1 /* 2 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README 3 */ 4 5 #include <linux/uaccess.h> 6 #include <linux/string.h> 7 #include <linux/time.h> 8 #include "reiserfs.h" 9 #include <linux/buffer_head.h> 10 11 /* this is one and only function that is used outside (do_balance.c) */ 12 int balance_internal(struct tree_balance *, 13 int, int, struct item_head *, struct buffer_head **); 14 15 /* 16 * modes of internal_shift_left, internal_shift_right and 17 * internal_insert_childs 18 */ 19 #define INTERNAL_SHIFT_FROM_S_TO_L 0 20 #define INTERNAL_SHIFT_FROM_R_TO_S 1 21 #define INTERNAL_SHIFT_FROM_L_TO_S 2 22 #define INTERNAL_SHIFT_FROM_S_TO_R 3 23 #define INTERNAL_INSERT_TO_S 4 24 #define INTERNAL_INSERT_TO_L 5 25 #define INTERNAL_INSERT_TO_R 6 26 27 static void internal_define_dest_src_infos(int shift_mode, 28 struct tree_balance *tb, 29 int h, 30 struct buffer_info *dest_bi, 31 struct buffer_info *src_bi, 32 int *d_key, struct buffer_head **cf) 33 { 34 memset(dest_bi, 0, sizeof(struct buffer_info)); 35 memset(src_bi, 0, sizeof(struct buffer_info)); 36 /* define dest, src, dest parent, dest position */ 37 switch (shift_mode) { 38 39 /* used in internal_shift_left */ 40 case INTERNAL_SHIFT_FROM_S_TO_L: 41 src_bi->tb = tb; 42 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 43 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 44 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 45 dest_bi->tb = tb; 46 dest_bi->bi_bh = tb->L[h]; 47 dest_bi->bi_parent = tb->FL[h]; 48 dest_bi->bi_position = get_left_neighbor_position(tb, h); 49 *d_key = tb->lkey[h]; 50 *cf = tb->CFL[h]; 51 break; 52 case INTERNAL_SHIFT_FROM_L_TO_S: 53 src_bi->tb = tb; 54 src_bi->bi_bh = tb->L[h]; 55 src_bi->bi_parent = tb->FL[h]; 56 src_bi->bi_position = get_left_neighbor_position(tb, h); 57 dest_bi->tb = tb; 58 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 59 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 60 /* dest position is analog of dest->b_item_order */ 61 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 62 *d_key = tb->lkey[h]; 63 *cf = tb->CFL[h]; 64 break; 65 66 /* used in internal_shift_left */ 67 case INTERNAL_SHIFT_FROM_R_TO_S: 68 src_bi->tb = tb; 69 src_bi->bi_bh = tb->R[h]; 70 src_bi->bi_parent = tb->FR[h]; 71 src_bi->bi_position = get_right_neighbor_position(tb, h); 72 dest_bi->tb = tb; 73 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 74 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 75 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 76 *d_key = tb->rkey[h]; 77 *cf = tb->CFR[h]; 78 break; 79 80 case INTERNAL_SHIFT_FROM_S_TO_R: 81 src_bi->tb = tb; 82 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 83 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 84 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 85 dest_bi->tb = tb; 86 dest_bi->bi_bh = tb->R[h]; 87 dest_bi->bi_parent = tb->FR[h]; 88 dest_bi->bi_position = get_right_neighbor_position(tb, h); 89 *d_key = tb->rkey[h]; 90 *cf = tb->CFR[h]; 91 break; 92 93 case INTERNAL_INSERT_TO_L: 94 dest_bi->tb = tb; 95 dest_bi->bi_bh = tb->L[h]; 96 dest_bi->bi_parent = tb->FL[h]; 97 dest_bi->bi_position = get_left_neighbor_position(tb, h); 98 break; 99 100 case INTERNAL_INSERT_TO_S: 101 dest_bi->tb = tb; 102 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h); 103 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h); 104 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 105 break; 106 107 case INTERNAL_INSERT_TO_R: 108 dest_bi->tb = tb; 109 dest_bi->bi_bh = tb->R[h]; 110 dest_bi->bi_parent = tb->FR[h]; 111 dest_bi->bi_position = get_right_neighbor_position(tb, h); 112 break; 113 114 default: 115 reiserfs_panic(tb->tb_sb, "ibalance-1", 116 "shift type is unknown (%d)", 117 shift_mode); 118 } 119 } 120 121 /* 122 * Insert count node pointers into buffer cur before position to + 1. 123 * Insert count items into buffer cur before position to. 124 * Items and node pointers are specified by inserted and bh respectively. 125 */ 126 static void internal_insert_childs(struct buffer_info *cur_bi, 127 int to, int count, 128 struct item_head *inserted, 129 struct buffer_head **bh) 130 { 131 struct buffer_head *cur = cur_bi->bi_bh; 132 struct block_head *blkh; 133 int nr; 134 struct reiserfs_key *ih; 135 struct disk_child new_dc[2]; 136 struct disk_child *dc; 137 int i; 138 139 if (count <= 0) 140 return; 141 142 blkh = B_BLK_HEAD(cur); 143 nr = blkh_nr_item(blkh); 144 145 RFALSE(count > 2, "too many children (%d) are to be inserted", count); 146 RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE), 147 "no enough free space (%d), needed %d bytes", 148 B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE)); 149 150 /* prepare space for count disk_child */ 151 dc = B_N_CHILD(cur, to + 1); 152 153 memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE); 154 155 /* copy to_be_insert disk children */ 156 for (i = 0; i < count; i++) { 157 put_dc_size(&new_dc[i], 158 MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i])); 159 put_dc_block_number(&new_dc[i], bh[i]->b_blocknr); 160 } 161 memcpy(dc, new_dc, DC_SIZE * count); 162 163 /* prepare space for count items */ 164 ih = internal_key(cur, ((to == -1) ? 0 : to)); 165 166 memmove(ih + count, ih, 167 (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE); 168 169 /* copy item headers (keys) */ 170 memcpy(ih, inserted, KEY_SIZE); 171 if (count > 1) 172 memcpy(ih + 1, inserted + 1, KEY_SIZE); 173 174 /* sizes, item number */ 175 set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count); 176 set_blkh_free_space(blkh, 177 blkh_free_space(blkh) - count * (DC_SIZE + 178 KEY_SIZE)); 179 180 do_balance_mark_internal_dirty(cur_bi->tb, cur, 0); 181 182 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 183 check_internal(cur); 184 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 185 186 if (cur_bi->bi_parent) { 187 struct disk_child *t_dc = 188 B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position); 189 put_dc_size(t_dc, 190 dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE))); 191 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 192 0); 193 194 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 195 check_internal(cur_bi->bi_parent); 196 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 197 } 198 199 } 200 201 /* 202 * Delete del_num items and node pointers from buffer cur starting from 203 * the first_i'th item and first_p'th pointers respectively. 204 */ 205 static void internal_delete_pointers_items(struct buffer_info *cur_bi, 206 int first_p, 207 int first_i, int del_num) 208 { 209 struct buffer_head *cur = cur_bi->bi_bh; 210 int nr; 211 struct block_head *blkh; 212 struct reiserfs_key *key; 213 struct disk_child *dc; 214 215 RFALSE(cur == NULL, "buffer is 0"); 216 RFALSE(del_num < 0, 217 "negative number of items (%d) can not be deleted", del_num); 218 RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1 219 || first_i < 0, 220 "first pointer order (%d) < 0 or " 221 "no so many pointers (%d), only (%d) or " 222 "first key order %d < 0", first_p, first_p + del_num, 223 B_NR_ITEMS(cur) + 1, first_i); 224 if (del_num == 0) 225 return; 226 227 blkh = B_BLK_HEAD(cur); 228 nr = blkh_nr_item(blkh); 229 230 if (first_p == 0 && del_num == nr + 1) { 231 RFALSE(first_i != 0, 232 "1st deleted key must have order 0, not %d", first_i); 233 make_empty_node(cur_bi); 234 return; 235 } 236 237 RFALSE(first_i + del_num > B_NR_ITEMS(cur), 238 "first_i = %d del_num = %d " 239 "no so many keys (%d) in the node (%b)(%z)", 240 first_i, del_num, first_i + del_num, cur, cur); 241 242 /* deleting */ 243 dc = B_N_CHILD(cur, first_p); 244 245 memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE); 246 key = internal_key(cur, first_i); 247 memmove(key, key + del_num, 248 (nr - first_i - del_num) * KEY_SIZE + (nr + 1 - 249 del_num) * DC_SIZE); 250 251 /* sizes, item number */ 252 set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num); 253 set_blkh_free_space(blkh, 254 blkh_free_space(blkh) + 255 (del_num * (KEY_SIZE + DC_SIZE))); 256 257 do_balance_mark_internal_dirty(cur_bi->tb, cur, 0); 258 /*&&&&&&&&&&&&&&&&&&&&&&& */ 259 check_internal(cur); 260 /*&&&&&&&&&&&&&&&&&&&&&&& */ 261 262 if (cur_bi->bi_parent) { 263 struct disk_child *t_dc; 264 t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position); 265 put_dc_size(t_dc, 266 dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE))); 267 268 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent, 269 0); 270 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 271 check_internal(cur_bi->bi_parent); 272 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 273 } 274 } 275 276 /* delete n node pointers and items starting from given position */ 277 static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n) 278 { 279 int i_from; 280 281 i_from = (from == 0) ? from : from - 1; 282 283 /* 284 * delete n pointers starting from `from' position in CUR; 285 * delete n keys starting from 'i_from' position in CUR; 286 */ 287 internal_delete_pointers_items(cur_bi, from, i_from, n); 288 } 289 290 /* 291 * copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer 292 * dest 293 * last_first == FIRST_TO_LAST means that we copy first items 294 * from src to tail of dest 295 * last_first == LAST_TO_FIRST means that we copy last items 296 * from src to head of dest 297 */ 298 static void internal_copy_pointers_items(struct buffer_info *dest_bi, 299 struct buffer_head *src, 300 int last_first, int cpy_num) 301 { 302 /* 303 * ATTENTION! Number of node pointers in DEST is equal to number 304 * of items in DEST as delimiting key have already inserted to 305 * buffer dest. 306 */ 307 struct buffer_head *dest = dest_bi->bi_bh; 308 int nr_dest, nr_src; 309 int dest_order, src_order; 310 struct block_head *blkh; 311 struct reiserfs_key *key; 312 struct disk_child *dc; 313 314 nr_src = B_NR_ITEMS(src); 315 316 RFALSE(dest == NULL || src == NULL, 317 "src (%p) or dest (%p) buffer is 0", src, dest); 318 RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST, 319 "invalid last_first parameter (%d)", last_first); 320 RFALSE(nr_src < cpy_num - 1, 321 "no so many items (%d) in src (%d)", cpy_num, nr_src); 322 RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num); 323 RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest), 324 "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)", 325 cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest)); 326 327 if (cpy_num == 0) 328 return; 329 330 /* coping */ 331 blkh = B_BLK_HEAD(dest); 332 nr_dest = blkh_nr_item(blkh); 333 334 /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */ 335 /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */ 336 (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order = 337 nr_src - cpy_num + 1) : (dest_order = 338 nr_dest, 339 src_order = 340 0); 341 342 /* prepare space for cpy_num pointers */ 343 dc = B_N_CHILD(dest, dest_order); 344 345 memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE); 346 347 /* insert pointers */ 348 memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num); 349 350 /* prepare space for cpy_num - 1 item headers */ 351 key = internal_key(dest, dest_order); 352 memmove(key + cpy_num - 1, key, 353 KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest + 354 cpy_num)); 355 356 /* insert headers */ 357 memcpy(key, internal_key(src, src_order), KEY_SIZE * (cpy_num - 1)); 358 359 /* sizes, item number */ 360 set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1)); 361 set_blkh_free_space(blkh, 362 blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) + 363 DC_SIZE * cpy_num)); 364 365 do_balance_mark_internal_dirty(dest_bi->tb, dest, 0); 366 367 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 368 check_internal(dest); 369 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 370 371 if (dest_bi->bi_parent) { 372 struct disk_child *t_dc; 373 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position); 374 put_dc_size(t_dc, 375 dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) + 376 DC_SIZE * cpy_num)); 377 378 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent, 379 0); 380 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 381 check_internal(dest_bi->bi_parent); 382 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 383 } 384 385 } 386 387 /* 388 * Copy cpy_num node pointers and cpy_num - 1 items from buffer src to 389 * buffer dest. 390 * Delete cpy_num - del_par items and node pointers from buffer src. 391 * last_first == FIRST_TO_LAST means, that we copy/delete first items from src. 392 * last_first == LAST_TO_FIRST means, that we copy/delete last items from src. 393 */ 394 static void internal_move_pointers_items(struct buffer_info *dest_bi, 395 struct buffer_info *src_bi, 396 int last_first, int cpy_num, 397 int del_par) 398 { 399 int first_pointer; 400 int first_item; 401 402 internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first, 403 cpy_num); 404 405 if (last_first == FIRST_TO_LAST) { /* shift_left occurs */ 406 first_pointer = 0; 407 first_item = 0; 408 /* 409 * delete cpy_num - del_par pointers and keys starting for 410 * pointers with first_pointer, for key - with first_item 411 */ 412 internal_delete_pointers_items(src_bi, first_pointer, 413 first_item, cpy_num - del_par); 414 } else { /* shift_right occurs */ 415 int i, j; 416 417 i = (cpy_num - del_par == 418 (j = 419 B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num + 420 del_par; 421 422 internal_delete_pointers_items(src_bi, 423 j + 1 - cpy_num + del_par, i, 424 cpy_num - del_par); 425 } 426 } 427 428 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */ 429 static void internal_insert_key(struct buffer_info *dest_bi, 430 /* insert key before key with n_dest number */ 431 int dest_position_before, 432 struct buffer_head *src, int src_position) 433 { 434 struct buffer_head *dest = dest_bi->bi_bh; 435 int nr; 436 struct block_head *blkh; 437 struct reiserfs_key *key; 438 439 RFALSE(dest == NULL || src == NULL, 440 "source(%p) or dest(%p) buffer is 0", src, dest); 441 RFALSE(dest_position_before < 0 || src_position < 0, 442 "source(%d) or dest(%d) key number less than 0", 443 src_position, dest_position_before); 444 RFALSE(dest_position_before > B_NR_ITEMS(dest) || 445 src_position >= B_NR_ITEMS(src), 446 "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))", 447 dest_position_before, B_NR_ITEMS(dest), 448 src_position, B_NR_ITEMS(src)); 449 RFALSE(B_FREE_SPACE(dest) < KEY_SIZE, 450 "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest)); 451 452 blkh = B_BLK_HEAD(dest); 453 nr = blkh_nr_item(blkh); 454 455 /* prepare space for inserting key */ 456 key = internal_key(dest, dest_position_before); 457 memmove(key + 1, key, 458 (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE); 459 460 /* insert key */ 461 memcpy(key, internal_key(src, src_position), KEY_SIZE); 462 463 /* Change dirt, free space, item number fields. */ 464 465 set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1); 466 set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE); 467 468 do_balance_mark_internal_dirty(dest_bi->tb, dest, 0); 469 470 if (dest_bi->bi_parent) { 471 struct disk_child *t_dc; 472 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position); 473 put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE); 474 475 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent, 476 0); 477 } 478 } 479 480 /* 481 * Insert d_key'th (delimiting) key from buffer cfl to tail of dest. 482 * Copy pointer_amount node pointers and pointer_amount - 1 items from 483 * buffer src to buffer dest. 484 * Replace d_key'th key in buffer cfl. 485 * Delete pointer_amount items and node pointers from buffer src. 486 */ 487 /* this can be invoked both to shift from S to L and from R to S */ 488 static void internal_shift_left( 489 /* 490 * INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S 491 */ 492 int mode, 493 struct tree_balance *tb, 494 int h, int pointer_amount) 495 { 496 struct buffer_info dest_bi, src_bi; 497 struct buffer_head *cf; 498 int d_key_position; 499 500 internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi, 501 &d_key_position, &cf); 502 503 /*printk("pointer_amount = %d\n",pointer_amount); */ 504 505 if (pointer_amount) { 506 /* 507 * insert delimiting key from common father of dest and 508 * src to node dest into position B_NR_ITEM(dest) 509 */ 510 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, 511 d_key_position); 512 513 if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) { 514 if (src_bi.bi_position /*src->b_item_order */ == 0) 515 replace_key(tb, cf, d_key_position, 516 src_bi. 517 bi_parent /*src->b_parent */ , 0); 518 } else 519 replace_key(tb, cf, d_key_position, src_bi.bi_bh, 520 pointer_amount - 1); 521 } 522 /* last parameter is del_parameter */ 523 internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST, 524 pointer_amount, 0); 525 526 } 527 528 /* 529 * Insert delimiting key to L[h]. 530 * Copy n node pointers and n - 1 items from buffer S[h] to L[h]. 531 * Delete n - 1 items and node pointers from buffer S[h]. 532 */ 533 /* it always shifts from S[h] to L[h] */ 534 static void internal_shift1_left(struct tree_balance *tb, 535 int h, int pointer_amount) 536 { 537 struct buffer_info dest_bi, src_bi; 538 struct buffer_head *cf; 539 int d_key_position; 540 541 internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, 542 &dest_bi, &src_bi, &d_key_position, &cf); 543 544 /* insert lkey[h]-th key from CFL[h] to left neighbor L[h] */ 545 if (pointer_amount > 0) 546 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf, 547 d_key_position); 548 549 /* last parameter is del_parameter */ 550 internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST, 551 pointer_amount, 1); 552 } 553 554 /* 555 * Insert d_key'th (delimiting) key from buffer cfr to head of dest. 556 * Copy n node pointers and n - 1 items from buffer src to buffer dest. 557 * Replace d_key'th key in buffer cfr. 558 * Delete n items and node pointers from buffer src. 559 */ 560 static void internal_shift_right( 561 /* 562 * INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S 563 */ 564 int mode, 565 struct tree_balance *tb, 566 int h, int pointer_amount) 567 { 568 struct buffer_info dest_bi, src_bi; 569 struct buffer_head *cf; 570 int d_key_position; 571 int nr; 572 573 internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi, 574 &d_key_position, &cf); 575 576 nr = B_NR_ITEMS(src_bi.bi_bh); 577 578 if (pointer_amount > 0) { 579 /* 580 * insert delimiting key from common father of dest 581 * and src to dest node into position 0 582 */ 583 internal_insert_key(&dest_bi, 0, cf, d_key_position); 584 if (nr == pointer_amount - 1) { 585 RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ || 586 dest_bi.bi_bh != tb->R[h], 587 "src (%p) must be == tb->S[h](%p) when it disappears", 588 src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h)); 589 /* when S[h] disappers replace left delemiting key as well */ 590 if (tb->CFL[h]) 591 replace_key(tb, cf, d_key_position, tb->CFL[h], 592 tb->lkey[h]); 593 } else 594 replace_key(tb, cf, d_key_position, src_bi.bi_bh, 595 nr - pointer_amount); 596 } 597 598 /* last parameter is del_parameter */ 599 internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, 600 pointer_amount, 0); 601 } 602 603 /* 604 * Insert delimiting key to R[h]. 605 * Copy n node pointers and n - 1 items from buffer S[h] to R[h]. 606 * Delete n - 1 items and node pointers from buffer S[h]. 607 */ 608 /* it always shift from S[h] to R[h] */ 609 static void internal_shift1_right(struct tree_balance *tb, 610 int h, int pointer_amount) 611 { 612 struct buffer_info dest_bi, src_bi; 613 struct buffer_head *cf; 614 int d_key_position; 615 616 internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, 617 &dest_bi, &src_bi, &d_key_position, &cf); 618 619 /* insert rkey from CFR[h] to right neighbor R[h] */ 620 if (pointer_amount > 0) 621 internal_insert_key(&dest_bi, 0, cf, d_key_position); 622 623 /* last parameter is del_parameter */ 624 internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST, 625 pointer_amount, 1); 626 } 627 628 /* 629 * Delete insert_num node pointers together with their left items 630 * and balance current node. 631 */ 632 static void balance_internal_when_delete(struct tree_balance *tb, 633 int h, int child_pos) 634 { 635 int insert_num; 636 int n; 637 struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h); 638 struct buffer_info bi; 639 640 insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE)); 641 642 /* delete child-node-pointer(s) together with their left item(s) */ 643 bi.tb = tb; 644 bi.bi_bh = tbSh; 645 bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); 646 bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 647 648 internal_delete_childs(&bi, child_pos, -insert_num); 649 650 RFALSE(tb->blknum[h] > 1, 651 "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]); 652 653 n = B_NR_ITEMS(tbSh); 654 655 if (tb->lnum[h] == 0 && tb->rnum[h] == 0) { 656 if (tb->blknum[h] == 0) { 657 /* node S[h] (root of the tree) is empty now */ 658 struct buffer_head *new_root; 659 660 RFALSE(n 661 || B_FREE_SPACE(tbSh) != 662 MAX_CHILD_SIZE(tbSh) - DC_SIZE, 663 "buffer must have only 0 keys (%d)", n); 664 RFALSE(bi.bi_parent, "root has parent (%p)", 665 bi.bi_parent); 666 667 /* choose a new root */ 668 if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1])) 669 new_root = tb->R[h - 1]; 670 else 671 new_root = tb->L[h - 1]; 672 /* 673 * switch super block's tree root block 674 * number to the new value */ 675 PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr); 676 /*REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --; */ 677 PUT_SB_TREE_HEIGHT(tb->tb_sb, 678 SB_TREE_HEIGHT(tb->tb_sb) - 1); 679 680 do_balance_mark_sb_dirty(tb, 681 REISERFS_SB(tb->tb_sb)->s_sbh, 682 1); 683 /*&&&&&&&&&&&&&&&&&&&&&& */ 684 /* use check_internal if new root is an internal node */ 685 if (h > 1) 686 check_internal(new_root); 687 /*&&&&&&&&&&&&&&&&&&&&&& */ 688 689 /* do what is needed for buffer thrown from tree */ 690 reiserfs_invalidate_buffer(tb, tbSh); 691 return; 692 } 693 return; 694 } 695 696 /* join S[h] with L[h] */ 697 if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) { 698 699 RFALSE(tb->rnum[h] != 0, 700 "invalid tb->rnum[%d]==%d when joining S[h] with L[h]", 701 h, tb->rnum[h]); 702 703 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1); 704 reiserfs_invalidate_buffer(tb, tbSh); 705 706 return; 707 } 708 709 /* join S[h] with R[h] */ 710 if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) { 711 RFALSE(tb->lnum[h] != 0, 712 "invalid tb->lnum[%d]==%d when joining S[h] with R[h]", 713 h, tb->lnum[h]); 714 715 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1); 716 717 reiserfs_invalidate_buffer(tb, tbSh); 718 return; 719 } 720 721 /* borrow from left neighbor L[h] */ 722 if (tb->lnum[h] < 0) { 723 RFALSE(tb->rnum[h] != 0, 724 "wrong tb->rnum[%d]==%d when borrow from L[h]", h, 725 tb->rnum[h]); 726 internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h, 727 -tb->lnum[h]); 728 return; 729 } 730 731 /* borrow from right neighbor R[h] */ 732 if (tb->rnum[h] < 0) { 733 RFALSE(tb->lnum[h] != 0, 734 "invalid tb->lnum[%d]==%d when borrow from R[h]", 735 h, tb->lnum[h]); 736 internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]); /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */ 737 return; 738 } 739 740 /* split S[h] into two parts and put them into neighbors */ 741 if (tb->lnum[h] > 0) { 742 RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1, 743 "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them", 744 h, tb->lnum[h], h, tb->rnum[h], n); 745 746 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]); /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */ 747 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, 748 tb->rnum[h]); 749 750 reiserfs_invalidate_buffer(tb, tbSh); 751 752 return; 753 } 754 reiserfs_panic(tb->tb_sb, "ibalance-2", 755 "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d", 756 h, tb->lnum[h], h, tb->rnum[h]); 757 } 758 759 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/ 760 static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key) 761 { 762 RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL, 763 "L[h](%p) and CFL[h](%p) must exist in replace_lkey", 764 tb->L[h], tb->CFL[h]); 765 766 if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0) 767 return; 768 769 memcpy(internal_key(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE); 770 771 do_balance_mark_internal_dirty(tb, tb->CFL[h], 0); 772 } 773 774 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/ 775 static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key) 776 { 777 RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL, 778 "R[h](%p) and CFR[h](%p) must exist in replace_rkey", 779 tb->R[h], tb->CFR[h]); 780 RFALSE(B_NR_ITEMS(tb->R[h]) == 0, 781 "R[h] can not be empty if it exists (item number=%d)", 782 B_NR_ITEMS(tb->R[h])); 783 784 memcpy(internal_key(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE); 785 786 do_balance_mark_internal_dirty(tb, tb->CFR[h], 0); 787 } 788 789 790 /* 791 * if inserting/pasting { 792 * child_pos is the position of the node-pointer in S[h] that 793 * pointed to S[h-1] before balancing of the h-1 level; 794 * this means that new pointers and items must be inserted AFTER 795 * child_pos 796 * } else { 797 * it is the position of the leftmost pointer that must be deleted 798 * (together with its corresponding key to the left of the pointer) 799 * as a result of the previous level's balancing. 800 * } 801 */ 802 803 int balance_internal(struct tree_balance *tb, 804 int h, /* level of the tree */ 805 int child_pos, 806 /* key for insertion on higher level */ 807 struct item_head *insert_key, 808 /* node for insertion on higher level */ 809 struct buffer_head **insert_ptr) 810 { 811 struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h); 812 struct buffer_info bi; 813 814 /* 815 * we return this: it is 0 if there is no S[h], 816 * else it is tb->S[h]->b_item_order 817 */ 818 int order; 819 int insert_num, n, k; 820 struct buffer_head *S_new; 821 struct item_head new_insert_key; 822 struct buffer_head *new_insert_ptr = NULL; 823 struct item_head *new_insert_key_addr = insert_key; 824 825 RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h); 826 827 PROC_INFO_INC(tb->tb_sb, balance_at[h]); 828 829 order = 830 (tbSh) ? PATH_H_POSITION(tb->tb_path, 831 h + 1) /*tb->S[h]->b_item_order */ : 0; 832 833 /* 834 * Using insert_size[h] calculate the number insert_num of items 835 * that must be inserted to or deleted from S[h]. 836 */ 837 insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE)); 838 839 /* Check whether insert_num is proper * */ 840 RFALSE(insert_num < -2 || insert_num > 2, 841 "incorrect number of items inserted to the internal node (%d)", 842 insert_num); 843 RFALSE(h > 1 && (insert_num > 1 || insert_num < -1), 844 "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level", 845 insert_num, h); 846 847 /* Make balance in case insert_num < 0 */ 848 if (insert_num < 0) { 849 balance_internal_when_delete(tb, h, child_pos); 850 return order; 851 } 852 853 k = 0; 854 if (tb->lnum[h] > 0) { 855 /* 856 * shift lnum[h] items from S[h] to the left neighbor L[h]. 857 * check how many of new items fall into L[h] or CFL[h] after 858 * shifting 859 */ 860 n = B_NR_ITEMS(tb->L[h]); /* number of items in L[h] */ 861 if (tb->lnum[h] <= child_pos) { 862 /* new items don't fall into L[h] or CFL[h] */ 863 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, 864 tb->lnum[h]); 865 child_pos -= tb->lnum[h]; 866 } else if (tb->lnum[h] > child_pos + insert_num) { 867 /* all new items fall into L[h] */ 868 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, 869 tb->lnum[h] - insert_num); 870 /* insert insert_num keys and node-pointers into L[h] */ 871 bi.tb = tb; 872 bi.bi_bh = tb->L[h]; 873 bi.bi_parent = tb->FL[h]; 874 bi.bi_position = get_left_neighbor_position(tb, h); 875 internal_insert_childs(&bi, 876 /*tb->L[h], tb->S[h-1]->b_next */ 877 n + child_pos + 1, 878 insert_num, insert_key, 879 insert_ptr); 880 881 insert_num = 0; 882 } else { 883 struct disk_child *dc; 884 885 /* 886 * some items fall into L[h] or CFL[h], 887 * but some don't fall 888 */ 889 internal_shift1_left(tb, h, child_pos + 1); 890 /* calculate number of new items that fall into L[h] */ 891 k = tb->lnum[h] - child_pos - 1; 892 bi.tb = tb; 893 bi.bi_bh = tb->L[h]; 894 bi.bi_parent = tb->FL[h]; 895 bi.bi_position = get_left_neighbor_position(tb, h); 896 internal_insert_childs(&bi, 897 /*tb->L[h], tb->S[h-1]->b_next, */ 898 n + child_pos + 1, k, 899 insert_key, insert_ptr); 900 901 replace_lkey(tb, h, insert_key + k); 902 903 /* 904 * replace the first node-ptr in S[h] by 905 * node-ptr to insert_ptr[k] 906 */ 907 dc = B_N_CHILD(tbSh, 0); 908 put_dc_size(dc, 909 MAX_CHILD_SIZE(insert_ptr[k]) - 910 B_FREE_SPACE(insert_ptr[k])); 911 put_dc_block_number(dc, insert_ptr[k]->b_blocknr); 912 913 do_balance_mark_internal_dirty(tb, tbSh, 0); 914 915 k++; 916 insert_key += k; 917 insert_ptr += k; 918 insert_num -= k; 919 child_pos = 0; 920 } 921 } 922 /* tb->lnum[h] > 0 */ 923 if (tb->rnum[h] > 0) { 924 /*shift rnum[h] items from S[h] to the right neighbor R[h] */ 925 /* 926 * check how many of new items fall into R or CFR 927 * after shifting 928 */ 929 n = B_NR_ITEMS(tbSh); /* number of items in S[h] */ 930 if (n - tb->rnum[h] >= child_pos) 931 /* new items fall into S[h] */ 932 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, 933 tb->rnum[h]); 934 else if (n + insert_num - tb->rnum[h] < child_pos) { 935 /* all new items fall into R[h] */ 936 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, 937 tb->rnum[h] - insert_num); 938 939 /* insert insert_num keys and node-pointers into R[h] */ 940 bi.tb = tb; 941 bi.bi_bh = tb->R[h]; 942 bi.bi_parent = tb->FR[h]; 943 bi.bi_position = get_right_neighbor_position(tb, h); 944 internal_insert_childs(&bi, 945 /*tb->R[h],tb->S[h-1]->b_next */ 946 child_pos - n - insert_num + 947 tb->rnum[h] - 1, 948 insert_num, insert_key, 949 insert_ptr); 950 insert_num = 0; 951 } else { 952 struct disk_child *dc; 953 954 /* one of the items falls into CFR[h] */ 955 internal_shift1_right(tb, h, n - child_pos + 1); 956 /* calculate number of new items that fall into R[h] */ 957 k = tb->rnum[h] - n + child_pos - 1; 958 bi.tb = tb; 959 bi.bi_bh = tb->R[h]; 960 bi.bi_parent = tb->FR[h]; 961 bi.bi_position = get_right_neighbor_position(tb, h); 962 internal_insert_childs(&bi, 963 /*tb->R[h], tb->R[h]->b_child, */ 964 0, k, insert_key + 1, 965 insert_ptr + 1); 966 967 replace_rkey(tb, h, insert_key + insert_num - k - 1); 968 969 /* 970 * replace the first node-ptr in R[h] by 971 * node-ptr insert_ptr[insert_num-k-1] 972 */ 973 dc = B_N_CHILD(tb->R[h], 0); 974 put_dc_size(dc, 975 MAX_CHILD_SIZE(insert_ptr 976 [insert_num - k - 1]) - 977 B_FREE_SPACE(insert_ptr 978 [insert_num - k - 1])); 979 put_dc_block_number(dc, 980 insert_ptr[insert_num - k - 981 1]->b_blocknr); 982 983 do_balance_mark_internal_dirty(tb, tb->R[h], 0); 984 985 insert_num -= (k + 1); 986 } 987 } 988 989 /** Fill new node that appears instead of S[h] **/ 990 RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level"); 991 RFALSE(tb->blknum[h] < 0, "blknum can not be < 0"); 992 993 if (!tb->blknum[h]) { /* node S[h] is empty now */ 994 RFALSE(!tbSh, "S[h] is equal NULL"); 995 996 /* do what is needed for buffer thrown from tree */ 997 reiserfs_invalidate_buffer(tb, tbSh); 998 return order; 999 } 1000 1001 if (!tbSh) { 1002 /* create new root */ 1003 struct disk_child *dc; 1004 struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1); 1005 struct block_head *blkh; 1006 1007 if (tb->blknum[h] != 1) 1008 reiserfs_panic(NULL, "ibalance-3", "One new node " 1009 "required for creating the new root"); 1010 /* S[h] = empty buffer from the list FEB. */ 1011 tbSh = get_FEB(tb); 1012 blkh = B_BLK_HEAD(tbSh); 1013 set_blkh_level(blkh, h + 1); 1014 1015 /* Put the unique node-pointer to S[h] that points to S[h-1]. */ 1016 1017 dc = B_N_CHILD(tbSh, 0); 1018 put_dc_block_number(dc, tbSh_1->b_blocknr); 1019 put_dc_size(dc, 1020 (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1))); 1021 1022 tb->insert_size[h] -= DC_SIZE; 1023 set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE); 1024 1025 do_balance_mark_internal_dirty(tb, tbSh, 0); 1026 1027 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 1028 check_internal(tbSh); 1029 /*&&&&&&&&&&&&&&&&&&&&&&&& */ 1030 1031 /* put new root into path structure */ 1032 PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 1033 tbSh; 1034 1035 /* Change root in structure super block. */ 1036 PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr); 1037 PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1); 1038 do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1); 1039 } 1040 1041 if (tb->blknum[h] == 2) { 1042 int snum; 1043 struct buffer_info dest_bi, src_bi; 1044 1045 /* S_new = free buffer from list FEB */ 1046 S_new = get_FEB(tb); 1047 1048 set_blkh_level(B_BLK_HEAD(S_new), h + 1); 1049 1050 dest_bi.tb = tb; 1051 dest_bi.bi_bh = S_new; 1052 dest_bi.bi_parent = NULL; 1053 dest_bi.bi_position = 0; 1054 src_bi.tb = tb; 1055 src_bi.bi_bh = tbSh; 1056 src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); 1057 src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 1058 1059 n = B_NR_ITEMS(tbSh); /* number of items in S[h] */ 1060 snum = (insert_num + n + 1) / 2; 1061 if (n - snum >= child_pos) { 1062 /* new items don't fall into S_new */ 1063 /* store the delimiting key for the next level */ 1064 /* new_insert_key = (n - snum)'th key in S[h] */ 1065 memcpy(&new_insert_key, internal_key(tbSh, n - snum), 1066 KEY_SIZE); 1067 /* last parameter is del_par */ 1068 internal_move_pointers_items(&dest_bi, &src_bi, 1069 LAST_TO_FIRST, snum, 0); 1070 } else if (n + insert_num - snum < child_pos) { 1071 /* all new items fall into S_new */ 1072 /* store the delimiting key for the next level */ 1073 /* 1074 * new_insert_key = (n + insert_item - snum)'th 1075 * key in S[h] 1076 */ 1077 memcpy(&new_insert_key, 1078 internal_key(tbSh, n + insert_num - snum), 1079 KEY_SIZE); 1080 /* last parameter is del_par */ 1081 internal_move_pointers_items(&dest_bi, &src_bi, 1082 LAST_TO_FIRST, 1083 snum - insert_num, 0); 1084 1085 /* 1086 * insert insert_num keys and node-pointers 1087 * into S_new 1088 */ 1089 internal_insert_childs(&dest_bi, 1090 /*S_new,tb->S[h-1]->b_next, */ 1091 child_pos - n - insert_num + 1092 snum - 1, 1093 insert_num, insert_key, 1094 insert_ptr); 1095 1096 insert_num = 0; 1097 } else { 1098 struct disk_child *dc; 1099 1100 /* some items fall into S_new, but some don't fall */ 1101 /* last parameter is del_par */ 1102 internal_move_pointers_items(&dest_bi, &src_bi, 1103 LAST_TO_FIRST, 1104 n - child_pos + 1, 1); 1105 /* calculate number of new items that fall into S_new */ 1106 k = snum - n + child_pos - 1; 1107 1108 internal_insert_childs(&dest_bi, /*S_new, */ 0, k, 1109 insert_key + 1, insert_ptr + 1); 1110 1111 /* new_insert_key = insert_key[insert_num - k - 1] */ 1112 memcpy(&new_insert_key, insert_key + insert_num - k - 1, 1113 KEY_SIZE); 1114 /* 1115 * replace first node-ptr in S_new by node-ptr 1116 * to insert_ptr[insert_num-k-1] 1117 */ 1118 1119 dc = B_N_CHILD(S_new, 0); 1120 put_dc_size(dc, 1121 (MAX_CHILD_SIZE 1122 (insert_ptr[insert_num - k - 1]) - 1123 B_FREE_SPACE(insert_ptr 1124 [insert_num - k - 1]))); 1125 put_dc_block_number(dc, 1126 insert_ptr[insert_num - k - 1127 1]->b_blocknr); 1128 1129 do_balance_mark_internal_dirty(tb, S_new, 0); 1130 1131 insert_num -= (k + 1); 1132 } 1133 /* new_insert_ptr = node_pointer to S_new */ 1134 new_insert_ptr = S_new; 1135 1136 RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new) 1137 || buffer_dirty(S_new), "cm-00001: bad S_new (%b)", 1138 S_new); 1139 1140 /* S_new is released in unfix_nodes */ 1141 } 1142 1143 n = B_NR_ITEMS(tbSh); /*number of items in S[h] */ 1144 1145 if (0 <= child_pos && child_pos <= n && insert_num > 0) { 1146 bi.tb = tb; 1147 bi.bi_bh = tbSh; 1148 bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h); 1149 bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1); 1150 internal_insert_childs(&bi, /*tbSh, */ 1151 /* ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next : tb->S[h]->b_child->b_next, */ 1152 child_pos, insert_num, insert_key, 1153 insert_ptr); 1154 } 1155 1156 insert_ptr[0] = new_insert_ptr; 1157 if (new_insert_ptr) 1158 memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE); 1159 1160 return order; 1161 } 1162
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.