~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/proc/task_mmu.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 #include <linux/pagewalk.h>
  3 #include <linux/mm_inline.h>
  4 #include <linux/hugetlb.h>
  5 #include <linux/huge_mm.h>
  6 #include <linux/mount.h>
  7 #include <linux/ksm.h>
  8 #include <linux/seq_file.h>
  9 #include <linux/highmem.h>
 10 #include <linux/ptrace.h>
 11 #include <linux/slab.h>
 12 #include <linux/pagemap.h>
 13 #include <linux/mempolicy.h>
 14 #include <linux/rmap.h>
 15 #include <linux/swap.h>
 16 #include <linux/sched/mm.h>
 17 #include <linux/swapops.h>
 18 #include <linux/mmu_notifier.h>
 19 #include <linux/page_idle.h>
 20 #include <linux/shmem_fs.h>
 21 #include <linux/uaccess.h>
 22 #include <linux/pkeys.h>
 23 #include <linux/minmax.h>
 24 #include <linux/overflow.h>
 25 #include <linux/buildid.h>
 26 
 27 #include <asm/elf.h>
 28 #include <asm/tlb.h>
 29 #include <asm/tlbflush.h>
 30 #include "internal.h"
 31 
 32 #define SEQ_PUT_DEC(str, val) \
 33                 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
 34 void task_mem(struct seq_file *m, struct mm_struct *mm)
 35 {
 36         unsigned long text, lib, swap, anon, file, shmem;
 37         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
 38 
 39         anon = get_mm_counter(mm, MM_ANONPAGES);
 40         file = get_mm_counter(mm, MM_FILEPAGES);
 41         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
 42 
 43         /*
 44          * Note: to minimize their overhead, mm maintains hiwater_vm and
 45          * hiwater_rss only when about to *lower* total_vm or rss.  Any
 46          * collector of these hiwater stats must therefore get total_vm
 47          * and rss too, which will usually be the higher.  Barriers? not
 48          * worth the effort, such snapshots can always be inconsistent.
 49          */
 50         hiwater_vm = total_vm = mm->total_vm;
 51         if (hiwater_vm < mm->hiwater_vm)
 52                 hiwater_vm = mm->hiwater_vm;
 53         hiwater_rss = total_rss = anon + file + shmem;
 54         if (hiwater_rss < mm->hiwater_rss)
 55                 hiwater_rss = mm->hiwater_rss;
 56 
 57         /* split executable areas between text and lib */
 58         text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
 59         text = min(text, mm->exec_vm << PAGE_SHIFT);
 60         lib = (mm->exec_vm << PAGE_SHIFT) - text;
 61 
 62         swap = get_mm_counter(mm, MM_SWAPENTS);
 63         SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
 64         SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
 65         SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
 66         SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
 67         SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
 68         SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
 69         SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
 70         SEQ_PUT_DEC(" kB\nRssFile:\t", file);
 71         SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
 72         SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
 73         SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
 74         seq_put_decimal_ull_width(m,
 75                     " kB\nVmExe:\t", text >> 10, 8);
 76         seq_put_decimal_ull_width(m,
 77                     " kB\nVmLib:\t", lib >> 10, 8);
 78         seq_put_decimal_ull_width(m,
 79                     " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
 80         SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
 81         seq_puts(m, " kB\n");
 82         hugetlb_report_usage(m, mm);
 83 }
 84 #undef SEQ_PUT_DEC
 85 
 86 unsigned long task_vsize(struct mm_struct *mm)
 87 {
 88         return PAGE_SIZE * mm->total_vm;
 89 }
 90 
 91 unsigned long task_statm(struct mm_struct *mm,
 92                          unsigned long *shared, unsigned long *text,
 93                          unsigned long *data, unsigned long *resident)
 94 {
 95         *shared = get_mm_counter(mm, MM_FILEPAGES) +
 96                         get_mm_counter(mm, MM_SHMEMPAGES);
 97         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
 98                                                                 >> PAGE_SHIFT;
 99         *data = mm->data_vm + mm->stack_vm;
100         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
101         return mm->total_vm;
102 }
103 
104 #ifdef CONFIG_NUMA
105 /*
106  * Save get_task_policy() for show_numa_map().
107  */
108 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 {
110         struct task_struct *task = priv->task;
111 
112         task_lock(task);
113         priv->task_mempolicy = get_task_policy(task);
114         mpol_get(priv->task_mempolicy);
115         task_unlock(task);
116 }
117 static void release_task_mempolicy(struct proc_maps_private *priv)
118 {
119         mpol_put(priv->task_mempolicy);
120 }
121 #else
122 static void hold_task_mempolicy(struct proc_maps_private *priv)
123 {
124 }
125 static void release_task_mempolicy(struct proc_maps_private *priv)
126 {
127 }
128 #endif
129 
130 static struct vm_area_struct *proc_get_vma(struct proc_maps_private *priv,
131                                                 loff_t *ppos)
132 {
133         struct vm_area_struct *vma = vma_next(&priv->iter);
134 
135         if (vma) {
136                 *ppos = vma->vm_start;
137         } else {
138                 *ppos = -2UL;
139                 vma = get_gate_vma(priv->mm);
140         }
141 
142         return vma;
143 }
144 
145 static void *m_start(struct seq_file *m, loff_t *ppos)
146 {
147         struct proc_maps_private *priv = m->private;
148         unsigned long last_addr = *ppos;
149         struct mm_struct *mm;
150 
151         /* See m_next(). Zero at the start or after lseek. */
152         if (last_addr == -1UL)
153                 return NULL;
154 
155         priv->task = get_proc_task(priv->inode);
156         if (!priv->task)
157                 return ERR_PTR(-ESRCH);
158 
159         mm = priv->mm;
160         if (!mm || !mmget_not_zero(mm)) {
161                 put_task_struct(priv->task);
162                 priv->task = NULL;
163                 return NULL;
164         }
165 
166         if (mmap_read_lock_killable(mm)) {
167                 mmput(mm);
168                 put_task_struct(priv->task);
169                 priv->task = NULL;
170                 return ERR_PTR(-EINTR);
171         }
172 
173         vma_iter_init(&priv->iter, mm, last_addr);
174         hold_task_mempolicy(priv);
175         if (last_addr == -2UL)
176                 return get_gate_vma(mm);
177 
178         return proc_get_vma(priv, ppos);
179 }
180 
181 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
182 {
183         if (*ppos == -2UL) {
184                 *ppos = -1UL;
185                 return NULL;
186         }
187         return proc_get_vma(m->private, ppos);
188 }
189 
190 static void m_stop(struct seq_file *m, void *v)
191 {
192         struct proc_maps_private *priv = m->private;
193         struct mm_struct *mm = priv->mm;
194 
195         if (!priv->task)
196                 return;
197 
198         release_task_mempolicy(priv);
199         mmap_read_unlock(mm);
200         mmput(mm);
201         put_task_struct(priv->task);
202         priv->task = NULL;
203 }
204 
205 static int proc_maps_open(struct inode *inode, struct file *file,
206                         const struct seq_operations *ops, int psize)
207 {
208         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
209 
210         if (!priv)
211                 return -ENOMEM;
212 
213         priv->inode = inode;
214         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
215         if (IS_ERR(priv->mm)) {
216                 int err = PTR_ERR(priv->mm);
217 
218                 seq_release_private(inode, file);
219                 return err;
220         }
221 
222         return 0;
223 }
224 
225 static int proc_map_release(struct inode *inode, struct file *file)
226 {
227         struct seq_file *seq = file->private_data;
228         struct proc_maps_private *priv = seq->private;
229 
230         if (priv->mm)
231                 mmdrop(priv->mm);
232 
233         return seq_release_private(inode, file);
234 }
235 
236 static int do_maps_open(struct inode *inode, struct file *file,
237                         const struct seq_operations *ops)
238 {
239         return proc_maps_open(inode, file, ops,
240                                 sizeof(struct proc_maps_private));
241 }
242 
243 static void get_vma_name(struct vm_area_struct *vma,
244                          const struct path **path,
245                          const char **name,
246                          const char **name_fmt)
247 {
248         struct anon_vma_name *anon_name = vma->vm_mm ? anon_vma_name(vma) : NULL;
249 
250         *name = NULL;
251         *path = NULL;
252         *name_fmt = NULL;
253 
254         /*
255          * Print the dentry name for named mappings, and a
256          * special [heap] marker for the heap:
257          */
258         if (vma->vm_file) {
259                 /*
260                  * If user named this anon shared memory via
261                  * prctl(PR_SET_VMA ..., use the provided name.
262                  */
263                 if (anon_name) {
264                         *name_fmt = "[anon_shmem:%s]";
265                         *name = anon_name->name;
266                 } else {
267                         *path = file_user_path(vma->vm_file);
268                 }
269                 return;
270         }
271 
272         if (vma->vm_ops && vma->vm_ops->name) {
273                 *name = vma->vm_ops->name(vma);
274                 if (*name)
275                         return;
276         }
277 
278         *name = arch_vma_name(vma);
279         if (*name)
280                 return;
281 
282         if (!vma->vm_mm) {
283                 *name = "[vdso]";
284                 return;
285         }
286 
287         if (vma_is_initial_heap(vma)) {
288                 *name = "[heap]";
289                 return;
290         }
291 
292         if (vma_is_initial_stack(vma)) {
293                 *name = "[stack]";
294                 return;
295         }
296 
297         if (anon_name) {
298                 *name_fmt = "[anon:%s]";
299                 *name = anon_name->name;
300                 return;
301         }
302 }
303 
304 static void show_vma_header_prefix(struct seq_file *m,
305                                    unsigned long start, unsigned long end,
306                                    vm_flags_t flags, unsigned long long pgoff,
307                                    dev_t dev, unsigned long ino)
308 {
309         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
310         seq_put_hex_ll(m, NULL, start, 8);
311         seq_put_hex_ll(m, "-", end, 8);
312         seq_putc(m, ' ');
313         seq_putc(m, flags & VM_READ ? 'r' : '-');
314         seq_putc(m, flags & VM_WRITE ? 'w' : '-');
315         seq_putc(m, flags & VM_EXEC ? 'x' : '-');
316         seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
317         seq_put_hex_ll(m, " ", pgoff, 8);
318         seq_put_hex_ll(m, " ", MAJOR(dev), 2);
319         seq_put_hex_ll(m, ":", MINOR(dev), 2);
320         seq_put_decimal_ull(m, " ", ino);
321         seq_putc(m, ' ');
322 }
323 
324 static void
325 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
326 {
327         const struct path *path;
328         const char *name_fmt, *name;
329         vm_flags_t flags = vma->vm_flags;
330         unsigned long ino = 0;
331         unsigned long long pgoff = 0;
332         unsigned long start, end;
333         dev_t dev = 0;
334 
335         if (vma->vm_file) {
336                 const struct inode *inode = file_user_inode(vma->vm_file);
337 
338                 dev = inode->i_sb->s_dev;
339                 ino = inode->i_ino;
340                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
341         }
342 
343         start = vma->vm_start;
344         end = vma->vm_end;
345         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
346 
347         get_vma_name(vma, &path, &name, &name_fmt);
348         if (path) {
349                 seq_pad(m, ' ');
350                 seq_path(m, path, "\n");
351         } else if (name_fmt) {
352                 seq_pad(m, ' ');
353                 seq_printf(m, name_fmt, name);
354         } else if (name) {
355                 seq_pad(m, ' ');
356                 seq_puts(m, name);
357         }
358         seq_putc(m, '\n');
359 }
360 
361 static int show_map(struct seq_file *m, void *v)
362 {
363         show_map_vma(m, v);
364         return 0;
365 }
366 
367 static const struct seq_operations proc_pid_maps_op = {
368         .start  = m_start,
369         .next   = m_next,
370         .stop   = m_stop,
371         .show   = show_map
372 };
373 
374 static int pid_maps_open(struct inode *inode, struct file *file)
375 {
376         return do_maps_open(inode, file, &proc_pid_maps_op);
377 }
378 
379 #define PROCMAP_QUERY_VMA_FLAGS (                               \
380                 PROCMAP_QUERY_VMA_READABLE |                    \
381                 PROCMAP_QUERY_VMA_WRITABLE |                    \
382                 PROCMAP_QUERY_VMA_EXECUTABLE |                  \
383                 PROCMAP_QUERY_VMA_SHARED                        \
384 )
385 
386 #define PROCMAP_QUERY_VALID_FLAGS_MASK (                        \
387                 PROCMAP_QUERY_COVERING_OR_NEXT_VMA |            \
388                 PROCMAP_QUERY_FILE_BACKED_VMA |                 \
389                 PROCMAP_QUERY_VMA_FLAGS                         \
390 )
391 
392 static int query_vma_setup(struct mm_struct *mm)
393 {
394         return mmap_read_lock_killable(mm);
395 }
396 
397 static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
398 {
399         mmap_read_unlock(mm);
400 }
401 
402 static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
403 {
404         return find_vma(mm, addr);
405 }
406 
407 static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
408                                                  unsigned long addr, u32 flags)
409 {
410         struct vm_area_struct *vma;
411 
412 next_vma:
413         vma = query_vma_find_by_addr(mm, addr);
414         if (!vma)
415                 goto no_vma;
416 
417         /* user requested only file-backed VMA, keep iterating */
418         if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
419                 goto skip_vma;
420 
421         /* VMA permissions should satisfy query flags */
422         if (flags & PROCMAP_QUERY_VMA_FLAGS) {
423                 u32 perm = 0;
424 
425                 if (flags & PROCMAP_QUERY_VMA_READABLE)
426                         perm |= VM_READ;
427                 if (flags & PROCMAP_QUERY_VMA_WRITABLE)
428                         perm |= VM_WRITE;
429                 if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
430                         perm |= VM_EXEC;
431                 if (flags & PROCMAP_QUERY_VMA_SHARED)
432                         perm |= VM_MAYSHARE;
433 
434                 if ((vma->vm_flags & perm) != perm)
435                         goto skip_vma;
436         }
437 
438         /* found covering VMA or user is OK with the matching next VMA */
439         if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
440                 return vma;
441 
442 skip_vma:
443         /*
444          * If the user needs closest matching VMA, keep iterating.
445          */
446         addr = vma->vm_end;
447         if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
448                 goto next_vma;
449 
450 no_vma:
451         return ERR_PTR(-ENOENT);
452 }
453 
454 static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
455 {
456         struct procmap_query karg;
457         struct vm_area_struct *vma;
458         struct mm_struct *mm;
459         const char *name = NULL;
460         char build_id_buf[BUILD_ID_SIZE_MAX], *name_buf = NULL;
461         __u64 usize;
462         int err;
463 
464         if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
465                 return -EFAULT;
466         /* argument struct can never be that large, reject abuse */
467         if (usize > PAGE_SIZE)
468                 return -E2BIG;
469         /* argument struct should have at least query_flags and query_addr fields */
470         if (usize < offsetofend(struct procmap_query, query_addr))
471                 return -EINVAL;
472         err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
473         if (err)
474                 return err;
475 
476         /* reject unknown flags */
477         if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
478                 return -EINVAL;
479         /* either both buffer address and size are set, or both should be zero */
480         if (!!karg.vma_name_size != !!karg.vma_name_addr)
481                 return -EINVAL;
482         if (!!karg.build_id_size != !!karg.build_id_addr)
483                 return -EINVAL;
484 
485         mm = priv->mm;
486         if (!mm || !mmget_not_zero(mm))
487                 return -ESRCH;
488 
489         err = query_vma_setup(mm);
490         if (err) {
491                 mmput(mm);
492                 return err;
493         }
494 
495         vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
496         if (IS_ERR(vma)) {
497                 err = PTR_ERR(vma);
498                 vma = NULL;
499                 goto out;
500         }
501 
502         karg.vma_start = vma->vm_start;
503         karg.vma_end = vma->vm_end;
504 
505         karg.vma_flags = 0;
506         if (vma->vm_flags & VM_READ)
507                 karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
508         if (vma->vm_flags & VM_WRITE)
509                 karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
510         if (vma->vm_flags & VM_EXEC)
511                 karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
512         if (vma->vm_flags & VM_MAYSHARE)
513                 karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
514 
515         karg.vma_page_size = vma_kernel_pagesize(vma);
516 
517         if (vma->vm_file) {
518                 const struct inode *inode = file_user_inode(vma->vm_file);
519 
520                 karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
521                 karg.dev_major = MAJOR(inode->i_sb->s_dev);
522                 karg.dev_minor = MINOR(inode->i_sb->s_dev);
523                 karg.inode = inode->i_ino;
524         } else {
525                 karg.vma_offset = 0;
526                 karg.dev_major = 0;
527                 karg.dev_minor = 0;
528                 karg.inode = 0;
529         }
530 
531         if (karg.build_id_size) {
532                 __u32 build_id_sz;
533 
534                 err = build_id_parse(vma, build_id_buf, &build_id_sz);
535                 if (err) {
536                         karg.build_id_size = 0;
537                 } else {
538                         if (karg.build_id_size < build_id_sz) {
539                                 err = -ENAMETOOLONG;
540                                 goto out;
541                         }
542                         karg.build_id_size = build_id_sz;
543                 }
544         }
545 
546         if (karg.build_id_size) {
547                 __u32 build_id_sz;
548 
549                 err = build_id_parse(vma, build_id_buf, &build_id_sz);
550                 if (err) {
551                         karg.build_id_size = 0;
552                 } else {
553                         if (karg.build_id_size < build_id_sz) {
554                                 err = -ENAMETOOLONG;
555                                 goto out;
556                         }
557                         karg.build_id_size = build_id_sz;
558                 }
559         }
560 
561         if (karg.vma_name_size) {
562                 size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
563                 const struct path *path;
564                 const char *name_fmt;
565                 size_t name_sz = 0;
566 
567                 get_vma_name(vma, &path, &name, &name_fmt);
568 
569                 if (path || name_fmt || name) {
570                         name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
571                         if (!name_buf) {
572                                 err = -ENOMEM;
573                                 goto out;
574                         }
575                 }
576                 if (path) {
577                         name = d_path(path, name_buf, name_buf_sz);
578                         if (IS_ERR(name)) {
579                                 err = PTR_ERR(name);
580                                 goto out;
581                         }
582                         name_sz = name_buf + name_buf_sz - name;
583                 } else if (name || name_fmt) {
584                         name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
585                         name = name_buf;
586                 }
587                 if (name_sz > name_buf_sz) {
588                         err = -ENAMETOOLONG;
589                         goto out;
590                 }
591                 karg.vma_name_size = name_sz;
592         }
593 
594         /* unlock vma or mmap_lock, and put mm_struct before copying data to user */
595         query_vma_teardown(mm, vma);
596         mmput(mm);
597 
598         if (karg.vma_name_size && copy_to_user(u64_to_user_ptr(karg.vma_name_addr),
599                                                name, karg.vma_name_size)) {
600                 kfree(name_buf);
601                 return -EFAULT;
602         }
603         kfree(name_buf);
604 
605         if (karg.build_id_size && copy_to_user(u64_to_user_ptr(karg.build_id_addr),
606                                                build_id_buf, karg.build_id_size))
607                 return -EFAULT;
608 
609         if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
610                 return -EFAULT;
611 
612         return 0;
613 
614 out:
615         query_vma_teardown(mm, vma);
616         mmput(mm);
617         kfree(name_buf);
618         return err;
619 }
620 
621 static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
622 {
623         struct seq_file *seq = file->private_data;
624         struct proc_maps_private *priv = seq->private;
625 
626         switch (cmd) {
627         case PROCMAP_QUERY:
628                 return do_procmap_query(priv, (void __user *)arg);
629         default:
630                 return -ENOIOCTLCMD;
631         }
632 }
633 
634 const struct file_operations proc_pid_maps_operations = {
635         .open           = pid_maps_open,
636         .read           = seq_read,
637         .llseek         = seq_lseek,
638         .release        = proc_map_release,
639         .unlocked_ioctl = procfs_procmap_ioctl,
640         .compat_ioctl   = compat_ptr_ioctl,
641 };
642 
643 /*
644  * Proportional Set Size(PSS): my share of RSS.
645  *
646  * PSS of a process is the count of pages it has in memory, where each
647  * page is divided by the number of processes sharing it.  So if a
648  * process has 1000 pages all to itself, and 1000 shared with one other
649  * process, its PSS will be 1500.
650  *
651  * To keep (accumulated) division errors low, we adopt a 64bit
652  * fixed-point pss counter to minimize division errors. So (pss >>
653  * PSS_SHIFT) would be the real byte count.
654  *
655  * A shift of 12 before division means (assuming 4K page size):
656  *      - 1M 3-user-pages add up to 8KB errors;
657  *      - supports mapcount up to 2^24, or 16M;
658  *      - supports PSS up to 2^52 bytes, or 4PB.
659  */
660 #define PSS_SHIFT 12
661 
662 #ifdef CONFIG_PROC_PAGE_MONITOR
663 struct mem_size_stats {
664         unsigned long resident;
665         unsigned long shared_clean;
666         unsigned long shared_dirty;
667         unsigned long private_clean;
668         unsigned long private_dirty;
669         unsigned long referenced;
670         unsigned long anonymous;
671         unsigned long lazyfree;
672         unsigned long anonymous_thp;
673         unsigned long shmem_thp;
674         unsigned long file_thp;
675         unsigned long swap;
676         unsigned long shared_hugetlb;
677         unsigned long private_hugetlb;
678         unsigned long ksm;
679         u64 pss;
680         u64 pss_anon;
681         u64 pss_file;
682         u64 pss_shmem;
683         u64 pss_dirty;
684         u64 pss_locked;
685         u64 swap_pss;
686 };
687 
688 static void smaps_page_accumulate(struct mem_size_stats *mss,
689                 struct folio *folio, unsigned long size, unsigned long pss,
690                 bool dirty, bool locked, bool private)
691 {
692         mss->pss += pss;
693 
694         if (folio_test_anon(folio))
695                 mss->pss_anon += pss;
696         else if (folio_test_swapbacked(folio))
697                 mss->pss_shmem += pss;
698         else
699                 mss->pss_file += pss;
700 
701         if (locked)
702                 mss->pss_locked += pss;
703 
704         if (dirty || folio_test_dirty(folio)) {
705                 mss->pss_dirty += pss;
706                 if (private)
707                         mss->private_dirty += size;
708                 else
709                         mss->shared_dirty += size;
710         } else {
711                 if (private)
712                         mss->private_clean += size;
713                 else
714                         mss->shared_clean += size;
715         }
716 }
717 
718 static void smaps_account(struct mem_size_stats *mss, struct page *page,
719                 bool compound, bool young, bool dirty, bool locked,
720                 bool present)
721 {
722         struct folio *folio = page_folio(page);
723         int i, nr = compound ? compound_nr(page) : 1;
724         unsigned long size = nr * PAGE_SIZE;
725 
726         /*
727          * First accumulate quantities that depend only on |size| and the type
728          * of the compound page.
729          */
730         if (folio_test_anon(folio)) {
731                 mss->anonymous += size;
732                 if (!folio_test_swapbacked(folio) && !dirty &&
733                     !folio_test_dirty(folio))
734                         mss->lazyfree += size;
735         }
736 
737         if (folio_test_ksm(folio))
738                 mss->ksm += size;
739 
740         mss->resident += size;
741         /* Accumulate the size in pages that have been accessed. */
742         if (young || folio_test_young(folio) || folio_test_referenced(folio))
743                 mss->referenced += size;
744 
745         /*
746          * Then accumulate quantities that may depend on sharing, or that may
747          * differ page-by-page.
748          *
749          * refcount == 1 for present entries guarantees that the folio is mapped
750          * exactly once. For large folios this implies that exactly one
751          * PTE/PMD/... maps (a part of) this folio.
752          *
753          * Treat all non-present entries (where relying on the mapcount and
754          * refcount doesn't make sense) as "maybe shared, but not sure how
755          * often". We treat device private entries as being fake-present.
756          *
757          * Note that it would not be safe to read the mapcount especially for
758          * pages referenced by migration entries, even with the PTL held.
759          */
760         if (folio_ref_count(folio) == 1 || !present) {
761                 smaps_page_accumulate(mss, folio, size, size << PSS_SHIFT,
762                                       dirty, locked, present);
763                 return;
764         }
765         /*
766          * We obtain a snapshot of the mapcount. Without holding the folio lock
767          * this snapshot can be slightly wrong as we cannot always read the
768          * mapcount atomically.
769          */
770         for (i = 0; i < nr; i++, page++) {
771                 int mapcount = folio_precise_page_mapcount(folio, page);
772                 unsigned long pss = PAGE_SIZE << PSS_SHIFT;
773                 if (mapcount >= 2)
774                         pss /= mapcount;
775                 smaps_page_accumulate(mss, folio, PAGE_SIZE, pss,
776                                 dirty, locked, mapcount < 2);
777         }
778 }
779 
780 #ifdef CONFIG_SHMEM
781 static int smaps_pte_hole(unsigned long addr, unsigned long end,
782                           __always_unused int depth, struct mm_walk *walk)
783 {
784         struct mem_size_stats *mss = walk->private;
785         struct vm_area_struct *vma = walk->vma;
786 
787         mss->swap += shmem_partial_swap_usage(walk->vma->vm_file->f_mapping,
788                                               linear_page_index(vma, addr),
789                                               linear_page_index(vma, end));
790 
791         return 0;
792 }
793 #else
794 #define smaps_pte_hole          NULL
795 #endif /* CONFIG_SHMEM */
796 
797 static void smaps_pte_hole_lookup(unsigned long addr, struct mm_walk *walk)
798 {
799 #ifdef CONFIG_SHMEM
800         if (walk->ops->pte_hole) {
801                 /* depth is not used */
802                 smaps_pte_hole(addr, addr + PAGE_SIZE, 0, walk);
803         }
804 #endif
805 }
806 
807 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
808                 struct mm_walk *walk)
809 {
810         struct mem_size_stats *mss = walk->private;
811         struct vm_area_struct *vma = walk->vma;
812         bool locked = !!(vma->vm_flags & VM_LOCKED);
813         struct page *page = NULL;
814         bool present = false, young = false, dirty = false;
815         pte_t ptent = ptep_get(pte);
816 
817         if (pte_present(ptent)) {
818                 page = vm_normal_page(vma, addr, ptent);
819                 young = pte_young(ptent);
820                 dirty = pte_dirty(ptent);
821                 present = true;
822         } else if (is_swap_pte(ptent)) {
823                 swp_entry_t swpent = pte_to_swp_entry(ptent);
824 
825                 if (!non_swap_entry(swpent)) {
826                         int mapcount;
827 
828                         mss->swap += PAGE_SIZE;
829                         mapcount = swp_swapcount(swpent);
830                         if (mapcount >= 2) {
831                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
832 
833                                 do_div(pss_delta, mapcount);
834                                 mss->swap_pss += pss_delta;
835                         } else {
836                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
837                         }
838                 } else if (is_pfn_swap_entry(swpent)) {
839                         if (is_device_private_entry(swpent))
840                                 present = true;
841                         page = pfn_swap_entry_to_page(swpent);
842                 }
843         } else {
844                 smaps_pte_hole_lookup(addr, walk);
845                 return;
846         }
847 
848         if (!page)
849                 return;
850 
851         smaps_account(mss, page, false, young, dirty, locked, present);
852 }
853 
854 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
855 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
856                 struct mm_walk *walk)
857 {
858         struct mem_size_stats *mss = walk->private;
859         struct vm_area_struct *vma = walk->vma;
860         bool locked = !!(vma->vm_flags & VM_LOCKED);
861         struct page *page = NULL;
862         bool present = false;
863         struct folio *folio;
864 
865         if (pmd_present(*pmd)) {
866                 page = vm_normal_page_pmd(vma, addr, *pmd);
867                 present = true;
868         } else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
869                 swp_entry_t entry = pmd_to_swp_entry(*pmd);
870 
871                 if (is_pfn_swap_entry(entry))
872                         page = pfn_swap_entry_to_page(entry);
873         }
874         if (IS_ERR_OR_NULL(page))
875                 return;
876         folio = page_folio(page);
877         if (folio_test_anon(folio))
878                 mss->anonymous_thp += HPAGE_PMD_SIZE;
879         else if (folio_test_swapbacked(folio))
880                 mss->shmem_thp += HPAGE_PMD_SIZE;
881         else if (folio_is_zone_device(folio))
882                 /* pass */;
883         else
884                 mss->file_thp += HPAGE_PMD_SIZE;
885 
886         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
887                       locked, present);
888 }
889 #else
890 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
891                 struct mm_walk *walk)
892 {
893 }
894 #endif
895 
896 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
897                            struct mm_walk *walk)
898 {
899         struct vm_area_struct *vma = walk->vma;
900         pte_t *pte;
901         spinlock_t *ptl;
902 
903         ptl = pmd_trans_huge_lock(pmd, vma);
904         if (ptl) {
905                 smaps_pmd_entry(pmd, addr, walk);
906                 spin_unlock(ptl);
907                 goto out;
908         }
909 
910         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
911         if (!pte) {
912                 walk->action = ACTION_AGAIN;
913                 return 0;
914         }
915         for (; addr != end; pte++, addr += PAGE_SIZE)
916                 smaps_pte_entry(pte, addr, walk);
917         pte_unmap_unlock(pte - 1, ptl);
918 out:
919         cond_resched();
920         return 0;
921 }
922 
923 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
924 {
925         /*
926          * Don't forget to update Documentation/ on changes.
927          */
928         static const char mnemonics[BITS_PER_LONG][2] = {
929                 /*
930                  * In case if we meet a flag we don't know about.
931                  */
932                 [0 ... (BITS_PER_LONG-1)] = "??",
933 
934                 [ilog2(VM_READ)]        = "rd",
935                 [ilog2(VM_WRITE)]       = "wr",
936                 [ilog2(VM_EXEC)]        = "ex",
937                 [ilog2(VM_SHARED)]      = "sh",
938                 [ilog2(VM_MAYREAD)]     = "mr",
939                 [ilog2(VM_MAYWRITE)]    = "mw",
940                 [ilog2(VM_MAYEXEC)]     = "me",
941                 [ilog2(VM_MAYSHARE)]    = "ms",
942                 [ilog2(VM_GROWSDOWN)]   = "gd",
943                 [ilog2(VM_PFNMAP)]      = "pf",
944                 [ilog2(VM_LOCKED)]      = "lo",
945                 [ilog2(VM_IO)]          = "io",
946                 [ilog2(VM_SEQ_READ)]    = "sr",
947                 [ilog2(VM_RAND_READ)]   = "rr",
948                 [ilog2(VM_DONTCOPY)]    = "dc",
949                 [ilog2(VM_DONTEXPAND)]  = "de",
950                 [ilog2(VM_LOCKONFAULT)] = "lf",
951                 [ilog2(VM_ACCOUNT)]     = "ac",
952                 [ilog2(VM_NORESERVE)]   = "nr",
953                 [ilog2(VM_HUGETLB)]     = "ht",
954                 [ilog2(VM_SYNC)]        = "sf",
955                 [ilog2(VM_ARCH_1)]      = "ar",
956                 [ilog2(VM_WIPEONFORK)]  = "wf",
957                 [ilog2(VM_DONTDUMP)]    = "dd",
958 #ifdef CONFIG_ARM64_BTI
959                 [ilog2(VM_ARM64_BTI)]   = "bt",
960 #endif
961 #ifdef CONFIG_MEM_SOFT_DIRTY
962                 [ilog2(VM_SOFTDIRTY)]   = "sd",
963 #endif
964                 [ilog2(VM_MIXEDMAP)]    = "mm",
965                 [ilog2(VM_HUGEPAGE)]    = "hg",
966                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
967                 [ilog2(VM_MERGEABLE)]   = "mg",
968                 [ilog2(VM_UFFD_MISSING)]= "um",
969                 [ilog2(VM_UFFD_WP)]     = "uw",
970 #ifdef CONFIG_ARM64_MTE
971                 [ilog2(VM_MTE)]         = "mt",
972                 [ilog2(VM_MTE_ALLOWED)] = "",
973 #endif
974 #ifdef CONFIG_ARCH_HAS_PKEYS
975                 /* These come out via ProtectionKey: */
976                 [ilog2(VM_PKEY_BIT0)]   = "",
977                 [ilog2(VM_PKEY_BIT1)]   = "",
978                 [ilog2(VM_PKEY_BIT2)]   = "",
979                 [ilog2(VM_PKEY_BIT3)]   = "",
980 #if VM_PKEY_BIT4
981                 [ilog2(VM_PKEY_BIT4)]   = "",
982 #endif
983 #endif /* CONFIG_ARCH_HAS_PKEYS */
984 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
985                 [ilog2(VM_UFFD_MINOR)]  = "ui",
986 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
987 #ifdef CONFIG_X86_USER_SHADOW_STACK
988                 [ilog2(VM_SHADOW_STACK)] = "ss",
989 #endif
990 #ifdef CONFIG_64BIT
991                 [ilog2(VM_DROPPABLE)] = "dp",
992                 [ilog2(VM_SEALED)] = "sl",
993 #endif
994         };
995         size_t i;
996 
997         seq_puts(m, "VmFlags: ");
998         for (i = 0; i < BITS_PER_LONG; i++) {
999                 if (!mnemonics[i][0])
1000                         continue;
1001                 if (vma->vm_flags & (1UL << i)) {
1002                         seq_putc(m, mnemonics[i][0]);
1003                         seq_putc(m, mnemonics[i][1]);
1004                         seq_putc(m, ' ');
1005                 }
1006         }
1007         seq_putc(m, '\n');
1008 }
1009 
1010 #ifdef CONFIG_HUGETLB_PAGE
1011 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
1012                                  unsigned long addr, unsigned long end,
1013                                  struct mm_walk *walk)
1014 {
1015         struct mem_size_stats *mss = walk->private;
1016         struct vm_area_struct *vma = walk->vma;
1017         pte_t ptent = huge_ptep_get(walk->mm, addr, pte);
1018         struct folio *folio = NULL;
1019         bool present = false;
1020 
1021         if (pte_present(ptent)) {
1022                 folio = page_folio(pte_page(ptent));
1023                 present = true;
1024         } else if (is_swap_pte(ptent)) {
1025                 swp_entry_t swpent = pte_to_swp_entry(ptent);
1026 
1027                 if (is_pfn_swap_entry(swpent))
1028                         folio = pfn_swap_entry_folio(swpent);
1029         }
1030 
1031         if (folio) {
1032                 /* We treat non-present entries as "maybe shared". */
1033                 if (!present || folio_likely_mapped_shared(folio) ||
1034                     hugetlb_pmd_shared(pte))
1035                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
1036                 else
1037                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
1038         }
1039         return 0;
1040 }
1041 #else
1042 #define smaps_hugetlb_range     NULL
1043 #endif /* HUGETLB_PAGE */
1044 
1045 static const struct mm_walk_ops smaps_walk_ops = {
1046         .pmd_entry              = smaps_pte_range,
1047         .hugetlb_entry          = smaps_hugetlb_range,
1048         .walk_lock              = PGWALK_RDLOCK,
1049 };
1050 
1051 static const struct mm_walk_ops smaps_shmem_walk_ops = {
1052         .pmd_entry              = smaps_pte_range,
1053         .hugetlb_entry          = smaps_hugetlb_range,
1054         .pte_hole               = smaps_pte_hole,
1055         .walk_lock              = PGWALK_RDLOCK,
1056 };
1057 
1058 /*
1059  * Gather mem stats from @vma with the indicated beginning
1060  * address @start, and keep them in @mss.
1061  *
1062  * Use vm_start of @vma as the beginning address if @start is 0.
1063  */
1064 static void smap_gather_stats(struct vm_area_struct *vma,
1065                 struct mem_size_stats *mss, unsigned long start)
1066 {
1067         const struct mm_walk_ops *ops = &smaps_walk_ops;
1068 
1069         /* Invalid start */
1070         if (start >= vma->vm_end)
1071                 return;
1072 
1073         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
1074                 /*
1075                  * For shared or readonly shmem mappings we know that all
1076                  * swapped out pages belong to the shmem object, and we can
1077                  * obtain the swap value much more efficiently. For private
1078                  * writable mappings, we might have COW pages that are
1079                  * not affected by the parent swapped out pages of the shmem
1080                  * object, so we have to distinguish them during the page walk.
1081                  * Unless we know that the shmem object (or the part mapped by
1082                  * our VMA) has no swapped out pages at all.
1083                  */
1084                 unsigned long shmem_swapped = shmem_swap_usage(vma);
1085 
1086                 if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
1087                                         !(vma->vm_flags & VM_WRITE))) {
1088                         mss->swap += shmem_swapped;
1089                 } else {
1090                         ops = &smaps_shmem_walk_ops;
1091                 }
1092         }
1093 
1094         /* mmap_lock is held in m_start */
1095         if (!start)
1096                 walk_page_vma(vma, ops, mss);
1097         else
1098                 walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
1099 }
1100 
1101 #define SEQ_PUT_DEC(str, val) \
1102                 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
1103 
1104 /* Show the contents common for smaps and smaps_rollup */
1105 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
1106         bool rollup_mode)
1107 {
1108         SEQ_PUT_DEC("Rss:            ", mss->resident);
1109         SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
1110         SEQ_PUT_DEC(" kB\nPss_Dirty:      ", mss->pss_dirty >> PSS_SHIFT);
1111         if (rollup_mode) {
1112                 /*
1113                  * These are meaningful only for smaps_rollup, otherwise two of
1114                  * them are zero, and the other one is the same as Pss.
1115                  */
1116                 SEQ_PUT_DEC(" kB\nPss_Anon:       ",
1117                         mss->pss_anon >> PSS_SHIFT);
1118                 SEQ_PUT_DEC(" kB\nPss_File:       ",
1119                         mss->pss_file >> PSS_SHIFT);
1120                 SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
1121                         mss->pss_shmem >> PSS_SHIFT);
1122         }
1123         SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
1124         SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
1125         SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
1126         SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
1127         SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
1128         SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
1129         SEQ_PUT_DEC(" kB\nKSM:            ", mss->ksm);
1130         SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
1131         SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
1132         SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
1133         SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
1134         SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
1135         seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
1136                                   mss->private_hugetlb >> 10, 7);
1137         SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
1138         SEQ_PUT_DEC(" kB\nSwapPss:        ",
1139                                         mss->swap_pss >> PSS_SHIFT);
1140         SEQ_PUT_DEC(" kB\nLocked:         ",
1141                                         mss->pss_locked >> PSS_SHIFT);
1142         seq_puts(m, " kB\n");
1143 }
1144 
1145 static int show_smap(struct seq_file *m, void *v)
1146 {
1147         struct vm_area_struct *vma = v;
1148         struct mem_size_stats mss = {};
1149 
1150         smap_gather_stats(vma, &mss, 0);
1151 
1152         show_map_vma(m, vma);
1153 
1154         SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
1155         SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
1156         SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
1157         seq_puts(m, " kB\n");
1158 
1159         __show_smap(m, &mss, false);
1160 
1161         seq_printf(m, "THPeligible:    %8u\n",
1162                    !!thp_vma_allowable_orders(vma, vma->vm_flags,
1163                            TVA_SMAPS | TVA_ENFORCE_SYSFS, THP_ORDERS_ALL));
1164 
1165         if (arch_pkeys_enabled())
1166                 seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1167         show_smap_vma_flags(m, vma);
1168 
1169         return 0;
1170 }
1171 
1172 static int show_smaps_rollup(struct seq_file *m, void *v)
1173 {
1174         struct proc_maps_private *priv = m->private;
1175         struct mem_size_stats mss = {};
1176         struct mm_struct *mm = priv->mm;
1177         struct vm_area_struct *vma;
1178         unsigned long vma_start = 0, last_vma_end = 0;
1179         int ret = 0;
1180         VMA_ITERATOR(vmi, mm, 0);
1181 
1182         priv->task = get_proc_task(priv->inode);
1183         if (!priv->task)
1184                 return -ESRCH;
1185 
1186         if (!mm || !mmget_not_zero(mm)) {
1187                 ret = -ESRCH;
1188                 goto out_put_task;
1189         }
1190 
1191         ret = mmap_read_lock_killable(mm);
1192         if (ret)
1193                 goto out_put_mm;
1194 
1195         hold_task_mempolicy(priv);
1196         vma = vma_next(&vmi);
1197 
1198         if (unlikely(!vma))
1199                 goto empty_set;
1200 
1201         vma_start = vma->vm_start;
1202         do {
1203                 smap_gather_stats(vma, &mss, 0);
1204                 last_vma_end = vma->vm_end;
1205 
1206                 /*
1207                  * Release mmap_lock temporarily if someone wants to
1208                  * access it for write request.
1209                  */
1210                 if (mmap_lock_is_contended(mm)) {
1211                         vma_iter_invalidate(&vmi);
1212                         mmap_read_unlock(mm);
1213                         ret = mmap_read_lock_killable(mm);
1214                         if (ret) {
1215                                 release_task_mempolicy(priv);
1216                                 goto out_put_mm;
1217                         }
1218 
1219                         /*
1220                          * After dropping the lock, there are four cases to
1221                          * consider. See the following example for explanation.
1222                          *
1223                          *   +------+------+-----------+
1224                          *   | VMA1 | VMA2 | VMA3      |
1225                          *   +------+------+-----------+
1226                          *   |      |      |           |
1227                          *  4k     8k     16k         400k
1228                          *
1229                          * Suppose we drop the lock after reading VMA2 due to
1230                          * contention, then we get:
1231                          *
1232                          *      last_vma_end = 16k
1233                          *
1234                          * 1) VMA2 is freed, but VMA3 exists:
1235                          *
1236                          *    vma_next(vmi) will return VMA3.
1237                          *    In this case, just continue from VMA3.
1238                          *
1239                          * 2) VMA2 still exists:
1240                          *
1241                          *    vma_next(vmi) will return VMA3.
1242                          *    In this case, just continue from VMA3.
1243                          *
1244                          * 3) No more VMAs can be found:
1245                          *
1246                          *    vma_next(vmi) will return NULL.
1247                          *    No more things to do, just break.
1248                          *
1249                          * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
1250                          *
1251                          *    vma_next(vmi) will return VMA' whose range
1252                          *    contains last_vma_end.
1253                          *    Iterate VMA' from last_vma_end.
1254                          */
1255                         vma = vma_next(&vmi);
1256                         /* Case 3 above */
1257                         if (!vma)
1258                                 break;
1259 
1260                         /* Case 1 and 2 above */
1261                         if (vma->vm_start >= last_vma_end) {
1262                                 smap_gather_stats(vma, &mss, 0);
1263                                 last_vma_end = vma->vm_end;
1264                                 continue;
1265                         }
1266 
1267                         /* Case 4 above */
1268                         if (vma->vm_end > last_vma_end) {
1269                                 smap_gather_stats(vma, &mss, last_vma_end);
1270                                 last_vma_end = vma->vm_end;
1271                         }
1272                 }
1273         } for_each_vma(vmi, vma);
1274 
1275 empty_set:
1276         show_vma_header_prefix(m, vma_start, last_vma_end, 0, 0, 0, 0);
1277         seq_pad(m, ' ');
1278         seq_puts(m, "[rollup]\n");
1279 
1280         __show_smap(m, &mss, true);
1281 
1282         release_task_mempolicy(priv);
1283         mmap_read_unlock(mm);
1284 
1285 out_put_mm:
1286         mmput(mm);
1287 out_put_task:
1288         put_task_struct(priv->task);
1289         priv->task = NULL;
1290 
1291         return ret;
1292 }
1293 #undef SEQ_PUT_DEC
1294 
1295 static const struct seq_operations proc_pid_smaps_op = {
1296         .start  = m_start,
1297         .next   = m_next,
1298         .stop   = m_stop,
1299         .show   = show_smap
1300 };
1301 
1302 static int pid_smaps_open(struct inode *inode, struct file *file)
1303 {
1304         return do_maps_open(inode, file, &proc_pid_smaps_op);
1305 }
1306 
1307 static int smaps_rollup_open(struct inode *inode, struct file *file)
1308 {
1309         int ret;
1310         struct proc_maps_private *priv;
1311 
1312         priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1313         if (!priv)
1314                 return -ENOMEM;
1315 
1316         ret = single_open(file, show_smaps_rollup, priv);
1317         if (ret)
1318                 goto out_free;
1319 
1320         priv->inode = inode;
1321         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1322         if (IS_ERR(priv->mm)) {
1323                 ret = PTR_ERR(priv->mm);
1324 
1325                 single_release(inode, file);
1326                 goto out_free;
1327         }
1328 
1329         return 0;
1330 
1331 out_free:
1332         kfree(priv);
1333         return ret;
1334 }
1335 
1336 static int smaps_rollup_release(struct inode *inode, struct file *file)
1337 {
1338         struct seq_file *seq = file->private_data;
1339         struct proc_maps_private *priv = seq->private;
1340 
1341         if (priv->mm)
1342                 mmdrop(priv->mm);
1343 
1344         kfree(priv);
1345         return single_release(inode, file);
1346 }
1347 
1348 const struct file_operations proc_pid_smaps_operations = {
1349         .open           = pid_smaps_open,
1350         .read           = seq_read,
1351         .llseek         = seq_lseek,
1352         .release        = proc_map_release,
1353 };
1354 
1355 const struct file_operations proc_pid_smaps_rollup_operations = {
1356         .open           = smaps_rollup_open,
1357         .read           = seq_read,
1358         .llseek         = seq_lseek,
1359         .release        = smaps_rollup_release,
1360 };
1361 
1362 enum clear_refs_types {
1363         CLEAR_REFS_ALL = 1,
1364         CLEAR_REFS_ANON,
1365         CLEAR_REFS_MAPPED,
1366         CLEAR_REFS_SOFT_DIRTY,
1367         CLEAR_REFS_MM_HIWATER_RSS,
1368         CLEAR_REFS_LAST,
1369 };
1370 
1371 struct clear_refs_private {
1372         enum clear_refs_types type;
1373 };
1374 
1375 #ifdef CONFIG_MEM_SOFT_DIRTY
1376 
1377 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1378 {
1379         struct folio *folio;
1380 
1381         if (!pte_write(pte))
1382                 return false;
1383         if (!is_cow_mapping(vma->vm_flags))
1384                 return false;
1385         if (likely(!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)))
1386                 return false;
1387         folio = vm_normal_folio(vma, addr, pte);
1388         if (!folio)
1389                 return false;
1390         return folio_maybe_dma_pinned(folio);
1391 }
1392 
1393 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1394                 unsigned long addr, pte_t *pte)
1395 {
1396         /*
1397          * The soft-dirty tracker uses #PF-s to catch writes
1398          * to pages, so write-protect the pte as well. See the
1399          * Documentation/admin-guide/mm/soft-dirty.rst for full description
1400          * of how soft-dirty works.
1401          */
1402         pte_t ptent = ptep_get(pte);
1403 
1404         if (pte_present(ptent)) {
1405                 pte_t old_pte;
1406 
1407                 if (pte_is_pinned(vma, addr, ptent))
1408                         return;
1409                 old_pte = ptep_modify_prot_start(vma, addr, pte);
1410                 ptent = pte_wrprotect(old_pte);
1411                 ptent = pte_clear_soft_dirty(ptent);
1412                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1413         } else if (is_swap_pte(ptent)) {
1414                 ptent = pte_swp_clear_soft_dirty(ptent);
1415                 set_pte_at(vma->vm_mm, addr, pte, ptent);
1416         }
1417 }
1418 #else
1419 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1420                 unsigned long addr, pte_t *pte)
1421 {
1422 }
1423 #endif
1424 
1425 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1426 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1427                 unsigned long addr, pmd_t *pmdp)
1428 {
1429         pmd_t old, pmd = *pmdp;
1430 
1431         if (pmd_present(pmd)) {
1432                 /* See comment in change_huge_pmd() */
1433                 old = pmdp_invalidate(vma, addr, pmdp);
1434                 if (pmd_dirty(old))
1435                         pmd = pmd_mkdirty(pmd);
1436                 if (pmd_young(old))
1437                         pmd = pmd_mkyoung(pmd);
1438 
1439                 pmd = pmd_wrprotect(pmd);
1440                 pmd = pmd_clear_soft_dirty(pmd);
1441 
1442                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1443         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1444                 pmd = pmd_swp_clear_soft_dirty(pmd);
1445                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1446         }
1447 }
1448 #else
1449 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1450                 unsigned long addr, pmd_t *pmdp)
1451 {
1452 }
1453 #endif
1454 
1455 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1456                                 unsigned long end, struct mm_walk *walk)
1457 {
1458         struct clear_refs_private *cp = walk->private;
1459         struct vm_area_struct *vma = walk->vma;
1460         pte_t *pte, ptent;
1461         spinlock_t *ptl;
1462         struct folio *folio;
1463 
1464         ptl = pmd_trans_huge_lock(pmd, vma);
1465         if (ptl) {
1466                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1467                         clear_soft_dirty_pmd(vma, addr, pmd);
1468                         goto out;
1469                 }
1470 
1471                 if (!pmd_present(*pmd))
1472                         goto out;
1473 
1474                 folio = pmd_folio(*pmd);
1475 
1476                 /* Clear accessed and referenced bits. */
1477                 pmdp_test_and_clear_young(vma, addr, pmd);
1478                 folio_test_clear_young(folio);
1479                 folio_clear_referenced(folio);
1480 out:
1481                 spin_unlock(ptl);
1482                 return 0;
1483         }
1484 
1485         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1486         if (!pte) {
1487                 walk->action = ACTION_AGAIN;
1488                 return 0;
1489         }
1490         for (; addr != end; pte++, addr += PAGE_SIZE) {
1491                 ptent = ptep_get(pte);
1492 
1493                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1494                         clear_soft_dirty(vma, addr, pte);
1495                         continue;
1496                 }
1497 
1498                 if (!pte_present(ptent))
1499                         continue;
1500 
1501                 folio = vm_normal_folio(vma, addr, ptent);
1502                 if (!folio)
1503                         continue;
1504 
1505                 /* Clear accessed and referenced bits. */
1506                 ptep_test_and_clear_young(vma, addr, pte);
1507                 folio_test_clear_young(folio);
1508                 folio_clear_referenced(folio);
1509         }
1510         pte_unmap_unlock(pte - 1, ptl);
1511         cond_resched();
1512         return 0;
1513 }
1514 
1515 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1516                                 struct mm_walk *walk)
1517 {
1518         struct clear_refs_private *cp = walk->private;
1519         struct vm_area_struct *vma = walk->vma;
1520 
1521         if (vma->vm_flags & VM_PFNMAP)
1522                 return 1;
1523 
1524         /*
1525          * Writing 1 to /proc/pid/clear_refs affects all pages.
1526          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1527          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1528          * Writing 4 to /proc/pid/clear_refs affects all pages.
1529          */
1530         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1531                 return 1;
1532         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1533                 return 1;
1534         return 0;
1535 }
1536 
1537 static const struct mm_walk_ops clear_refs_walk_ops = {
1538         .pmd_entry              = clear_refs_pte_range,
1539         .test_walk              = clear_refs_test_walk,
1540         .walk_lock              = PGWALK_WRLOCK,
1541 };
1542 
1543 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1544                                 size_t count, loff_t *ppos)
1545 {
1546         struct task_struct *task;
1547         char buffer[PROC_NUMBUF] = {};
1548         struct mm_struct *mm;
1549         struct vm_area_struct *vma;
1550         enum clear_refs_types type;
1551         int itype;
1552         int rv;
1553 
1554         if (count > sizeof(buffer) - 1)
1555                 count = sizeof(buffer) - 1;
1556         if (copy_from_user(buffer, buf, count))
1557                 return -EFAULT;
1558         rv = kstrtoint(strstrip(buffer), 10, &itype);
1559         if (rv < 0)
1560                 return rv;
1561         type = (enum clear_refs_types)itype;
1562         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1563                 return -EINVAL;
1564 
1565         task = get_proc_task(file_inode(file));
1566         if (!task)
1567                 return -ESRCH;
1568         mm = get_task_mm(task);
1569         if (mm) {
1570                 VMA_ITERATOR(vmi, mm, 0);
1571                 struct mmu_notifier_range range;
1572                 struct clear_refs_private cp = {
1573                         .type = type,
1574                 };
1575 
1576                 if (mmap_write_lock_killable(mm)) {
1577                         count = -EINTR;
1578                         goto out_mm;
1579                 }
1580                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1581                         /*
1582                          * Writing 5 to /proc/pid/clear_refs resets the peak
1583                          * resident set size to this mm's current rss value.
1584                          */
1585                         reset_mm_hiwater_rss(mm);
1586                         goto out_unlock;
1587                 }
1588 
1589                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1590                         for_each_vma(vmi, vma) {
1591                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1592                                         continue;
1593                                 vm_flags_clear(vma, VM_SOFTDIRTY);
1594                                 vma_set_page_prot(vma);
1595                         }
1596 
1597                         inc_tlb_flush_pending(mm);
1598                         mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1599                                                 0, mm, 0, -1UL);
1600                         mmu_notifier_invalidate_range_start(&range);
1601                 }
1602                 walk_page_range(mm, 0, -1, &clear_refs_walk_ops, &cp);
1603                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1604                         mmu_notifier_invalidate_range_end(&range);
1605                         flush_tlb_mm(mm);
1606                         dec_tlb_flush_pending(mm);
1607                 }
1608 out_unlock:
1609                 mmap_write_unlock(mm);
1610 out_mm:
1611                 mmput(mm);
1612         }
1613         put_task_struct(task);
1614 
1615         return count;
1616 }
1617 
1618 const struct file_operations proc_clear_refs_operations = {
1619         .write          = clear_refs_write,
1620         .llseek         = noop_llseek,
1621 };
1622 
1623 typedef struct {
1624         u64 pme;
1625 } pagemap_entry_t;
1626 
1627 struct pagemapread {
1628         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1629         pagemap_entry_t *buffer;
1630         bool show_pfn;
1631 };
1632 
1633 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1634 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1635 
1636 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1637 #define PM_PFRAME_BITS          55
1638 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1639 #define PM_SOFT_DIRTY           BIT_ULL(55)
1640 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1641 #define PM_UFFD_WP              BIT_ULL(57)
1642 #define PM_FILE                 BIT_ULL(61)
1643 #define PM_SWAP                 BIT_ULL(62)
1644 #define PM_PRESENT              BIT_ULL(63)
1645 
1646 #define PM_END_OF_BUFFER    1
1647 
1648 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1649 {
1650         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1651 }
1652 
1653 static int add_to_pagemap(pagemap_entry_t *pme, struct pagemapread *pm)
1654 {
1655         pm->buffer[pm->pos++] = *pme;
1656         if (pm->pos >= pm->len)
1657                 return PM_END_OF_BUFFER;
1658         return 0;
1659 }
1660 
1661 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1662                             __always_unused int depth, struct mm_walk *walk)
1663 {
1664         struct pagemapread *pm = walk->private;
1665         unsigned long addr = start;
1666         int err = 0;
1667 
1668         while (addr < end) {
1669                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1670                 pagemap_entry_t pme = make_pme(0, 0);
1671                 /* End of address space hole, which we mark as non-present. */
1672                 unsigned long hole_end;
1673 
1674                 if (vma)
1675                         hole_end = min(end, vma->vm_start);
1676                 else
1677                         hole_end = end;
1678 
1679                 for (; addr < hole_end; addr += PAGE_SIZE) {
1680                         err = add_to_pagemap(&pme, pm);
1681                         if (err)
1682                                 goto out;
1683                 }
1684 
1685                 if (!vma)
1686                         break;
1687 
1688                 /* Addresses in the VMA. */
1689                 if (vma->vm_flags & VM_SOFTDIRTY)
1690                         pme = make_pme(0, PM_SOFT_DIRTY);
1691                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1692                         err = add_to_pagemap(&pme, pm);
1693                         if (err)
1694                                 goto out;
1695                 }
1696         }
1697 out:
1698         return err;
1699 }
1700 
1701 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1702                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1703 {
1704         u64 frame = 0, flags = 0;
1705         struct page *page = NULL;
1706         struct folio *folio;
1707 
1708         if (pte_present(pte)) {
1709                 if (pm->show_pfn)
1710                         frame = pte_pfn(pte);
1711                 flags |= PM_PRESENT;
1712                 page = vm_normal_page(vma, addr, pte);
1713                 if (pte_soft_dirty(pte))
1714                         flags |= PM_SOFT_DIRTY;
1715                 if (pte_uffd_wp(pte))
1716                         flags |= PM_UFFD_WP;
1717         } else if (is_swap_pte(pte)) {
1718                 swp_entry_t entry;
1719                 if (pte_swp_soft_dirty(pte))
1720                         flags |= PM_SOFT_DIRTY;
1721                 if (pte_swp_uffd_wp(pte))
1722                         flags |= PM_UFFD_WP;
1723                 entry = pte_to_swp_entry(pte);
1724                 if (pm->show_pfn) {
1725                         pgoff_t offset;
1726                         /*
1727                          * For PFN swap offsets, keeping the offset field
1728                          * to be PFN only to be compatible with old smaps.
1729                          */
1730                         if (is_pfn_swap_entry(entry))
1731                                 offset = swp_offset_pfn(entry);
1732                         else
1733                                 offset = swp_offset(entry);
1734                         frame = swp_type(entry) |
1735                             (offset << MAX_SWAPFILES_SHIFT);
1736                 }
1737                 flags |= PM_SWAP;
1738                 if (is_pfn_swap_entry(entry))
1739                         page = pfn_swap_entry_to_page(entry);
1740                 if (pte_marker_entry_uffd_wp(entry))
1741                         flags |= PM_UFFD_WP;
1742         }
1743 
1744         if (page) {
1745                 folio = page_folio(page);
1746                 if (!folio_test_anon(folio))
1747                         flags |= PM_FILE;
1748                 if ((flags & PM_PRESENT) &&
1749                     folio_precise_page_mapcount(folio, page) == 1)
1750                         flags |= PM_MMAP_EXCLUSIVE;
1751         }
1752         if (vma->vm_flags & VM_SOFTDIRTY)
1753                 flags |= PM_SOFT_DIRTY;
1754 
1755         return make_pme(frame, flags);
1756 }
1757 
1758 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1759                              struct mm_walk *walk)
1760 {
1761         struct vm_area_struct *vma = walk->vma;
1762         struct pagemapread *pm = walk->private;
1763         spinlock_t *ptl;
1764         pte_t *pte, *orig_pte;
1765         int err = 0;
1766 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1767 
1768         ptl = pmd_trans_huge_lock(pmdp, vma);
1769         if (ptl) {
1770                 unsigned int idx = (addr & ~PMD_MASK) >> PAGE_SHIFT;
1771                 u64 flags = 0, frame = 0;
1772                 pmd_t pmd = *pmdp;
1773                 struct page *page = NULL;
1774                 struct folio *folio = NULL;
1775 
1776                 if (vma->vm_flags & VM_SOFTDIRTY)
1777                         flags |= PM_SOFT_DIRTY;
1778 
1779                 if (pmd_present(pmd)) {
1780                         page = pmd_page(pmd);
1781 
1782                         flags |= PM_PRESENT;
1783                         if (pmd_soft_dirty(pmd))
1784                                 flags |= PM_SOFT_DIRTY;
1785                         if (pmd_uffd_wp(pmd))
1786                                 flags |= PM_UFFD_WP;
1787                         if (pm->show_pfn)
1788                                 frame = pmd_pfn(pmd) + idx;
1789                 }
1790 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1791                 else if (is_swap_pmd(pmd)) {
1792                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1793                         unsigned long offset;
1794 
1795                         if (pm->show_pfn) {
1796                                 if (is_pfn_swap_entry(entry))
1797                                         offset = swp_offset_pfn(entry) + idx;
1798                                 else
1799                                         offset = swp_offset(entry) + idx;
1800                                 frame = swp_type(entry) |
1801                                         (offset << MAX_SWAPFILES_SHIFT);
1802                         }
1803                         flags |= PM_SWAP;
1804                         if (pmd_swp_soft_dirty(pmd))
1805                                 flags |= PM_SOFT_DIRTY;
1806                         if (pmd_swp_uffd_wp(pmd))
1807                                 flags |= PM_UFFD_WP;
1808                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1809                         page = pfn_swap_entry_to_page(entry);
1810                 }
1811 #endif
1812 
1813                 if (page) {
1814                         folio = page_folio(page);
1815                         if (!folio_test_anon(folio))
1816                                 flags |= PM_FILE;
1817                 }
1818 
1819                 for (; addr != end; addr += PAGE_SIZE, idx++) {
1820                         unsigned long cur_flags = flags;
1821                         pagemap_entry_t pme;
1822 
1823                         if (folio && (flags & PM_PRESENT) &&
1824                             folio_precise_page_mapcount(folio, page + idx) == 1)
1825                                 cur_flags |= PM_MMAP_EXCLUSIVE;
1826 
1827                         pme = make_pme(frame, cur_flags);
1828                         err = add_to_pagemap(&pme, pm);
1829                         if (err)
1830                                 break;
1831                         if (pm->show_pfn) {
1832                                 if (flags & PM_PRESENT)
1833                                         frame++;
1834                                 else if (flags & PM_SWAP)
1835                                         frame += (1 << MAX_SWAPFILES_SHIFT);
1836                         }
1837                 }
1838                 spin_unlock(ptl);
1839                 return err;
1840         }
1841 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1842 
1843         /*
1844          * We can assume that @vma always points to a valid one and @end never
1845          * goes beyond vma->vm_end.
1846          */
1847         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1848         if (!pte) {
1849                 walk->action = ACTION_AGAIN;
1850                 return err;
1851         }
1852         for (; addr < end; pte++, addr += PAGE_SIZE) {
1853                 pagemap_entry_t pme;
1854 
1855                 pme = pte_to_pagemap_entry(pm, vma, addr, ptep_get(pte));
1856                 err = add_to_pagemap(&pme, pm);
1857                 if (err)
1858                         break;
1859         }
1860         pte_unmap_unlock(orig_pte, ptl);
1861 
1862         cond_resched();
1863 
1864         return err;
1865 }
1866 
1867 #ifdef CONFIG_HUGETLB_PAGE
1868 /* This function walks within one hugetlb entry in the single call */
1869 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1870                                  unsigned long addr, unsigned long end,
1871                                  struct mm_walk *walk)
1872 {
1873         struct pagemapread *pm = walk->private;
1874         struct vm_area_struct *vma = walk->vma;
1875         u64 flags = 0, frame = 0;
1876         int err = 0;
1877         pte_t pte;
1878 
1879         if (vma->vm_flags & VM_SOFTDIRTY)
1880                 flags |= PM_SOFT_DIRTY;
1881 
1882         pte = huge_ptep_get(walk->mm, addr, ptep);
1883         if (pte_present(pte)) {
1884                 struct folio *folio = page_folio(pte_page(pte));
1885 
1886                 if (!folio_test_anon(folio))
1887                         flags |= PM_FILE;
1888 
1889                 if (!folio_likely_mapped_shared(folio) &&
1890                     !hugetlb_pmd_shared(ptep))
1891                         flags |= PM_MMAP_EXCLUSIVE;
1892 
1893                 if (huge_pte_uffd_wp(pte))
1894                         flags |= PM_UFFD_WP;
1895 
1896                 flags |= PM_PRESENT;
1897                 if (pm->show_pfn)
1898                         frame = pte_pfn(pte) +
1899                                 ((addr & ~hmask) >> PAGE_SHIFT);
1900         } else if (pte_swp_uffd_wp_any(pte)) {
1901                 flags |= PM_UFFD_WP;
1902         }
1903 
1904         for (; addr != end; addr += PAGE_SIZE) {
1905                 pagemap_entry_t pme = make_pme(frame, flags);
1906 
1907                 err = add_to_pagemap(&pme, pm);
1908                 if (err)
1909                         return err;
1910                 if (pm->show_pfn && (flags & PM_PRESENT))
1911                         frame++;
1912         }
1913 
1914         cond_resched();
1915 
1916         return err;
1917 }
1918 #else
1919 #define pagemap_hugetlb_range   NULL
1920 #endif /* HUGETLB_PAGE */
1921 
1922 static const struct mm_walk_ops pagemap_ops = {
1923         .pmd_entry      = pagemap_pmd_range,
1924         .pte_hole       = pagemap_pte_hole,
1925         .hugetlb_entry  = pagemap_hugetlb_range,
1926         .walk_lock      = PGWALK_RDLOCK,
1927 };
1928 
1929 /*
1930  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1931  *
1932  * For each page in the address space, this file contains one 64-bit entry
1933  * consisting of the following:
1934  *
1935  * Bits 0-54  page frame number (PFN) if present
1936  * Bits 0-4   swap type if swapped
1937  * Bits 5-54  swap offset if swapped
1938  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1939  * Bit  56    page exclusively mapped
1940  * Bit  57    pte is uffd-wp write-protected
1941  * Bits 58-60 zero
1942  * Bit  61    page is file-page or shared-anon
1943  * Bit  62    page swapped
1944  * Bit  63    page present
1945  *
1946  * If the page is not present but in swap, then the PFN contains an
1947  * encoding of the swap file number and the page's offset into the
1948  * swap. Unmapped pages return a null PFN. This allows determining
1949  * precisely which pages are mapped (or in swap) and comparing mapped
1950  * pages between processes.
1951  *
1952  * Efficient users of this interface will use /proc/pid/maps to
1953  * determine which areas of memory are actually mapped and llseek to
1954  * skip over unmapped regions.
1955  */
1956 static ssize_t pagemap_read(struct file *file, char __user *buf,
1957                             size_t count, loff_t *ppos)
1958 {
1959         struct mm_struct *mm = file->private_data;
1960         struct pagemapread pm;
1961         unsigned long src;
1962         unsigned long svpfn;
1963         unsigned long start_vaddr;
1964         unsigned long end_vaddr;
1965         int ret = 0, copied = 0;
1966 
1967         if (!mm || !mmget_not_zero(mm))
1968                 goto out;
1969 
1970         ret = -EINVAL;
1971         /* file position must be aligned */
1972         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1973                 goto out_mm;
1974 
1975         ret = 0;
1976         if (!count)
1977                 goto out_mm;
1978 
1979         /* do not disclose physical addresses: attack vector */
1980         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1981 
1982         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1983         pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1984         ret = -ENOMEM;
1985         if (!pm.buffer)
1986                 goto out_mm;
1987 
1988         src = *ppos;
1989         svpfn = src / PM_ENTRY_BYTES;
1990         end_vaddr = mm->task_size;
1991 
1992         /* watch out for wraparound */
1993         start_vaddr = end_vaddr;
1994         if (svpfn <= (ULONG_MAX >> PAGE_SHIFT)) {
1995                 unsigned long end;
1996 
1997                 ret = mmap_read_lock_killable(mm);
1998                 if (ret)
1999                         goto out_free;
2000                 start_vaddr = untagged_addr_remote(mm, svpfn << PAGE_SHIFT);
2001                 mmap_read_unlock(mm);
2002 
2003                 end = start_vaddr + ((count / PM_ENTRY_BYTES) << PAGE_SHIFT);
2004                 if (end >= start_vaddr && end < mm->task_size)
2005                         end_vaddr = end;
2006         }
2007 
2008         /* Ensure the address is inside the task */
2009         if (start_vaddr > mm->task_size)
2010                 start_vaddr = end_vaddr;
2011 
2012         ret = 0;
2013         while (count && (start_vaddr < end_vaddr)) {
2014                 int len;
2015                 unsigned long end;
2016 
2017                 pm.pos = 0;
2018                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
2019                 /* overflow ? */
2020                 if (end < start_vaddr || end > end_vaddr)
2021                         end = end_vaddr;
2022                 ret = mmap_read_lock_killable(mm);
2023                 if (ret)
2024                         goto out_free;
2025                 ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
2026                 mmap_read_unlock(mm);
2027                 start_vaddr = end;
2028 
2029                 len = min(count, PM_ENTRY_BYTES * pm.pos);
2030                 if (copy_to_user(buf, pm.buffer, len)) {
2031                         ret = -EFAULT;
2032                         goto out_free;
2033                 }
2034                 copied += len;
2035                 buf += len;
2036                 count -= len;
2037         }
2038         *ppos += copied;
2039         if (!ret || ret == PM_END_OF_BUFFER)
2040                 ret = copied;
2041 
2042 out_free:
2043         kfree(pm.buffer);
2044 out_mm:
2045         mmput(mm);
2046 out:
2047         return ret;
2048 }
2049 
2050 static int pagemap_open(struct inode *inode, struct file *file)
2051 {
2052         struct mm_struct *mm;
2053 
2054         mm = proc_mem_open(inode, PTRACE_MODE_READ);
2055         if (IS_ERR(mm))
2056                 return PTR_ERR(mm);
2057         file->private_data = mm;
2058         return 0;
2059 }
2060 
2061 static int pagemap_release(struct inode *inode, struct file *file)
2062 {
2063         struct mm_struct *mm = file->private_data;
2064 
2065         if (mm)
2066                 mmdrop(mm);
2067         return 0;
2068 }
2069 
2070 #define PM_SCAN_CATEGORIES      (PAGE_IS_WPALLOWED | PAGE_IS_WRITTEN |  \
2071                                  PAGE_IS_FILE | PAGE_IS_PRESENT |       \
2072                                  PAGE_IS_SWAPPED | PAGE_IS_PFNZERO |    \
2073                                  PAGE_IS_HUGE | PAGE_IS_SOFT_DIRTY)
2074 #define PM_SCAN_FLAGS           (PM_SCAN_WP_MATCHING | PM_SCAN_CHECK_WPASYNC)
2075 
2076 struct pagemap_scan_private {
2077         struct pm_scan_arg arg;
2078         unsigned long masks_of_interest, cur_vma_category;
2079         struct page_region *vec_buf;
2080         unsigned long vec_buf_len, vec_buf_index, found_pages;
2081         struct page_region __user *vec_out;
2082 };
2083 
2084 static unsigned long pagemap_page_category(struct pagemap_scan_private *p,
2085                                            struct vm_area_struct *vma,
2086                                            unsigned long addr, pte_t pte)
2087 {
2088         unsigned long categories = 0;
2089 
2090         if (pte_present(pte)) {
2091                 struct page *page;
2092 
2093                 categories |= PAGE_IS_PRESENT;
2094                 if (!pte_uffd_wp(pte))
2095                         categories |= PAGE_IS_WRITTEN;
2096 
2097                 if (p->masks_of_interest & PAGE_IS_FILE) {
2098                         page = vm_normal_page(vma, addr, pte);
2099                         if (page && !PageAnon(page))
2100                                 categories |= PAGE_IS_FILE;
2101                 }
2102 
2103                 if (is_zero_pfn(pte_pfn(pte)))
2104                         categories |= PAGE_IS_PFNZERO;
2105                 if (pte_soft_dirty(pte))
2106                         categories |= PAGE_IS_SOFT_DIRTY;
2107         } else if (is_swap_pte(pte)) {
2108                 swp_entry_t swp;
2109 
2110                 categories |= PAGE_IS_SWAPPED;
2111                 if (!pte_swp_uffd_wp_any(pte))
2112                         categories |= PAGE_IS_WRITTEN;
2113 
2114                 if (p->masks_of_interest & PAGE_IS_FILE) {
2115                         swp = pte_to_swp_entry(pte);
2116                         if (is_pfn_swap_entry(swp) &&
2117                             !folio_test_anon(pfn_swap_entry_folio(swp)))
2118                                 categories |= PAGE_IS_FILE;
2119                 }
2120                 if (pte_swp_soft_dirty(pte))
2121                         categories |= PAGE_IS_SOFT_DIRTY;
2122         }
2123 
2124         return categories;
2125 }
2126 
2127 static void make_uffd_wp_pte(struct vm_area_struct *vma,
2128                              unsigned long addr, pte_t *pte, pte_t ptent)
2129 {
2130         if (pte_present(ptent)) {
2131                 pte_t old_pte;
2132 
2133                 old_pte = ptep_modify_prot_start(vma, addr, pte);
2134                 ptent = pte_mkuffd_wp(old_pte);
2135                 ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
2136         } else if (is_swap_pte(ptent)) {
2137                 ptent = pte_swp_mkuffd_wp(ptent);
2138                 set_pte_at(vma->vm_mm, addr, pte, ptent);
2139         } else {
2140                 set_pte_at(vma->vm_mm, addr, pte,
2141                            make_pte_marker(PTE_MARKER_UFFD_WP));
2142         }
2143 }
2144 
2145 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2146 static unsigned long pagemap_thp_category(struct pagemap_scan_private *p,
2147                                           struct vm_area_struct *vma,
2148                                           unsigned long addr, pmd_t pmd)
2149 {
2150         unsigned long categories = PAGE_IS_HUGE;
2151 
2152         if (pmd_present(pmd)) {
2153                 struct page *page;
2154 
2155                 categories |= PAGE_IS_PRESENT;
2156                 if (!pmd_uffd_wp(pmd))
2157                         categories |= PAGE_IS_WRITTEN;
2158 
2159                 if (p->masks_of_interest & PAGE_IS_FILE) {
2160                         page = vm_normal_page_pmd(vma, addr, pmd);
2161                         if (page && !PageAnon(page))
2162                                 categories |= PAGE_IS_FILE;
2163                 }
2164 
2165                 if (is_zero_pfn(pmd_pfn(pmd)))
2166                         categories |= PAGE_IS_PFNZERO;
2167                 if (pmd_soft_dirty(pmd))
2168                         categories |= PAGE_IS_SOFT_DIRTY;
2169         } else if (is_swap_pmd(pmd)) {
2170                 swp_entry_t swp;
2171 
2172                 categories |= PAGE_IS_SWAPPED;
2173                 if (!pmd_swp_uffd_wp(pmd))
2174                         categories |= PAGE_IS_WRITTEN;
2175                 if (pmd_swp_soft_dirty(pmd))
2176                         categories |= PAGE_IS_SOFT_DIRTY;
2177 
2178                 if (p->masks_of_interest & PAGE_IS_FILE) {
2179                         swp = pmd_to_swp_entry(pmd);
2180                         if (is_pfn_swap_entry(swp) &&
2181                             !folio_test_anon(pfn_swap_entry_folio(swp)))
2182                                 categories |= PAGE_IS_FILE;
2183                 }
2184         }
2185 
2186         return categories;
2187 }
2188 
2189 static void make_uffd_wp_pmd(struct vm_area_struct *vma,
2190                              unsigned long addr, pmd_t *pmdp)
2191 {
2192         pmd_t old, pmd = *pmdp;
2193 
2194         if (pmd_present(pmd)) {
2195                 old = pmdp_invalidate_ad(vma, addr, pmdp);
2196                 pmd = pmd_mkuffd_wp(old);
2197                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2198         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
2199                 pmd = pmd_swp_mkuffd_wp(pmd);
2200                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
2201         }
2202 }
2203 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2204 
2205 #ifdef CONFIG_HUGETLB_PAGE
2206 static unsigned long pagemap_hugetlb_category(pte_t pte)
2207 {
2208         unsigned long categories = PAGE_IS_HUGE;
2209 
2210         /*
2211          * According to pagemap_hugetlb_range(), file-backed HugeTLB
2212          * page cannot be swapped. So PAGE_IS_FILE is not checked for
2213          * swapped pages.
2214          */
2215         if (pte_present(pte)) {
2216                 categories |= PAGE_IS_PRESENT;
2217                 if (!huge_pte_uffd_wp(pte))
2218                         categories |= PAGE_IS_WRITTEN;
2219                 if (!PageAnon(pte_page(pte)))
2220                         categories |= PAGE_IS_FILE;
2221                 if (is_zero_pfn(pte_pfn(pte)))
2222                         categories |= PAGE_IS_PFNZERO;
2223                 if (pte_soft_dirty(pte))
2224                         categories |= PAGE_IS_SOFT_DIRTY;
2225         } else if (is_swap_pte(pte)) {
2226                 categories |= PAGE_IS_SWAPPED;
2227                 if (!pte_swp_uffd_wp_any(pte))
2228                         categories |= PAGE_IS_WRITTEN;
2229                 if (pte_swp_soft_dirty(pte))
2230                         categories |= PAGE_IS_SOFT_DIRTY;
2231         }
2232 
2233         return categories;
2234 }
2235 
2236 static void make_uffd_wp_huge_pte(struct vm_area_struct *vma,
2237                                   unsigned long addr, pte_t *ptep,
2238                                   pte_t ptent)
2239 {
2240         unsigned long psize;
2241 
2242         if (is_hugetlb_entry_hwpoisoned(ptent) || is_pte_marker(ptent))
2243                 return;
2244 
2245         psize = huge_page_size(hstate_vma(vma));
2246 
2247         if (is_hugetlb_entry_migration(ptent))
2248                 set_huge_pte_at(vma->vm_mm, addr, ptep,
2249                                 pte_swp_mkuffd_wp(ptent), psize);
2250         else if (!huge_pte_none(ptent))
2251                 huge_ptep_modify_prot_commit(vma, addr, ptep, ptent,
2252                                              huge_pte_mkuffd_wp(ptent));
2253         else
2254                 set_huge_pte_at(vma->vm_mm, addr, ptep,
2255                                 make_pte_marker(PTE_MARKER_UFFD_WP), psize);
2256 }
2257 #endif /* CONFIG_HUGETLB_PAGE */
2258 
2259 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
2260 static void pagemap_scan_backout_range(struct pagemap_scan_private *p,
2261                                        unsigned long addr, unsigned long end)
2262 {
2263         struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2264 
2265         if (cur_buf->start != addr)
2266                 cur_buf->end = addr;
2267         else
2268                 cur_buf->start = cur_buf->end = 0;
2269 
2270         p->found_pages -= (end - addr) / PAGE_SIZE;
2271 }
2272 #endif
2273 
2274 static bool pagemap_scan_is_interesting_page(unsigned long categories,
2275                                              const struct pagemap_scan_private *p)
2276 {
2277         categories ^= p->arg.category_inverted;
2278         if ((categories & p->arg.category_mask) != p->arg.category_mask)
2279                 return false;
2280         if (p->arg.category_anyof_mask && !(categories & p->arg.category_anyof_mask))
2281                 return false;
2282 
2283         return true;
2284 }
2285 
2286 static bool pagemap_scan_is_interesting_vma(unsigned long categories,
2287                                             const struct pagemap_scan_private *p)
2288 {
2289         unsigned long required = p->arg.category_mask & PAGE_IS_WPALLOWED;
2290 
2291         categories ^= p->arg.category_inverted;
2292         if ((categories & required) != required)
2293                 return false;
2294 
2295         return true;
2296 }
2297 
2298 static int pagemap_scan_test_walk(unsigned long start, unsigned long end,
2299                                   struct mm_walk *walk)
2300 {
2301         struct pagemap_scan_private *p = walk->private;
2302         struct vm_area_struct *vma = walk->vma;
2303         unsigned long vma_category = 0;
2304         bool wp_allowed = userfaultfd_wp_async(vma) &&
2305             userfaultfd_wp_use_markers(vma);
2306 
2307         if (!wp_allowed) {
2308                 /* User requested explicit failure over wp-async capability */
2309                 if (p->arg.flags & PM_SCAN_CHECK_WPASYNC)
2310                         return -EPERM;
2311                 /*
2312                  * User requires wr-protect, and allows silently skipping
2313                  * unsupported vmas.
2314                  */
2315                 if (p->arg.flags & PM_SCAN_WP_MATCHING)
2316                         return 1;
2317                 /*
2318                  * Then the request doesn't involve wr-protects at all,
2319                  * fall through to the rest checks, and allow vma walk.
2320                  */
2321         }
2322 
2323         if (vma->vm_flags & VM_PFNMAP)
2324                 return 1;
2325 
2326         if (wp_allowed)
2327                 vma_category |= PAGE_IS_WPALLOWED;
2328 
2329         if (vma->vm_flags & VM_SOFTDIRTY)
2330                 vma_category |= PAGE_IS_SOFT_DIRTY;
2331 
2332         if (!pagemap_scan_is_interesting_vma(vma_category, p))
2333                 return 1;
2334 
2335         p->cur_vma_category = vma_category;
2336 
2337         return 0;
2338 }
2339 
2340 static bool pagemap_scan_push_range(unsigned long categories,
2341                                     struct pagemap_scan_private *p,
2342                                     unsigned long addr, unsigned long end)
2343 {
2344         struct page_region *cur_buf = &p->vec_buf[p->vec_buf_index];
2345 
2346         /*
2347          * When there is no output buffer provided at all, the sentinel values
2348          * won't match here. There is no other way for `cur_buf->end` to be
2349          * non-zero other than it being non-empty.
2350          */
2351         if (addr == cur_buf->end && categories == cur_buf->categories) {
2352                 cur_buf->end = end;
2353                 return true;
2354         }
2355 
2356         if (cur_buf->end) {
2357                 if (p->vec_buf_index >= p->vec_buf_len - 1)
2358                         return false;
2359 
2360                 cur_buf = &p->vec_buf[++p->vec_buf_index];
2361         }
2362 
2363         cur_buf->start = addr;
2364         cur_buf->end = end;
2365         cur_buf->categories = categories;
2366 
2367         return true;
2368 }
2369 
2370 static int pagemap_scan_output(unsigned long categories,
2371                                struct pagemap_scan_private *p,
2372                                unsigned long addr, unsigned long *end)
2373 {
2374         unsigned long n_pages, total_pages;
2375         int ret = 0;
2376 
2377         if (!p->vec_buf)
2378                 return 0;
2379 
2380         categories &= p->arg.return_mask;
2381 
2382         n_pages = (*end - addr) / PAGE_SIZE;
2383         if (check_add_overflow(p->found_pages, n_pages, &total_pages) ||
2384             total_pages > p->arg.max_pages) {
2385                 size_t n_too_much = total_pages - p->arg.max_pages;
2386                 *end -= n_too_much * PAGE_SIZE;
2387                 n_pages -= n_too_much;
2388                 ret = -ENOSPC;
2389         }
2390 
2391         if (!pagemap_scan_push_range(categories, p, addr, *end)) {
2392                 *end = addr;
2393                 n_pages = 0;
2394                 ret = -ENOSPC;
2395         }
2396 
2397         p->found_pages += n_pages;
2398         if (ret)
2399                 p->arg.walk_end = *end;
2400 
2401         return ret;
2402 }
2403 
2404 static int pagemap_scan_thp_entry(pmd_t *pmd, unsigned long start,
2405                                   unsigned long end, struct mm_walk *walk)
2406 {
2407 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2408         struct pagemap_scan_private *p = walk->private;
2409         struct vm_area_struct *vma = walk->vma;
2410         unsigned long categories;
2411         spinlock_t *ptl;
2412         int ret = 0;
2413 
2414         ptl = pmd_trans_huge_lock(pmd, vma);
2415         if (!ptl)
2416                 return -ENOENT;
2417 
2418         categories = p->cur_vma_category |
2419                      pagemap_thp_category(p, vma, start, *pmd);
2420 
2421         if (!pagemap_scan_is_interesting_page(categories, p))
2422                 goto out_unlock;
2423 
2424         ret = pagemap_scan_output(categories, p, start, &end);
2425         if (start == end)
2426                 goto out_unlock;
2427 
2428         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2429                 goto out_unlock;
2430         if (~categories & PAGE_IS_WRITTEN)
2431                 goto out_unlock;
2432 
2433         /*
2434          * Break huge page into small pages if the WP operation
2435          * needs to be performed on a portion of the huge page.
2436          */
2437         if (end != start + HPAGE_SIZE) {
2438                 spin_unlock(ptl);
2439                 split_huge_pmd(vma, pmd, start);
2440                 pagemap_scan_backout_range(p, start, end);
2441                 /* Report as if there was no THP */
2442                 return -ENOENT;
2443         }
2444 
2445         make_uffd_wp_pmd(vma, start, pmd);
2446         flush_tlb_range(vma, start, end);
2447 out_unlock:
2448         spin_unlock(ptl);
2449         return ret;
2450 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
2451         return -ENOENT;
2452 #endif
2453 }
2454 
2455 static int pagemap_scan_pmd_entry(pmd_t *pmd, unsigned long start,
2456                                   unsigned long end, struct mm_walk *walk)
2457 {
2458         struct pagemap_scan_private *p = walk->private;
2459         struct vm_area_struct *vma = walk->vma;
2460         unsigned long addr, flush_end = 0;
2461         pte_t *pte, *start_pte;
2462         spinlock_t *ptl;
2463         int ret;
2464 
2465         arch_enter_lazy_mmu_mode();
2466 
2467         ret = pagemap_scan_thp_entry(pmd, start, end, walk);
2468         if (ret != -ENOENT) {
2469                 arch_leave_lazy_mmu_mode();
2470                 return ret;
2471         }
2472 
2473         ret = 0;
2474         start_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
2475         if (!pte) {
2476                 arch_leave_lazy_mmu_mode();
2477                 walk->action = ACTION_AGAIN;
2478                 return 0;
2479         }
2480 
2481         if ((p->arg.flags & PM_SCAN_WP_MATCHING) && !p->vec_out) {
2482                 /* Fast path for performing exclusive WP */
2483                 for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2484                         pte_t ptent = ptep_get(pte);
2485 
2486                         if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2487                             pte_swp_uffd_wp_any(ptent))
2488                                 continue;
2489                         make_uffd_wp_pte(vma, addr, pte, ptent);
2490                         if (!flush_end)
2491                                 start = addr;
2492                         flush_end = addr + PAGE_SIZE;
2493                 }
2494                 goto flush_and_return;
2495         }
2496 
2497         if (!p->arg.category_anyof_mask && !p->arg.category_inverted &&
2498             p->arg.category_mask == PAGE_IS_WRITTEN &&
2499             p->arg.return_mask == PAGE_IS_WRITTEN) {
2500                 for (addr = start; addr < end; pte++, addr += PAGE_SIZE) {
2501                         unsigned long next = addr + PAGE_SIZE;
2502                         pte_t ptent = ptep_get(pte);
2503 
2504                         if ((pte_present(ptent) && pte_uffd_wp(ptent)) ||
2505                             pte_swp_uffd_wp_any(ptent))
2506                                 continue;
2507                         ret = pagemap_scan_output(p->cur_vma_category | PAGE_IS_WRITTEN,
2508                                                   p, addr, &next);
2509                         if (next == addr)
2510                                 break;
2511                         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2512                                 continue;
2513                         make_uffd_wp_pte(vma, addr, pte, ptent);
2514                         if (!flush_end)
2515                                 start = addr;
2516                         flush_end = next;
2517                 }
2518                 goto flush_and_return;
2519         }
2520 
2521         for (addr = start; addr != end; pte++, addr += PAGE_SIZE) {
2522                 pte_t ptent = ptep_get(pte);
2523                 unsigned long categories = p->cur_vma_category |
2524                                            pagemap_page_category(p, vma, addr, ptent);
2525                 unsigned long next = addr + PAGE_SIZE;
2526 
2527                 if (!pagemap_scan_is_interesting_page(categories, p))
2528                         continue;
2529 
2530                 ret = pagemap_scan_output(categories, p, addr, &next);
2531                 if (next == addr)
2532                         break;
2533 
2534                 if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2535                         continue;
2536                 if (~categories & PAGE_IS_WRITTEN)
2537                         continue;
2538 
2539                 make_uffd_wp_pte(vma, addr, pte, ptent);
2540                 if (!flush_end)
2541                         start = addr;
2542                 flush_end = next;
2543         }
2544 
2545 flush_and_return:
2546         if (flush_end)
2547                 flush_tlb_range(vma, start, addr);
2548 
2549         pte_unmap_unlock(start_pte, ptl);
2550         arch_leave_lazy_mmu_mode();
2551 
2552         cond_resched();
2553         return ret;
2554 }
2555 
2556 #ifdef CONFIG_HUGETLB_PAGE
2557 static int pagemap_scan_hugetlb_entry(pte_t *ptep, unsigned long hmask,
2558                                       unsigned long start, unsigned long end,
2559                                       struct mm_walk *walk)
2560 {
2561         struct pagemap_scan_private *p = walk->private;
2562         struct vm_area_struct *vma = walk->vma;
2563         unsigned long categories;
2564         spinlock_t *ptl;
2565         int ret = 0;
2566         pte_t pte;
2567 
2568         if (~p->arg.flags & PM_SCAN_WP_MATCHING) {
2569                 /* Go the short route when not write-protecting pages. */
2570 
2571                 pte = huge_ptep_get(walk->mm, start, ptep);
2572                 categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2573 
2574                 if (!pagemap_scan_is_interesting_page(categories, p))
2575                         return 0;
2576 
2577                 return pagemap_scan_output(categories, p, start, &end);
2578         }
2579 
2580         i_mmap_lock_write(vma->vm_file->f_mapping);
2581         ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, ptep);
2582 
2583         pte = huge_ptep_get(walk->mm, start, ptep);
2584         categories = p->cur_vma_category | pagemap_hugetlb_category(pte);
2585 
2586         if (!pagemap_scan_is_interesting_page(categories, p))
2587                 goto out_unlock;
2588 
2589         ret = pagemap_scan_output(categories, p, start, &end);
2590         if (start == end)
2591                 goto out_unlock;
2592 
2593         if (~categories & PAGE_IS_WRITTEN)
2594                 goto out_unlock;
2595 
2596         if (end != start + HPAGE_SIZE) {
2597                 /* Partial HugeTLB page WP isn't possible. */
2598                 pagemap_scan_backout_range(p, start, end);
2599                 p->arg.walk_end = start;
2600                 ret = 0;
2601                 goto out_unlock;
2602         }
2603 
2604         make_uffd_wp_huge_pte(vma, start, ptep, pte);
2605         flush_hugetlb_tlb_range(vma, start, end);
2606 
2607 out_unlock:
2608         spin_unlock(ptl);
2609         i_mmap_unlock_write(vma->vm_file->f_mapping);
2610 
2611         return ret;
2612 }
2613 #else
2614 #define pagemap_scan_hugetlb_entry NULL
2615 #endif
2616 
2617 static int pagemap_scan_pte_hole(unsigned long addr, unsigned long end,
2618                                  int depth, struct mm_walk *walk)
2619 {
2620         struct pagemap_scan_private *p = walk->private;
2621         struct vm_area_struct *vma = walk->vma;
2622         int ret, err;
2623 
2624         if (!vma || !pagemap_scan_is_interesting_page(p->cur_vma_category, p))
2625                 return 0;
2626 
2627         ret = pagemap_scan_output(p->cur_vma_category, p, addr, &end);
2628         if (addr == end)
2629                 return ret;
2630 
2631         if (~p->arg.flags & PM_SCAN_WP_MATCHING)
2632                 return ret;
2633 
2634         err = uffd_wp_range(vma, addr, end - addr, true);
2635         if (err < 0)
2636                 ret = err;
2637 
2638         return ret;
2639 }
2640 
2641 static const struct mm_walk_ops pagemap_scan_ops = {
2642         .test_walk = pagemap_scan_test_walk,
2643         .pmd_entry = pagemap_scan_pmd_entry,
2644         .pte_hole = pagemap_scan_pte_hole,
2645         .hugetlb_entry = pagemap_scan_hugetlb_entry,
2646 };
2647 
2648 static int pagemap_scan_get_args(struct pm_scan_arg *arg,
2649                                  unsigned long uarg)
2650 {
2651         if (copy_from_user(arg, (void __user *)uarg, sizeof(*arg)))
2652                 return -EFAULT;
2653 
2654         if (arg->size != sizeof(struct pm_scan_arg))
2655                 return -EINVAL;
2656 
2657         /* Validate requested features */
2658         if (arg->flags & ~PM_SCAN_FLAGS)
2659                 return -EINVAL;
2660         if ((arg->category_inverted | arg->category_mask |
2661              arg->category_anyof_mask | arg->return_mask) & ~PM_SCAN_CATEGORIES)
2662                 return -EINVAL;
2663 
2664         arg->start = untagged_addr((unsigned long)arg->start);
2665         arg->end = untagged_addr((unsigned long)arg->end);
2666         arg->vec = untagged_addr((unsigned long)arg->vec);
2667 
2668         /* Validate memory pointers */
2669         if (!IS_ALIGNED(arg->start, PAGE_SIZE))
2670                 return -EINVAL;
2671         if (!access_ok((void __user *)(long)arg->start, arg->end - arg->start))
2672                 return -EFAULT;
2673         if (!arg->vec && arg->vec_len)
2674                 return -EINVAL;
2675         if (arg->vec && !access_ok((void __user *)(long)arg->vec,
2676                               arg->vec_len * sizeof(struct page_region)))
2677                 return -EFAULT;
2678 
2679         /* Fixup default values */
2680         arg->end = ALIGN(arg->end, PAGE_SIZE);
2681         arg->walk_end = 0;
2682         if (!arg->max_pages)
2683                 arg->max_pages = ULONG_MAX;
2684 
2685         return 0;
2686 }
2687 
2688 static int pagemap_scan_writeback_args(struct pm_scan_arg *arg,
2689                                        unsigned long uargl)
2690 {
2691         struct pm_scan_arg __user *uarg = (void __user *)uargl;
2692 
2693         if (copy_to_user(&uarg->walk_end, &arg->walk_end, sizeof(arg->walk_end)))
2694                 return -EFAULT;
2695 
2696         return 0;
2697 }
2698 
2699 static int pagemap_scan_init_bounce_buffer(struct pagemap_scan_private *p)
2700 {
2701         if (!p->arg.vec_len)
2702                 return 0;
2703 
2704         p->vec_buf_len = min_t(size_t, PAGEMAP_WALK_SIZE >> PAGE_SHIFT,
2705                                p->arg.vec_len);
2706         p->vec_buf = kmalloc_array(p->vec_buf_len, sizeof(*p->vec_buf),
2707                                    GFP_KERNEL);
2708         if (!p->vec_buf)
2709                 return -ENOMEM;
2710 
2711         p->vec_buf->start = p->vec_buf->end = 0;
2712         p->vec_out = (struct page_region __user *)(long)p->arg.vec;
2713 
2714         return 0;
2715 }
2716 
2717 static long pagemap_scan_flush_buffer(struct pagemap_scan_private *p)
2718 {
2719         const struct page_region *buf = p->vec_buf;
2720         long n = p->vec_buf_index;
2721 
2722         if (!p->vec_buf)
2723                 return 0;
2724 
2725         if (buf[n].end != buf[n].start)
2726                 n++;
2727 
2728         if (!n)
2729                 return 0;
2730 
2731         if (copy_to_user(p->vec_out, buf, n * sizeof(*buf)))
2732                 return -EFAULT;
2733 
2734         p->arg.vec_len -= n;
2735         p->vec_out += n;
2736 
2737         p->vec_buf_index = 0;
2738         p->vec_buf_len = min_t(size_t, p->vec_buf_len, p->arg.vec_len);
2739         p->vec_buf->start = p->vec_buf->end = 0;
2740 
2741         return n;
2742 }
2743 
2744 static long do_pagemap_scan(struct mm_struct *mm, unsigned long uarg)
2745 {
2746         struct pagemap_scan_private p = {0};
2747         unsigned long walk_start;
2748         size_t n_ranges_out = 0;
2749         int ret;
2750 
2751         ret = pagemap_scan_get_args(&p.arg, uarg);
2752         if (ret)
2753                 return ret;
2754 
2755         p.masks_of_interest = p.arg.category_mask | p.arg.category_anyof_mask |
2756                               p.arg.return_mask;
2757         ret = pagemap_scan_init_bounce_buffer(&p);
2758         if (ret)
2759                 return ret;
2760 
2761         for (walk_start = p.arg.start; walk_start < p.arg.end;
2762                         walk_start = p.arg.walk_end) {
2763                 struct mmu_notifier_range range;
2764                 long n_out;
2765 
2766                 if (fatal_signal_pending(current)) {
2767                         ret = -EINTR;
2768                         break;
2769                 }
2770 
2771                 ret = mmap_read_lock_killable(mm);
2772                 if (ret)
2773                         break;
2774 
2775                 /* Protection change for the range is going to happen. */
2776                 if (p.arg.flags & PM_SCAN_WP_MATCHING) {
2777                         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA, 0,
2778                                                 mm, walk_start, p.arg.end);
2779                         mmu_notifier_invalidate_range_start(&range);
2780                 }
2781 
2782                 ret = walk_page_range(mm, walk_start, p.arg.end,
2783                                       &pagemap_scan_ops, &p);
2784 
2785                 if (p.arg.flags & PM_SCAN_WP_MATCHING)
2786                         mmu_notifier_invalidate_range_end(&range);
2787 
2788                 mmap_read_unlock(mm);
2789 
2790                 n_out = pagemap_scan_flush_buffer(&p);
2791                 if (n_out < 0)
2792                         ret = n_out;
2793                 else
2794                         n_ranges_out += n_out;
2795 
2796                 if (ret != -ENOSPC)
2797                         break;
2798 
2799                 if (p.arg.vec_len == 0 || p.found_pages == p.arg.max_pages)
2800                         break;
2801         }
2802 
2803         /* ENOSPC signifies early stop (buffer full) from the walk. */
2804         if (!ret || ret == -ENOSPC)
2805                 ret = n_ranges_out;
2806 
2807         /* The walk_end isn't set when ret is zero */
2808         if (!p.arg.walk_end)
2809                 p.arg.walk_end = p.arg.end;
2810         if (pagemap_scan_writeback_args(&p.arg, uarg))
2811                 ret = -EFAULT;
2812 
2813         kfree(p.vec_buf);
2814         return ret;
2815 }
2816 
2817 static long do_pagemap_cmd(struct file *file, unsigned int cmd,
2818                            unsigned long arg)
2819 {
2820         struct mm_struct *mm = file->private_data;
2821 
2822         switch (cmd) {
2823         case PAGEMAP_SCAN:
2824                 return do_pagemap_scan(mm, arg);
2825 
2826         default:
2827                 return -EINVAL;
2828         }
2829 }
2830 
2831 const struct file_operations proc_pagemap_operations = {
2832         .llseek         = mem_lseek, /* borrow this */
2833         .read           = pagemap_read,
2834         .open           = pagemap_open,
2835         .release        = pagemap_release,
2836         .unlocked_ioctl = do_pagemap_cmd,
2837         .compat_ioctl   = do_pagemap_cmd,
2838 };
2839 #endif /* CONFIG_PROC_PAGE_MONITOR */
2840 
2841 #ifdef CONFIG_NUMA
2842 
2843 struct numa_maps {
2844         unsigned long pages;
2845         unsigned long anon;
2846         unsigned long active;
2847         unsigned long writeback;
2848         unsigned long mapcount_max;
2849         unsigned long dirty;
2850         unsigned long swapcache;
2851         unsigned long node[MAX_NUMNODES];
2852 };
2853 
2854 struct numa_maps_private {
2855         struct proc_maps_private proc_maps;
2856         struct numa_maps md;
2857 };
2858 
2859 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
2860                         unsigned long nr_pages)
2861 {
2862         struct folio *folio = page_folio(page);
2863         int count = folio_precise_page_mapcount(folio, page);
2864 
2865         md->pages += nr_pages;
2866         if (pte_dirty || folio_test_dirty(folio))
2867                 md->dirty += nr_pages;
2868 
2869         if (folio_test_swapcache(folio))
2870                 md->swapcache += nr_pages;
2871 
2872         if (folio_test_active(folio) || folio_test_unevictable(folio))
2873                 md->active += nr_pages;
2874 
2875         if (folio_test_writeback(folio))
2876                 md->writeback += nr_pages;
2877 
2878         if (folio_test_anon(folio))
2879                 md->anon += nr_pages;
2880 
2881         if (count > md->mapcount_max)
2882                 md->mapcount_max = count;
2883 
2884         md->node[folio_nid(folio)] += nr_pages;
2885 }
2886 
2887 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
2888                 unsigned long addr)
2889 {
2890         struct page *page;
2891         int nid;
2892 
2893         if (!pte_present(pte))
2894                 return NULL;
2895 
2896         page = vm_normal_page(vma, addr, pte);
2897         if (!page || is_zone_device_page(page))
2898                 return NULL;
2899 
2900         if (PageReserved(page))
2901                 return NULL;
2902 
2903         nid = page_to_nid(page);
2904         if (!node_isset(nid, node_states[N_MEMORY]))
2905                 return NULL;
2906 
2907         return page;
2908 }
2909 
2910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2911 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
2912                                               struct vm_area_struct *vma,
2913                                               unsigned long addr)
2914 {
2915         struct page *page;
2916         int nid;
2917 
2918         if (!pmd_present(pmd))
2919                 return NULL;
2920 
2921         page = vm_normal_page_pmd(vma, addr, pmd);
2922         if (!page)
2923                 return NULL;
2924 
2925         if (PageReserved(page))
2926                 return NULL;
2927 
2928         nid = page_to_nid(page);
2929         if (!node_isset(nid, node_states[N_MEMORY]))
2930                 return NULL;
2931 
2932         return page;
2933 }
2934 #endif
2935 
2936 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
2937                 unsigned long end, struct mm_walk *walk)
2938 {
2939         struct numa_maps *md = walk->private;
2940         struct vm_area_struct *vma = walk->vma;
2941         spinlock_t *ptl;
2942         pte_t *orig_pte;
2943         pte_t *pte;
2944 
2945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2946         ptl = pmd_trans_huge_lock(pmd, vma);
2947         if (ptl) {
2948                 struct page *page;
2949 
2950                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
2951                 if (page)
2952                         gather_stats(page, md, pmd_dirty(*pmd),
2953                                      HPAGE_PMD_SIZE/PAGE_SIZE);
2954                 spin_unlock(ptl);
2955                 return 0;
2956         }
2957 #endif
2958         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
2959         if (!pte) {
2960                 walk->action = ACTION_AGAIN;
2961                 return 0;
2962         }
2963         do {
2964                 pte_t ptent = ptep_get(pte);
2965                 struct page *page = can_gather_numa_stats(ptent, vma, addr);
2966                 if (!page)
2967                         continue;
2968                 gather_stats(page, md, pte_dirty(ptent), 1);
2969 
2970         } while (pte++, addr += PAGE_SIZE, addr != end);
2971         pte_unmap_unlock(orig_pte, ptl);
2972         cond_resched();
2973         return 0;
2974 }
2975 #ifdef CONFIG_HUGETLB_PAGE
2976 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2977                 unsigned long addr, unsigned long end, struct mm_walk *walk)
2978 {
2979         pte_t huge_pte = huge_ptep_get(walk->mm, addr, pte);
2980         struct numa_maps *md;
2981         struct page *page;
2982 
2983         if (!pte_present(huge_pte))
2984                 return 0;
2985 
2986         page = pte_page(huge_pte);
2987 
2988         md = walk->private;
2989         gather_stats(page, md, pte_dirty(huge_pte), 1);
2990         return 0;
2991 }
2992 
2993 #else
2994 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
2995                 unsigned long addr, unsigned long end, struct mm_walk *walk)
2996 {
2997         return 0;
2998 }
2999 #endif
3000 
3001 static const struct mm_walk_ops show_numa_ops = {
3002         .hugetlb_entry = gather_hugetlb_stats,
3003         .pmd_entry = gather_pte_stats,
3004         .walk_lock = PGWALK_RDLOCK,
3005 };
3006 
3007 /*
3008  * Display pages allocated per node and memory policy via /proc.
3009  */
3010 static int show_numa_map(struct seq_file *m, void *v)
3011 {
3012         struct numa_maps_private *numa_priv = m->private;
3013         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
3014         struct vm_area_struct *vma = v;
3015         struct numa_maps *md = &numa_priv->md;
3016         struct file *file = vma->vm_file;
3017         struct mm_struct *mm = vma->vm_mm;
3018         char buffer[64];
3019         struct mempolicy *pol;
3020         pgoff_t ilx;
3021         int nid;
3022 
3023         if (!mm)
3024                 return 0;
3025 
3026         /* Ensure we start with an empty set of numa_maps statistics. */
3027         memset(md, 0, sizeof(*md));
3028 
3029         pol = __get_vma_policy(vma, vma->vm_start, &ilx);
3030         if (pol) {
3031                 mpol_to_str(buffer, sizeof(buffer), pol);
3032                 mpol_cond_put(pol);
3033         } else {
3034                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
3035         }
3036 
3037         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
3038 
3039         if (file) {
3040                 seq_puts(m, " file=");
3041                 seq_path(m, file_user_path(file), "\n\t= ");
3042         } else if (vma_is_initial_heap(vma)) {
3043                 seq_puts(m, " heap");
3044         } else if (vma_is_initial_stack(vma)) {
3045                 seq_puts(m, " stack");
3046         }
3047 
3048         if (is_vm_hugetlb_page(vma))
3049                 seq_puts(m, " huge");
3050 
3051         /* mmap_lock is held by m_start */
3052         walk_page_vma(vma, &show_numa_ops, md);
3053 
3054         if (!md->pages)
3055                 goto out;
3056 
3057         if (md->anon)
3058                 seq_printf(m, " anon=%lu", md->anon);
3059 
3060         if (md->dirty)
3061                 seq_printf(m, " dirty=%lu", md->dirty);
3062 
3063         if (md->pages != md->anon && md->pages != md->dirty)
3064                 seq_printf(m, " mapped=%lu", md->pages);
3065 
3066         if (md->mapcount_max > 1)
3067                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
3068 
3069         if (md->swapcache)
3070                 seq_printf(m, " swapcache=%lu", md->swapcache);
3071 
3072         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
3073                 seq_printf(m, " active=%lu", md->active);
3074 
3075         if (md->writeback)
3076                 seq_printf(m, " writeback=%lu", md->writeback);
3077 
3078         for_each_node_state(nid, N_MEMORY)
3079                 if (md->node[nid])
3080                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
3081 
3082         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
3083 out:
3084         seq_putc(m, '\n');
3085         return 0;
3086 }
3087 
3088 static const struct seq_operations proc_pid_numa_maps_op = {
3089         .start  = m_start,
3090         .next   = m_next,
3091         .stop   = m_stop,
3092         .show   = show_numa_map,
3093 };
3094 
3095 static int pid_numa_maps_open(struct inode *inode, struct file *file)
3096 {
3097         return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
3098                                 sizeof(struct numa_maps_private));
3099 }
3100 
3101 const struct file_operations proc_pid_numa_maps_operations = {
3102         .open           = pid_numa_maps_open,
3103         .read           = seq_read,
3104         .llseek         = seq_lseek,
3105         .release        = proc_map_release,
3106 };
3107 
3108 #endif /* CONFIG_NUMA */
3109 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php