185 1186 case FMODE_READ | FMODE_WRITE: 1187 /* 1188 * O_RDWR 1189 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set. 1190 * This implementation will NEVER block on a O_RDWR open, since 1191 * the process can at least talk to itself. 1192 */ 1193 1194 pipe->readers++; 1195 pipe->writers++; 1196 pipe->r_counter++; 1197 pipe->w_counter++; 1198 if (pipe->readers == 1 || pipe->writers == 1) 1199 wake_up_partner(pipe); 1200 break; 1201 1202 default: 1203 ret = -EINVAL; 1204 goto err; 1205 } 1206 1207 /* Ok! */ 1208 mutex_unlock(&pipe->mutex); 1209 return 0; 1210 1211 err_rd: 1212 if (!--pipe->readers) 1213 wake_up_interruptible(&pipe->wr_wait); 1214 ret = -ERESTARTSYS; 1215 goto err; 1216 1217 err_wr: 1218 if (!--pipe->writers) 1219 wake_up_interruptible_all(&pipe->rd_wait); 1220 ret = -ERESTARTSYS; 1221 goto err; 1222 1223 err: 1224 mutex_unlock(&pipe->mutex); 1225 1226 put_pipe_info(inode, pipe); 1227 return ret; 1228 } 1229 1230 const struct file_operations pipefifo_fops = { 1231 .open = fifo_open, 1232 .llseek = no_llseek, 1233 .read_iter = pipe_read, 1234 .write_iter = pipe_write, 1235 .poll = pipe_poll, 1236 .unlocked_ioctl = pipe_ioctl, 1237 .release = pipe_release, 1238 .fasync = pipe_fasync, 1239 .splice_write = iter_file_splice_write, 1240 }; 1241 1242 /* 1243 * Currently we rely on the pipe array holding a power-of-2 number 1244 * of pages. Returns 0 on error. 1245 */ 1246 unsigned int round_pipe_size(unsigned int size) 1247 { 1248 if (size > (1U << 31)) 1249 return 0; 1250 1251 /* Minimum pipe size, as required by POSIX */ 1252 if (size < PAGE_SIZE) 1253 return PAGE_SIZE; 1254 1255 return roundup_pow_of_two(size); 1256 } 1257 1258 /* 1259 * Resize the pipe ring to a number of slots. 1260 * 1261 * Note the pipe can be reduced in capacity, but only if the current 1262 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be 1263 * returned instead. 1264 */ 1265 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots) 1266 { 1267 struct pipe_buffer *bufs; 1268 unsigned int head, tail, mask, n; 1269 1270 bufs = kcalloc(nr_slots, sizeof(*bufs), 1271 GFP_KERNEL_ACCOUNT | __GFP_NOWARN); 1272 if (unlikely(!bufs)) 1273 return -ENOMEM; 1274 1275 spin_lock_irq(&pipe->rd_wait.lock); 1276 mask = pipe->ring_size - 1; 1277 head = pipe->head; 1278 tail = pipe->tail; 1279 1280 n = pipe_occupancy(head, tail); 1281 if (nr_slots < n) { 1282 spin_unlock_irq(&pipe->rd_wait.lock); 1283 kfree(bufs); 1284 return -EBUSY; 1285 } 1286 1287 /* 1288 * The pipe array wraps around, so just start the new one at zero 1289 * and adjust the indices. 1290 */ 1291 if (n > 0) { 1292 unsigned int h = head & mask; 1293 unsigned int t = tail & mask; 1294 if (h > t) { 1295 memcpy(bufs, pipe->bufs + t, 1296 n * sizeof(struct pipe_buffer)); 1297 } else { 1298 unsigned int tsize = pipe->ring_size - t; 1299 if (h > 0) 1300 memcpy(bufs + tsize, pipe->bufs, 1301 h * sizeof(struct pipe_buffer)); 1302 memcpy(bufs, pipe->bufs + t, 1303 tsize * sizeof(struct pipe_buffer)); 1304 } 1305 } 1306 1307 head = n; 1308 tail = 0; 1309 1310 kfree(pipe->bufs); 1311 pipe->bufs = bufs; 1312 pipe->ring_size = nr_slots; 1313 if (pipe->max_usage > nr_slots) 1314 pipe->max_usage = nr_slots; 1315 pipe->tail = tail; 1316 pipe->head = head; 1317 1318 if (!pipe_has_watch_queue(pipe)) { 1319 pipe->max_usage = nr_slots; 1320 pipe->nr_accounted = nr_slots; 1321 } 1322 1323 spin_unlock_irq(&pipe->rd_wait.lock); 1324 1325 /* This might have made more room for writers */ 1326 wake_up_interruptible(&pipe->wr_wait); 1327 return 0; 1328 } 1329 1330 /* 1331 * Allocate a new array of pipe buffers and copy the info over. Returns the 1332 * pipe size if successful, or return -ERROR on error. 1333 */ 1334 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg) 1335 { 1336 unsigned long user_bufs; 1337 unsigned int nr_slots, size; 1338 long ret = 0; 1339 1340 if (pipe_has_watch_queue(pipe)) 1341 return -EBUSY; 1342 1343 size = round_pipe_size(arg); 1344 nr_slots = size >> PAGE_SHIFT; 1345 1346 if (!nr_slots) 1347 return -EINVAL; 1348 1349 /* 1350 * If trying to increase the pipe capacity, check that an 1351 * unprivileged user is not trying to exceed various limits 1352 * (soft limit check here, hard limit check just below). 1353 * Decreasing the pipe capacity is always permitted, even 1354 * if the user is currently over a limit. 1355 */ 1356 if (nr_slots > pipe->max_usage && 1357 size > pipe_max_size && !capable(CAP_SYS_RESOURCE)) 1358 return -EPERM; 1359 1360 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots); 1361 1362 if (nr_slots > pipe->max_usage && 1363 (too_many_pipe_buffers_hard(user_bufs) || 1364 too_many_pipe_buffers_soft(user_bufs)) && 1365 pipe_is_unprivileged_user()) { 1366 ret = -EPERM; 1367 goto out_revert_acct; 1368 } 1369 1370 ret = pipe_resize_ring(pipe, nr_slots); 1371 if (ret < 0) 1372 goto out_revert_acct; 1373 1374 return pipe->max_usage * PAGE_SIZE; 1375 1376 out_revert_acct: 1377 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted); 1378 return ret; 1379 } 1380 1381 /* 1382 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is 1383 * not enough to verify that this is a pipe. 1384 */ 1385 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice) 1386 { 1387 struct pipe_inode_info *pipe = file->private_data; 1388 1389 if (file->f_op != &pipefifo_fops || !pipe) 1390 return NULL; 1391 if (for_splice && pipe_has_watch_queue(pipe)) 1392 return NULL; 1393 return pipe; 1394 } 1395 1396 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg) 1397 { 1398 struct pipe_inode_info *pipe; 1399 long ret; 1400 1401 pipe = get_pipe_info(file, false); 1402 if (!pipe) 1403 return -EBADF; 1404 1405 mutex_lock(&pipe->mutex); 1406 1407 switch (cmd) { 1408 case F_SETPIPE_SZ: 1409 ret = pipe_set_size(pipe, arg); 1410 break; 1411 case F_GETPIPE_SZ: 1412 ret = pipe->max_usage * PAGE_SIZE; 1413 break; 1414 default: 1415 ret = -EINVAL; 1416 break; 1417 } 1418 1419 mutex_unlock(&pipe->mutex); 1420 return ret; 1421 } 1422 1423 static const struct super_operations pipefs_ops = { 1424 .destroy_inode = free_inode_nonrcu, 1425 .statfs = simple_statfs, 1426 }; 1427 1428 /* 1429 * pipefs should _never_ be mounted by userland - too much of security hassle, 1430 * no real gain from having the whole whorehouse mounted. So we don't need 1431 * any operations on the root directory. However, we need a non-trivial 1432 * d_name - pipe: will go nicely and kill the special-casing in procfs. 1433 */ 1434 1435 static int pipefs_init_fs_context(struct fs_context *fc) 1436 { 1437 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC); 1438 if (!ctx) 1439 return -ENOMEM; 1440 ctx->ops = &pipefs_ops; 1441 ctx->dops = &pipefs_dentry_operations; 1442 return 0; 1443 } 1444 1445 static struct file_system_type pipe_fs_type = { 1446 .name = "pipefs", 1447 .init_fs_context = pipefs_init_fs_context, 1448 .kill_sb = kill_anon_super, 1449 }; 1450 1451 #ifdef CONFIG_SYSCTL 1452 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp, 1453 unsigned int *valp, 1454 int write, void *data) 1455 { 1456 if (write) { 1457 unsigned int val; 1458 1459 val = round_pipe_size(*lvalp); 1460 if (val == 0) 1461 return -EINVAL; 1462 1463 *valp = val; 1464 } else { 1465 unsigned int val = *valp; 1466 *lvalp = (unsigned long) val; 1467 } 1468 1469 return 0; 1470 } 1471 1472 static int proc_dopipe_max_size(const struct ctl_table *table, int write, 1473 void *buffer, size_t *lenp, loff_t *ppos) 1474 { 1475 return do_proc_douintvec(table, write, buffer, lenp, ppos, 1476 do_proc_dopipe_max_size_conv, NULL); 1477 } 1478 1479 static struct ctl_table fs_pipe_sysctls[] = { 1480 { 1481 .procname = "pipe-max-size", 1482 .data = &pipe_max_size, 1483 .maxlen = sizeof(pipe_max_size), 1484 .mode = 0644, 1485 .proc_handler = proc_dopipe_max_size, 1486 }, 1487 { 1488 .procname = "pipe-user-pages-hard", 1489 .data = &pipe_user_pages_hard, 1490 .maxlen = sizeof(pipe_user_pages_hard), 1491 .mode = 0644, 1492 .proc_handler = proc_doulongvec_minmax, 1493 }, 1494 { 1495 .procname = "pipe-user-pages-soft", 1496 .data = &pipe_user_pages_soft, 1497 .maxlen = sizeof(pipe_user_pages_soft), 1498 .mode = 0644, 1499 .proc_handler = proc_doulongvec_minmax, 1500 }, 1501 }; 1502 #endif 1503 1504 static int __init init_pipe_fs(void) 1505 { 1506 int err = register_filesystem(&pipe_fs_type); 1507 1508 if (!err) { 1509 pipe_mnt = kern_mount(&pipe_fs_type); 1510 if (IS_ERR(pipe_mnt)) { 1511 err = PTR_ERR(pipe_mnt); 1512 unregister_filesystem(&pipe_fs_type); 1513 } 1514 } 1515 #ifdef CONFIG_SYSCTL 1516 register_sysctl_init("fs", fs_pipe_sysctls); 1517 #endif 1518 return err; 1519 } 1520 1521 fs_initcall(init_pipe_fs); 1522
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.