~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/reiserfs/reiserfs.h

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 /* SPDX-License-Identifier: GPL-2.0 */
  2 /*
  3  * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for
  4  * licensing and copyright details
  5  */
  6 
  7 #include <linux/reiserfs_fs.h>
  8 
  9 #include <linux/slab.h>
 10 #include <linux/interrupt.h>
 11 #include <linux/sched.h>
 12 #include <linux/bug.h>
 13 #include <linux/workqueue.h>
 14 #include <asm/unaligned.h>
 15 #include <linux/bitops.h>
 16 #include <linux/proc_fs.h>
 17 #include <linux/buffer_head.h>
 18 
 19 /* the 32 bit compat definitions with int argument */
 20 #define REISERFS_IOC32_UNPACK           _IOW(0xCD, 1, int)
 21 #define REISERFS_IOC32_GETVERSION       FS_IOC32_GETVERSION
 22 #define REISERFS_IOC32_SETVERSION       FS_IOC32_SETVERSION
 23 
 24 struct reiserfs_journal_list;
 25 
 26 /* bitmasks for i_flags field in reiserfs-specific part of inode */
 27 typedef enum {
 28         /*
 29          * this says what format of key do all items (but stat data) of
 30          * an object have.  If this is set, that format is 3.6 otherwise - 3.5
 31          */
 32         i_item_key_version_mask = 0x0001,
 33 
 34         /*
 35          * If this is unset, object has 3.5 stat data, otherwise,
 36          * it has 3.6 stat data with 64bit size, 32bit nlink etc.
 37          */
 38         i_stat_data_version_mask = 0x0002,
 39 
 40         /* file might need tail packing on close */
 41         i_pack_on_close_mask = 0x0004,
 42 
 43         /* don't pack tail of file */
 44         i_nopack_mask = 0x0008,
 45 
 46         /*
 47          * If either of these are set, "safe link" was created for this
 48          * file during truncate or unlink. Safe link is used to avoid
 49          * leakage of disk space on crash with some files open, but unlinked.
 50          */
 51         i_link_saved_unlink_mask = 0x0010,
 52         i_link_saved_truncate_mask = 0x0020,
 53 
 54         i_has_xattr_dir = 0x0040,
 55         i_data_log = 0x0080,
 56 } reiserfs_inode_flags;
 57 
 58 struct reiserfs_inode_info {
 59         __u32 i_key[4];         /* key is still 4 32 bit integers */
 60 
 61         /*
 62          * transient inode flags that are never stored on disk. Bitmasks
 63          * for this field are defined above.
 64          */
 65         __u32 i_flags;
 66 
 67         /* offset of first byte stored in direct item. */
 68         __u32 i_first_direct_byte;
 69 
 70         /* copy of persistent inode flags read from sd_attrs. */
 71         __u32 i_attrs;
 72 
 73         /* first unused block of a sequence of unused blocks */
 74         int i_prealloc_block;
 75         int i_prealloc_count;   /* length of that sequence */
 76 
 77         /* per-transaction list of inodes which  have preallocated blocks */
 78         struct list_head i_prealloc_list;
 79 
 80         /*
 81          * new_packing_locality is created; new blocks for the contents
 82          * of this directory should be displaced
 83          */
 84         unsigned new_packing_locality:1;
 85 
 86         /*
 87          * we use these for fsync or O_SYNC to decide which transaction
 88          * needs to be committed in order for this inode to be properly
 89          * flushed
 90          */
 91         unsigned int i_trans_id;
 92 
 93         struct reiserfs_journal_list *i_jl;
 94         atomic_t openers;
 95         struct mutex tailpack;
 96 #ifdef CONFIG_REISERFS_FS_XATTR
 97         struct rw_semaphore i_xattr_sem;
 98 #endif
 99 #ifdef CONFIG_QUOTA
100         struct dquot __rcu *i_dquot[MAXQUOTAS];
101 #endif
102 
103         struct inode vfs_inode;
104 };
105 
106 typedef enum {
107         reiserfs_attrs_cleared = 0x00000001,
108 } reiserfs_super_block_flags;
109 
110 /*
111  * struct reiserfs_super_block accessors/mutators since this is a disk
112  * structure, it will always be in little endian format.
113  */
114 #define sb_block_count(sbp)         (le32_to_cpu((sbp)->s_v1.s_block_count))
115 #define set_sb_block_count(sbp,v)   ((sbp)->s_v1.s_block_count = cpu_to_le32(v))
116 #define sb_free_blocks(sbp)         (le32_to_cpu((sbp)->s_v1.s_free_blocks))
117 #define set_sb_free_blocks(sbp,v)   ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v))
118 #define sb_root_block(sbp)          (le32_to_cpu((sbp)->s_v1.s_root_block))
119 #define set_sb_root_block(sbp,v)    ((sbp)->s_v1.s_root_block = cpu_to_le32(v))
120 
121 #define sb_jp_journal_1st_block(sbp)  \
122               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block))
123 #define set_sb_jp_journal_1st_block(sbp,v) \
124               ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v))
125 #define sb_jp_journal_dev(sbp) \
126               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev))
127 #define set_sb_jp_journal_dev(sbp,v) \
128               ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v))
129 #define sb_jp_journal_size(sbp) \
130               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size))
131 #define set_sb_jp_journal_size(sbp,v) \
132               ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v))
133 #define sb_jp_journal_trans_max(sbp) \
134               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max))
135 #define set_sb_jp_journal_trans_max(sbp,v) \
136               ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v))
137 #define sb_jp_journal_magic(sbp) \
138               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic))
139 #define set_sb_jp_journal_magic(sbp,v) \
140               ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v))
141 #define sb_jp_journal_max_batch(sbp) \
142               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch))
143 #define set_sb_jp_journal_max_batch(sbp,v) \
144               ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v))
145 #define sb_jp_jourmal_max_commit_age(sbp) \
146               (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age))
147 #define set_sb_jp_journal_max_commit_age(sbp,v) \
148               ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v))
149 
150 #define sb_blocksize(sbp)          (le16_to_cpu((sbp)->s_v1.s_blocksize))
151 #define set_sb_blocksize(sbp,v)    ((sbp)->s_v1.s_blocksize = cpu_to_le16(v))
152 #define sb_oid_maxsize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_maxsize))
153 #define set_sb_oid_maxsize(sbp,v)  ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v))
154 #define sb_oid_cursize(sbp)        (le16_to_cpu((sbp)->s_v1.s_oid_cursize))
155 #define set_sb_oid_cursize(sbp,v)  ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v))
156 #define sb_umount_state(sbp)       (le16_to_cpu((sbp)->s_v1.s_umount_state))
157 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v))
158 #define sb_fs_state(sbp)           (le16_to_cpu((sbp)->s_v1.s_fs_state))
159 #define set_sb_fs_state(sbp,v)     ((sbp)->s_v1.s_fs_state = cpu_to_le16(v))
160 #define sb_hash_function_code(sbp) \
161               (le32_to_cpu((sbp)->s_v1.s_hash_function_code))
162 #define set_sb_hash_function_code(sbp,v) \
163               ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v))
164 #define sb_tree_height(sbp)        (le16_to_cpu((sbp)->s_v1.s_tree_height))
165 #define set_sb_tree_height(sbp,v)  ((sbp)->s_v1.s_tree_height = cpu_to_le16(v))
166 #define sb_bmap_nr(sbp)            (le16_to_cpu((sbp)->s_v1.s_bmap_nr))
167 #define set_sb_bmap_nr(sbp,v)      ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v))
168 #define sb_version(sbp)            (le16_to_cpu((sbp)->s_v1.s_version))
169 #define set_sb_version(sbp,v)      ((sbp)->s_v1.s_version = cpu_to_le16(v))
170 
171 #define sb_mnt_count(sbp)          (le16_to_cpu((sbp)->s_mnt_count))
172 #define set_sb_mnt_count(sbp, v)   ((sbp)->s_mnt_count = cpu_to_le16(v))
173 
174 #define sb_reserved_for_journal(sbp) \
175               (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal))
176 #define set_sb_reserved_for_journal(sbp,v) \
177               ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v))
178 
179 /* LOGGING -- */
180 
181 /*
182  * These all interelate for performance.
183  *
184  * If the journal block count is smaller than n transactions, you lose speed.
185  * I don't know what n is yet, I'm guessing 8-16.
186  *
187  * typical transaction size depends on the application, how often fsync is
188  * called, and how many metadata blocks you dirty in a 30 second period.
189  * The more small files (<16k) you use, the larger your transactions will
190  * be.
191  *
192  * If your journal fills faster than dirty buffers get flushed to disk, it
193  * must flush them before allowing the journal to wrap, which slows things
194  * down.  If you need high speed meta data updates, the journal should be
195  * big enough to prevent wrapping before dirty meta blocks get to disk.
196  *
197  * If the batch max is smaller than the transaction max, you'll waste space
198  * at the end of the journal because journal_end sets the next transaction
199  * to start at 0 if the next transaction has any chance of wrapping.
200  *
201  * The large the batch max age, the better the speed, and the more meta
202  * data changes you'll lose after a crash.
203  */
204 
205 /* don't mess with these for a while */
206 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */
207 #define JOURNAL_BLOCK_SIZE  4096        /* BUG gotta get rid of this */
208 #define JOURNAL_MAX_CNODE   1500        /* max cnodes to allocate. */
209 #define JOURNAL_HASH_SIZE 8192
210 
211 /* number of copies of the bitmaps to have floating.  Must be >= 2 */
212 #define JOURNAL_NUM_BITMAPS 5
213 
214 /*
215  * One of these for every block in every transaction
216  * Each one is in two hash tables.  First, a hash of the current transaction,
217  * and after journal_end, a hash of all the in memory transactions.
218  * next and prev are used by the current transaction (journal_hash).
219  * hnext and hprev are used by journal_list_hash.  If a block is in more
220  * than one transaction, the journal_list_hash links it in multiple times.
221  * This allows flush_journal_list to remove just the cnode belonging to a
222  * given transaction.
223  */
224 struct reiserfs_journal_cnode {
225         struct buffer_head *bh; /* real buffer head */
226         struct super_block *sb; /* dev of real buffer head */
227 
228         /* block number of real buffer head, == 0 when buffer on disk */
229         __u32 blocknr;
230 
231         unsigned long state;
232 
233         /* journal list this cnode lives in */
234         struct reiserfs_journal_list *jlist;
235 
236         struct reiserfs_journal_cnode *next;    /* next in transaction list */
237         struct reiserfs_journal_cnode *prev;    /* prev in transaction list */
238         struct reiserfs_journal_cnode *hprev;   /* prev in hash list */
239         struct reiserfs_journal_cnode *hnext;   /* next in hash list */
240 };
241 
242 struct reiserfs_bitmap_node {
243         int id;
244         char *data;
245         struct list_head list;
246 };
247 
248 struct reiserfs_list_bitmap {
249         struct reiserfs_journal_list *journal_list;
250         struct reiserfs_bitmap_node **bitmaps;
251 };
252 
253 /*
254  * one of these for each transaction.  The most important part here is the
255  * j_realblock.  this list of cnodes is used to hash all the blocks in all
256  * the commits, to mark all the real buffer heads dirty once all the commits
257  * hit the disk, and to make sure every real block in a transaction is on
258  * disk before allowing the log area to be overwritten
259  */
260 struct reiserfs_journal_list {
261         unsigned long j_start;
262         unsigned long j_state;
263         unsigned long j_len;
264         atomic_t j_nonzerolen;
265         atomic_t j_commit_left;
266 
267         /* all commits older than this on disk */
268         atomic_t j_older_commits_done;
269 
270         struct mutex j_commit_mutex;
271         unsigned int j_trans_id;
272         time64_t j_timestamp; /* write-only but useful for crash dump analysis */
273         struct reiserfs_list_bitmap *j_list_bitmap;
274         struct buffer_head *j_commit_bh;        /* commit buffer head */
275         struct reiserfs_journal_cnode *j_realblock;
276         struct reiserfs_journal_cnode *j_freedlist;     /* list of buffers that were freed during this trans.  free each of these on flush */
277         /* time ordered list of all active transactions */
278         struct list_head j_list;
279 
280         /*
281          * time ordered list of all transactions we haven't tried
282          * to flush yet
283          */
284         struct list_head j_working_list;
285 
286         /* list of tail conversion targets in need of flush before commit */
287         struct list_head j_tail_bh_list;
288 
289         /* list of data=ordered buffers in need of flush before commit */
290         struct list_head j_bh_list;
291         int j_refcount;
292 };
293 
294 struct reiserfs_journal {
295         struct buffer_head **j_ap_blocks;       /* journal blocks on disk */
296         /* newest journal block */
297         struct reiserfs_journal_cnode *j_last;
298 
299         /* oldest journal block.  start here for traverse */
300         struct reiserfs_journal_cnode *j_first;
301 
302         struct file *j_bdev_file;
303 
304         /* first block on s_dev of reserved area journal */
305         int j_1st_reserved_block;
306 
307         unsigned long j_state;
308         unsigned int j_trans_id;
309         unsigned long j_mount_id;
310 
311         /* start of current waiting commit (index into j_ap_blocks) */
312         unsigned long j_start;
313         unsigned long j_len;    /* length of current waiting commit */
314 
315         /* number of buffers requested by journal_begin() */
316         unsigned long j_len_alloc;
317 
318         atomic_t j_wcount;      /* count of writers for current commit */
319 
320         /* batch count. allows turning X transactions into 1 */
321         unsigned long j_bcount;
322 
323         /* first unflushed transactions offset */
324         unsigned long j_first_unflushed_offset;
325 
326         /* last fully flushed journal timestamp */
327         unsigned j_last_flush_trans_id;
328 
329         struct buffer_head *j_header_bh;
330 
331         time64_t j_trans_start_time;    /* time this transaction started */
332         struct mutex j_mutex;
333         struct mutex j_flush_mutex;
334 
335         /* wait for current transaction to finish before starting new one */
336         wait_queue_head_t j_join_wait;
337 
338         atomic_t j_jlock;               /* lock for j_join_wait */
339         int j_list_bitmap_index;        /* number of next list bitmap to use */
340 
341         /* no more journal begins allowed. MUST sleep on j_join_wait */
342         int j_must_wait;
343 
344         /* next journal_end will flush all journal list */
345         int j_next_full_flush;
346 
347         /* next journal_end will flush all async commits */
348         int j_next_async_flush;
349 
350         int j_cnode_used;       /* number of cnodes on the used list */
351         int j_cnode_free;       /* number of cnodes on the free list */
352 
353         /* max number of blocks in a transaction.  */
354         unsigned int j_trans_max;
355 
356         /* max number of blocks to batch into a trans */
357         unsigned int j_max_batch;
358 
359         /* in seconds, how old can an async commit be */
360         unsigned int j_max_commit_age;
361 
362         /* in seconds, how old can a transaction be */
363         unsigned int j_max_trans_age;
364 
365         /* the default for the max commit age */
366         unsigned int j_default_max_commit_age;
367 
368         struct reiserfs_journal_cnode *j_cnode_free_list;
369 
370         /* orig pointer returned from vmalloc */
371         struct reiserfs_journal_cnode *j_cnode_free_orig;
372 
373         struct reiserfs_journal_list *j_current_jl;
374         int j_free_bitmap_nodes;
375         int j_used_bitmap_nodes;
376 
377         int j_num_lists;        /* total number of active transactions */
378         int j_num_work_lists;   /* number that need attention from kreiserfsd */
379 
380         /* debugging to make sure things are flushed in order */
381         unsigned int j_last_flush_id;
382 
383         /* debugging to make sure things are committed in order */
384         unsigned int j_last_commit_id;
385 
386         struct list_head j_bitmap_nodes;
387         struct list_head j_dirty_buffers;
388         spinlock_t j_dirty_buffers_lock;        /* protects j_dirty_buffers */
389 
390         /* list of all active transactions */
391         struct list_head j_journal_list;
392 
393         /* lists that haven't been touched by writeback attempts */
394         struct list_head j_working_list;
395 
396         /* hash table for real buffer heads in current trans */
397         struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE];
398 
399         /* hash table for all the real buffer heads in all the transactions */
400         struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE];
401 
402         /* array of bitmaps to record the deleted blocks */
403         struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS];
404 
405         /* list of inodes which have preallocated blocks */
406         struct list_head j_prealloc_list;
407         int j_persistent_trans;
408         unsigned long j_max_trans_size;
409         unsigned long j_max_batch_size;
410 
411         int j_errno;
412 
413         /* when flushing ordered buffers, throttle new ordered writers */
414         struct delayed_work j_work;
415         struct super_block *j_work_sb;
416         atomic_t j_async_throttle;
417 };
418 
419 enum journal_state_bits {
420         J_WRITERS_BLOCKED = 1,  /* set when new writers not allowed */
421         J_WRITERS_QUEUED,    /* set when log is full due to too many writers */
422         J_ABORTED,           /* set when log is aborted */
423 };
424 
425 /* ick.  magic string to find desc blocks in the journal */
426 #define JOURNAL_DESC_MAGIC "ReIsErLB"
427 
428 typedef __u32(*hashf_t) (const signed char *, int);
429 
430 struct reiserfs_bitmap_info {
431         __u32 free_count;
432 };
433 
434 struct proc_dir_entry;
435 
436 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
437 typedef unsigned long int stat_cnt_t;
438 typedef struct reiserfs_proc_info_data {
439         spinlock_t lock;
440         int exiting;
441         int max_hash_collisions;
442 
443         stat_cnt_t breads;
444         stat_cnt_t bread_miss;
445         stat_cnt_t search_by_key;
446         stat_cnt_t search_by_key_fs_changed;
447         stat_cnt_t search_by_key_restarted;
448 
449         stat_cnt_t insert_item_restarted;
450         stat_cnt_t paste_into_item_restarted;
451         stat_cnt_t cut_from_item_restarted;
452         stat_cnt_t delete_solid_item_restarted;
453         stat_cnt_t delete_item_restarted;
454 
455         stat_cnt_t leaked_oid;
456         stat_cnt_t leaves_removable;
457 
458         /*
459          * balances per level.
460          * Use explicit 5 as MAX_HEIGHT is not visible yet.
461          */
462         stat_cnt_t balance_at[5];       /* XXX */
463         /* sbk == search_by_key */
464         stat_cnt_t sbk_read_at[5];      /* XXX */
465         stat_cnt_t sbk_fs_changed[5];
466         stat_cnt_t sbk_restarted[5];
467         stat_cnt_t items_at[5]; /* XXX */
468         stat_cnt_t free_at[5];  /* XXX */
469         stat_cnt_t can_node_be_removed[5];      /* XXX */
470         long int lnum[5];       /* XXX */
471         long int rnum[5];       /* XXX */
472         long int lbytes[5];     /* XXX */
473         long int rbytes[5];     /* XXX */
474         stat_cnt_t get_neighbors[5];
475         stat_cnt_t get_neighbors_restart[5];
476         stat_cnt_t need_l_neighbor[5];
477         stat_cnt_t need_r_neighbor[5];
478 
479         stat_cnt_t free_block;
480         struct __scan_bitmap_stats {
481                 stat_cnt_t call;
482                 stat_cnt_t wait;
483                 stat_cnt_t bmap;
484                 stat_cnt_t retry;
485                 stat_cnt_t in_journal_hint;
486                 stat_cnt_t in_journal_nohint;
487                 stat_cnt_t stolen;
488         } scan_bitmap;
489         struct __journal_stats {
490                 stat_cnt_t in_journal;
491                 stat_cnt_t in_journal_bitmap;
492                 stat_cnt_t in_journal_reusable;
493                 stat_cnt_t lock_journal;
494                 stat_cnt_t lock_journal_wait;
495                 stat_cnt_t journal_being;
496                 stat_cnt_t journal_relock_writers;
497                 stat_cnt_t journal_relock_wcount;
498                 stat_cnt_t mark_dirty;
499                 stat_cnt_t mark_dirty_already;
500                 stat_cnt_t mark_dirty_notjournal;
501                 stat_cnt_t restore_prepared;
502                 stat_cnt_t prepare;
503                 stat_cnt_t prepare_retry;
504         } journal;
505 } reiserfs_proc_info_data_t;
506 #else
507 typedef struct reiserfs_proc_info_data {
508 } reiserfs_proc_info_data_t;
509 #endif
510 
511 /* Number of quota types we support */
512 #define REISERFS_MAXQUOTAS 2
513 
514 /* reiserfs union of in-core super block data */
515 struct reiserfs_sb_info {
516         /* Buffer containing the super block */
517         struct buffer_head *s_sbh;
518 
519         /* Pointer to the on-disk super block in the buffer */
520         struct reiserfs_super_block *s_rs;
521         struct reiserfs_bitmap_info *s_ap_bitmap;
522 
523         /* pointer to journal information */
524         struct reiserfs_journal *s_journal;
525 
526         unsigned short s_mount_state;   /* reiserfs state (valid, invalid) */
527 
528         /* Serialize writers access, replace the old bkl */
529         struct mutex lock;
530 
531         /* Owner of the lock (can be recursive) */
532         struct task_struct *lock_owner;
533 
534         /* Depth of the lock, start from -1 like the bkl */
535         int lock_depth;
536 
537         struct workqueue_struct *commit_wq;
538 
539         /* Comment? -Hans */
540         void (*end_io_handler) (struct buffer_head *, int);
541 
542         /*
543          * pointer to function which is used to sort names in directory.
544          * Set on mount
545          */
546         hashf_t s_hash_function;
547 
548         /* reiserfs's mount options are set here */
549         unsigned long s_mount_opt;
550 
551         /* This is a structure that describes block allocator options */
552         struct {
553                 /* Bitfield for enable/disable kind of options */
554                 unsigned long bits;
555 
556                 /*
557                  * size started from which we consider file
558                  * to be a large one (in blocks)
559                  */
560                 unsigned long large_file_size;
561 
562                 int border;     /* percentage of disk, border takes */
563 
564                 /*
565                  * Minimal file size (in blocks) starting
566                  * from which we do preallocations
567                  */
568                 int preallocmin;
569 
570                 /*
571                  * Number of blocks we try to prealloc when file
572                  * reaches preallocmin size (in blocks) or prealloc_list
573                  is empty.
574                  */
575                 int preallocsize;
576         } s_alloc_options;
577 
578         /* Comment? -Hans */
579         wait_queue_head_t s_wait;
580         /* increased by one every time the  tree gets re-balanced */
581         atomic_t s_generation_counter;
582 
583         /* File system properties. Currently holds on-disk FS format */
584         unsigned long s_properties;
585 
586         /* session statistics */
587         int s_disk_reads;
588         int s_disk_writes;
589         int s_fix_nodes;
590         int s_do_balance;
591         int s_unneeded_left_neighbor;
592         int s_good_search_by_key_reada;
593         int s_bmaps;
594         int s_bmaps_without_search;
595         int s_direct2indirect;
596         int s_indirect2direct;
597 
598         /*
599          * set up when it's ok for reiserfs_read_inode2() to read from
600          * disk inode with nlink==0. Currently this is only used during
601          * finish_unfinished() processing at mount time
602          */
603         int s_is_unlinked_ok;
604 
605         reiserfs_proc_info_data_t s_proc_info_data;
606         struct proc_dir_entry *procdir;
607 
608         /* amount of blocks reserved for further allocations */
609         int reserved_blocks;
610 
611 
612         /* this lock on now only used to protect reserved_blocks variable */
613         spinlock_t bitmap_lock;
614         struct dentry *priv_root;       /* root of /.reiserfs_priv */
615         struct dentry *xattr_root;      /* root of /.reiserfs_priv/xattrs */
616         int j_errno;
617 
618         int work_queued;              /* non-zero delayed work is queued */
619         struct delayed_work old_work; /* old transactions flush delayed work */
620         spinlock_t old_work_lock;     /* protects old_work and work_queued */
621 
622 #ifdef CONFIG_QUOTA
623         char *s_qf_names[REISERFS_MAXQUOTAS];
624         int s_jquota_fmt;
625 #endif
626         char *s_jdev;           /* Stored jdev for mount option showing */
627 #ifdef CONFIG_REISERFS_CHECK
628 
629         /*
630          * Detects whether more than one copy of tb exists per superblock
631          * as a means of checking whether do_balance is executing
632          * concurrently against another tree reader/writer on a same
633          * mount point.
634          */
635         struct tree_balance *cur_tb;
636 #endif
637 };
638 
639 /* Definitions of reiserfs on-disk properties: */
640 #define REISERFS_3_5 0
641 #define REISERFS_3_6 1
642 #define REISERFS_OLD_FORMAT 2
643 
644 /* Mount options */
645 enum reiserfs_mount_options {
646         /* large tails will be created in a session */
647         REISERFS_LARGETAIL,
648         /*
649          * small (for files less than block size) tails will
650          * be created in a session
651          */
652         REISERFS_SMALLTAIL,
653 
654         /* replay journal and return 0. Use by fsck */
655         REPLAYONLY,
656 
657         /*
658          * -o conv: causes conversion of old format super block to the
659          * new format. If not specified - old partition will be dealt
660          * with in a manner of 3.5.x
661          */
662         REISERFS_CONVERT,
663 
664         /*
665          * -o hash={tea, rupasov, r5, detect} is meant for properly mounting
666          * reiserfs disks from 3.5.19 or earlier.  99% of the time, this
667          * option is not required.  If the normal autodection code can't
668          * determine which hash to use (because both hashes had the same
669          * value for a file) use this option to force a specific hash.
670          * It won't allow you to override the existing hash on the FS, so
671          * if you have a tea hash disk, and mount with -o hash=rupasov,
672          * the mount will fail.
673          */
674         FORCE_TEA_HASH,         /* try to force tea hash on mount */
675         FORCE_RUPASOV_HASH,     /* try to force rupasov hash on mount */
676         FORCE_R5_HASH,          /* try to force rupasov hash on mount */
677         FORCE_HASH_DETECT,      /* try to detect hash function on mount */
678 
679         REISERFS_DATA_LOG,
680         REISERFS_DATA_ORDERED,
681         REISERFS_DATA_WRITEBACK,
682 
683         /*
684          * used for testing experimental features, makes benchmarking new
685          * features with and without more convenient, should never be used by
686          * users in any code shipped to users (ideally)
687          */
688 
689         REISERFS_NO_BORDER,
690         REISERFS_NO_UNHASHED_RELOCATION,
691         REISERFS_HASHED_RELOCATION,
692         REISERFS_ATTRS,
693         REISERFS_XATTRS_USER,
694         REISERFS_POSIXACL,
695         REISERFS_EXPOSE_PRIVROOT,
696         REISERFS_BARRIER_NONE,
697         REISERFS_BARRIER_FLUSH,
698 
699         /* Actions on error */
700         REISERFS_ERROR_PANIC,
701         REISERFS_ERROR_RO,
702         REISERFS_ERROR_CONTINUE,
703 
704         REISERFS_USRQUOTA,      /* User quota option specified */
705         REISERFS_GRPQUOTA,      /* Group quota option specified */
706 
707         REISERFS_TEST1,
708         REISERFS_TEST2,
709         REISERFS_TEST3,
710         REISERFS_TEST4,
711         REISERFS_UNSUPPORTED_OPT,
712 };
713 
714 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH))
715 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH))
716 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH))
717 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT))
718 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER))
719 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION))
720 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION))
721 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4))
722 
723 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL))
724 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL))
725 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY))
726 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS))
727 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5))
728 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT))
729 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG))
730 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED))
731 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK))
732 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER))
733 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL))
734 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT))
735 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s))
736 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE))
737 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH))
738 
739 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC))
740 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO))
741 
742 void reiserfs_file_buffer(struct buffer_head *bh, int list);
743 extern struct file_system_type reiserfs_fs_type;
744 int reiserfs_resize(struct super_block *, unsigned long);
745 
746 #define CARRY_ON                0
747 #define SCHEDULE_OCCURRED       1
748 
749 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh)
750 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal)
751 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block)
752 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free)
753 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap)
754 
755 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->)
756 
757 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal)))
758 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal
759                                                 *journal)
760 {
761         return test_bit(J_ABORTED, &journal->j_state);
762 }
763 
764 /*
765  * Locking primitives. The write lock is a per superblock
766  * special mutex that has properties close to the Big Kernel Lock
767  * which was used in the previous locking scheme.
768  */
769 void reiserfs_write_lock(struct super_block *s);
770 void reiserfs_write_unlock(struct super_block *s);
771 int __must_check reiserfs_write_unlock_nested(struct super_block *s);
772 void reiserfs_write_lock_nested(struct super_block *s, int depth);
773 
774 #ifdef CONFIG_REISERFS_CHECK
775 void reiserfs_lock_check_recursive(struct super_block *s);
776 #else
777 static inline void reiserfs_lock_check_recursive(struct super_block *s) { }
778 #endif
779 
780 /*
781  * Several mutexes depend on the write lock.
782  * However sometimes we want to relax the write lock while we hold
783  * these mutexes, according to the release/reacquire on schedule()
784  * properties of the Bkl that were used.
785  * Reiserfs performances and locking were based on this scheme.
786  * Now that the write lock is a mutex and not the bkl anymore, doing so
787  * may result in a deadlock:
788  *
789  * A acquire write_lock
790  * A acquire j_commit_mutex
791  * A release write_lock and wait for something
792  * B acquire write_lock
793  * B can't acquire j_commit_mutex and sleep
794  * A can't acquire write lock anymore
795  * deadlock
796  *
797  * What we do here is avoiding such deadlock by playing the same game
798  * than the Bkl: if we can't acquire a mutex that depends on the write lock,
799  * we release the write lock, wait a bit and then retry.
800  *
801  * The mutexes concerned by this hack are:
802  * - The commit mutex of a journal list
803  * - The flush mutex
804  * - The journal lock
805  * - The inode mutex
806  */
807 static inline void reiserfs_mutex_lock_safe(struct mutex *m,
808                                             struct super_block *s)
809 {
810         int depth;
811 
812         depth = reiserfs_write_unlock_nested(s);
813         mutex_lock(m);
814         reiserfs_write_lock_nested(s, depth);
815 }
816 
817 static inline void
818 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass,
819                                 struct super_block *s)
820 {
821         int depth;
822 
823         depth = reiserfs_write_unlock_nested(s);
824         mutex_lock_nested(m, subclass);
825         reiserfs_write_lock_nested(s, depth);
826 }
827 
828 static inline void
829 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s)
830 {
831        int depth;
832        depth = reiserfs_write_unlock_nested(s);
833        down_read(sem);
834        reiserfs_write_lock_nested(s, depth);
835 }
836 
837 /*
838  * When we schedule, we usually want to also release the write lock,
839  * according to the previous bkl based locking scheme of reiserfs.
840  */
841 static inline void reiserfs_cond_resched(struct super_block *s)
842 {
843         if (need_resched()) {
844                 int depth;
845 
846                 depth = reiserfs_write_unlock_nested(s);
847                 schedule();
848                 reiserfs_write_lock_nested(s, depth);
849         }
850 }
851 
852 struct fid;
853 
854 /*
855  * in reading the #defines, it may help to understand that they employ
856  *  the following abbreviations:
857  *
858  *  B = Buffer
859  *  I = Item header
860  *  H = Height within the tree (should be changed to LEV)
861  *  N = Number of the item in the node
862  *  STAT = stat data
863  *  DEH = Directory Entry Header
864  *  EC = Entry Count
865  *  E = Entry number
866  *  UL = Unsigned Long
867  *  BLKH = BLocK Header
868  *  UNFM = UNForMatted node
869  *  DC = Disk Child
870  *  P = Path
871  *
872  *  These #defines are named by concatenating these abbreviations,
873  *  where first comes the arguments, and last comes the return value,
874  *  of the macro.
875  */
876 
877 #define USE_INODE_GENERATION_COUNTER
878 
879 #define REISERFS_PREALLOCATE
880 #define DISPLACE_NEW_PACKING_LOCALITIES
881 #define PREALLOCATION_SIZE 9
882 
883 /* n must be power of 2 */
884 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
885 
886 /*
887  * to be ok for alpha and others we have to align structures to 8 byte
888  * boundary.
889  * FIXME: do not change 4 by anything else: there is code which relies on that
890  */
891 #define ROUND_UP(x) _ROUND_UP(x,8LL)
892 
893 /*
894  * debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
895  * messages.
896  */
897 #define REISERFS_DEBUG_CODE 5   /* extra messages to help find/debug errors */
898 
899 void __reiserfs_warning(struct super_block *s, const char *id,
900                          const char *func, const char *fmt, ...);
901 #define reiserfs_warning(s, id, fmt, args...) \
902          __reiserfs_warning(s, id, __func__, fmt, ##args)
903 /* assertions handling */
904 
905 /* always check a condition and panic if it's false. */
906 #define __RASSERT(cond, scond, format, args...)                 \
907 do {                                                                    \
908         if (!(cond))                                                    \
909                 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \
910                                __FILE__ ":%i:%s: " format "\n",         \
911                                __LINE__, __func__ , ##args);            \
912 } while (0)
913 
914 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
915 
916 #if defined( CONFIG_REISERFS_CHECK )
917 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
918 #else
919 #define RFALSE( cond, format, args... ) do {;} while( 0 )
920 #endif
921 
922 #define CONSTF __attribute_const__
923 /*
924  * Disk Data Structures
925  */
926 
927 /***************************************************************************
928  *                             SUPER BLOCK                                 *
929  ***************************************************************************/
930 
931 /*
932  * Structure of super block on disk, a version of which in RAM is often
933  * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger
934  * structure containing fields never written to disk.
935  */
936 #define UNSET_HASH 0    /* Detect hash on disk */
937 #define TEA_HASH  1
938 #define YURA_HASH 2
939 #define R5_HASH   3
940 #define DEFAULT_HASH R5_HASH
941 
942 struct journal_params {
943         /* where does journal start from on its * device */
944         __le32 jp_journal_1st_block;
945 
946         /* journal device st_rdev */
947         __le32 jp_journal_dev;
948 
949         /* size of the journal */
950         __le32 jp_journal_size;
951 
952         /* max number of blocks in a transaction. */
953         __le32 jp_journal_trans_max;
954 
955         /*
956          * random value made on fs creation
957          * (this was sb_journal_block_count)
958          */
959         __le32 jp_journal_magic;
960 
961         /* max number of blocks to batch into a trans */
962         __le32 jp_journal_max_batch;
963 
964         /* in seconds, how old can an async  commit be */
965         __le32 jp_journal_max_commit_age;
966 
967         /* in seconds, how old can a transaction be */
968         __le32 jp_journal_max_trans_age;
969 };
970 
971 /* this is the super from 3.5.X, where X >= 10 */
972 struct reiserfs_super_block_v1 {
973         __le32 s_block_count;   /* blocks count         */
974         __le32 s_free_blocks;   /* free blocks count    */
975         __le32 s_root_block;    /* root block number    */
976         struct journal_params s_journal;
977         __le16 s_blocksize;     /* block size */
978 
979         /* max size of object id array, see get_objectid() commentary  */
980         __le16 s_oid_maxsize;
981         __le16 s_oid_cursize;   /* current size of object id array */
982 
983         /* this is set to 1 when filesystem was umounted, to 2 - when not */
984         __le16 s_umount_state;
985 
986         /*
987          * reiserfs magic string indicates that file system is reiserfs:
988          * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs"
989          */
990         char s_magic[10];
991 
992         /*
993          * it is set to used by fsck to mark which
994          * phase of rebuilding is done
995          */
996         __le16 s_fs_state;
997         /*
998          * indicate, what hash function is being use
999          * to sort names in a directory
1000          */
1001         __le32 s_hash_function_code;
1002         __le16 s_tree_height;   /* height of disk tree */
1003 
1004         /*
1005          * amount of bitmap blocks needed to address
1006          * each block of file system
1007          */
1008         __le16 s_bmap_nr;
1009 
1010         /*
1011          * this field is only reliable on filesystem with non-standard journal
1012          */
1013         __le16 s_version;
1014 
1015         /*
1016          * size in blocks of journal area on main device, we need to
1017          * keep after making fs with non-standard journal
1018          */
1019         __le16 s_reserved_for_journal;
1020 } __attribute__ ((__packed__));
1021 
1022 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
1023 
1024 /* this is the on disk super block */
1025 struct reiserfs_super_block {
1026         struct reiserfs_super_block_v1 s_v1;
1027         __le32 s_inode_generation;
1028 
1029         /* Right now used only by inode-attributes, if enabled */
1030         __le32 s_flags;
1031 
1032         unsigned char s_uuid[16];       /* filesystem unique identifier */
1033         unsigned char s_label[16];      /* filesystem volume label */
1034         __le16 s_mnt_count;             /* Count of mounts since last fsck */
1035         __le16 s_max_mnt_count;         /* Maximum mounts before check */
1036         __le32 s_lastcheck;             /* Timestamp of last fsck */
1037         __le32 s_check_interval;        /* Interval between checks */
1038 
1039         /*
1040          * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1()
1041          * so any additions must be updated there as well. */
1042         char s_unused[76];
1043 } __attribute__ ((__packed__));
1044 
1045 #define SB_SIZE (sizeof(struct reiserfs_super_block))
1046 
1047 #define REISERFS_VERSION_1 0
1048 #define REISERFS_VERSION_2 2
1049 
1050 /* on-disk super block fields converted to cpu form */
1051 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
1052 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
1053 #define SB_BLOCKSIZE(s) \
1054         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
1055 #define SB_BLOCK_COUNT(s) \
1056         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
1057 #define SB_FREE_BLOCKS(s) \
1058         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
1059 #define SB_REISERFS_MAGIC(s) \
1060         (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
1061 #define SB_ROOT_BLOCK(s) \
1062         le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
1063 #define SB_TREE_HEIGHT(s) \
1064         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
1065 #define SB_REISERFS_STATE(s) \
1066         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
1067 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
1068 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
1069 
1070 #define PUT_SB_BLOCK_COUNT(s, val) \
1071    do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
1072 #define PUT_SB_FREE_BLOCKS(s, val) \
1073    do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
1074 #define PUT_SB_ROOT_BLOCK(s, val) \
1075    do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
1076 #define PUT_SB_TREE_HEIGHT(s, val) \
1077    do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
1078 #define PUT_SB_REISERFS_STATE(s, val) \
1079    do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
1080 #define PUT_SB_VERSION(s, val) \
1081    do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
1082 #define PUT_SB_BMAP_NR(s, val) \
1083    do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
1084 
1085 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
1086 #define SB_ONDISK_JOURNAL_SIZE(s) \
1087          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
1088 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
1089          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
1090 #define SB_ONDISK_JOURNAL_DEVICE(s) \
1091          le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
1092 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
1093          le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
1094 
1095 #define is_block_in_log_or_reserved_area(s, block) \
1096          block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
1097          && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
1098          ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
1099          SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
1100 
1101 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
1102 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
1103 int is_reiserfs_jr(struct reiserfs_super_block *rs);
1104 
1105 /*
1106  * ReiserFS leaves the first 64k unused, so that partition labels have
1107  * enough space.  If someone wants to write a fancy bootloader that
1108  * needs more than 64k, let us know, and this will be increased in size.
1109  * This number must be larger than the largest block size on any
1110  * platform, or code will break.  -Hans
1111  */
1112 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
1113 #define REISERFS_FIRST_BLOCK unused_define
1114 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
1115 
1116 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
1117 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
1118 
1119 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */
1120 #define CARRY_ON      0
1121 #define REPEAT_SEARCH -1
1122 #define IO_ERROR      -2
1123 #define NO_DISK_SPACE -3
1124 #define NO_BALANCING_NEEDED  (-4)
1125 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
1126 #define QUOTA_EXCEEDED -6
1127 
1128 typedef __u32 b_blocknr_t;
1129 typedef __le32 unp_t;
1130 
1131 struct unfm_nodeinfo {
1132         unp_t unfm_nodenum;
1133         unsigned short unfm_freespace;
1134 };
1135 
1136 /* there are two formats of keys: 3.5 and 3.6 */
1137 #define KEY_FORMAT_3_5 0
1138 #define KEY_FORMAT_3_6 1
1139 
1140 /* there are two stat datas */
1141 #define STAT_DATA_V1 0
1142 #define STAT_DATA_V2 1
1143 
1144 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
1145 {
1146         return container_of(inode, struct reiserfs_inode_info, vfs_inode);
1147 }
1148 
1149 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
1150 {
1151         return sb->s_fs_info;
1152 }
1153 
1154 /*
1155  * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
1156  * which overflows on large file systems.
1157  */
1158 static inline __u32 reiserfs_bmap_count(struct super_block *sb)
1159 {
1160         return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
1161 }
1162 
1163 static inline int bmap_would_wrap(unsigned bmap_nr)
1164 {
1165         return bmap_nr > ((1LL << 16) - 1);
1166 }
1167 
1168 extern const struct xattr_handler * const reiserfs_xattr_handlers[];
1169 
1170 /*
1171  * this says about version of key of all items (but stat data) the
1172  * object consists of
1173  */
1174 #define get_inode_item_key_version( inode )                                    \
1175     ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
1176 
1177 #define set_inode_item_key_version( inode, version )                           \
1178          ({ if((version)==KEY_FORMAT_3_6)                                      \
1179                 REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
1180             else                                                               \
1181                 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
1182 
1183 #define get_inode_sd_version(inode)                                            \
1184     ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
1185 
1186 #define set_inode_sd_version(inode, version)                                   \
1187          ({ if((version)==STAT_DATA_V2)                                        \
1188                 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
1189             else                                                               \
1190                 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
1191 
1192 /*
1193  * This is an aggressive tail suppression policy, I am hoping it
1194  * improves our benchmarks. The principle behind it is that percentage
1195  * space saving is what matters, not absolute space saving.  This is
1196  * non-intuitive, but it helps to understand it if you consider that the
1197  * cost to access 4 blocks is not much more than the cost to access 1
1198  * block, if you have to do a seek and rotate.  A tail risks a
1199  * non-linear disk access that is significant as a percentage of total
1200  * time cost for a 4 block file and saves an amount of space that is
1201  * less significant as a percentage of space, or so goes the hypothesis.
1202  * -Hans
1203  */
1204 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
1205 (\
1206   (!(n_tail_size)) || \
1207   (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
1208    ( (n_file_size) >= (n_block_size) * 4 ) || \
1209    ( ( (n_file_size) >= (n_block_size) * 3 ) && \
1210      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
1211    ( ( (n_file_size) >= (n_block_size) * 2 ) && \
1212      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
1213    ( ( (n_file_size) >= (n_block_size) ) && \
1214      ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
1215 )
1216 
1217 /*
1218  * Another strategy for tails, this one means only create a tail if all the
1219  * file would fit into one DIRECT item.
1220  * Primary intention for this one is to increase performance by decreasing
1221  * seeking.
1222 */
1223 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
1224 (\
1225   (!(n_tail_size)) || \
1226   (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
1227 )
1228 
1229 /*
1230  * values for s_umount_state field
1231  */
1232 #define REISERFS_VALID_FS    1
1233 #define REISERFS_ERROR_FS    2
1234 
1235 /*
1236  * there are 5 item types currently
1237  */
1238 #define TYPE_STAT_DATA 0
1239 #define TYPE_INDIRECT 1
1240 #define TYPE_DIRECT 2
1241 #define TYPE_DIRENTRY 3
1242 #define TYPE_MAXTYPE 3
1243 #define TYPE_ANY 15             /* FIXME: comment is required */
1244 
1245 /***************************************************************************
1246  *                       KEY & ITEM HEAD                                   *
1247  ***************************************************************************/
1248 
1249 /* * directories use this key as well as old files */
1250 struct offset_v1 {
1251         __le32 k_offset;
1252         __le32 k_uniqueness;
1253 } __attribute__ ((__packed__));
1254 
1255 struct offset_v2 {
1256         __le64 v;
1257 } __attribute__ ((__packed__));
1258 
1259 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
1260 {
1261         __u8 type = le64_to_cpu(v2->v) >> 60;
1262         return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
1263 }
1264 
1265 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
1266 {
1267         v2->v =
1268             (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
1269 }
1270 
1271 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
1272 {
1273         return le64_to_cpu(v2->v) & (~0ULL >> 4);
1274 }
1275 
1276 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
1277 {
1278         offset &= (~0ULL >> 4);
1279         v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
1280 }
1281 
1282 /*
1283  * Key of an item determines its location in the S+tree, and
1284  * is composed of 4 components
1285  */
1286 struct reiserfs_key {
1287         /* packing locality: by default parent directory object id */
1288         __le32 k_dir_id;
1289 
1290         __le32 k_objectid;      /* object identifier */
1291         union {
1292                 struct offset_v1 k_offset_v1;
1293                 struct offset_v2 k_offset_v2;
1294         } __attribute__ ((__packed__)) u;
1295 } __attribute__ ((__packed__));
1296 
1297 struct in_core_key {
1298         /* packing locality: by default parent directory object id */
1299         __u32 k_dir_id;
1300         __u32 k_objectid;       /* object identifier */
1301         __u64 k_offset;
1302         __u8 k_type;
1303 };
1304 
1305 struct cpu_key {
1306         struct in_core_key on_disk_key;
1307         int version;
1308         /* 3 in all cases but direct2indirect and indirect2direct conversion */
1309         int key_length;
1310 };
1311 
1312 /*
1313  * Our function for comparing keys can compare keys of different
1314  * lengths.  It takes as a parameter the length of the keys it is to
1315  * compare.  These defines are used in determining what is to be passed
1316  * to it as that parameter.
1317  */
1318 #define REISERFS_FULL_KEY_LEN     4
1319 #define REISERFS_SHORT_KEY_LEN    2
1320 
1321 /* The result of the key compare */
1322 #define FIRST_GREATER 1
1323 #define SECOND_GREATER -1
1324 #define KEYS_IDENTICAL 0
1325 #define KEY_FOUND 1
1326 #define KEY_NOT_FOUND 0
1327 
1328 #define KEY_SIZE (sizeof(struct reiserfs_key))
1329 
1330 /* return values for search_by_key and clones */
1331 #define ITEM_FOUND 1
1332 #define ITEM_NOT_FOUND 0
1333 #define ENTRY_FOUND 1
1334 #define ENTRY_NOT_FOUND 0
1335 #define DIRECTORY_NOT_FOUND -1
1336 #define REGULAR_FILE_FOUND -2
1337 #define DIRECTORY_FOUND -3
1338 #define BYTE_FOUND 1
1339 #define BYTE_NOT_FOUND 0
1340 #define FILE_NOT_FOUND -1
1341 
1342 #define POSITION_FOUND 1
1343 #define POSITION_NOT_FOUND 0
1344 
1345 /* return values for reiserfs_find_entry and search_by_entry_key */
1346 #define NAME_FOUND 1
1347 #define NAME_NOT_FOUND 0
1348 #define GOTO_PREVIOUS_ITEM 2
1349 #define NAME_FOUND_INVISIBLE 3
1350 
1351 /*
1352  * Everything in the filesystem is stored as a set of items.  The
1353  * item head contains the key of the item, its free space (for
1354  * indirect items) and specifies the location of the item itself
1355  * within the block.
1356  */
1357 
1358 struct item_head {
1359         /*
1360          * Everything in the tree is found by searching for it based on
1361          * its key.
1362          */
1363         struct reiserfs_key ih_key;
1364         union {
1365                 /*
1366                  * The free space in the last unformatted node of an
1367                  * indirect item if this is an indirect item.  This
1368                  * equals 0xFFFF iff this is a direct item or stat data
1369                  * item. Note that the key, not this field, is used to
1370                  * determine the item type, and thus which field this
1371                  * union contains.
1372                  */
1373                 __le16 ih_free_space_reserved;
1374 
1375                 /*
1376                  * Iff this is a directory item, this field equals the
1377                  * number of directory entries in the directory item.
1378                  */
1379                 __le16 ih_entry_count;
1380         } __attribute__ ((__packed__)) u;
1381         __le16 ih_item_len;     /* total size of the item body */
1382 
1383         /* an offset to the item body within the block */
1384         __le16 ih_item_location;
1385 
1386         /*
1387          * 0 for all old items, 2 for new ones. Highest bit is set by fsck
1388          * temporary, cleaned after all done
1389          */
1390         __le16 ih_version;
1391 } __attribute__ ((__packed__));
1392 /* size of item header     */
1393 #define IH_SIZE (sizeof(struct item_head))
1394 
1395 #define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
1396 #define ih_version(ih)               le16_to_cpu((ih)->ih_version)
1397 #define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
1398 #define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
1399 #define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
1400 
1401 #define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
1402 #define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
1403 #define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
1404 #define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
1405 #define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
1406 
1407 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
1408 
1409 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
1410 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
1411 
1412 /*
1413  * these operate on indirect items, where you've got an array of ints
1414  * at a possibly unaligned location.  These are a noop on ia32
1415  *
1416  * p is the array of __u32, i is the index into the array, v is the value
1417  * to store there.
1418  */
1419 #define get_block_num(p, i) get_unaligned_le32((p) + (i))
1420 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i))
1421 
1422 /* * in old version uniqueness field shows key type */
1423 #define V1_SD_UNIQUENESS 0
1424 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
1425 #define V1_DIRECT_UNIQUENESS 0xffffffff
1426 #define V1_DIRENTRY_UNIQUENESS 500
1427 #define V1_ANY_UNIQUENESS 555   /* FIXME: comment is required */
1428 
1429 /* here are conversion routines */
1430 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
1431 static inline int uniqueness2type(__u32 uniqueness)
1432 {
1433         switch ((int)uniqueness) {
1434         case V1_SD_UNIQUENESS:
1435                 return TYPE_STAT_DATA;
1436         case V1_INDIRECT_UNIQUENESS:
1437                 return TYPE_INDIRECT;
1438         case V1_DIRECT_UNIQUENESS:
1439                 return TYPE_DIRECT;
1440         case V1_DIRENTRY_UNIQUENESS:
1441                 return TYPE_DIRENTRY;
1442         case V1_ANY_UNIQUENESS:
1443         default:
1444                 return TYPE_ANY;
1445         }
1446 }
1447 
1448 static inline __u32 type2uniqueness(int type) CONSTF;
1449 static inline __u32 type2uniqueness(int type)
1450 {
1451         switch (type) {
1452         case TYPE_STAT_DATA:
1453                 return V1_SD_UNIQUENESS;
1454         case TYPE_INDIRECT:
1455                 return V1_INDIRECT_UNIQUENESS;
1456         case TYPE_DIRECT:
1457                 return V1_DIRECT_UNIQUENESS;
1458         case TYPE_DIRENTRY:
1459                 return V1_DIRENTRY_UNIQUENESS;
1460         case TYPE_ANY:
1461         default:
1462                 return V1_ANY_UNIQUENESS;
1463         }
1464 }
1465 
1466 /*
1467  * key is pointer to on disk key which is stored in le, result is cpu,
1468  * there is no way to get version of object from key, so, provide
1469  * version to these defines
1470  */
1471 static inline loff_t le_key_k_offset(int version,
1472                                      const struct reiserfs_key *key)
1473 {
1474         return (version == KEY_FORMAT_3_5) ?
1475             le32_to_cpu(key->u.k_offset_v1.k_offset) :
1476             offset_v2_k_offset(&(key->u.k_offset_v2));
1477 }
1478 
1479 static inline loff_t le_ih_k_offset(const struct item_head *ih)
1480 {
1481         return le_key_k_offset(ih_version(ih), &(ih->ih_key));
1482 }
1483 
1484 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
1485 {
1486         if (version == KEY_FORMAT_3_5) {
1487                 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness);
1488                 return uniqueness2type(val);
1489         } else
1490                 return offset_v2_k_type(&(key->u.k_offset_v2));
1491 }
1492 
1493 static inline loff_t le_ih_k_type(const struct item_head *ih)
1494 {
1495         return le_key_k_type(ih_version(ih), &(ih->ih_key));
1496 }
1497 
1498 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
1499                                        loff_t offset)
1500 {
1501         if (version == KEY_FORMAT_3_5)
1502                 key->u.k_offset_v1.k_offset = cpu_to_le32(offset);
1503         else
1504                 set_offset_v2_k_offset(&key->u.k_offset_v2, offset);
1505 }
1506 
1507 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key,
1508                                        loff_t offset)
1509 {
1510         set_le_key_k_offset(version, key,
1511                             le_key_k_offset(version, key) + offset);
1512 }
1513 
1514 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset)
1515 {
1516         add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1517 }
1518 
1519 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
1520 {
1521         set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
1522 }
1523 
1524 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
1525                                      int type)
1526 {
1527         if (version == KEY_FORMAT_3_5) {
1528                 type = type2uniqueness(type);
1529                 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type);
1530         } else
1531                set_offset_v2_k_type(&key->u.k_offset_v2, type);
1532 }
1533 
1534 static inline void set_le_ih_k_type(struct item_head *ih, int type)
1535 {
1536         set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
1537 }
1538 
1539 static inline int is_direntry_le_key(int version, struct reiserfs_key *key)
1540 {
1541         return le_key_k_type(version, key) == TYPE_DIRENTRY;
1542 }
1543 
1544 static inline int is_direct_le_key(int version, struct reiserfs_key *key)
1545 {
1546         return le_key_k_type(version, key) == TYPE_DIRECT;
1547 }
1548 
1549 static inline int is_indirect_le_key(int version, struct reiserfs_key *key)
1550 {
1551         return le_key_k_type(version, key) == TYPE_INDIRECT;
1552 }
1553 
1554 static inline int is_statdata_le_key(int version, struct reiserfs_key *key)
1555 {
1556         return le_key_k_type(version, key) == TYPE_STAT_DATA;
1557 }
1558 
1559 /* item header has version.  */
1560 static inline int is_direntry_le_ih(struct item_head *ih)
1561 {
1562         return is_direntry_le_key(ih_version(ih), &ih->ih_key);
1563 }
1564 
1565 static inline int is_direct_le_ih(struct item_head *ih)
1566 {
1567         return is_direct_le_key(ih_version(ih), &ih->ih_key);
1568 }
1569 
1570 static inline int is_indirect_le_ih(struct item_head *ih)
1571 {
1572         return is_indirect_le_key(ih_version(ih), &ih->ih_key);
1573 }
1574 
1575 static inline int is_statdata_le_ih(struct item_head *ih)
1576 {
1577         return is_statdata_le_key(ih_version(ih), &ih->ih_key);
1578 }
1579 
1580 /* key is pointer to cpu key, result is cpu */
1581 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
1582 {
1583         return key->on_disk_key.k_offset;
1584 }
1585 
1586 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
1587 {
1588         return key->on_disk_key.k_type;
1589 }
1590 
1591 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
1592 {
1593         key->on_disk_key.k_offset = offset;
1594 }
1595 
1596 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
1597 {
1598         key->on_disk_key.k_type = type;
1599 }
1600 
1601 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
1602 {
1603         key->on_disk_key.k_offset--;
1604 }
1605 
1606 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
1607 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
1608 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
1609 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
1610 
1611 /* are these used ? */
1612 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
1613 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
1614 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
1615 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
1616 
1617 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \
1618     (!COMP_SHORT_KEYS(ih, key) && \
1619           I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize))
1620 
1621 /* maximal length of item */
1622 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
1623 #define MIN_ITEM_LEN 1
1624 
1625 /* object identifier for root dir */
1626 #define REISERFS_ROOT_OBJECTID 2
1627 #define REISERFS_ROOT_PARENT_OBJECTID 1
1628 
1629 extern struct reiserfs_key root_key;
1630 
1631 /*
1632  * Picture represents a leaf of the S+tree
1633  *  ______________________________________________________
1634  * |      |  Array of     |                   |           |
1635  * |Block |  Object-Item  |      F r e e      |  Objects- |
1636  * | head |  Headers      |     S p a c e     |   Items   |
1637  * |______|_______________|___________________|___________|
1638  */
1639 
1640 /*
1641  * Header of a disk block.  More precisely, header of a formatted leaf
1642  * or internal node, and not the header of an unformatted node.
1643  */
1644 struct block_head {
1645         __le16 blk_level;       /* Level of a block in the tree. */
1646         __le16 blk_nr_item;     /* Number of keys/items in a block. */
1647         __le16 blk_free_space;  /* Block free space in bytes. */
1648         __le16 blk_reserved;
1649         /* dump this in v4/planA */
1650 
1651         /* kept only for compatibility */
1652         struct reiserfs_key blk_right_delim_key;
1653 };
1654 
1655 #define BLKH_SIZE                     (sizeof(struct block_head))
1656 #define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
1657 #define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
1658 #define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
1659 #define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
1660 #define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
1661 #define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
1662 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
1663 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
1664 #define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
1665 #define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
1666 
1667 /* values for blk_level field of the struct block_head */
1668 
1669 /*
1670  * When node gets removed from the tree its blk_level is set to FREE_LEVEL.
1671  * It is then  used to see whether the node is still in the tree
1672  */
1673 #define FREE_LEVEL 0
1674 
1675 #define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level. */
1676 
1677 /*
1678  * Given the buffer head of a formatted node, resolve to the
1679  * block head of that node.
1680  */
1681 #define B_BLK_HEAD(bh)                  ((struct block_head *)((bh)->b_data))
1682 /* Number of items that are in buffer. */
1683 #define B_NR_ITEMS(bh)                  (blkh_nr_item(B_BLK_HEAD(bh)))
1684 #define B_LEVEL(bh)                     (blkh_level(B_BLK_HEAD(bh)))
1685 #define B_FREE_SPACE(bh)                (blkh_free_space(B_BLK_HEAD(bh)))
1686 
1687 #define PUT_B_NR_ITEMS(bh, val)         do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0)
1688 #define PUT_B_LEVEL(bh, val)            do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0)
1689 #define PUT_B_FREE_SPACE(bh, val)       do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0)
1690 
1691 /* Get right delimiting key. -- little endian */
1692 #define B_PRIGHT_DELIM_KEY(bh)          (&(blk_right_delim_key(B_BLK_HEAD(bh))))
1693 
1694 /* Does the buffer contain a disk leaf. */
1695 #define B_IS_ITEMS_LEVEL(bh)            (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL)
1696 
1697 /* Does the buffer contain a disk internal node */
1698 #define B_IS_KEYS_LEVEL(bh)      (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \
1699                                             && B_LEVEL(bh) <= MAX_HEIGHT)
1700 
1701 /***************************************************************************
1702  *                             STAT DATA                                   *
1703  ***************************************************************************/
1704 
1705 /*
1706  * old stat data is 32 bytes long. We are going to distinguish new one by
1707  * different size
1708 */
1709 struct stat_data_v1 {
1710         __le16 sd_mode;         /* file type, permissions */
1711         __le16 sd_nlink;        /* number of hard links */
1712         __le16 sd_uid;          /* owner */
1713         __le16 sd_gid;          /* group */
1714         __le32 sd_size;         /* file size */
1715         __le32 sd_atime;        /* time of last access */
1716         __le32 sd_mtime;        /* time file was last modified  */
1717 
1718         /*
1719          * time inode (stat data) was last changed
1720          * (except changes to sd_atime and sd_mtime)
1721          */
1722         __le32 sd_ctime;
1723         union {
1724                 __le32 sd_rdev;
1725                 __le32 sd_blocks;       /* number of blocks file uses */
1726         } __attribute__ ((__packed__)) u;
1727 
1728         /*
1729          * first byte of file which is stored in a direct item: except that if
1730          * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no
1731          * direct item.  The existence of this field really grates on me.
1732          * Let's replace it with a macro based on sd_size and our tail
1733          * suppression policy.  Someday.  -Hans
1734          */
1735         __le32 sd_first_direct_byte;
1736 } __attribute__ ((__packed__));
1737 
1738 #define SD_V1_SIZE              (sizeof(struct stat_data_v1))
1739 #define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
1740 #define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1741 #define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1742 #define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
1743 #define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
1744 #define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
1745 #define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
1746 #define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
1747 #define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
1748 #define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
1749 #define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
1750 #define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1751 #define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1752 #define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1753 #define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1754 #define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1755 #define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1756 #define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1757 #define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1758 #define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
1759 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
1760 #define sd_v1_first_direct_byte(sdp) \
1761                                 (le32_to_cpu((sdp)->sd_first_direct_byte))
1762 #define set_sd_v1_first_direct_byte(sdp,v) \
1763                                 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
1764 
1765 /* inode flags stored in sd_attrs (nee sd_reserved) */
1766 
1767 /*
1768  * we want common flags to have the same values as in ext2,
1769  * so chattr(1) will work without problems
1770  */
1771 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
1772 #define REISERFS_APPEND_FL    FS_APPEND_FL
1773 #define REISERFS_SYNC_FL      FS_SYNC_FL
1774 #define REISERFS_NOATIME_FL   FS_NOATIME_FL
1775 #define REISERFS_NODUMP_FL    FS_NODUMP_FL
1776 #define REISERFS_SECRM_FL     FS_SECRM_FL
1777 #define REISERFS_UNRM_FL      FS_UNRM_FL
1778 #define REISERFS_COMPR_FL     FS_COMPR_FL
1779 #define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
1780 
1781 /* persistent flags that file inherits from the parent directory */
1782 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
1783                                 REISERFS_SYNC_FL |      \
1784                                 REISERFS_NOATIME_FL |   \
1785                                 REISERFS_NODUMP_FL |    \
1786                                 REISERFS_SECRM_FL |     \
1787                                 REISERFS_COMPR_FL |     \
1788                                 REISERFS_NOTAIL_FL )
1789 
1790 /*
1791  * Stat Data on disk (reiserfs version of UFS disk inode minus the
1792  * address blocks)
1793  */
1794 struct stat_data {
1795         __le16 sd_mode;         /* file type, permissions */
1796         __le16 sd_attrs;        /* persistent inode flags */
1797         __le32 sd_nlink;        /* number of hard links */
1798         __le64 sd_size;         /* file size */
1799         __le32 sd_uid;          /* owner */
1800         __le32 sd_gid;          /* group */
1801         __le32 sd_atime;        /* time of last access */
1802         __le32 sd_mtime;        /* time file was last modified  */
1803 
1804         /*
1805          * time inode (stat data) was last changed
1806          * (except changes to sd_atime and sd_mtime)
1807          */
1808         __le32 sd_ctime;
1809         __le32 sd_blocks;
1810         union {
1811                 __le32 sd_rdev;
1812                 __le32 sd_generation;
1813         } __attribute__ ((__packed__)) u;
1814 } __attribute__ ((__packed__));
1815 
1816 /* this is 44 bytes long */
1817 #define SD_SIZE (sizeof(struct stat_data))
1818 #define SD_V2_SIZE              SD_SIZE
1819 #define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
1820 #define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
1821 #define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
1822 /* sd_reserved */
1823 /* set_sd_reserved */
1824 #define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
1825 #define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
1826 #define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
1827 #define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
1828 #define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
1829 #define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
1830 #define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
1831 #define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
1832 #define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
1833 #define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
1834 #define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
1835 #define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
1836 #define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
1837 #define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
1838 #define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
1839 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
1840 #define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
1841 #define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
1842 #define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
1843 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
1844 #define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
1845 #define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
1846 
1847 /***************************************************************************
1848  *                      DIRECTORY STRUCTURE                                *
1849  ***************************************************************************/
1850 /*
1851  * Picture represents the structure of directory items
1852  * ________________________________________________
1853  * |  Array of     |   |     |        |       |   |
1854  * | directory     |N-1| N-2 | ....   |   1st |0th|
1855  * | entry headers |   |     |        |       |   |
1856  * |_______________|___|_____|________|_______|___|
1857  *                  <----   directory entries         ------>
1858  *
1859  * First directory item has k_offset component 1. We store "." and ".."
1860  * in one item, always, we never split "." and ".." into differing
1861  * items.  This makes, among other things, the code for removing
1862  * directories simpler.
1863  */
1864 #define SD_OFFSET  0
1865 #define SD_UNIQUENESS 0
1866 #define DOT_OFFSET 1
1867 #define DOT_DOT_OFFSET 2
1868 #define DIRENTRY_UNIQUENESS 500
1869 
1870 #define FIRST_ITEM_OFFSET 1
1871 
1872 /*
1873  * Q: How to get key of object pointed to by entry from entry?
1874  *
1875  * A: Each directory entry has its header. This header has deh_dir_id
1876  *    and deh_objectid fields, those are key of object, entry points to
1877  */
1878 
1879 /*
1880  * NOT IMPLEMENTED:
1881  * Directory will someday contain stat data of object
1882  */
1883 
1884 struct reiserfs_de_head {
1885         __le32 deh_offset;      /* third component of the directory entry key */
1886 
1887         /*
1888          * objectid of the parent directory of the object, that is referenced
1889          * by directory entry
1890          */
1891         __le32 deh_dir_id;
1892 
1893         /* objectid of the object, that is referenced by directory entry */
1894         __le32 deh_objectid;
1895         __le16 deh_location;    /* offset of name in the whole item */
1896 
1897         /*
1898          * whether 1) entry contains stat data (for future), and
1899          * 2) whether entry is hidden (unlinked)
1900          */
1901         __le16 deh_state;
1902 } __attribute__ ((__packed__));
1903 #define DEH_SIZE                  sizeof(struct reiserfs_de_head)
1904 #define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
1905 #define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
1906 #define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
1907 #define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
1908 #define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
1909 
1910 #define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
1911 #define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
1912 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
1913 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
1914 #define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
1915 
1916 /* empty directory contains two entries "." and ".." and their headers */
1917 #define EMPTY_DIR_SIZE \
1918 (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1))
1919 
1920 /* old format directories have this size when empty */
1921 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
1922 
1923 #define DEH_Statdata 0          /* not used now */
1924 #define DEH_Visible 2
1925 
1926 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
1927 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
1928 #   define ADDR_UNALIGNED_BITS  (3)
1929 #endif
1930 
1931 /*
1932  * These are only used to manipulate deh_state.
1933  * Because of this, we'll use the ext2_ bit routines,
1934  * since they are little endian
1935  */
1936 #ifdef ADDR_UNALIGNED_BITS
1937 
1938 #   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
1939 #   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
1940 
1941 #   define set_bit_unaligned(nr, addr)  \
1942         __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1943 #   define clear_bit_unaligned(nr, addr)        \
1944         __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1945 #   define test_bit_unaligned(nr, addr) \
1946         test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr))
1947 
1948 #else
1949 
1950 #   define set_bit_unaligned(nr, addr)  __test_and_set_bit_le(nr, addr)
1951 #   define clear_bit_unaligned(nr, addr)        __test_and_clear_bit_le(nr, addr)
1952 #   define test_bit_unaligned(nr, addr) test_bit_le(nr, addr)
1953 
1954 #endif
1955 
1956 #define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1957 #define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1958 #define mark_de_visible(deh)        set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1959 #define mark_de_hidden(deh)         clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1960 
1961 #define de_with_sd(deh)             test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1962 #define de_visible(deh)             test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1963 #define de_hidden(deh)              !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1964 
1965 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1966                                    __le32 par_dirid, __le32 par_objid);
1967 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1968                                 __le32 par_dirid, __le32 par_objid);
1969 
1970 /* two entries per block (at least) */
1971 #define REISERFS_MAX_NAME(block_size) 255
1972 
1973 /*
1974  * this structure is used for operations on directory entries. It is
1975  * not a disk structure.
1976  *
1977  * When reiserfs_find_entry or search_by_entry_key find directory
1978  * entry, they return filled reiserfs_dir_entry structure
1979  */
1980 struct reiserfs_dir_entry {
1981         struct buffer_head *de_bh;
1982         int de_item_num;
1983         struct item_head *de_ih;
1984         int de_entry_num;
1985         struct reiserfs_de_head *de_deh;
1986         int de_entrylen;
1987         int de_namelen;
1988         char *de_name;
1989         unsigned long *de_gen_number_bit_string;
1990 
1991         __u32 de_dir_id;
1992         __u32 de_objectid;
1993 
1994         struct cpu_key de_entry_key;
1995 };
1996 
1997 /*
1998  * these defines are useful when a particular member of
1999  * a reiserfs_dir_entry is needed
2000  */
2001 
2002 /* pointer to file name, stored in entry */
2003 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \
2004                                 (ih_item_body(bh, ih) + deh_location(deh))
2005 
2006 /* length of name */
2007 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
2008 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
2009 
2010 /* hash value occupies bits from 7 up to 30 */
2011 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
2012 /* generation number occupies 7 bits starting from 0 up to 6 */
2013 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
2014 #define MAX_GENERATION_NUMBER  127
2015 
2016 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
2017 
2018 /*
2019  * Picture represents an internal node of the reiserfs tree
2020  *  ______________________________________________________
2021  * |      |  Array of     |  Array of         |  Free     |
2022  * |block |    keys       |  pointers         | space     |
2023  * | head |      N        |      N+1          |           |
2024  * |______|_______________|___________________|___________|
2025  */
2026 
2027 /***************************************************************************
2028  *                      DISK CHILD                                         *
2029  ***************************************************************************/
2030 /*
2031  * Disk child pointer:
2032  * The pointer from an internal node of the tree to a node that is on disk.
2033  */
2034 struct disk_child {
2035         __le32 dc_block_number; /* Disk child's block number. */
2036         __le16 dc_size;         /* Disk child's used space.   */
2037         __le16 dc_reserved;
2038 };
2039 
2040 #define DC_SIZE (sizeof(struct disk_child))
2041 #define dc_block_number(dc_p)   (le32_to_cpu((dc_p)->dc_block_number))
2042 #define dc_size(dc_p)           (le16_to_cpu((dc_p)->dc_size))
2043 #define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
2044 #define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
2045 
2046 /* Get disk child by buffer header and position in the tree node. */
2047 #define B_N_CHILD(bh, n_pos)  ((struct disk_child *)\
2048 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos)))
2049 
2050 /* Get disk child number by buffer header and position in the tree node. */
2051 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos)))
2052 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \
2053                                 (put_dc_block_number(B_N_CHILD(bh, n_pos), val))
2054 
2055  /* maximal value of field child_size in structure disk_child */
2056  /* child size is the combined size of all items and their headers */
2057 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
2058 
2059 /* amount of used space in buffer (not including block head) */
2060 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
2061 
2062 /* max and min number of keys in internal node */
2063 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
2064 #define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
2065 
2066 /***************************************************************************
2067  *                      PATH STRUCTURES AND DEFINES                        *
2068  ***************************************************************************/
2069 
2070 /*
2071  * search_by_key fills up the path from the root to the leaf as it descends
2072  * the tree looking for the key.  It uses reiserfs_bread to try to find
2073  * buffers in the cache given their block number.  If it does not find
2074  * them in the cache it reads them from disk.  For each node search_by_key
2075  * finds using reiserfs_bread it then uses bin_search to look through that
2076  * node.  bin_search will find the position of the block_number of the next
2077  * node if it is looking through an internal node.  If it is looking through
2078  * a leaf node bin_search will find the position of the item which has key
2079  * either equal to given key, or which is the maximal key less than the
2080  * given key.
2081  */
2082 
2083 struct path_element {
2084         /* Pointer to the buffer at the path in the tree. */
2085         struct buffer_head *pe_buffer;
2086         /* Position in the tree node which is placed in the buffer above. */
2087         int pe_position;
2088 };
2089 
2090 /*
2091  * maximal height of a tree. don't change this without
2092  * changing JOURNAL_PER_BALANCE_CNT
2093  */
2094 #define MAX_HEIGHT 5
2095 
2096 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
2097 #define EXTENDED_MAX_HEIGHT         7
2098 
2099 /* Must be equal to at least 2. */
2100 #define FIRST_PATH_ELEMENT_OFFSET   2
2101 
2102 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
2103 #define ILLEGAL_PATH_ELEMENT_OFFSET 1
2104 
2105 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
2106 #define MAX_FEB_SIZE 6
2107 
2108 /*
2109  * We need to keep track of who the ancestors of nodes are.  When we
2110  * perform a search we record which nodes were visited while
2111  * descending the tree looking for the node we searched for. This list
2112  * of nodes is called the path.  This information is used while
2113  * performing balancing.  Note that this path information may become
2114  * invalid, and this means we must check it when using it to see if it
2115  * is still valid. You'll need to read search_by_key and the comments
2116  * in it, especially about decrement_counters_in_path(), to understand
2117  * this structure.
2118  *
2119  * Paths make the code so much harder to work with and debug.... An
2120  * enormous number of bugs are due to them, and trying to write or modify
2121  * code that uses them just makes my head hurt.  They are based on an
2122  * excessive effort to avoid disturbing the precious VFS code.:-( The
2123  * gods only know how we are going to SMP the code that uses them.
2124  * znodes are the way!
2125  */
2126 
2127 #define PATH_READA      0x1     /* do read ahead */
2128 #define PATH_READA_BACK 0x2     /* read backwards */
2129 
2130 struct treepath {
2131         int path_length;        /* Length of the array above.   */
2132         int reada;
2133         /* Array of the path elements.  */
2134         struct path_element path_elements[EXTENDED_MAX_HEIGHT];
2135         int pos_in_item;
2136 };
2137 
2138 #define pos_in_item(path) ((path)->pos_in_item)
2139 
2140 #define INITIALIZE_PATH(var) \
2141 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
2142 
2143 /* Get path element by path and path position. */
2144 #define PATH_OFFSET_PELEMENT(path, n_offset)  ((path)->path_elements + (n_offset))
2145 
2146 /* Get buffer header at the path by path and path position. */
2147 #define PATH_OFFSET_PBUFFER(path, n_offset)   (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer)
2148 
2149 /* Get position in the element at the path by path and path position. */
2150 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position)
2151 
2152 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length))
2153 
2154 /*
2155  * you know, to the person who didn't write this the macro name does not
2156  * at first suggest what it does.  Maybe POSITION_FROM_PATH_END? Or
2157  * maybe we should just focus on dumping paths... -Hans
2158  */
2159 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length))
2160 
2161 /*
2162  * in do_balance leaf has h == 0 in contrast with path structure,
2163  * where root has level == 0. That is why we need these defines
2164  */
2165 
2166 /* tb->S[h] */
2167 #define PATH_H_PBUFFER(path, h) \
2168                         PATH_OFFSET_PBUFFER(path, path->path_length - (h))
2169 
2170 /* tb->F[h] or tb->S[0]->b_parent */
2171 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1)
2172 
2173 #define PATH_H_POSITION(path, h) \
2174                         PATH_OFFSET_POSITION(path, path->path_length - (h))
2175 
2176 /* tb->S[h]->b_item_order */
2177 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)
2178 
2179 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h))
2180 
2181 static inline void *reiserfs_node_data(const struct buffer_head *bh)
2182 {
2183         return bh->b_data + sizeof(struct block_head);
2184 }
2185 
2186 /* get key from internal node */
2187 static inline struct reiserfs_key *internal_key(struct buffer_head *bh,
2188                                                 int item_num)
2189 {
2190         struct reiserfs_key *key = reiserfs_node_data(bh);
2191 
2192         return &key[item_num];
2193 }
2194 
2195 /* get the item header from leaf node */
2196 static inline struct item_head *item_head(const struct buffer_head *bh,
2197                                           int item_num)
2198 {
2199         struct item_head *ih = reiserfs_node_data(bh);
2200 
2201         return &ih[item_num];
2202 }
2203 
2204 /* get the key from leaf node */
2205 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh,
2206                                             int item_num)
2207 {
2208         return &item_head(bh, item_num)->ih_key;
2209 }
2210 
2211 static inline void *ih_item_body(const struct buffer_head *bh,
2212                                  const struct item_head *ih)
2213 {
2214         return bh->b_data + ih_location(ih);
2215 }
2216 
2217 /* get item body from leaf node */
2218 static inline void *item_body(const struct buffer_head *bh, int item_num)
2219 {
2220         return ih_item_body(bh, item_head(bh, item_num));
2221 }
2222 
2223 static inline struct item_head *tp_item_head(const struct treepath *path)
2224 {
2225         return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2226 }
2227 
2228 static inline void *tp_item_body(const struct treepath *path)
2229 {
2230         return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path));
2231 }
2232 
2233 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
2234 #define get_item_pos(path) PATH_LAST_POSITION(path)
2235 #define item_moved(ih,path) comp_items(ih, path)
2236 #define path_changed(ih,path) comp_items (ih, path)
2237 
2238 /* array of the entry headers */
2239  /* get item body */
2240 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih)))
2241 
2242 /*
2243  * length of the directory entry in directory item. This define
2244  * calculates length of i-th directory entry using directory entry
2245  * locations from dir entry head. When it calculates length of 0-th
2246  * directory entry, it uses length of whole item in place of entry
2247  * location of the non-existent following entry in the calculation.
2248  * See picture above.
2249  */
2250 static inline int entry_length(const struct buffer_head *bh,
2251                                const struct item_head *ih, int pos_in_item)
2252 {
2253         struct reiserfs_de_head *deh;
2254 
2255         deh = B_I_DEH(bh, ih) + pos_in_item;
2256         if (pos_in_item)
2257                 return deh_location(deh - 1) - deh_location(deh);
2258 
2259         return ih_item_len(ih) - deh_location(deh);
2260 }
2261 
2262 /***************************************************************************
2263  *                       MISC                                              *
2264  ***************************************************************************/
2265 
2266 /* Size of pointer to the unformatted node. */
2267 #define UNFM_P_SIZE (sizeof(unp_t))
2268 #define UNFM_P_SHIFT 2
2269 
2270 /* in in-core inode key is stored on le form */
2271 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
2272 
2273 #define MAX_UL_INT 0xffffffff
2274 #define MAX_INT    0x7ffffff
2275 #define MAX_US_INT 0xffff
2276 
2277 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
2278 static inline loff_t max_reiserfs_offset(struct inode *inode)
2279 {
2280         if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
2281                 return (loff_t) U32_MAX;
2282 
2283         return (loff_t) ((~(__u64) 0) >> 4);
2284 }
2285 
2286 #define MAX_KEY_OBJECTID        MAX_UL_INT
2287 
2288 #define MAX_B_NUM  MAX_UL_INT
2289 #define MAX_FC_NUM MAX_US_INT
2290 
2291 /* the purpose is to detect overflow of an unsigned short */
2292 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
2293 
2294 /*
2295  * The following defines are used in reiserfs_insert_item
2296  * and reiserfs_append_item
2297  */
2298 #define REISERFS_KERNEL_MEM             0       /* kernel memory mode */
2299 #define REISERFS_USER_MEM               1       /* user memory mode */
2300 
2301 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
2302 #define get_generation(s) atomic_read (&fs_generation(s))
2303 #define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
2304 #define __fs_changed(gen,s) (gen != get_generation (s))
2305 #define fs_changed(gen,s)               \
2306 ({                                      \
2307         reiserfs_cond_resched(s);       \
2308         __fs_changed(gen, s);           \
2309 })
2310 
2311 /***************************************************************************
2312  *                  FIXATE NODES                                           *
2313  ***************************************************************************/
2314 
2315 #define VI_TYPE_LEFT_MERGEABLE 1
2316 #define VI_TYPE_RIGHT_MERGEABLE 2
2317 
2318 /*
2319  * To make any changes in the tree we always first find node, that
2320  * contains item to be changed/deleted or place to insert a new
2321  * item. We call this node S. To do balancing we need to decide what
2322  * we will shift to left/right neighbor, or to a new node, where new
2323  * item will be etc. To make this analysis simpler we build virtual
2324  * node. Virtual node is an array of items, that will replace items of
2325  * node S. (For instance if we are going to delete an item, virtual
2326  * node does not contain it). Virtual node keeps information about
2327  * item sizes and types, mergeability of first and last items, sizes
2328  * of all entries in directory item. We use this array of items when
2329  * calculating what we can shift to neighbors and how many nodes we
2330  * have to have if we do not any shiftings, if we shift to left/right
2331  * neighbor or to both.
2332  */
2333 struct virtual_item {
2334         int vi_index;           /* index in the array of item operations */
2335         unsigned short vi_type; /* left/right mergeability */
2336 
2337         /* length of item that it will have after balancing */
2338         unsigned short vi_item_len;
2339 
2340         struct item_head *vi_ih;
2341         const char *vi_item;    /* body of item (old or new) */
2342         const void *vi_new_data;        /* 0 always but paste mode */
2343         void *vi_uarea;         /* item specific area */
2344 };
2345 
2346 struct virtual_node {
2347         /* this is a pointer to the free space in the buffer */
2348         char *vn_free_ptr;
2349 
2350         unsigned short vn_nr_item;      /* number of items in virtual node */
2351 
2352         /*
2353          * size of node , that node would have if it has
2354          * unlimited size and no balancing is performed
2355          */
2356         short vn_size;
2357 
2358         /* mode of balancing (paste, insert, delete, cut) */
2359         short vn_mode;
2360 
2361         short vn_affected_item_num;
2362         short vn_pos_in_item;
2363 
2364         /* item header of inserted item, 0 for other modes */
2365         struct item_head *vn_ins_ih;
2366         const void *vn_data;
2367 
2368         /* array of items (including a new one, excluding item to be deleted) */
2369         struct virtual_item *vn_vi;
2370 };
2371 
2372 /* used by directory items when creating virtual nodes */
2373 struct direntry_uarea {
2374         int flags;
2375         __u16 entry_count;
2376         __u16 entry_sizes[];
2377 } __attribute__ ((__packed__));
2378 
2379 /***************************************************************************
2380  *                  TREE BALANCE                                           *
2381  ***************************************************************************/
2382 
2383 /*
2384  * This temporary structure is used in tree balance algorithms, and
2385  * constructed as we go to the extent that its various parts are
2386  * needed.  It contains arrays of nodes that can potentially be
2387  * involved in the balancing of node S, and parameters that define how
2388  * each of the nodes must be balanced.  Note that in these algorithms
2389  * for balancing the worst case is to need to balance the current node
2390  * S and the left and right neighbors and all of their parents plus
2391  * create a new node.  We implement S1 balancing for the leaf nodes
2392  * and S0 balancing for the internal nodes (S1 and S0 are defined in
2393  * our papers.)
2394  */
2395 
2396 /* size of the array of buffers to free at end of do_balance */
2397 #define MAX_FREE_BLOCK 7
2398 
2399 /* maximum number of FEB blocknrs on a single level */
2400 #define MAX_AMOUNT_NEEDED 2
2401 
2402 /* someday somebody will prefix every field in this struct with tb_ */
2403 struct tree_balance {
2404         int tb_mode;
2405         int need_balance_dirty;
2406         struct super_block *tb_sb;
2407         struct reiserfs_transaction_handle *transaction_handle;
2408         struct treepath *tb_path;
2409 
2410         /* array of left neighbors of nodes in the path */
2411         struct buffer_head *L[MAX_HEIGHT];
2412 
2413         /* array of right neighbors of nodes in the path */
2414         struct buffer_head *R[MAX_HEIGHT];
2415 
2416         /* array of fathers of the left neighbors */
2417         struct buffer_head *FL[MAX_HEIGHT];
2418 
2419         /* array of fathers of the right neighbors */
2420         struct buffer_head *FR[MAX_HEIGHT];
2421         /* array of common parents of center node and its left neighbor */
2422         struct buffer_head *CFL[MAX_HEIGHT];
2423 
2424         /* array of common parents of center node and its right neighbor */
2425         struct buffer_head *CFR[MAX_HEIGHT];
2426 
2427         /*
2428          * array of empty buffers. Number of buffers in array equals
2429          * cur_blknum.
2430          */
2431         struct buffer_head *FEB[MAX_FEB_SIZE];
2432         struct buffer_head *used[MAX_FEB_SIZE];
2433         struct buffer_head *thrown[MAX_FEB_SIZE];
2434 
2435         /*
2436          * array of number of items which must be shifted to the left in
2437          * order to balance the current node; for leaves includes item that
2438          * will be partially shifted; for internal nodes, it is the number
2439          * of child pointers rather than items. It includes the new item
2440          * being created. The code sometimes subtracts one to get the
2441          * number of wholly shifted items for other purposes.
2442          */
2443         int lnum[MAX_HEIGHT];
2444 
2445         /* substitute right for left in comment above */
2446         int rnum[MAX_HEIGHT];
2447 
2448         /*
2449          * array indexed by height h mapping the key delimiting L[h] and
2450          * S[h] to its item number within the node CFL[h]
2451          */
2452         int lkey[MAX_HEIGHT];
2453 
2454         /* substitute r for l in comment above */
2455         int rkey[MAX_HEIGHT];
2456 
2457         /*
2458          * the number of bytes by we are trying to add or remove from
2459          * S[h]. A negative value means removing.
2460          */
2461         int insert_size[MAX_HEIGHT];
2462 
2463         /*
2464          * number of nodes that will replace node S[h] after balancing
2465          * on the level h of the tree.  If 0 then S is being deleted,
2466          * if 1 then S is remaining and no new nodes are being created,
2467          * if 2 or 3 then 1 or 2 new nodes is being created
2468          */
2469         int blknum[MAX_HEIGHT];
2470 
2471         /* fields that are used only for balancing leaves of the tree */
2472 
2473         /* number of empty blocks having been already allocated */
2474         int cur_blknum;
2475 
2476         /* number of items that fall into left most node when S[0] splits */
2477         int s0num;
2478 
2479         /*
2480          * number of bytes which can flow to the left neighbor from the left
2481          * most liquid item that cannot be shifted from S[0] entirely
2482          * if -1 then nothing will be partially shifted
2483          */
2484         int lbytes;
2485 
2486         /*
2487          * number of bytes which will flow to the right neighbor from the right
2488          * most liquid item that cannot be shifted from S[0] entirely
2489          * if -1 then nothing will be partially shifted
2490          */
2491         int rbytes;
2492 
2493 
2494         /*
2495          * index into the array of item headers in
2496          * S[0] of the affected item
2497          */
2498         int item_pos;
2499 
2500         /* new nodes allocated to hold what could not fit into S */
2501         struct buffer_head *S_new[2];
2502 
2503         /*
2504          * number of items that will be placed into nodes in S_new
2505          * when S[0] splits
2506          */
2507         int snum[2];
2508 
2509         /*
2510          * number of bytes which flow to nodes in S_new when S[0] splits
2511          * note: if S[0] splits into 3 nodes, then items do not need to be cut
2512          */
2513         int sbytes[2];
2514 
2515         int pos_in_item;
2516         int zeroes_num;
2517 
2518         /*
2519          * buffers which are to be freed after do_balance finishes
2520          * by unfix_nodes
2521          */
2522         struct buffer_head *buf_to_free[MAX_FREE_BLOCK];
2523 
2524         /*
2525          * kmalloced memory. Used to create virtual node and keep
2526          * map of dirtied bitmap blocks
2527          */
2528         char *vn_buf;
2529 
2530         int vn_buf_size;        /* size of the vn_buf */
2531 
2532         /* VN starts after bitmap of bitmap blocks */
2533         struct virtual_node *tb_vn;
2534 
2535         /*
2536          * saved value of `reiserfs_generation' counter see
2537          * FILESYSTEM_CHANGED() macro in reiserfs_fs.h
2538          */
2539         int fs_gen;
2540 
2541 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
2542         /*
2543          * key pointer, to pass to block allocator or
2544          * another low-level subsystem
2545          */
2546         struct in_core_key key;
2547 #endif
2548 };
2549 
2550 /* These are modes of balancing */
2551 
2552 /* When inserting an item. */
2553 #define M_INSERT        'i'
2554 /*
2555  * When inserting into (directories only) or appending onto an already
2556  * existent item.
2557  */
2558 #define M_PASTE         'p'
2559 /* When deleting an item. */
2560 #define M_DELETE        'd'
2561 /* When truncating an item or removing an entry from a (directory) item. */
2562 #define M_CUT           'c'
2563 
2564 /* used when balancing on leaf level skipped (in reiserfsck) */
2565 #define M_INTERNAL      'n'
2566 
2567 /*
2568  * When further balancing is not needed, then do_balance does not need
2569  * to be called.
2570  */
2571 #define M_SKIP_BALANCING                's'
2572 #define M_CONVERT       'v'
2573 
2574 /* modes of leaf_move_items */
2575 #define LEAF_FROM_S_TO_L 0
2576 #define LEAF_FROM_S_TO_R 1
2577 #define LEAF_FROM_R_TO_L 2
2578 #define LEAF_FROM_L_TO_R 3
2579 #define LEAF_FROM_S_TO_SNEW 4
2580 
2581 #define FIRST_TO_LAST 0
2582 #define LAST_TO_FIRST 1
2583 
2584 /*
2585  * used in do_balance for passing parent of node information that has
2586  * been gotten from tb struct
2587  */
2588 struct buffer_info {
2589         struct tree_balance *tb;
2590         struct buffer_head *bi_bh;
2591         struct buffer_head *bi_parent;
2592         int bi_position;
2593 };
2594 
2595 static inline struct super_block *sb_from_tb(struct tree_balance *tb)
2596 {
2597         return tb ? tb->tb_sb : NULL;
2598 }
2599 
2600 static inline struct super_block *sb_from_bi(struct buffer_info *bi)
2601 {
2602         return bi ? sb_from_tb(bi->tb) : NULL;
2603 }
2604 
2605 /*
2606  * there are 4 types of items: stat data, directory item, indirect, direct.
2607  * +-------------------+------------+--------------+------------+
2608  * |                   |  k_offset  | k_uniqueness | mergeable? |
2609  * +-------------------+------------+--------------+------------+
2610  * |     stat data     |     0      |      0       |   no       |
2611  * +-------------------+------------+--------------+------------+
2612  * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. |   no       |
2613  * | non 1st directory | hash value | UNIQUENESS   |   yes      |
2614  * |     item          |            |              |            |
2615  * +-------------------+------------+--------------+------------+
2616  * | indirect item     | offset + 1 |TYPE_INDIRECT |    [1]     |
2617  * +-------------------+------------+--------------+------------+
2618  * | direct item       | offset + 1 |TYPE_DIRECT   |    [2]     |
2619  * +-------------------+------------+--------------+------------+
2620  *
2621  * [1] if this is not the first indirect item of the object
2622  * [2] if this is not the first direct item of the object
2623 */
2624 
2625 struct item_operations {
2626         int (*bytes_number) (struct item_head * ih, int block_size);
2627         void (*decrement_key) (struct cpu_key *);
2628         int (*is_left_mergeable) (struct reiserfs_key * ih,
2629                                   unsigned long bsize);
2630         void (*print_item) (struct item_head *, char *item);
2631         void (*check_item) (struct item_head *, char *item);
2632 
2633         int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
2634                           int is_affected, int insert_size);
2635         int (*check_left) (struct virtual_item * vi, int free,
2636                            int start_skip, int end_skip);
2637         int (*check_right) (struct virtual_item * vi, int free);
2638         int (*part_size) (struct virtual_item * vi, int from, int to);
2639         int (*unit_num) (struct virtual_item * vi);
2640         void (*print_vi) (struct virtual_item * vi);
2641 };
2642 
2643 extern struct item_operations *item_ops[TYPE_ANY + 1];
2644 
2645 #define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
2646 #define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
2647 #define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
2648 #define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
2649 #define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
2650 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
2651 #define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
2652 #define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
2653 #define op_unit_num(vi)                              item_ops[(vi)->vi_index]->unit_num (vi)
2654 #define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
2655 
2656 #define COMP_SHORT_KEYS comp_short_keys
2657 
2658 /* number of blocks pointed to by the indirect item */
2659 #define I_UNFM_NUM(ih)  (ih_item_len(ih) / UNFM_P_SIZE)
2660 
2661 /*
2662  * the used space within the unformatted node corresponding
2663  * to pos within the item pointed to by ih
2664  */
2665 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
2666 
2667 /*
2668  * number of bytes contained by the direct item or the
2669  * unformatted nodes the indirect item points to
2670  */
2671 
2672 /* following defines use reiserfs buffer header and item header */
2673 
2674 /* get stat-data */
2675 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
2676 
2677 /* this is 3976 for size==4096 */
2678 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
2679 
2680 /*
2681  * indirect items consist of entries which contain blocknrs, pos
2682  * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
2683  * blocknr contained by the entry pos points to
2684  */
2685 #define B_I_POS_UNFM_POINTER(bh, ih, pos)                               \
2686         le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos)))
2687 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val)                      \
2688         (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val))
2689 
2690 struct reiserfs_iget_args {
2691         __u32 objectid;
2692         __u32 dirid;
2693 };
2694 
2695 /***************************************************************************
2696  *                    FUNCTION DECLARATIONS                                *
2697  ***************************************************************************/
2698 
2699 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
2700 
2701 #define journal_trans_half(blocksize) \
2702         ((blocksize - sizeof(struct reiserfs_journal_desc) - 12) / sizeof(__u32))
2703 
2704 /* journal.c see journal.c for all the comments here */
2705 
2706 /* first block written in a commit.  */
2707 struct reiserfs_journal_desc {
2708         __le32 j_trans_id;      /* id of commit */
2709 
2710         /* length of commit. len +1 is the commit block */
2711         __le32 j_len;
2712 
2713         __le32 j_mount_id;      /* mount id of this trans */
2714         __le32 j_realblock[];   /* real locations for each block */
2715 };
2716 
2717 #define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
2718 #define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
2719 #define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
2720 
2721 #define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
2722 #define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
2723 #define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
2724 
2725 /* last block written in a commit */
2726 struct reiserfs_journal_commit {
2727         __le32 j_trans_id;      /* must match j_trans_id from the desc block */
2728         __le32 j_len;           /* ditto */
2729         __le32 j_realblock[];   /* real locations for each block */
2730 };
2731 
2732 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
2733 #define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
2734 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
2735 
2736 #define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
2737 #define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
2738 
2739 /*
2740  * this header block gets written whenever a transaction is considered
2741  * fully flushed, and is more recent than the last fully flushed transaction.
2742  * fully flushed means all the log blocks and all the real blocks are on
2743  * disk, and this transaction does not need to be replayed.
2744  */
2745 struct reiserfs_journal_header {
2746         /* id of last fully flushed transaction */
2747         __le32 j_last_flush_trans_id;
2748 
2749         /* offset in the log of where to start replay after a crash */
2750         __le32 j_first_unflushed_offset;
2751 
2752         __le32 j_mount_id;
2753         /* 12 */ struct journal_params jh_journal;
2754 };
2755 
2756 /* biggest tunable defines are right here */
2757 #define JOURNAL_BLOCK_COUNT 8192        /* number of blocks in the journal */
2758 
2759 /* biggest possible single transaction, don't change for now (8/3/99) */
2760 #define JOURNAL_TRANS_MAX_DEFAULT 1024
2761 #define JOURNAL_TRANS_MIN_DEFAULT 256
2762 
2763 /*
2764  * max blocks to batch into one transaction,
2765  * don't make this any bigger than 900
2766  */
2767 #define JOURNAL_MAX_BATCH_DEFAULT   900
2768 #define JOURNAL_MIN_RATIO 2
2769 #define JOURNAL_MAX_COMMIT_AGE 30
2770 #define JOURNAL_MAX_TRANS_AGE 30
2771 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
2772 #define JOURNAL_BLOCKS_PER_OBJECT(sb)  (JOURNAL_PER_BALANCE_CNT * 3 + \
2773                                          2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \
2774                                               REISERFS_QUOTA_TRANS_BLOCKS(sb)))
2775 
2776 #ifdef CONFIG_QUOTA
2777 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA))
2778 /* We need to update data and inode (atime) */
2779 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0)
2780 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
2781 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2782 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
2783 /* same as with INIT */
2784 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \
2785 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
2786 #else
2787 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
2788 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
2789 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
2790 #endif
2791 
2792 /*
2793  * both of these can be as low as 1, or as high as you want.  The min is the
2794  * number of 4k bitmap nodes preallocated on mount. New nodes are allocated
2795  * as needed, and released when transactions are committed.  On release, if
2796  * the current number of nodes is > max, the node is freed, otherwise,
2797  * it is put on a free list for faster use later.
2798 */
2799 #define REISERFS_MIN_BITMAP_NODES 10
2800 #define REISERFS_MAX_BITMAP_NODES 100
2801 
2802 /* these are based on journal hash size of 8192 */
2803 #define JBH_HASH_SHIFT 13
2804 #define JBH_HASH_MASK 8191
2805 
2806 #define _jhashfn(sb,block)      \
2807         (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
2808          (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
2809 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
2810 
2811 /* We need these to make journal.c code more readable */
2812 #define journal_find_get_block(s, block) __find_get_block(\
2813                 file_bdev(SB_JOURNAL(s)->j_bdev_file), block, s->s_blocksize)
2814 #define journal_getblk(s, block) __getblk(file_bdev(SB_JOURNAL(s)->j_bdev_file),\
2815                 block, s->s_blocksize)
2816 #define journal_bread(s, block) __bread(file_bdev(SB_JOURNAL(s)->j_bdev_file),\
2817                 block, s->s_blocksize)
2818 
2819 enum reiserfs_bh_state_bits {
2820         BH_JDirty = BH_PrivateStart,    /* buffer is in current transaction */
2821         BH_JDirty_wait,
2822         /*
2823          * disk block was taken off free list before being in a
2824          * finished transaction, or written to disk. Can be reused immed.
2825          */
2826         BH_JNew,
2827         BH_JPrepared,
2828         BH_JRestore_dirty,
2829         BH_JTest,               /* debugging only will go away */
2830 };
2831 
2832 BUFFER_FNS(JDirty, journaled);
2833 TAS_BUFFER_FNS(JDirty, journaled);
2834 BUFFER_FNS(JDirty_wait, journal_dirty);
2835 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
2836 BUFFER_FNS(JNew, journal_new);
2837 TAS_BUFFER_FNS(JNew, journal_new);
2838 BUFFER_FNS(JPrepared, journal_prepared);
2839 TAS_BUFFER_FNS(JPrepared, journal_prepared);
2840 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2841 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
2842 BUFFER_FNS(JTest, journal_test);
2843 TAS_BUFFER_FNS(JTest, journal_test);
2844 
2845 /* transaction handle which is passed around for all journal calls */
2846 struct reiserfs_transaction_handle {
2847         /*
2848          * super for this FS when journal_begin was called. saves calls to
2849          * reiserfs_get_super also used by nested transactions to make
2850          * sure they are nesting on the right FS _must_ be first
2851          * in the handle
2852          */
2853         struct super_block *t_super;
2854 
2855         int t_refcount;
2856         int t_blocks_logged;    /* number of blocks this writer has logged */
2857         int t_blocks_allocated; /* number of blocks this writer allocated */
2858 
2859         /* sanity check, equals the current trans id */
2860         unsigned int t_trans_id;
2861 
2862         void *t_handle_save;    /* save existing current->journal_info */
2863 
2864         /*
2865          * if new block allocation occurres, that block
2866          * should be displaced from others
2867          */
2868         unsigned displace_new_blocks:1;
2869 
2870         struct list_head t_list;
2871 };
2872 
2873 /*
2874  * used to keep track of ordered and tail writes, attached to the buffer
2875  * head through b_journal_head.
2876  */
2877 struct reiserfs_jh {
2878         struct reiserfs_journal_list *jl;
2879         struct buffer_head *bh;
2880         struct list_head list;
2881 };
2882 
2883 void reiserfs_free_jh(struct buffer_head *bh);
2884 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
2885 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
2886 int journal_mark_dirty(struct reiserfs_transaction_handle *,
2887                        struct buffer_head *bh);
2888 
2889 static inline int reiserfs_file_data_log(struct inode *inode)
2890 {
2891         if (reiserfs_data_log(inode->i_sb) ||
2892             (REISERFS_I(inode)->i_flags & i_data_log))
2893                 return 1;
2894         return 0;
2895 }
2896 
2897 static inline int reiserfs_transaction_running(struct super_block *s)
2898 {
2899         struct reiserfs_transaction_handle *th = current->journal_info;
2900         if (th && th->t_super == s)
2901                 return 1;
2902         if (th && th->t_super == NULL)
2903                 BUG();
2904         return 0;
2905 }
2906 
2907 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
2908 {
2909         return th->t_blocks_allocated - th->t_blocks_logged;
2910 }
2911 
2912 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
2913                                                                     super_block
2914                                                                     *,
2915                                                                     int count);
2916 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
2917 void reiserfs_vfs_truncate_file(struct inode *inode);
2918 int reiserfs_commit_page(struct inode *inode, struct page *page,
2919                          unsigned from, unsigned to);
2920 void reiserfs_flush_old_commits(struct super_block *);
2921 int reiserfs_commit_for_inode(struct inode *);
2922 int reiserfs_inode_needs_commit(struct inode *);
2923 void reiserfs_update_inode_transaction(struct inode *);
2924 void reiserfs_wait_on_write_block(struct super_block *s);
2925 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
2926 void reiserfs_allow_writes(struct super_block *s);
2927 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
2928 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
2929                                  int wait);
2930 void reiserfs_restore_prepared_buffer(struct super_block *,
2931                                       struct buffer_head *bh);
2932 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
2933                  unsigned int);
2934 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
2935 int journal_release_error(struct reiserfs_transaction_handle *,
2936                           struct super_block *);
2937 int journal_end(struct reiserfs_transaction_handle *);
2938 int journal_end_sync(struct reiserfs_transaction_handle *);
2939 int journal_mark_freed(struct reiserfs_transaction_handle *,
2940                        struct super_block *, b_blocknr_t blocknr);
2941 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
2942 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr,
2943                          int bit_nr, int searchall, b_blocknr_t *next);
2944 int journal_begin(struct reiserfs_transaction_handle *,
2945                   struct super_block *sb, unsigned long);
2946 int journal_join_abort(struct reiserfs_transaction_handle *,
2947                        struct super_block *sb);
2948 void reiserfs_abort_journal(struct super_block *sb, int errno);
2949 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
2950 int reiserfs_allocate_list_bitmaps(struct super_block *s,
2951                                    struct reiserfs_list_bitmap *, unsigned int);
2952 
2953 void reiserfs_schedule_old_flush(struct super_block *s);
2954 void reiserfs_cancel_old_flush(struct super_block *s);
2955 void add_save_link(struct reiserfs_transaction_handle *th,
2956                    struct inode *inode, int truncate);
2957 int remove_save_link(struct inode *inode, int truncate);
2958 
2959 /* objectid.c */
2960 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
2961 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
2962                                __u32 objectid_to_release);
2963 int reiserfs_convert_objectid_map_v1(struct super_block *);
2964 
2965 /* stree.c */
2966 int B_IS_IN_TREE(const struct buffer_head *);
2967 extern void copy_item_head(struct item_head *to,
2968                            const struct item_head *from);
2969 
2970 /* first key is in cpu form, second - le */
2971 extern int comp_short_keys(const struct reiserfs_key *le_key,
2972                            const struct cpu_key *cpu_key);
2973 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
2974 
2975 /* both are in le form */
2976 extern int comp_le_keys(const struct reiserfs_key *,
2977                         const struct reiserfs_key *);
2978 extern int comp_short_le_keys(const struct reiserfs_key *,
2979                               const struct reiserfs_key *);
2980 
2981 /* * get key version from on disk key - kludge */
2982 static inline int le_key_version(const struct reiserfs_key *key)
2983 {
2984         int type;
2985 
2986         type = offset_v2_k_type(&(key->u.k_offset_v2));
2987         if (type != TYPE_DIRECT && type != TYPE_INDIRECT
2988             && type != TYPE_DIRENTRY)
2989                 return KEY_FORMAT_3_5;
2990 
2991         return KEY_FORMAT_3_6;
2992 
2993 }
2994 
2995 static inline void copy_key(struct reiserfs_key *to,
2996                             const struct reiserfs_key *from)
2997 {
2998         memcpy(to, from, KEY_SIZE);
2999 }
3000 
3001 int comp_items(const struct item_head *stored_ih, const struct treepath *path);
3002 const struct reiserfs_key *get_rkey(const struct treepath *chk_path,
3003                                     const struct super_block *sb);
3004 int search_by_key(struct super_block *, const struct cpu_key *,
3005                   struct treepath *, int);
3006 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
3007 int search_for_position_by_key(struct super_block *sb,
3008                                const struct cpu_key *cpu_key,
3009                                struct treepath *search_path);
3010 extern void decrement_bcount(struct buffer_head *bh);
3011 void decrement_counters_in_path(struct treepath *search_path);
3012 void pathrelse(struct treepath *search_path);
3013 int reiserfs_check_path(struct treepath *p);
3014 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path);
3015 
3016 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
3017                          struct treepath *path,
3018                          const struct cpu_key *key,
3019                          struct item_head *ih,
3020                          struct inode *inode, const char *body);
3021 
3022 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
3023                              struct treepath *path,
3024                              const struct cpu_key *key,
3025                              struct inode *inode,
3026                              const char *body, int paste_size);
3027 
3028 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
3029                            struct treepath *path,
3030                            struct cpu_key *key,
3031                            struct inode *inode,
3032                            struct page *page, loff_t new_file_size);
3033 
3034 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
3035                          struct treepath *path,
3036                          const struct cpu_key *key,
3037                          struct inode *inode, struct buffer_head *un_bh);
3038 
3039 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
3040                                 struct inode *inode, struct reiserfs_key *key);
3041 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
3042                            struct inode *inode);
3043 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
3044                          struct inode *inode, struct page *,
3045                          int update_timestamps);
3046 
3047 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
3048 #define file_size(inode) ((inode)->i_size)
3049 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
3050 
3051 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
3052 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
3053 
3054 void padd_item(char *item, int total_length, int length);
3055 
3056 /* inode.c */
3057 /* args for the create parameter of reiserfs_get_block */
3058 #define GET_BLOCK_NO_CREATE 0    /* don't create new blocks or convert tails */
3059 #define GET_BLOCK_CREATE 1       /* add anything you need to find block */
3060 #define GET_BLOCK_NO_HOLE 2      /* return -ENOENT for file holes */
3061 #define GET_BLOCK_READ_DIRECT 4  /* read the tail if indirect item not found */
3062 #define GET_BLOCK_NO_IMUX     8  /* i_mutex is not held, don't preallocate */
3063 #define GET_BLOCK_NO_DANGLE   16 /* don't leave any transactions running */
3064 
3065 void reiserfs_read_locked_inode(struct inode *inode,
3066                                 struct reiserfs_iget_args *args);
3067 int reiserfs_find_actor(struct inode *inode, void *p);
3068 int reiserfs_init_locked_inode(struct inode *inode, void *p);
3069 void reiserfs_evict_inode(struct inode *inode);
3070 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3071 int reiserfs_get_block(struct inode *inode, sector_t block,
3072                        struct buffer_head *bh_result, int create);
3073 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3074                                      int fh_len, int fh_type);
3075 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
3076                                      int fh_len, int fh_type);
3077 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp,
3078                        struct inode *parent);
3079 
3080 int reiserfs_truncate_file(struct inode *, int update_timestamps);
3081 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
3082                   int type, int key_length);
3083 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
3084                        int version,
3085                        loff_t offset, int type, int length, int entry_count);
3086 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
3087 
3088 struct reiserfs_security_handle;
3089 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
3090                        struct inode *dir, umode_t mode,
3091                        const char *symname, loff_t i_size,
3092                        struct dentry *dentry, struct inode *inode,
3093                        struct reiserfs_security_handle *security);
3094 
3095 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
3096                              struct inode *inode, loff_t size);
3097 
3098 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
3099                                       struct inode *inode)
3100 {
3101         reiserfs_update_sd_size(th, inode, inode->i_size);
3102 }
3103 
3104 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
3105 int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3106                      struct iattr *attr);
3107 
3108 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len);
3109 
3110 /* namei.c */
3111 void reiserfs_init_priv_inode(struct inode *inode);
3112 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
3113 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
3114                         struct treepath *path, struct reiserfs_dir_entry *de);
3115 struct dentry *reiserfs_get_parent(struct dentry *);
3116 
3117 #ifdef CONFIG_REISERFS_PROC_INFO
3118 int reiserfs_proc_info_init(struct super_block *sb);
3119 int reiserfs_proc_info_done(struct super_block *sb);
3120 int reiserfs_proc_info_global_init(void);
3121 int reiserfs_proc_info_global_done(void);
3122 
3123 #define PROC_EXP( e )   e
3124 
3125 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
3126 #define PROC_INFO_MAX( sb, field, value )                                                               \
3127     __PINFO( sb ).field =                                                                                               \
3128         max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
3129 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
3130 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
3131 #define PROC_INFO_BH_STAT( sb, bh, level )                                                      \
3132     PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                              \
3133     PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );      \
3134     PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
3135 #else
3136 static inline int reiserfs_proc_info_init(struct super_block *sb)
3137 {
3138         return 0;
3139 }
3140 
3141 static inline int reiserfs_proc_info_done(struct super_block *sb)
3142 {
3143         return 0;
3144 }
3145 
3146 static inline int reiserfs_proc_info_global_init(void)
3147 {
3148         return 0;
3149 }
3150 
3151 static inline int reiserfs_proc_info_global_done(void)
3152 {
3153         return 0;
3154 }
3155 
3156 #define PROC_EXP( e )
3157 #define VOID_V ( ( void ) 0 )
3158 #define PROC_INFO_MAX( sb, field, value ) VOID_V
3159 #define PROC_INFO_INC( sb, field ) VOID_V
3160 #define PROC_INFO_ADD( sb, field, val ) VOID_V
3161 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V
3162 #endif
3163 
3164 /* dir.c */
3165 extern const struct inode_operations reiserfs_dir_inode_operations;
3166 extern const struct inode_operations reiserfs_symlink_inode_operations;
3167 extern const struct inode_operations reiserfs_special_inode_operations;
3168 extern const struct file_operations reiserfs_dir_operations;
3169 int reiserfs_readdir_inode(struct inode *, struct dir_context *);
3170 
3171 /* tail_conversion.c */
3172 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
3173                     struct treepath *, struct buffer_head *, loff_t);
3174 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
3175                     struct page *, struct treepath *, const struct cpu_key *,
3176                     loff_t, char *);
3177 void reiserfs_unmap_buffer(struct buffer_head *);
3178 
3179 /* file.c */
3180 extern const struct inode_operations reiserfs_file_inode_operations;
3181 extern const struct inode_operations reiserfs_priv_file_inode_operations;
3182 extern const struct file_operations reiserfs_file_operations;
3183 extern const struct address_space_operations reiserfs_address_space_operations;
3184 
3185 /* fix_nodes.c */
3186 
3187 int fix_nodes(int n_op_mode, struct tree_balance *tb,
3188               struct item_head *ins_ih, const void *);
3189 void unfix_nodes(struct tree_balance *);
3190 
3191 /* prints.c */
3192 void __reiserfs_panic(struct super_block *s, const char *id,
3193                       const char *function, const char *fmt, ...)
3194     __attribute__ ((noreturn));
3195 #define reiserfs_panic(s, id, fmt, args...) \
3196         __reiserfs_panic(s, id, __func__, fmt, ##args)
3197 void __reiserfs_error(struct super_block *s, const char *id,
3198                       const char *function, const char *fmt, ...);
3199 #define reiserfs_error(s, id, fmt, args...) \
3200          __reiserfs_error(s, id, __func__, fmt, ##args)
3201 void reiserfs_info(struct super_block *s, const char *fmt, ...);
3202 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
3203 void print_indirect_item(struct buffer_head *bh, int item_num);
3204 void store_print_tb(struct tree_balance *tb);
3205 void print_cur_tb(char *mes);
3206 void print_de(struct reiserfs_dir_entry *de);
3207 void print_bi(struct buffer_info *bi, char *mes);
3208 #define PRINT_LEAF_ITEMS 1      /* print all items */
3209 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
3210 #define PRINT_DIRECT_ITEMS 4    /* print contents of direct items */
3211 void print_block(struct buffer_head *bh, ...);
3212 void print_bmap(struct super_block *s, int silent);
3213 void print_bmap_block(int i, char *data, int size, int silent);
3214 /*void print_super_block (struct super_block * s, char * mes);*/
3215 void print_objectid_map(struct super_block *s);
3216 void print_block_head(struct buffer_head *bh, char *mes);
3217 void check_leaf(struct buffer_head *bh);
3218 void check_internal(struct buffer_head *bh);
3219 void print_statistics(struct super_block *s);
3220 char *reiserfs_hashname(int code);
3221 
3222 /* lbalance.c */
3223 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
3224                     int mov_bytes, struct buffer_head *Snew);
3225 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
3226 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
3227 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
3228                        int del_num, int del_bytes);
3229 void leaf_insert_into_buf(struct buffer_info *bi, int before,
3230                           struct item_head * const inserted_item_ih,
3231                           const char * const inserted_item_body,
3232                           int zeros_number);
3233 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
3234                           int pos_in_item, int paste_size,
3235                           const char * const body, int zeros_number);
3236 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
3237                           int pos_in_item, int cut_size);
3238 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before,
3239                         int new_entry_count, struct reiserfs_de_head *new_dehs,
3240                         const char *records, int paste_size);
3241 /* ibalance.c */
3242 int balance_internal(struct tree_balance *, int, int, struct item_head *,
3243                      struct buffer_head **);
3244 
3245 /* do_balance.c */
3246 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
3247                                 struct buffer_head *bh, int flag);
3248 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
3249 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
3250 
3251 void do_balance(struct tree_balance *tb, struct item_head *ih,
3252                 const char *body, int flag);
3253 void reiserfs_invalidate_buffer(struct tree_balance *tb,
3254                                 struct buffer_head *bh);
3255 
3256 int get_left_neighbor_position(struct tree_balance *tb, int h);
3257 int get_right_neighbor_position(struct tree_balance *tb, int h);
3258 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
3259                  struct buffer_head *, int);
3260 void make_empty_node(struct buffer_info *);
3261 struct buffer_head *get_FEB(struct tree_balance *);
3262 
3263 /* bitmap.c */
3264 
3265 /*
3266  * structure contains hints for block allocator, and it is a container for
3267  * arguments, such as node, search path, transaction_handle, etc.
3268  */
3269 struct __reiserfs_blocknr_hint {
3270         /* inode passed to allocator, if we allocate unf. nodes */
3271         struct inode *inode;
3272 
3273         sector_t block;         /* file offset, in blocks */
3274         struct in_core_key key;
3275 
3276         /*
3277          * search path, used by allocator to deternine search_start by
3278          * various ways
3279          */
3280         struct treepath *path;
3281 
3282         /*
3283          * transaction handle is needed to log super blocks
3284          * and bitmap blocks changes
3285          */
3286         struct reiserfs_transaction_handle *th;
3287 
3288         b_blocknr_t beg, end;
3289 
3290         /*
3291          * a field used to transfer search start value (block number)
3292          * between different block allocator procedures
3293          * (determine_search_start() and others)
3294          */
3295         b_blocknr_t search_start;
3296 
3297         /*
3298          * is set in determine_prealloc_size() function,
3299          * used by underlayed function that do actual allocation
3300          */
3301         int prealloc_size;
3302 
3303         /*
3304          * the allocator uses different polices for getting disk
3305          * space for formatted/unformatted blocks with/without preallocation
3306          */
3307         unsigned formatted_node:1;
3308         unsigned preallocate:1;
3309 };
3310 
3311 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
3312 
3313 int reiserfs_parse_alloc_options(struct super_block *, char *);
3314 void reiserfs_init_alloc_options(struct super_block *s);
3315 
3316 /*
3317  * given a directory, this will tell you what packing locality
3318  * to use for a new object underneat it.  The locality is returned
3319  * in disk byte order (le).
3320  */
3321 __le32 reiserfs_choose_packing(struct inode *dir);
3322 
3323 void show_alloc_options(struct seq_file *seq, struct super_block *s);
3324 int reiserfs_init_bitmap_cache(struct super_block *sb);
3325 void reiserfs_free_bitmap_cache(struct super_block *sb);
3326 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
3327 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
3328 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
3329 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
3330                          b_blocknr_t, int for_unformatted);
3331 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
3332                                int);
3333 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
3334                                              b_blocknr_t * new_blocknrs,
3335                                              int amount_needed)
3336 {
3337         reiserfs_blocknr_hint_t hint = {
3338                 .th = tb->transaction_handle,
3339                 .path = tb->tb_path,
3340                 .inode = NULL,
3341                 .key = tb->key,
3342                 .block = 0,
3343                 .formatted_node = 1
3344         };
3345         return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
3346                                           0);
3347 }
3348 
3349 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
3350                                             *th, struct inode *inode,
3351                                             b_blocknr_t * new_blocknrs,
3352                                             struct treepath *path,
3353                                             sector_t block)
3354 {
3355         reiserfs_blocknr_hint_t hint = {
3356                 .th = th,
3357                 .path = path,
3358                 .inode = inode,
3359                 .block = block,
3360                 .formatted_node = 0,
3361                 .preallocate = 0
3362         };
3363         return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3364 }
3365 
3366 #ifdef REISERFS_PREALLOCATE
3367 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
3368                                              *th, struct inode *inode,
3369                                              b_blocknr_t * new_blocknrs,
3370                                              struct treepath *path,
3371                                              sector_t block)
3372 {
3373         reiserfs_blocknr_hint_t hint = {
3374                 .th = th,
3375                 .path = path,
3376                 .inode = inode,
3377                 .block = block,
3378                 .formatted_node = 0,
3379                 .preallocate = 1
3380         };
3381         return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
3382 }
3383 
3384 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
3385                                struct inode *inode);
3386 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
3387 #endif
3388 
3389 /* hashes.c */
3390 __u32 keyed_hash(const signed char *msg, int len);
3391 __u32 yura_hash(const signed char *msg, int len);
3392 __u32 r5_hash(const signed char *msg, int len);
3393 
3394 #define reiserfs_set_le_bit             __set_bit_le
3395 #define reiserfs_test_and_set_le_bit    __test_and_set_bit_le
3396 #define reiserfs_clear_le_bit           __clear_bit_le
3397 #define reiserfs_test_and_clear_le_bit  __test_and_clear_bit_le
3398 #define reiserfs_test_le_bit            test_bit_le
3399 #define reiserfs_find_next_zero_le_bit  find_next_zero_bit_le
3400 
3401 /*
3402  * sometimes reiserfs_truncate may require to allocate few new blocks
3403  * to perform indirect2direct conversion. People probably used to
3404  * think, that truncate should work without problems on a filesystem
3405  * without free disk space. They may complain that they can not
3406  * truncate due to lack of free disk space. This spare space allows us
3407  * to not worry about it. 500 is probably too much, but it should be
3408  * absolutely safe
3409  */
3410 #define SPARE_SPACE 500
3411 
3412 /* prototypes from ioctl.c */
3413 int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3414 int reiserfs_fileattr_set(struct mnt_idmap *idmap,
3415                           struct dentry *dentry, struct fileattr *fa);
3416 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3417 long reiserfs_compat_ioctl(struct file *filp,
3418                    unsigned int cmd, unsigned long arg);
3419 int reiserfs_unpack(struct inode *inode);
3420 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php