1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for 4 * licensing and copyright details 5 */ 6 7 #include <linux/reiserfs_fs.h> 8 9 #include <linux/slab.h> 10 #include <linux/interrupt.h> 11 #include <linux/sched.h> 12 #include <linux/bug.h> 13 #include <linux/workqueue.h> 14 #include <asm/unaligned.h> 15 #include <linux/bitops.h> 16 #include <linux/proc_fs.h> 17 #include <linux/buffer_head.h> 18 19 /* the 32 bit compat definitions with int argument */ 20 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) 21 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION 22 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION 23 24 struct reiserfs_journal_list; 25 26 /* bitmasks for i_flags field in reiserfs-specific part of inode */ 27 typedef enum { 28 /* 29 * this says what format of key do all items (but stat data) of 30 * an object have. If this is set, that format is 3.6 otherwise - 3.5 31 */ 32 i_item_key_version_mask = 0x0001, 33 34 /* 35 * If this is unset, object has 3.5 stat data, otherwise, 36 * it has 3.6 stat data with 64bit size, 32bit nlink etc. 37 */ 38 i_stat_data_version_mask = 0x0002, 39 40 /* file might need tail packing on close */ 41 i_pack_on_close_mask = 0x0004, 42 43 /* don't pack tail of file */ 44 i_nopack_mask = 0x0008, 45 46 /* 47 * If either of these are set, "safe link" was created for this 48 * file during truncate or unlink. Safe link is used to avoid 49 * leakage of disk space on crash with some files open, but unlinked. 50 */ 51 i_link_saved_unlink_mask = 0x0010, 52 i_link_saved_truncate_mask = 0x0020, 53 54 i_has_xattr_dir = 0x0040, 55 i_data_log = 0x0080, 56 } reiserfs_inode_flags; 57 58 struct reiserfs_inode_info { 59 __u32 i_key[4]; /* key is still 4 32 bit integers */ 60 61 /* 62 * transient inode flags that are never stored on disk. Bitmasks 63 * for this field are defined above. 64 */ 65 __u32 i_flags; 66 67 /* offset of first byte stored in direct item. */ 68 __u32 i_first_direct_byte; 69 70 /* copy of persistent inode flags read from sd_attrs. */ 71 __u32 i_attrs; 72 73 /* first unused block of a sequence of unused blocks */ 74 int i_prealloc_block; 75 int i_prealloc_count; /* length of that sequence */ 76 77 /* per-transaction list of inodes which have preallocated blocks */ 78 struct list_head i_prealloc_list; 79 80 /* 81 * new_packing_locality is created; new blocks for the contents 82 * of this directory should be displaced 83 */ 84 unsigned new_packing_locality:1; 85 86 /* 87 * we use these for fsync or O_SYNC to decide which transaction 88 * needs to be committed in order for this inode to be properly 89 * flushed 90 */ 91 unsigned int i_trans_id; 92 93 struct reiserfs_journal_list *i_jl; 94 atomic_t openers; 95 struct mutex tailpack; 96 #ifdef CONFIG_REISERFS_FS_XATTR 97 struct rw_semaphore i_xattr_sem; 98 #endif 99 #ifdef CONFIG_QUOTA 100 struct dquot __rcu *i_dquot[MAXQUOTAS]; 101 #endif 102 103 struct inode vfs_inode; 104 }; 105 106 typedef enum { 107 reiserfs_attrs_cleared = 0x00000001, 108 } reiserfs_super_block_flags; 109 110 /* 111 * struct reiserfs_super_block accessors/mutators since this is a disk 112 * structure, it will always be in little endian format. 113 */ 114 #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) 115 #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) 116 #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) 117 #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) 118 #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) 119 #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) 120 121 #define sb_jp_journal_1st_block(sbp) \ 122 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) 123 #define set_sb_jp_journal_1st_block(sbp,v) \ 124 ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) 125 #define sb_jp_journal_dev(sbp) \ 126 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) 127 #define set_sb_jp_journal_dev(sbp,v) \ 128 ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) 129 #define sb_jp_journal_size(sbp) \ 130 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) 131 #define set_sb_jp_journal_size(sbp,v) \ 132 ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) 133 #define sb_jp_journal_trans_max(sbp) \ 134 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) 135 #define set_sb_jp_journal_trans_max(sbp,v) \ 136 ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) 137 #define sb_jp_journal_magic(sbp) \ 138 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) 139 #define set_sb_jp_journal_magic(sbp,v) \ 140 ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) 141 #define sb_jp_journal_max_batch(sbp) \ 142 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) 143 #define set_sb_jp_journal_max_batch(sbp,v) \ 144 ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) 145 #define sb_jp_jourmal_max_commit_age(sbp) \ 146 (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) 147 #define set_sb_jp_journal_max_commit_age(sbp,v) \ 148 ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) 149 150 #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) 151 #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) 152 #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) 153 #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) 154 #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) 155 #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) 156 #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) 157 #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) 158 #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) 159 #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) 160 #define sb_hash_function_code(sbp) \ 161 (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) 162 #define set_sb_hash_function_code(sbp,v) \ 163 ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) 164 #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) 165 #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) 166 #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) 167 #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) 168 #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) 169 #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) 170 171 #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) 172 #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) 173 174 #define sb_reserved_for_journal(sbp) \ 175 (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) 176 #define set_sb_reserved_for_journal(sbp,v) \ 177 ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) 178 179 /* LOGGING -- */ 180 181 /* 182 * These all interelate for performance. 183 * 184 * If the journal block count is smaller than n transactions, you lose speed. 185 * I don't know what n is yet, I'm guessing 8-16. 186 * 187 * typical transaction size depends on the application, how often fsync is 188 * called, and how many metadata blocks you dirty in a 30 second period. 189 * The more small files (<16k) you use, the larger your transactions will 190 * be. 191 * 192 * If your journal fills faster than dirty buffers get flushed to disk, it 193 * must flush them before allowing the journal to wrap, which slows things 194 * down. If you need high speed meta data updates, the journal should be 195 * big enough to prevent wrapping before dirty meta blocks get to disk. 196 * 197 * If the batch max is smaller than the transaction max, you'll waste space 198 * at the end of the journal because journal_end sets the next transaction 199 * to start at 0 if the next transaction has any chance of wrapping. 200 * 201 * The large the batch max age, the better the speed, and the more meta 202 * data changes you'll lose after a crash. 203 */ 204 205 /* don't mess with these for a while */ 206 /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ 207 #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ 208 #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ 209 #define JOURNAL_HASH_SIZE 8192 210 211 /* number of copies of the bitmaps to have floating. Must be >= 2 */ 212 #define JOURNAL_NUM_BITMAPS 5 213 214 /* 215 * One of these for every block in every transaction 216 * Each one is in two hash tables. First, a hash of the current transaction, 217 * and after journal_end, a hash of all the in memory transactions. 218 * next and prev are used by the current transaction (journal_hash). 219 * hnext and hprev are used by journal_list_hash. If a block is in more 220 * than one transaction, the journal_list_hash links it in multiple times. 221 * This allows flush_journal_list to remove just the cnode belonging to a 222 * given transaction. 223 */ 224 struct reiserfs_journal_cnode { 225 struct buffer_head *bh; /* real buffer head */ 226 struct super_block *sb; /* dev of real buffer head */ 227 228 /* block number of real buffer head, == 0 when buffer on disk */ 229 __u32 blocknr; 230 231 unsigned long state; 232 233 /* journal list this cnode lives in */ 234 struct reiserfs_journal_list *jlist; 235 236 struct reiserfs_journal_cnode *next; /* next in transaction list */ 237 struct reiserfs_journal_cnode *prev; /* prev in transaction list */ 238 struct reiserfs_journal_cnode *hprev; /* prev in hash list */ 239 struct reiserfs_journal_cnode *hnext; /* next in hash list */ 240 }; 241 242 struct reiserfs_bitmap_node { 243 int id; 244 char *data; 245 struct list_head list; 246 }; 247 248 struct reiserfs_list_bitmap { 249 struct reiserfs_journal_list *journal_list; 250 struct reiserfs_bitmap_node **bitmaps; 251 }; 252 253 /* 254 * one of these for each transaction. The most important part here is the 255 * j_realblock. this list of cnodes is used to hash all the blocks in all 256 * the commits, to mark all the real buffer heads dirty once all the commits 257 * hit the disk, and to make sure every real block in a transaction is on 258 * disk before allowing the log area to be overwritten 259 */ 260 struct reiserfs_journal_list { 261 unsigned long j_start; 262 unsigned long j_state; 263 unsigned long j_len; 264 atomic_t j_nonzerolen; 265 atomic_t j_commit_left; 266 267 /* all commits older than this on disk */ 268 atomic_t j_older_commits_done; 269 270 struct mutex j_commit_mutex; 271 unsigned int j_trans_id; 272 time64_t j_timestamp; /* write-only but useful for crash dump analysis */ 273 struct reiserfs_list_bitmap *j_list_bitmap; 274 struct buffer_head *j_commit_bh; /* commit buffer head */ 275 struct reiserfs_journal_cnode *j_realblock; 276 struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ 277 /* time ordered list of all active transactions */ 278 struct list_head j_list; 279 280 /* 281 * time ordered list of all transactions we haven't tried 282 * to flush yet 283 */ 284 struct list_head j_working_list; 285 286 /* list of tail conversion targets in need of flush before commit */ 287 struct list_head j_tail_bh_list; 288 289 /* list of data=ordered buffers in need of flush before commit */ 290 struct list_head j_bh_list; 291 int j_refcount; 292 }; 293 294 struct reiserfs_journal { 295 struct buffer_head **j_ap_blocks; /* journal blocks on disk */ 296 /* newest journal block */ 297 struct reiserfs_journal_cnode *j_last; 298 299 /* oldest journal block. start here for traverse */ 300 struct reiserfs_journal_cnode *j_first; 301 302 struct file *j_bdev_file; 303 304 /* first block on s_dev of reserved area journal */ 305 int j_1st_reserved_block; 306 307 unsigned long j_state; 308 unsigned int j_trans_id; 309 unsigned long j_mount_id; 310 311 /* start of current waiting commit (index into j_ap_blocks) */ 312 unsigned long j_start; 313 unsigned long j_len; /* length of current waiting commit */ 314 315 /* number of buffers requested by journal_begin() */ 316 unsigned long j_len_alloc; 317 318 atomic_t j_wcount; /* count of writers for current commit */ 319 320 /* batch count. allows turning X transactions into 1 */ 321 unsigned long j_bcount; 322 323 /* first unflushed transactions offset */ 324 unsigned long j_first_unflushed_offset; 325 326 /* last fully flushed journal timestamp */ 327 unsigned j_last_flush_trans_id; 328 329 struct buffer_head *j_header_bh; 330 331 time64_t j_trans_start_time; /* time this transaction started */ 332 struct mutex j_mutex; 333 struct mutex j_flush_mutex; 334 335 /* wait for current transaction to finish before starting new one */ 336 wait_queue_head_t j_join_wait; 337 338 atomic_t j_jlock; /* lock for j_join_wait */ 339 int j_list_bitmap_index; /* number of next list bitmap to use */ 340 341 /* no more journal begins allowed. MUST sleep on j_join_wait */ 342 int j_must_wait; 343 344 /* next journal_end will flush all journal list */ 345 int j_next_full_flush; 346 347 /* next journal_end will flush all async commits */ 348 int j_next_async_flush; 349 350 int j_cnode_used; /* number of cnodes on the used list */ 351 int j_cnode_free; /* number of cnodes on the free list */ 352 353 /* max number of blocks in a transaction. */ 354 unsigned int j_trans_max; 355 356 /* max number of blocks to batch into a trans */ 357 unsigned int j_max_batch; 358 359 /* in seconds, how old can an async commit be */ 360 unsigned int j_max_commit_age; 361 362 /* in seconds, how old can a transaction be */ 363 unsigned int j_max_trans_age; 364 365 /* the default for the max commit age */ 366 unsigned int j_default_max_commit_age; 367 368 struct reiserfs_journal_cnode *j_cnode_free_list; 369 370 /* orig pointer returned from vmalloc */ 371 struct reiserfs_journal_cnode *j_cnode_free_orig; 372 373 struct reiserfs_journal_list *j_current_jl; 374 int j_free_bitmap_nodes; 375 int j_used_bitmap_nodes; 376 377 int j_num_lists; /* total number of active transactions */ 378 int j_num_work_lists; /* number that need attention from kreiserfsd */ 379 380 /* debugging to make sure things are flushed in order */ 381 unsigned int j_last_flush_id; 382 383 /* debugging to make sure things are committed in order */ 384 unsigned int j_last_commit_id; 385 386 struct list_head j_bitmap_nodes; 387 struct list_head j_dirty_buffers; 388 spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ 389 390 /* list of all active transactions */ 391 struct list_head j_journal_list; 392 393 /* lists that haven't been touched by writeback attempts */ 394 struct list_head j_working_list; 395 396 /* hash table for real buffer heads in current trans */ 397 struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; 398 399 /* hash table for all the real buffer heads in all the transactions */ 400 struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; 401 402 /* array of bitmaps to record the deleted blocks */ 403 struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; 404 405 /* list of inodes which have preallocated blocks */ 406 struct list_head j_prealloc_list; 407 int j_persistent_trans; 408 unsigned long j_max_trans_size; 409 unsigned long j_max_batch_size; 410 411 int j_errno; 412 413 /* when flushing ordered buffers, throttle new ordered writers */ 414 struct delayed_work j_work; 415 struct super_block *j_work_sb; 416 atomic_t j_async_throttle; 417 }; 418 419 enum journal_state_bits { 420 J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ 421 J_WRITERS_QUEUED, /* set when log is full due to too many writers */ 422 J_ABORTED, /* set when log is aborted */ 423 }; 424 425 /* ick. magic string to find desc blocks in the journal */ 426 #define JOURNAL_DESC_MAGIC "ReIsErLB" 427 428 typedef __u32(*hashf_t) (const signed char *, int); 429 430 struct reiserfs_bitmap_info { 431 __u32 free_count; 432 }; 433 434 struct proc_dir_entry; 435 436 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) 437 typedef unsigned long int stat_cnt_t; 438 typedef struct reiserfs_proc_info_data { 439 spinlock_t lock; 440 int exiting; 441 int max_hash_collisions; 442 443 stat_cnt_t breads; 444 stat_cnt_t bread_miss; 445 stat_cnt_t search_by_key; 446 stat_cnt_t search_by_key_fs_changed; 447 stat_cnt_t search_by_key_restarted; 448 449 stat_cnt_t insert_item_restarted; 450 stat_cnt_t paste_into_item_restarted; 451 stat_cnt_t cut_from_item_restarted; 452 stat_cnt_t delete_solid_item_restarted; 453 stat_cnt_t delete_item_restarted; 454 455 stat_cnt_t leaked_oid; 456 stat_cnt_t leaves_removable; 457 458 /* 459 * balances per level. 460 * Use explicit 5 as MAX_HEIGHT is not visible yet. 461 */ 462 stat_cnt_t balance_at[5]; /* XXX */ 463 /* sbk == search_by_key */ 464 stat_cnt_t sbk_read_at[5]; /* XXX */ 465 stat_cnt_t sbk_fs_changed[5]; 466 stat_cnt_t sbk_restarted[5]; 467 stat_cnt_t items_at[5]; /* XXX */ 468 stat_cnt_t free_at[5]; /* XXX */ 469 stat_cnt_t can_node_be_removed[5]; /* XXX */ 470 long int lnum[5]; /* XXX */ 471 long int rnum[5]; /* XXX */ 472 long int lbytes[5]; /* XXX */ 473 long int rbytes[5]; /* XXX */ 474 stat_cnt_t get_neighbors[5]; 475 stat_cnt_t get_neighbors_restart[5]; 476 stat_cnt_t need_l_neighbor[5]; 477 stat_cnt_t need_r_neighbor[5]; 478 479 stat_cnt_t free_block; 480 struct __scan_bitmap_stats { 481 stat_cnt_t call; 482 stat_cnt_t wait; 483 stat_cnt_t bmap; 484 stat_cnt_t retry; 485 stat_cnt_t in_journal_hint; 486 stat_cnt_t in_journal_nohint; 487 stat_cnt_t stolen; 488 } scan_bitmap; 489 struct __journal_stats { 490 stat_cnt_t in_journal; 491 stat_cnt_t in_journal_bitmap; 492 stat_cnt_t in_journal_reusable; 493 stat_cnt_t lock_journal; 494 stat_cnt_t lock_journal_wait; 495 stat_cnt_t journal_being; 496 stat_cnt_t journal_relock_writers; 497 stat_cnt_t journal_relock_wcount; 498 stat_cnt_t mark_dirty; 499 stat_cnt_t mark_dirty_already; 500 stat_cnt_t mark_dirty_notjournal; 501 stat_cnt_t restore_prepared; 502 stat_cnt_t prepare; 503 stat_cnt_t prepare_retry; 504 } journal; 505 } reiserfs_proc_info_data_t; 506 #else 507 typedef struct reiserfs_proc_info_data { 508 } reiserfs_proc_info_data_t; 509 #endif 510 511 /* Number of quota types we support */ 512 #define REISERFS_MAXQUOTAS 2 513 514 /* reiserfs union of in-core super block data */ 515 struct reiserfs_sb_info { 516 /* Buffer containing the super block */ 517 struct buffer_head *s_sbh; 518 519 /* Pointer to the on-disk super block in the buffer */ 520 struct reiserfs_super_block *s_rs; 521 struct reiserfs_bitmap_info *s_ap_bitmap; 522 523 /* pointer to journal information */ 524 struct reiserfs_journal *s_journal; 525 526 unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ 527 528 /* Serialize writers access, replace the old bkl */ 529 struct mutex lock; 530 531 /* Owner of the lock (can be recursive) */ 532 struct task_struct *lock_owner; 533 534 /* Depth of the lock, start from -1 like the bkl */ 535 int lock_depth; 536 537 struct workqueue_struct *commit_wq; 538 539 /* Comment? -Hans */ 540 void (*end_io_handler) (struct buffer_head *, int); 541 542 /* 543 * pointer to function which is used to sort names in directory. 544 * Set on mount 545 */ 546 hashf_t s_hash_function; 547 548 /* reiserfs's mount options are set here */ 549 unsigned long s_mount_opt; 550 551 /* This is a structure that describes block allocator options */ 552 struct { 553 /* Bitfield for enable/disable kind of options */ 554 unsigned long bits; 555 556 /* 557 * size started from which we consider file 558 * to be a large one (in blocks) 559 */ 560 unsigned long large_file_size; 561 562 int border; /* percentage of disk, border takes */ 563 564 /* 565 * Minimal file size (in blocks) starting 566 * from which we do preallocations 567 */ 568 int preallocmin; 569 570 /* 571 * Number of blocks we try to prealloc when file 572 * reaches preallocmin size (in blocks) or prealloc_list 573 is empty. 574 */ 575 int preallocsize; 576 } s_alloc_options; 577 578 /* Comment? -Hans */ 579 wait_queue_head_t s_wait; 580 /* increased by one every time the tree gets re-balanced */ 581 atomic_t s_generation_counter; 582 583 /* File system properties. Currently holds on-disk FS format */ 584 unsigned long s_properties; 585 586 /* session statistics */ 587 int s_disk_reads; 588 int s_disk_writes; 589 int s_fix_nodes; 590 int s_do_balance; 591 int s_unneeded_left_neighbor; 592 int s_good_search_by_key_reada; 593 int s_bmaps; 594 int s_bmaps_without_search; 595 int s_direct2indirect; 596 int s_indirect2direct; 597 598 /* 599 * set up when it's ok for reiserfs_read_inode2() to read from 600 * disk inode with nlink==0. Currently this is only used during 601 * finish_unfinished() processing at mount time 602 */ 603 int s_is_unlinked_ok; 604 605 reiserfs_proc_info_data_t s_proc_info_data; 606 struct proc_dir_entry *procdir; 607 608 /* amount of blocks reserved for further allocations */ 609 int reserved_blocks; 610 611 612 /* this lock on now only used to protect reserved_blocks variable */ 613 spinlock_t bitmap_lock; 614 struct dentry *priv_root; /* root of /.reiserfs_priv */ 615 struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ 616 int j_errno; 617 618 int work_queued; /* non-zero delayed work is queued */ 619 struct delayed_work old_work; /* old transactions flush delayed work */ 620 spinlock_t old_work_lock; /* protects old_work and work_queued */ 621 622 #ifdef CONFIG_QUOTA 623 char *s_qf_names[REISERFS_MAXQUOTAS]; 624 int s_jquota_fmt; 625 #endif 626 char *s_jdev; /* Stored jdev for mount option showing */ 627 #ifdef CONFIG_REISERFS_CHECK 628 629 /* 630 * Detects whether more than one copy of tb exists per superblock 631 * as a means of checking whether do_balance is executing 632 * concurrently against another tree reader/writer on a same 633 * mount point. 634 */ 635 struct tree_balance *cur_tb; 636 #endif 637 }; 638 639 /* Definitions of reiserfs on-disk properties: */ 640 #define REISERFS_3_5 0 641 #define REISERFS_3_6 1 642 #define REISERFS_OLD_FORMAT 2 643 644 /* Mount options */ 645 enum reiserfs_mount_options { 646 /* large tails will be created in a session */ 647 REISERFS_LARGETAIL, 648 /* 649 * small (for files less than block size) tails will 650 * be created in a session 651 */ 652 REISERFS_SMALLTAIL, 653 654 /* replay journal and return 0. Use by fsck */ 655 REPLAYONLY, 656 657 /* 658 * -o conv: causes conversion of old format super block to the 659 * new format. If not specified - old partition will be dealt 660 * with in a manner of 3.5.x 661 */ 662 REISERFS_CONVERT, 663 664 /* 665 * -o hash={tea, rupasov, r5, detect} is meant for properly mounting 666 * reiserfs disks from 3.5.19 or earlier. 99% of the time, this 667 * option is not required. If the normal autodection code can't 668 * determine which hash to use (because both hashes had the same 669 * value for a file) use this option to force a specific hash. 670 * It won't allow you to override the existing hash on the FS, so 671 * if you have a tea hash disk, and mount with -o hash=rupasov, 672 * the mount will fail. 673 */ 674 FORCE_TEA_HASH, /* try to force tea hash on mount */ 675 FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ 676 FORCE_R5_HASH, /* try to force rupasov hash on mount */ 677 FORCE_HASH_DETECT, /* try to detect hash function on mount */ 678 679 REISERFS_DATA_LOG, 680 REISERFS_DATA_ORDERED, 681 REISERFS_DATA_WRITEBACK, 682 683 /* 684 * used for testing experimental features, makes benchmarking new 685 * features with and without more convenient, should never be used by 686 * users in any code shipped to users (ideally) 687 */ 688 689 REISERFS_NO_BORDER, 690 REISERFS_NO_UNHASHED_RELOCATION, 691 REISERFS_HASHED_RELOCATION, 692 REISERFS_ATTRS, 693 REISERFS_XATTRS_USER, 694 REISERFS_POSIXACL, 695 REISERFS_EXPOSE_PRIVROOT, 696 REISERFS_BARRIER_NONE, 697 REISERFS_BARRIER_FLUSH, 698 699 /* Actions on error */ 700 REISERFS_ERROR_PANIC, 701 REISERFS_ERROR_RO, 702 REISERFS_ERROR_CONTINUE, 703 704 REISERFS_USRQUOTA, /* User quota option specified */ 705 REISERFS_GRPQUOTA, /* Group quota option specified */ 706 707 REISERFS_TEST1, 708 REISERFS_TEST2, 709 REISERFS_TEST3, 710 REISERFS_TEST4, 711 REISERFS_UNSUPPORTED_OPT, 712 }; 713 714 #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) 715 #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) 716 #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) 717 #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) 718 #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) 719 #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) 720 #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) 721 #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) 722 723 #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) 724 #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) 725 #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) 726 #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) 727 #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) 728 #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) 729 #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) 730 #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) 731 #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) 732 #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) 733 #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) 734 #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) 735 #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) 736 #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) 737 #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) 738 739 #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) 740 #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) 741 742 void reiserfs_file_buffer(struct buffer_head *bh, int list); 743 extern struct file_system_type reiserfs_fs_type; 744 int reiserfs_resize(struct super_block *, unsigned long); 745 746 #define CARRY_ON 0 747 #define SCHEDULE_OCCURRED 1 748 749 #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) 750 #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) 751 #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) 752 #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) 753 #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) 754 755 #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) 756 757 #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) 758 static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal 759 *journal) 760 { 761 return test_bit(J_ABORTED, &journal->j_state); 762 } 763 764 /* 765 * Locking primitives. The write lock is a per superblock 766 * special mutex that has properties close to the Big Kernel Lock 767 * which was used in the previous locking scheme. 768 */ 769 void reiserfs_write_lock(struct super_block *s); 770 void reiserfs_write_unlock(struct super_block *s); 771 int __must_check reiserfs_write_unlock_nested(struct super_block *s); 772 void reiserfs_write_lock_nested(struct super_block *s, int depth); 773 774 #ifdef CONFIG_REISERFS_CHECK 775 void reiserfs_lock_check_recursive(struct super_block *s); 776 #else 777 static inline void reiserfs_lock_check_recursive(struct super_block *s) { } 778 #endif 779 780 /* 781 * Several mutexes depend on the write lock. 782 * However sometimes we want to relax the write lock while we hold 783 * these mutexes, according to the release/reacquire on schedule() 784 * properties of the Bkl that were used. 785 * Reiserfs performances and locking were based on this scheme. 786 * Now that the write lock is a mutex and not the bkl anymore, doing so 787 * may result in a deadlock: 788 * 789 * A acquire write_lock 790 * A acquire j_commit_mutex 791 * A release write_lock and wait for something 792 * B acquire write_lock 793 * B can't acquire j_commit_mutex and sleep 794 * A can't acquire write lock anymore 795 * deadlock 796 * 797 * What we do here is avoiding such deadlock by playing the same game 798 * than the Bkl: if we can't acquire a mutex that depends on the write lock, 799 * we release the write lock, wait a bit and then retry. 800 * 801 * The mutexes concerned by this hack are: 802 * - The commit mutex of a journal list 803 * - The flush mutex 804 * - The journal lock 805 * - The inode mutex 806 */ 807 static inline void reiserfs_mutex_lock_safe(struct mutex *m, 808 struct super_block *s) 809 { 810 int depth; 811 812 depth = reiserfs_write_unlock_nested(s); 813 mutex_lock(m); 814 reiserfs_write_lock_nested(s, depth); 815 } 816 817 static inline void 818 reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, 819 struct super_block *s) 820 { 821 int depth; 822 823 depth = reiserfs_write_unlock_nested(s); 824 mutex_lock_nested(m, subclass); 825 reiserfs_write_lock_nested(s, depth); 826 } 827 828 static inline void 829 reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) 830 { 831 int depth; 832 depth = reiserfs_write_unlock_nested(s); 833 down_read(sem); 834 reiserfs_write_lock_nested(s, depth); 835 } 836 837 /* 838 * When we schedule, we usually want to also release the write lock, 839 * according to the previous bkl based locking scheme of reiserfs. 840 */ 841 static inline void reiserfs_cond_resched(struct super_block *s) 842 { 843 if (need_resched()) { 844 int depth; 845 846 depth = reiserfs_write_unlock_nested(s); 847 schedule(); 848 reiserfs_write_lock_nested(s, depth); 849 } 850 } 851 852 struct fid; 853 854 /* 855 * in reading the #defines, it may help to understand that they employ 856 * the following abbreviations: 857 * 858 * B = Buffer 859 * I = Item header 860 * H = Height within the tree (should be changed to LEV) 861 * N = Number of the item in the node 862 * STAT = stat data 863 * DEH = Directory Entry Header 864 * EC = Entry Count 865 * E = Entry number 866 * UL = Unsigned Long 867 * BLKH = BLocK Header 868 * UNFM = UNForMatted node 869 * DC = Disk Child 870 * P = Path 871 * 872 * These #defines are named by concatenating these abbreviations, 873 * where first comes the arguments, and last comes the return value, 874 * of the macro. 875 */ 876 877 #define USE_INODE_GENERATION_COUNTER 878 879 #define REISERFS_PREALLOCATE 880 #define DISPLACE_NEW_PACKING_LOCALITIES 881 #define PREALLOCATION_SIZE 9 882 883 /* n must be power of 2 */ 884 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) 885 886 /* 887 * to be ok for alpha and others we have to align structures to 8 byte 888 * boundary. 889 * FIXME: do not change 4 by anything else: there is code which relies on that 890 */ 891 #define ROUND_UP(x) _ROUND_UP(x,8LL) 892 893 /* 894 * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug 895 * messages. 896 */ 897 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ 898 899 void __reiserfs_warning(struct super_block *s, const char *id, 900 const char *func, const char *fmt, ...); 901 #define reiserfs_warning(s, id, fmt, args...) \ 902 __reiserfs_warning(s, id, __func__, fmt, ##args) 903 /* assertions handling */ 904 905 /* always check a condition and panic if it's false. */ 906 #define __RASSERT(cond, scond, format, args...) \ 907 do { \ 908 if (!(cond)) \ 909 reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ 910 __FILE__ ":%i:%s: " format "\n", \ 911 __LINE__, __func__ , ##args); \ 912 } while (0) 913 914 #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) 915 916 #if defined( CONFIG_REISERFS_CHECK ) 917 #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) 918 #else 919 #define RFALSE( cond, format, args... ) do {;} while( 0 ) 920 #endif 921 922 #define CONSTF __attribute_const__ 923 /* 924 * Disk Data Structures 925 */ 926 927 /*************************************************************************** 928 * SUPER BLOCK * 929 ***************************************************************************/ 930 931 /* 932 * Structure of super block on disk, a version of which in RAM is often 933 * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger 934 * structure containing fields never written to disk. 935 */ 936 #define UNSET_HASH 0 /* Detect hash on disk */ 937 #define TEA_HASH 1 938 #define YURA_HASH 2 939 #define R5_HASH 3 940 #define DEFAULT_HASH R5_HASH 941 942 struct journal_params { 943 /* where does journal start from on its * device */ 944 __le32 jp_journal_1st_block; 945 946 /* journal device st_rdev */ 947 __le32 jp_journal_dev; 948 949 /* size of the journal */ 950 __le32 jp_journal_size; 951 952 /* max number of blocks in a transaction. */ 953 __le32 jp_journal_trans_max; 954 955 /* 956 * random value made on fs creation 957 * (this was sb_journal_block_count) 958 */ 959 __le32 jp_journal_magic; 960 961 /* max number of blocks to batch into a trans */ 962 __le32 jp_journal_max_batch; 963 964 /* in seconds, how old can an async commit be */ 965 __le32 jp_journal_max_commit_age; 966 967 /* in seconds, how old can a transaction be */ 968 __le32 jp_journal_max_trans_age; 969 }; 970 971 /* this is the super from 3.5.X, where X >= 10 */ 972 struct reiserfs_super_block_v1 { 973 __le32 s_block_count; /* blocks count */ 974 __le32 s_free_blocks; /* free blocks count */ 975 __le32 s_root_block; /* root block number */ 976 struct journal_params s_journal; 977 __le16 s_blocksize; /* block size */ 978 979 /* max size of object id array, see get_objectid() commentary */ 980 __le16 s_oid_maxsize; 981 __le16 s_oid_cursize; /* current size of object id array */ 982 983 /* this is set to 1 when filesystem was umounted, to 2 - when not */ 984 __le16 s_umount_state; 985 986 /* 987 * reiserfs magic string indicates that file system is reiserfs: 988 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" 989 */ 990 char s_magic[10]; 991 992 /* 993 * it is set to used by fsck to mark which 994 * phase of rebuilding is done 995 */ 996 __le16 s_fs_state; 997 /* 998 * indicate, what hash function is being use 999 * to sort names in a directory 1000 */ 1001 __le32 s_hash_function_code; 1002 __le16 s_tree_height; /* height of disk tree */ 1003 1004 /* 1005 * amount of bitmap blocks needed to address 1006 * each block of file system 1007 */ 1008 __le16 s_bmap_nr; 1009 1010 /* 1011 * this field is only reliable on filesystem with non-standard journal 1012 */ 1013 __le16 s_version; 1014 1015 /* 1016 * size in blocks of journal area on main device, we need to 1017 * keep after making fs with non-standard journal 1018 */ 1019 __le16 s_reserved_for_journal; 1020 } __attribute__ ((__packed__)); 1021 1022 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) 1023 1024 /* this is the on disk super block */ 1025 struct reiserfs_super_block { 1026 struct reiserfs_super_block_v1 s_v1; 1027 __le32 s_inode_generation; 1028 1029 /* Right now used only by inode-attributes, if enabled */ 1030 __le32 s_flags; 1031 1032 unsigned char s_uuid[16]; /* filesystem unique identifier */ 1033 unsigned char s_label[16]; /* filesystem volume label */ 1034 __le16 s_mnt_count; /* Count of mounts since last fsck */ 1035 __le16 s_max_mnt_count; /* Maximum mounts before check */ 1036 __le32 s_lastcheck; /* Timestamp of last fsck */ 1037 __le32 s_check_interval; /* Interval between checks */ 1038 1039 /* 1040 * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() 1041 * so any additions must be updated there as well. */ 1042 char s_unused[76]; 1043 } __attribute__ ((__packed__)); 1044 1045 #define SB_SIZE (sizeof(struct reiserfs_super_block)) 1046 1047 #define REISERFS_VERSION_1 0 1048 #define REISERFS_VERSION_2 2 1049 1050 /* on-disk super block fields converted to cpu form */ 1051 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) 1052 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) 1053 #define SB_BLOCKSIZE(s) \ 1054 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) 1055 #define SB_BLOCK_COUNT(s) \ 1056 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) 1057 #define SB_FREE_BLOCKS(s) \ 1058 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) 1059 #define SB_REISERFS_MAGIC(s) \ 1060 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) 1061 #define SB_ROOT_BLOCK(s) \ 1062 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) 1063 #define SB_TREE_HEIGHT(s) \ 1064 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) 1065 #define SB_REISERFS_STATE(s) \ 1066 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) 1067 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) 1068 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) 1069 1070 #define PUT_SB_BLOCK_COUNT(s, val) \ 1071 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) 1072 #define PUT_SB_FREE_BLOCKS(s, val) \ 1073 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) 1074 #define PUT_SB_ROOT_BLOCK(s, val) \ 1075 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) 1076 #define PUT_SB_TREE_HEIGHT(s, val) \ 1077 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) 1078 #define PUT_SB_REISERFS_STATE(s, val) \ 1079 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) 1080 #define PUT_SB_VERSION(s, val) \ 1081 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) 1082 #define PUT_SB_BMAP_NR(s, val) \ 1083 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) 1084 1085 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) 1086 #define SB_ONDISK_JOURNAL_SIZE(s) \ 1087 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) 1088 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ 1089 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) 1090 #define SB_ONDISK_JOURNAL_DEVICE(s) \ 1091 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) 1092 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ 1093 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) 1094 1095 #define is_block_in_log_or_reserved_area(s, block) \ 1096 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ 1097 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ 1098 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ 1099 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) 1100 1101 int is_reiserfs_3_5(struct reiserfs_super_block *rs); 1102 int is_reiserfs_3_6(struct reiserfs_super_block *rs); 1103 int is_reiserfs_jr(struct reiserfs_super_block *rs); 1104 1105 /* 1106 * ReiserFS leaves the first 64k unused, so that partition labels have 1107 * enough space. If someone wants to write a fancy bootloader that 1108 * needs more than 64k, let us know, and this will be increased in size. 1109 * This number must be larger than the largest block size on any 1110 * platform, or code will break. -Hans 1111 */ 1112 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) 1113 #define REISERFS_FIRST_BLOCK unused_define 1114 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES 1115 1116 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ 1117 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) 1118 1119 /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ 1120 #define CARRY_ON 0 1121 #define REPEAT_SEARCH -1 1122 #define IO_ERROR -2 1123 #define NO_DISK_SPACE -3 1124 #define NO_BALANCING_NEEDED (-4) 1125 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) 1126 #define QUOTA_EXCEEDED -6 1127 1128 typedef __u32 b_blocknr_t; 1129 typedef __le32 unp_t; 1130 1131 struct unfm_nodeinfo { 1132 unp_t unfm_nodenum; 1133 unsigned short unfm_freespace; 1134 }; 1135 1136 /* there are two formats of keys: 3.5 and 3.6 */ 1137 #define KEY_FORMAT_3_5 0 1138 #define KEY_FORMAT_3_6 1 1139 1140 /* there are two stat datas */ 1141 #define STAT_DATA_V1 0 1142 #define STAT_DATA_V2 1 1143 1144 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) 1145 { 1146 return container_of(inode, struct reiserfs_inode_info, vfs_inode); 1147 } 1148 1149 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) 1150 { 1151 return sb->s_fs_info; 1152 } 1153 1154 /* 1155 * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 1156 * which overflows on large file systems. 1157 */ 1158 static inline __u32 reiserfs_bmap_count(struct super_block *sb) 1159 { 1160 return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; 1161 } 1162 1163 static inline int bmap_would_wrap(unsigned bmap_nr) 1164 { 1165 return bmap_nr > ((1LL << 16) - 1); 1166 } 1167 1168 extern const struct xattr_handler * const reiserfs_xattr_handlers[]; 1169 1170 /* 1171 * this says about version of key of all items (but stat data) the 1172 * object consists of 1173 */ 1174 #define get_inode_item_key_version( inode ) \ 1175 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) 1176 1177 #define set_inode_item_key_version( inode, version ) \ 1178 ({ if((version)==KEY_FORMAT_3_6) \ 1179 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ 1180 else \ 1181 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) 1182 1183 #define get_inode_sd_version(inode) \ 1184 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) 1185 1186 #define set_inode_sd_version(inode, version) \ 1187 ({ if((version)==STAT_DATA_V2) \ 1188 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ 1189 else \ 1190 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) 1191 1192 /* 1193 * This is an aggressive tail suppression policy, I am hoping it 1194 * improves our benchmarks. The principle behind it is that percentage 1195 * space saving is what matters, not absolute space saving. This is 1196 * non-intuitive, but it helps to understand it if you consider that the 1197 * cost to access 4 blocks is not much more than the cost to access 1 1198 * block, if you have to do a seek and rotate. A tail risks a 1199 * non-linear disk access that is significant as a percentage of total 1200 * time cost for a 4 block file and saves an amount of space that is 1201 * less significant as a percentage of space, or so goes the hypothesis. 1202 * -Hans 1203 */ 1204 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ 1205 (\ 1206 (!(n_tail_size)) || \ 1207 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ 1208 ( (n_file_size) >= (n_block_size) * 4 ) || \ 1209 ( ( (n_file_size) >= (n_block_size) * 3 ) && \ 1210 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ 1211 ( ( (n_file_size) >= (n_block_size) * 2 ) && \ 1212 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ 1213 ( ( (n_file_size) >= (n_block_size) ) && \ 1214 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ 1215 ) 1216 1217 /* 1218 * Another strategy for tails, this one means only create a tail if all the 1219 * file would fit into one DIRECT item. 1220 * Primary intention for this one is to increase performance by decreasing 1221 * seeking. 1222 */ 1223 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ 1224 (\ 1225 (!(n_tail_size)) || \ 1226 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ 1227 ) 1228 1229 /* 1230 * values for s_umount_state field 1231 */ 1232 #define REISERFS_VALID_FS 1 1233 #define REISERFS_ERROR_FS 2 1234 1235 /* 1236 * there are 5 item types currently 1237 */ 1238 #define TYPE_STAT_DATA 0 1239 #define TYPE_INDIRECT 1 1240 #define TYPE_DIRECT 2 1241 #define TYPE_DIRENTRY 3 1242 #define TYPE_MAXTYPE 3 1243 #define TYPE_ANY 15 /* FIXME: comment is required */ 1244 1245 /*************************************************************************** 1246 * KEY & ITEM HEAD * 1247 ***************************************************************************/ 1248 1249 /* * directories use this key as well as old files */ 1250 struct offset_v1 { 1251 __le32 k_offset; 1252 __le32 k_uniqueness; 1253 } __attribute__ ((__packed__)); 1254 1255 struct offset_v2 { 1256 __le64 v; 1257 } __attribute__ ((__packed__)); 1258 1259 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) 1260 { 1261 __u8 type = le64_to_cpu(v2->v) >> 60; 1262 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; 1263 } 1264 1265 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) 1266 { 1267 v2->v = 1268 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); 1269 } 1270 1271 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) 1272 { 1273 return le64_to_cpu(v2->v) & (~0ULL >> 4); 1274 } 1275 1276 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) 1277 { 1278 offset &= (~0ULL >> 4); 1279 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); 1280 } 1281 1282 /* 1283 * Key of an item determines its location in the S+tree, and 1284 * is composed of 4 components 1285 */ 1286 struct reiserfs_key { 1287 /* packing locality: by default parent directory object id */ 1288 __le32 k_dir_id; 1289 1290 __le32 k_objectid; /* object identifier */ 1291 union { 1292 struct offset_v1 k_offset_v1; 1293 struct offset_v2 k_offset_v2; 1294 } __attribute__ ((__packed__)) u; 1295 } __attribute__ ((__packed__)); 1296 1297 struct in_core_key { 1298 /* packing locality: by default parent directory object id */ 1299 __u32 k_dir_id; 1300 __u32 k_objectid; /* object identifier */ 1301 __u64 k_offset; 1302 __u8 k_type; 1303 }; 1304 1305 struct cpu_key { 1306 struct in_core_key on_disk_key; 1307 int version; 1308 /* 3 in all cases but direct2indirect and indirect2direct conversion */ 1309 int key_length; 1310 }; 1311 1312 /* 1313 * Our function for comparing keys can compare keys of different 1314 * lengths. It takes as a parameter the length of the keys it is to 1315 * compare. These defines are used in determining what is to be passed 1316 * to it as that parameter. 1317 */ 1318 #define REISERFS_FULL_KEY_LEN 4 1319 #define REISERFS_SHORT_KEY_LEN 2 1320 1321 /* The result of the key compare */ 1322 #define FIRST_GREATER 1 1323 #define SECOND_GREATER -1 1324 #define KEYS_IDENTICAL 0 1325 #define KEY_FOUND 1 1326 #define KEY_NOT_FOUND 0 1327 1328 #define KEY_SIZE (sizeof(struct reiserfs_key)) 1329 1330 /* return values for search_by_key and clones */ 1331 #define ITEM_FOUND 1 1332 #define ITEM_NOT_FOUND 0 1333 #define ENTRY_FOUND 1 1334 #define ENTRY_NOT_FOUND 0 1335 #define DIRECTORY_NOT_FOUND -1 1336 #define REGULAR_FILE_FOUND -2 1337 #define DIRECTORY_FOUND -3 1338 #define BYTE_FOUND 1 1339 #define BYTE_NOT_FOUND 0 1340 #define FILE_NOT_FOUND -1 1341 1342 #define POSITION_FOUND 1 1343 #define POSITION_NOT_FOUND 0 1344 1345 /* return values for reiserfs_find_entry and search_by_entry_key */ 1346 #define NAME_FOUND 1 1347 #define NAME_NOT_FOUND 0 1348 #define GOTO_PREVIOUS_ITEM 2 1349 #define NAME_FOUND_INVISIBLE 3 1350 1351 /* 1352 * Everything in the filesystem is stored as a set of items. The 1353 * item head contains the key of the item, its free space (for 1354 * indirect items) and specifies the location of the item itself 1355 * within the block. 1356 */ 1357 1358 struct item_head { 1359 /* 1360 * Everything in the tree is found by searching for it based on 1361 * its key. 1362 */ 1363 struct reiserfs_key ih_key; 1364 union { 1365 /* 1366 * The free space in the last unformatted node of an 1367 * indirect item if this is an indirect item. This 1368 * equals 0xFFFF iff this is a direct item or stat data 1369 * item. Note that the key, not this field, is used to 1370 * determine the item type, and thus which field this 1371 * union contains. 1372 */ 1373 __le16 ih_free_space_reserved; 1374 1375 /* 1376 * Iff this is a directory item, this field equals the 1377 * number of directory entries in the directory item. 1378 */ 1379 __le16 ih_entry_count; 1380 } __attribute__ ((__packed__)) u; 1381 __le16 ih_item_len; /* total size of the item body */ 1382 1383 /* an offset to the item body within the block */ 1384 __le16 ih_item_location; 1385 1386 /* 1387 * 0 for all old items, 2 for new ones. Highest bit is set by fsck 1388 * temporary, cleaned after all done 1389 */ 1390 __le16 ih_version; 1391 } __attribute__ ((__packed__)); 1392 /* size of item header */ 1393 #define IH_SIZE (sizeof(struct item_head)) 1394 1395 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) 1396 #define ih_version(ih) le16_to_cpu((ih)->ih_version) 1397 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) 1398 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) 1399 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) 1400 1401 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) 1402 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) 1403 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) 1404 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) 1405 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) 1406 1407 #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) 1408 1409 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) 1410 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) 1411 1412 /* 1413 * these operate on indirect items, where you've got an array of ints 1414 * at a possibly unaligned location. These are a noop on ia32 1415 * 1416 * p is the array of __u32, i is the index into the array, v is the value 1417 * to store there. 1418 */ 1419 #define get_block_num(p, i) get_unaligned_le32((p) + (i)) 1420 #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) 1421 1422 /* * in old version uniqueness field shows key type */ 1423 #define V1_SD_UNIQUENESS 0 1424 #define V1_INDIRECT_UNIQUENESS 0xfffffffe 1425 #define V1_DIRECT_UNIQUENESS 0xffffffff 1426 #define V1_DIRENTRY_UNIQUENESS 500 1427 #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */ 1428 1429 /* here are conversion routines */ 1430 static inline int uniqueness2type(__u32 uniqueness) CONSTF; 1431 static inline int uniqueness2type(__u32 uniqueness) 1432 { 1433 switch ((int)uniqueness) { 1434 case V1_SD_UNIQUENESS: 1435 return TYPE_STAT_DATA; 1436 case V1_INDIRECT_UNIQUENESS: 1437 return TYPE_INDIRECT; 1438 case V1_DIRECT_UNIQUENESS: 1439 return TYPE_DIRECT; 1440 case V1_DIRENTRY_UNIQUENESS: 1441 return TYPE_DIRENTRY; 1442 case V1_ANY_UNIQUENESS: 1443 default: 1444 return TYPE_ANY; 1445 } 1446 } 1447 1448 static inline __u32 type2uniqueness(int type) CONSTF; 1449 static inline __u32 type2uniqueness(int type) 1450 { 1451 switch (type) { 1452 case TYPE_STAT_DATA: 1453 return V1_SD_UNIQUENESS; 1454 case TYPE_INDIRECT: 1455 return V1_INDIRECT_UNIQUENESS; 1456 case TYPE_DIRECT: 1457 return V1_DIRECT_UNIQUENESS; 1458 case TYPE_DIRENTRY: 1459 return V1_DIRENTRY_UNIQUENESS; 1460 case TYPE_ANY: 1461 default: 1462 return V1_ANY_UNIQUENESS; 1463 } 1464 } 1465 1466 /* 1467 * key is pointer to on disk key which is stored in le, result is cpu, 1468 * there is no way to get version of object from key, so, provide 1469 * version to these defines 1470 */ 1471 static inline loff_t le_key_k_offset(int version, 1472 const struct reiserfs_key *key) 1473 { 1474 return (version == KEY_FORMAT_3_5) ? 1475 le32_to_cpu(key->u.k_offset_v1.k_offset) : 1476 offset_v2_k_offset(&(key->u.k_offset_v2)); 1477 } 1478 1479 static inline loff_t le_ih_k_offset(const struct item_head *ih) 1480 { 1481 return le_key_k_offset(ih_version(ih), &(ih->ih_key)); 1482 } 1483 1484 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) 1485 { 1486 if (version == KEY_FORMAT_3_5) { 1487 loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); 1488 return uniqueness2type(val); 1489 } else 1490 return offset_v2_k_type(&(key->u.k_offset_v2)); 1491 } 1492 1493 static inline loff_t le_ih_k_type(const struct item_head *ih) 1494 { 1495 return le_key_k_type(ih_version(ih), &(ih->ih_key)); 1496 } 1497 1498 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, 1499 loff_t offset) 1500 { 1501 if (version == KEY_FORMAT_3_5) 1502 key->u.k_offset_v1.k_offset = cpu_to_le32(offset); 1503 else 1504 set_offset_v2_k_offset(&key->u.k_offset_v2, offset); 1505 } 1506 1507 static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, 1508 loff_t offset) 1509 { 1510 set_le_key_k_offset(version, key, 1511 le_key_k_offset(version, key) + offset); 1512 } 1513 1514 static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) 1515 { 1516 add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1517 } 1518 1519 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) 1520 { 1521 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); 1522 } 1523 1524 static inline void set_le_key_k_type(int version, struct reiserfs_key *key, 1525 int type) 1526 { 1527 if (version == KEY_FORMAT_3_5) { 1528 type = type2uniqueness(type); 1529 key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); 1530 } else 1531 set_offset_v2_k_type(&key->u.k_offset_v2, type); 1532 } 1533 1534 static inline void set_le_ih_k_type(struct item_head *ih, int type) 1535 { 1536 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); 1537 } 1538 1539 static inline int is_direntry_le_key(int version, struct reiserfs_key *key) 1540 { 1541 return le_key_k_type(version, key) == TYPE_DIRENTRY; 1542 } 1543 1544 static inline int is_direct_le_key(int version, struct reiserfs_key *key) 1545 { 1546 return le_key_k_type(version, key) == TYPE_DIRECT; 1547 } 1548 1549 static inline int is_indirect_le_key(int version, struct reiserfs_key *key) 1550 { 1551 return le_key_k_type(version, key) == TYPE_INDIRECT; 1552 } 1553 1554 static inline int is_statdata_le_key(int version, struct reiserfs_key *key) 1555 { 1556 return le_key_k_type(version, key) == TYPE_STAT_DATA; 1557 } 1558 1559 /* item header has version. */ 1560 static inline int is_direntry_le_ih(struct item_head *ih) 1561 { 1562 return is_direntry_le_key(ih_version(ih), &ih->ih_key); 1563 } 1564 1565 static inline int is_direct_le_ih(struct item_head *ih) 1566 { 1567 return is_direct_le_key(ih_version(ih), &ih->ih_key); 1568 } 1569 1570 static inline int is_indirect_le_ih(struct item_head *ih) 1571 { 1572 return is_indirect_le_key(ih_version(ih), &ih->ih_key); 1573 } 1574 1575 static inline int is_statdata_le_ih(struct item_head *ih) 1576 { 1577 return is_statdata_le_key(ih_version(ih), &ih->ih_key); 1578 } 1579 1580 /* key is pointer to cpu key, result is cpu */ 1581 static inline loff_t cpu_key_k_offset(const struct cpu_key *key) 1582 { 1583 return key->on_disk_key.k_offset; 1584 } 1585 1586 static inline loff_t cpu_key_k_type(const struct cpu_key *key) 1587 { 1588 return key->on_disk_key.k_type; 1589 } 1590 1591 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) 1592 { 1593 key->on_disk_key.k_offset = offset; 1594 } 1595 1596 static inline void set_cpu_key_k_type(struct cpu_key *key, int type) 1597 { 1598 key->on_disk_key.k_type = type; 1599 } 1600 1601 static inline void cpu_key_k_offset_dec(struct cpu_key *key) 1602 { 1603 key->on_disk_key.k_offset--; 1604 } 1605 1606 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) 1607 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) 1608 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) 1609 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) 1610 1611 /* are these used ? */ 1612 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) 1613 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) 1614 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) 1615 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) 1616 1617 #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ 1618 (!COMP_SHORT_KEYS(ih, key) && \ 1619 I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) 1620 1621 /* maximal length of item */ 1622 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) 1623 #define MIN_ITEM_LEN 1 1624 1625 /* object identifier for root dir */ 1626 #define REISERFS_ROOT_OBJECTID 2 1627 #define REISERFS_ROOT_PARENT_OBJECTID 1 1628 1629 extern struct reiserfs_key root_key; 1630 1631 /* 1632 * Picture represents a leaf of the S+tree 1633 * ______________________________________________________ 1634 * | | Array of | | | 1635 * |Block | Object-Item | F r e e | Objects- | 1636 * | head | Headers | S p a c e | Items | 1637 * |______|_______________|___________________|___________| 1638 */ 1639 1640 /* 1641 * Header of a disk block. More precisely, header of a formatted leaf 1642 * or internal node, and not the header of an unformatted node. 1643 */ 1644 struct block_head { 1645 __le16 blk_level; /* Level of a block in the tree. */ 1646 __le16 blk_nr_item; /* Number of keys/items in a block. */ 1647 __le16 blk_free_space; /* Block free space in bytes. */ 1648 __le16 blk_reserved; 1649 /* dump this in v4/planA */ 1650 1651 /* kept only for compatibility */ 1652 struct reiserfs_key blk_right_delim_key; 1653 }; 1654 1655 #define BLKH_SIZE (sizeof(struct block_head)) 1656 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) 1657 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) 1658 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) 1659 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) 1660 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) 1661 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) 1662 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) 1663 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) 1664 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) 1665 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) 1666 1667 /* values for blk_level field of the struct block_head */ 1668 1669 /* 1670 * When node gets removed from the tree its blk_level is set to FREE_LEVEL. 1671 * It is then used to see whether the node is still in the tree 1672 */ 1673 #define FREE_LEVEL 0 1674 1675 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ 1676 1677 /* 1678 * Given the buffer head of a formatted node, resolve to the 1679 * block head of that node. 1680 */ 1681 #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) 1682 /* Number of items that are in buffer. */ 1683 #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) 1684 #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) 1685 #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) 1686 1687 #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) 1688 #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) 1689 #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) 1690 1691 /* Get right delimiting key. -- little endian */ 1692 #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) 1693 1694 /* Does the buffer contain a disk leaf. */ 1695 #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) 1696 1697 /* Does the buffer contain a disk internal node */ 1698 #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ 1699 && B_LEVEL(bh) <= MAX_HEIGHT) 1700 1701 /*************************************************************************** 1702 * STAT DATA * 1703 ***************************************************************************/ 1704 1705 /* 1706 * old stat data is 32 bytes long. We are going to distinguish new one by 1707 * different size 1708 */ 1709 struct stat_data_v1 { 1710 __le16 sd_mode; /* file type, permissions */ 1711 __le16 sd_nlink; /* number of hard links */ 1712 __le16 sd_uid; /* owner */ 1713 __le16 sd_gid; /* group */ 1714 __le32 sd_size; /* file size */ 1715 __le32 sd_atime; /* time of last access */ 1716 __le32 sd_mtime; /* time file was last modified */ 1717 1718 /* 1719 * time inode (stat data) was last changed 1720 * (except changes to sd_atime and sd_mtime) 1721 */ 1722 __le32 sd_ctime; 1723 union { 1724 __le32 sd_rdev; 1725 __le32 sd_blocks; /* number of blocks file uses */ 1726 } __attribute__ ((__packed__)) u; 1727 1728 /* 1729 * first byte of file which is stored in a direct item: except that if 1730 * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no 1731 * direct item. The existence of this field really grates on me. 1732 * Let's replace it with a macro based on sd_size and our tail 1733 * suppression policy. Someday. -Hans 1734 */ 1735 __le32 sd_first_direct_byte; 1736 } __attribute__ ((__packed__)); 1737 1738 #define SD_V1_SIZE (sizeof(struct stat_data_v1)) 1739 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) 1740 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1741 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1742 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) 1743 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) 1744 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) 1745 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) 1746 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) 1747 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) 1748 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) 1749 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) 1750 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1751 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1752 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1753 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1754 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1755 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1756 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1757 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1758 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) 1759 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) 1760 #define sd_v1_first_direct_byte(sdp) \ 1761 (le32_to_cpu((sdp)->sd_first_direct_byte)) 1762 #define set_sd_v1_first_direct_byte(sdp,v) \ 1763 ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) 1764 1765 /* inode flags stored in sd_attrs (nee sd_reserved) */ 1766 1767 /* 1768 * we want common flags to have the same values as in ext2, 1769 * so chattr(1) will work without problems 1770 */ 1771 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL 1772 #define REISERFS_APPEND_FL FS_APPEND_FL 1773 #define REISERFS_SYNC_FL FS_SYNC_FL 1774 #define REISERFS_NOATIME_FL FS_NOATIME_FL 1775 #define REISERFS_NODUMP_FL FS_NODUMP_FL 1776 #define REISERFS_SECRM_FL FS_SECRM_FL 1777 #define REISERFS_UNRM_FL FS_UNRM_FL 1778 #define REISERFS_COMPR_FL FS_COMPR_FL 1779 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL 1780 1781 /* persistent flags that file inherits from the parent directory */ 1782 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ 1783 REISERFS_SYNC_FL | \ 1784 REISERFS_NOATIME_FL | \ 1785 REISERFS_NODUMP_FL | \ 1786 REISERFS_SECRM_FL | \ 1787 REISERFS_COMPR_FL | \ 1788 REISERFS_NOTAIL_FL ) 1789 1790 /* 1791 * Stat Data on disk (reiserfs version of UFS disk inode minus the 1792 * address blocks) 1793 */ 1794 struct stat_data { 1795 __le16 sd_mode; /* file type, permissions */ 1796 __le16 sd_attrs; /* persistent inode flags */ 1797 __le32 sd_nlink; /* number of hard links */ 1798 __le64 sd_size; /* file size */ 1799 __le32 sd_uid; /* owner */ 1800 __le32 sd_gid; /* group */ 1801 __le32 sd_atime; /* time of last access */ 1802 __le32 sd_mtime; /* time file was last modified */ 1803 1804 /* 1805 * time inode (stat data) was last changed 1806 * (except changes to sd_atime and sd_mtime) 1807 */ 1808 __le32 sd_ctime; 1809 __le32 sd_blocks; 1810 union { 1811 __le32 sd_rdev; 1812 __le32 sd_generation; 1813 } __attribute__ ((__packed__)) u; 1814 } __attribute__ ((__packed__)); 1815 1816 /* this is 44 bytes long */ 1817 #define SD_SIZE (sizeof(struct stat_data)) 1818 #define SD_V2_SIZE SD_SIZE 1819 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) 1820 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) 1821 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) 1822 /* sd_reserved */ 1823 /* set_sd_reserved */ 1824 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) 1825 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) 1826 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) 1827 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) 1828 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) 1829 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) 1830 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) 1831 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) 1832 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) 1833 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) 1834 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) 1835 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) 1836 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) 1837 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) 1838 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) 1839 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) 1840 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) 1841 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) 1842 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) 1843 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) 1844 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) 1845 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) 1846 1847 /*************************************************************************** 1848 * DIRECTORY STRUCTURE * 1849 ***************************************************************************/ 1850 /* 1851 * Picture represents the structure of directory items 1852 * ________________________________________________ 1853 * | Array of | | | | | | 1854 * | directory |N-1| N-2 | .... | 1st |0th| 1855 * | entry headers | | | | | | 1856 * |_______________|___|_____|________|_______|___| 1857 * <---- directory entries ------> 1858 * 1859 * First directory item has k_offset component 1. We store "." and ".." 1860 * in one item, always, we never split "." and ".." into differing 1861 * items. This makes, among other things, the code for removing 1862 * directories simpler. 1863 */ 1864 #define SD_OFFSET 0 1865 #define SD_UNIQUENESS 0 1866 #define DOT_OFFSET 1 1867 #define DOT_DOT_OFFSET 2 1868 #define DIRENTRY_UNIQUENESS 500 1869 1870 #define FIRST_ITEM_OFFSET 1 1871 1872 /* 1873 * Q: How to get key of object pointed to by entry from entry? 1874 * 1875 * A: Each directory entry has its header. This header has deh_dir_id 1876 * and deh_objectid fields, those are key of object, entry points to 1877 */ 1878 1879 /* 1880 * NOT IMPLEMENTED: 1881 * Directory will someday contain stat data of object 1882 */ 1883 1884 struct reiserfs_de_head { 1885 __le32 deh_offset; /* third component of the directory entry key */ 1886 1887 /* 1888 * objectid of the parent directory of the object, that is referenced 1889 * by directory entry 1890 */ 1891 __le32 deh_dir_id; 1892 1893 /* objectid of the object, that is referenced by directory entry */ 1894 __le32 deh_objectid; 1895 __le16 deh_location; /* offset of name in the whole item */ 1896 1897 /* 1898 * whether 1) entry contains stat data (for future), and 1899 * 2) whether entry is hidden (unlinked) 1900 */ 1901 __le16 deh_state; 1902 } __attribute__ ((__packed__)); 1903 #define DEH_SIZE sizeof(struct reiserfs_de_head) 1904 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) 1905 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) 1906 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) 1907 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) 1908 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) 1909 1910 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) 1911 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) 1912 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) 1913 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) 1914 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) 1915 1916 /* empty directory contains two entries "." and ".." and their headers */ 1917 #define EMPTY_DIR_SIZE \ 1918 (DEH_SIZE * 2 + ROUND_UP (sizeof(".") - 1) + ROUND_UP (sizeof("..") - 1)) 1919 1920 /* old format directories have this size when empty */ 1921 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) 1922 1923 #define DEH_Statdata 0 /* not used now */ 1924 #define DEH_Visible 2 1925 1926 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ 1927 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) 1928 # define ADDR_UNALIGNED_BITS (3) 1929 #endif 1930 1931 /* 1932 * These are only used to manipulate deh_state. 1933 * Because of this, we'll use the ext2_ bit routines, 1934 * since they are little endian 1935 */ 1936 #ifdef ADDR_UNALIGNED_BITS 1937 1938 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) 1939 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) 1940 1941 # define set_bit_unaligned(nr, addr) \ 1942 __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1943 # define clear_bit_unaligned(nr, addr) \ 1944 __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1945 # define test_bit_unaligned(nr, addr) \ 1946 test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) 1947 1948 #else 1949 1950 # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) 1951 # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) 1952 # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) 1953 1954 #endif 1955 1956 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1957 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1958 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1959 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1960 1961 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) 1962 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1963 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) 1964 1965 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, 1966 __le32 par_dirid, __le32 par_objid); 1967 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, 1968 __le32 par_dirid, __le32 par_objid); 1969 1970 /* two entries per block (at least) */ 1971 #define REISERFS_MAX_NAME(block_size) 255 1972 1973 /* 1974 * this structure is used for operations on directory entries. It is 1975 * not a disk structure. 1976 * 1977 * When reiserfs_find_entry or search_by_entry_key find directory 1978 * entry, they return filled reiserfs_dir_entry structure 1979 */ 1980 struct reiserfs_dir_entry { 1981 struct buffer_head *de_bh; 1982 int de_item_num; 1983 struct item_head *de_ih; 1984 int de_entry_num; 1985 struct reiserfs_de_head *de_deh; 1986 int de_entrylen; 1987 int de_namelen; 1988 char *de_name; 1989 unsigned long *de_gen_number_bit_string; 1990 1991 __u32 de_dir_id; 1992 __u32 de_objectid; 1993 1994 struct cpu_key de_entry_key; 1995 }; 1996 1997 /* 1998 * these defines are useful when a particular member of 1999 * a reiserfs_dir_entry is needed 2000 */ 2001 2002 /* pointer to file name, stored in entry */ 2003 #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ 2004 (ih_item_body(bh, ih) + deh_location(deh)) 2005 2006 /* length of name */ 2007 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ 2008 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) 2009 2010 /* hash value occupies bits from 7 up to 30 */ 2011 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) 2012 /* generation number occupies 7 bits starting from 0 up to 6 */ 2013 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) 2014 #define MAX_GENERATION_NUMBER 127 2015 2016 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) 2017 2018 /* 2019 * Picture represents an internal node of the reiserfs tree 2020 * ______________________________________________________ 2021 * | | Array of | Array of | Free | 2022 * |block | keys | pointers | space | 2023 * | head | N | N+1 | | 2024 * |______|_______________|___________________|___________| 2025 */ 2026 2027 /*************************************************************************** 2028 * DISK CHILD * 2029 ***************************************************************************/ 2030 /* 2031 * Disk child pointer: 2032 * The pointer from an internal node of the tree to a node that is on disk. 2033 */ 2034 struct disk_child { 2035 __le32 dc_block_number; /* Disk child's block number. */ 2036 __le16 dc_size; /* Disk child's used space. */ 2037 __le16 dc_reserved; 2038 }; 2039 2040 #define DC_SIZE (sizeof(struct disk_child)) 2041 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) 2042 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) 2043 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) 2044 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) 2045 2046 /* Get disk child by buffer header and position in the tree node. */ 2047 #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ 2048 ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) 2049 2050 /* Get disk child number by buffer header and position in the tree node. */ 2051 #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) 2052 #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ 2053 (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) 2054 2055 /* maximal value of field child_size in structure disk_child */ 2056 /* child size is the combined size of all items and their headers */ 2057 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) 2058 2059 /* amount of used space in buffer (not including block head) */ 2060 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) 2061 2062 /* max and min number of keys in internal node */ 2063 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) 2064 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) 2065 2066 /*************************************************************************** 2067 * PATH STRUCTURES AND DEFINES * 2068 ***************************************************************************/ 2069 2070 /* 2071 * search_by_key fills up the path from the root to the leaf as it descends 2072 * the tree looking for the key. It uses reiserfs_bread to try to find 2073 * buffers in the cache given their block number. If it does not find 2074 * them in the cache it reads them from disk. For each node search_by_key 2075 * finds using reiserfs_bread it then uses bin_search to look through that 2076 * node. bin_search will find the position of the block_number of the next 2077 * node if it is looking through an internal node. If it is looking through 2078 * a leaf node bin_search will find the position of the item which has key 2079 * either equal to given key, or which is the maximal key less than the 2080 * given key. 2081 */ 2082 2083 struct path_element { 2084 /* Pointer to the buffer at the path in the tree. */ 2085 struct buffer_head *pe_buffer; 2086 /* Position in the tree node which is placed in the buffer above. */ 2087 int pe_position; 2088 }; 2089 2090 /* 2091 * maximal height of a tree. don't change this without 2092 * changing JOURNAL_PER_BALANCE_CNT 2093 */ 2094 #define MAX_HEIGHT 5 2095 2096 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ 2097 #define EXTENDED_MAX_HEIGHT 7 2098 2099 /* Must be equal to at least 2. */ 2100 #define FIRST_PATH_ELEMENT_OFFSET 2 2101 2102 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ 2103 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 2104 2105 /* this MUST be MAX_HEIGHT + 1. See about FEB below */ 2106 #define MAX_FEB_SIZE 6 2107 2108 /* 2109 * We need to keep track of who the ancestors of nodes are. When we 2110 * perform a search we record which nodes were visited while 2111 * descending the tree looking for the node we searched for. This list 2112 * of nodes is called the path. This information is used while 2113 * performing balancing. Note that this path information may become 2114 * invalid, and this means we must check it when using it to see if it 2115 * is still valid. You'll need to read search_by_key and the comments 2116 * in it, especially about decrement_counters_in_path(), to understand 2117 * this structure. 2118 * 2119 * Paths make the code so much harder to work with and debug.... An 2120 * enormous number of bugs are due to them, and trying to write or modify 2121 * code that uses them just makes my head hurt. They are based on an 2122 * excessive effort to avoid disturbing the precious VFS code.:-( The 2123 * gods only know how we are going to SMP the code that uses them. 2124 * znodes are the way! 2125 */ 2126 2127 #define PATH_READA 0x1 /* do read ahead */ 2128 #define PATH_READA_BACK 0x2 /* read backwards */ 2129 2130 struct treepath { 2131 int path_length; /* Length of the array above. */ 2132 int reada; 2133 /* Array of the path elements. */ 2134 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; 2135 int pos_in_item; 2136 }; 2137 2138 #define pos_in_item(path) ((path)->pos_in_item) 2139 2140 #define INITIALIZE_PATH(var) \ 2141 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} 2142 2143 /* Get path element by path and path position. */ 2144 #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) 2145 2146 /* Get buffer header at the path by path and path position. */ 2147 #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) 2148 2149 /* Get position in the element at the path by path and path position. */ 2150 #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) 2151 2152 #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) 2153 2154 /* 2155 * you know, to the person who didn't write this the macro name does not 2156 * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or 2157 * maybe we should just focus on dumping paths... -Hans 2158 */ 2159 #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) 2160 2161 /* 2162 * in do_balance leaf has h == 0 in contrast with path structure, 2163 * where root has level == 0. That is why we need these defines 2164 */ 2165 2166 /* tb->S[h] */ 2167 #define PATH_H_PBUFFER(path, h) \ 2168 PATH_OFFSET_PBUFFER(path, path->path_length - (h)) 2169 2170 /* tb->F[h] or tb->S[0]->b_parent */ 2171 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) 2172 2173 #define PATH_H_POSITION(path, h) \ 2174 PATH_OFFSET_POSITION(path, path->path_length - (h)) 2175 2176 /* tb->S[h]->b_item_order */ 2177 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) 2178 2179 #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) 2180 2181 static inline void *reiserfs_node_data(const struct buffer_head *bh) 2182 { 2183 return bh->b_data + sizeof(struct block_head); 2184 } 2185 2186 /* get key from internal node */ 2187 static inline struct reiserfs_key *internal_key(struct buffer_head *bh, 2188 int item_num) 2189 { 2190 struct reiserfs_key *key = reiserfs_node_data(bh); 2191 2192 return &key[item_num]; 2193 } 2194 2195 /* get the item header from leaf node */ 2196 static inline struct item_head *item_head(const struct buffer_head *bh, 2197 int item_num) 2198 { 2199 struct item_head *ih = reiserfs_node_data(bh); 2200 2201 return &ih[item_num]; 2202 } 2203 2204 /* get the key from leaf node */ 2205 static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, 2206 int item_num) 2207 { 2208 return &item_head(bh, item_num)->ih_key; 2209 } 2210 2211 static inline void *ih_item_body(const struct buffer_head *bh, 2212 const struct item_head *ih) 2213 { 2214 return bh->b_data + ih_location(ih); 2215 } 2216 2217 /* get item body from leaf node */ 2218 static inline void *item_body(const struct buffer_head *bh, int item_num) 2219 { 2220 return ih_item_body(bh, item_head(bh, item_num)); 2221 } 2222 2223 static inline struct item_head *tp_item_head(const struct treepath *path) 2224 { 2225 return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2226 } 2227 2228 static inline void *tp_item_body(const struct treepath *path) 2229 { 2230 return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); 2231 } 2232 2233 #define get_last_bh(path) PATH_PLAST_BUFFER(path) 2234 #define get_item_pos(path) PATH_LAST_POSITION(path) 2235 #define item_moved(ih,path) comp_items(ih, path) 2236 #define path_changed(ih,path) comp_items (ih, path) 2237 2238 /* array of the entry headers */ 2239 /* get item body */ 2240 #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) 2241 2242 /* 2243 * length of the directory entry in directory item. This define 2244 * calculates length of i-th directory entry using directory entry 2245 * locations from dir entry head. When it calculates length of 0-th 2246 * directory entry, it uses length of whole item in place of entry 2247 * location of the non-existent following entry in the calculation. 2248 * See picture above. 2249 */ 2250 static inline int entry_length(const struct buffer_head *bh, 2251 const struct item_head *ih, int pos_in_item) 2252 { 2253 struct reiserfs_de_head *deh; 2254 2255 deh = B_I_DEH(bh, ih) + pos_in_item; 2256 if (pos_in_item) 2257 return deh_location(deh - 1) - deh_location(deh); 2258 2259 return ih_item_len(ih) - deh_location(deh); 2260 } 2261 2262 /*************************************************************************** 2263 * MISC * 2264 ***************************************************************************/ 2265 2266 /* Size of pointer to the unformatted node. */ 2267 #define UNFM_P_SIZE (sizeof(unp_t)) 2268 #define UNFM_P_SHIFT 2 2269 2270 /* in in-core inode key is stored on le form */ 2271 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) 2272 2273 #define MAX_UL_INT 0xffffffff 2274 #define MAX_INT 0x7ffffff 2275 #define MAX_US_INT 0xffff 2276 2277 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset 2278 static inline loff_t max_reiserfs_offset(struct inode *inode) 2279 { 2280 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) 2281 return (loff_t) U32_MAX; 2282 2283 return (loff_t) ((~(__u64) 0) >> 4); 2284 } 2285 2286 #define MAX_KEY_OBJECTID MAX_UL_INT 2287 2288 #define MAX_B_NUM MAX_UL_INT 2289 #define MAX_FC_NUM MAX_US_INT 2290 2291 /* the purpose is to detect overflow of an unsigned short */ 2292 #define REISERFS_LINK_MAX (MAX_US_INT - 1000) 2293 2294 /* 2295 * The following defines are used in reiserfs_insert_item 2296 * and reiserfs_append_item 2297 */ 2298 #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */ 2299 #define REISERFS_USER_MEM 1 /* user memory mode */ 2300 2301 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) 2302 #define get_generation(s) atomic_read (&fs_generation(s)) 2303 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) 2304 #define __fs_changed(gen,s) (gen != get_generation (s)) 2305 #define fs_changed(gen,s) \ 2306 ({ \ 2307 reiserfs_cond_resched(s); \ 2308 __fs_changed(gen, s); \ 2309 }) 2310 2311 /*************************************************************************** 2312 * FIXATE NODES * 2313 ***************************************************************************/ 2314 2315 #define VI_TYPE_LEFT_MERGEABLE 1 2316 #define VI_TYPE_RIGHT_MERGEABLE 2 2317 2318 /* 2319 * To make any changes in the tree we always first find node, that 2320 * contains item to be changed/deleted or place to insert a new 2321 * item. We call this node S. To do balancing we need to decide what 2322 * we will shift to left/right neighbor, or to a new node, where new 2323 * item will be etc. To make this analysis simpler we build virtual 2324 * node. Virtual node is an array of items, that will replace items of 2325 * node S. (For instance if we are going to delete an item, virtual 2326 * node does not contain it). Virtual node keeps information about 2327 * item sizes and types, mergeability of first and last items, sizes 2328 * of all entries in directory item. We use this array of items when 2329 * calculating what we can shift to neighbors and how many nodes we 2330 * have to have if we do not any shiftings, if we shift to left/right 2331 * neighbor or to both. 2332 */ 2333 struct virtual_item { 2334 int vi_index; /* index in the array of item operations */ 2335 unsigned short vi_type; /* left/right mergeability */ 2336 2337 /* length of item that it will have after balancing */ 2338 unsigned short vi_item_len; 2339 2340 struct item_head *vi_ih; 2341 const char *vi_item; /* body of item (old or new) */ 2342 const void *vi_new_data; /* 0 always but paste mode */ 2343 void *vi_uarea; /* item specific area */ 2344 }; 2345 2346 struct virtual_node { 2347 /* this is a pointer to the free space in the buffer */ 2348 char *vn_free_ptr; 2349 2350 unsigned short vn_nr_item; /* number of items in virtual node */ 2351 2352 /* 2353 * size of node , that node would have if it has 2354 * unlimited size and no balancing is performed 2355 */ 2356 short vn_size; 2357 2358 /* mode of balancing (paste, insert, delete, cut) */ 2359 short vn_mode; 2360 2361 short vn_affected_item_num; 2362 short vn_pos_in_item; 2363 2364 /* item header of inserted item, 0 for other modes */ 2365 struct item_head *vn_ins_ih; 2366 const void *vn_data; 2367 2368 /* array of items (including a new one, excluding item to be deleted) */ 2369 struct virtual_item *vn_vi; 2370 }; 2371 2372 /* used by directory items when creating virtual nodes */ 2373 struct direntry_uarea { 2374 int flags; 2375 __u16 entry_count; 2376 __u16 entry_sizes[]; 2377 } __attribute__ ((__packed__)); 2378 2379 /*************************************************************************** 2380 * TREE BALANCE * 2381 ***************************************************************************/ 2382 2383 /* 2384 * This temporary structure is used in tree balance algorithms, and 2385 * constructed as we go to the extent that its various parts are 2386 * needed. It contains arrays of nodes that can potentially be 2387 * involved in the balancing of node S, and parameters that define how 2388 * each of the nodes must be balanced. Note that in these algorithms 2389 * for balancing the worst case is to need to balance the current node 2390 * S and the left and right neighbors and all of their parents plus 2391 * create a new node. We implement S1 balancing for the leaf nodes 2392 * and S0 balancing for the internal nodes (S1 and S0 are defined in 2393 * our papers.) 2394 */ 2395 2396 /* size of the array of buffers to free at end of do_balance */ 2397 #define MAX_FREE_BLOCK 7 2398 2399 /* maximum number of FEB blocknrs on a single level */ 2400 #define MAX_AMOUNT_NEEDED 2 2401 2402 /* someday somebody will prefix every field in this struct with tb_ */ 2403 struct tree_balance { 2404 int tb_mode; 2405 int need_balance_dirty; 2406 struct super_block *tb_sb; 2407 struct reiserfs_transaction_handle *transaction_handle; 2408 struct treepath *tb_path; 2409 2410 /* array of left neighbors of nodes in the path */ 2411 struct buffer_head *L[MAX_HEIGHT]; 2412 2413 /* array of right neighbors of nodes in the path */ 2414 struct buffer_head *R[MAX_HEIGHT]; 2415 2416 /* array of fathers of the left neighbors */ 2417 struct buffer_head *FL[MAX_HEIGHT]; 2418 2419 /* array of fathers of the right neighbors */ 2420 struct buffer_head *FR[MAX_HEIGHT]; 2421 /* array of common parents of center node and its left neighbor */ 2422 struct buffer_head *CFL[MAX_HEIGHT]; 2423 2424 /* array of common parents of center node and its right neighbor */ 2425 struct buffer_head *CFR[MAX_HEIGHT]; 2426 2427 /* 2428 * array of empty buffers. Number of buffers in array equals 2429 * cur_blknum. 2430 */ 2431 struct buffer_head *FEB[MAX_FEB_SIZE]; 2432 struct buffer_head *used[MAX_FEB_SIZE]; 2433 struct buffer_head *thrown[MAX_FEB_SIZE]; 2434 2435 /* 2436 * array of number of items which must be shifted to the left in 2437 * order to balance the current node; for leaves includes item that 2438 * will be partially shifted; for internal nodes, it is the number 2439 * of child pointers rather than items. It includes the new item 2440 * being created. The code sometimes subtracts one to get the 2441 * number of wholly shifted items for other purposes. 2442 */ 2443 int lnum[MAX_HEIGHT]; 2444 2445 /* substitute right for left in comment above */ 2446 int rnum[MAX_HEIGHT]; 2447 2448 /* 2449 * array indexed by height h mapping the key delimiting L[h] and 2450 * S[h] to its item number within the node CFL[h] 2451 */ 2452 int lkey[MAX_HEIGHT]; 2453 2454 /* substitute r for l in comment above */ 2455 int rkey[MAX_HEIGHT]; 2456 2457 /* 2458 * the number of bytes by we are trying to add or remove from 2459 * S[h]. A negative value means removing. 2460 */ 2461 int insert_size[MAX_HEIGHT]; 2462 2463 /* 2464 * number of nodes that will replace node S[h] after balancing 2465 * on the level h of the tree. If 0 then S is being deleted, 2466 * if 1 then S is remaining and no new nodes are being created, 2467 * if 2 or 3 then 1 or 2 new nodes is being created 2468 */ 2469 int blknum[MAX_HEIGHT]; 2470 2471 /* fields that are used only for balancing leaves of the tree */ 2472 2473 /* number of empty blocks having been already allocated */ 2474 int cur_blknum; 2475 2476 /* number of items that fall into left most node when S[0] splits */ 2477 int s0num; 2478 2479 /* 2480 * number of bytes which can flow to the left neighbor from the left 2481 * most liquid item that cannot be shifted from S[0] entirely 2482 * if -1 then nothing will be partially shifted 2483 */ 2484 int lbytes; 2485 2486 /* 2487 * number of bytes which will flow to the right neighbor from the right 2488 * most liquid item that cannot be shifted from S[0] entirely 2489 * if -1 then nothing will be partially shifted 2490 */ 2491 int rbytes; 2492 2493 2494 /* 2495 * index into the array of item headers in 2496 * S[0] of the affected item 2497 */ 2498 int item_pos; 2499 2500 /* new nodes allocated to hold what could not fit into S */ 2501 struct buffer_head *S_new[2]; 2502 2503 /* 2504 * number of items that will be placed into nodes in S_new 2505 * when S[0] splits 2506 */ 2507 int snum[2]; 2508 2509 /* 2510 * number of bytes which flow to nodes in S_new when S[0] splits 2511 * note: if S[0] splits into 3 nodes, then items do not need to be cut 2512 */ 2513 int sbytes[2]; 2514 2515 int pos_in_item; 2516 int zeroes_num; 2517 2518 /* 2519 * buffers which are to be freed after do_balance finishes 2520 * by unfix_nodes 2521 */ 2522 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; 2523 2524 /* 2525 * kmalloced memory. Used to create virtual node and keep 2526 * map of dirtied bitmap blocks 2527 */ 2528 char *vn_buf; 2529 2530 int vn_buf_size; /* size of the vn_buf */ 2531 2532 /* VN starts after bitmap of bitmap blocks */ 2533 struct virtual_node *tb_vn; 2534 2535 /* 2536 * saved value of `reiserfs_generation' counter see 2537 * FILESYSTEM_CHANGED() macro in reiserfs_fs.h 2538 */ 2539 int fs_gen; 2540 2541 #ifdef DISPLACE_NEW_PACKING_LOCALITIES 2542 /* 2543 * key pointer, to pass to block allocator or 2544 * another low-level subsystem 2545 */ 2546 struct in_core_key key; 2547 #endif 2548 }; 2549 2550 /* These are modes of balancing */ 2551 2552 /* When inserting an item. */ 2553 #define M_INSERT 'i' 2554 /* 2555 * When inserting into (directories only) or appending onto an already 2556 * existent item. 2557 */ 2558 #define M_PASTE 'p' 2559 /* When deleting an item. */ 2560 #define M_DELETE 'd' 2561 /* When truncating an item or removing an entry from a (directory) item. */ 2562 #define M_CUT 'c' 2563 2564 /* used when balancing on leaf level skipped (in reiserfsck) */ 2565 #define M_INTERNAL 'n' 2566 2567 /* 2568 * When further balancing is not needed, then do_balance does not need 2569 * to be called. 2570 */ 2571 #define M_SKIP_BALANCING 's' 2572 #define M_CONVERT 'v' 2573 2574 /* modes of leaf_move_items */ 2575 #define LEAF_FROM_S_TO_L 0 2576 #define LEAF_FROM_S_TO_R 1 2577 #define LEAF_FROM_R_TO_L 2 2578 #define LEAF_FROM_L_TO_R 3 2579 #define LEAF_FROM_S_TO_SNEW 4 2580 2581 #define FIRST_TO_LAST 0 2582 #define LAST_TO_FIRST 1 2583 2584 /* 2585 * used in do_balance for passing parent of node information that has 2586 * been gotten from tb struct 2587 */ 2588 struct buffer_info { 2589 struct tree_balance *tb; 2590 struct buffer_head *bi_bh; 2591 struct buffer_head *bi_parent; 2592 int bi_position; 2593 }; 2594 2595 static inline struct super_block *sb_from_tb(struct tree_balance *tb) 2596 { 2597 return tb ? tb->tb_sb : NULL; 2598 } 2599 2600 static inline struct super_block *sb_from_bi(struct buffer_info *bi) 2601 { 2602 return bi ? sb_from_tb(bi->tb) : NULL; 2603 } 2604 2605 /* 2606 * there are 4 types of items: stat data, directory item, indirect, direct. 2607 * +-------------------+------------+--------------+------------+ 2608 * | | k_offset | k_uniqueness | mergeable? | 2609 * +-------------------+------------+--------------+------------+ 2610 * | stat data | 0 | 0 | no | 2611 * +-------------------+------------+--------------+------------+ 2612 * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no | 2613 * | non 1st directory | hash value | UNIQUENESS | yes | 2614 * | item | | | | 2615 * +-------------------+------------+--------------+------------+ 2616 * | indirect item | offset + 1 |TYPE_INDIRECT | [1] | 2617 * +-------------------+------------+--------------+------------+ 2618 * | direct item | offset + 1 |TYPE_DIRECT | [2] | 2619 * +-------------------+------------+--------------+------------+ 2620 * 2621 * [1] if this is not the first indirect item of the object 2622 * [2] if this is not the first direct item of the object 2623 */ 2624 2625 struct item_operations { 2626 int (*bytes_number) (struct item_head * ih, int block_size); 2627 void (*decrement_key) (struct cpu_key *); 2628 int (*is_left_mergeable) (struct reiserfs_key * ih, 2629 unsigned long bsize); 2630 void (*print_item) (struct item_head *, char *item); 2631 void (*check_item) (struct item_head *, char *item); 2632 2633 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, 2634 int is_affected, int insert_size); 2635 int (*check_left) (struct virtual_item * vi, int free, 2636 int start_skip, int end_skip); 2637 int (*check_right) (struct virtual_item * vi, int free); 2638 int (*part_size) (struct virtual_item * vi, int from, int to); 2639 int (*unit_num) (struct virtual_item * vi); 2640 void (*print_vi) (struct virtual_item * vi); 2641 }; 2642 2643 extern struct item_operations *item_ops[TYPE_ANY + 1]; 2644 2645 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) 2646 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) 2647 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) 2648 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) 2649 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) 2650 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) 2651 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) 2652 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) 2653 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) 2654 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) 2655 2656 #define COMP_SHORT_KEYS comp_short_keys 2657 2658 /* number of blocks pointed to by the indirect item */ 2659 #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) 2660 2661 /* 2662 * the used space within the unformatted node corresponding 2663 * to pos within the item pointed to by ih 2664 */ 2665 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) 2666 2667 /* 2668 * number of bytes contained by the direct item or the 2669 * unformatted nodes the indirect item points to 2670 */ 2671 2672 /* following defines use reiserfs buffer header and item header */ 2673 2674 /* get stat-data */ 2675 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) 2676 2677 /* this is 3976 for size==4096 */ 2678 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) 2679 2680 /* 2681 * indirect items consist of entries which contain blocknrs, pos 2682 * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the 2683 * blocknr contained by the entry pos points to 2684 */ 2685 #define B_I_POS_UNFM_POINTER(bh, ih, pos) \ 2686 le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) 2687 #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \ 2688 (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) 2689 2690 struct reiserfs_iget_args { 2691 __u32 objectid; 2692 __u32 dirid; 2693 }; 2694 2695 /*************************************************************************** 2696 * FUNCTION DECLARATIONS * 2697 ***************************************************************************/ 2698 2699 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) 2700 2701 #define journal_trans_half(blocksize) \ 2702 ((blocksize - sizeof(struct reiserfs_journal_desc) - 12) / sizeof(__u32)) 2703 2704 /* journal.c see journal.c for all the comments here */ 2705 2706 /* first block written in a commit. */ 2707 struct reiserfs_journal_desc { 2708 __le32 j_trans_id; /* id of commit */ 2709 2710 /* length of commit. len +1 is the commit block */ 2711 __le32 j_len; 2712 2713 __le32 j_mount_id; /* mount id of this trans */ 2714 __le32 j_realblock[]; /* real locations for each block */ 2715 }; 2716 2717 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) 2718 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) 2719 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) 2720 2721 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) 2722 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) 2723 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) 2724 2725 /* last block written in a commit */ 2726 struct reiserfs_journal_commit { 2727 __le32 j_trans_id; /* must match j_trans_id from the desc block */ 2728 __le32 j_len; /* ditto */ 2729 __le32 j_realblock[]; /* real locations for each block */ 2730 }; 2731 2732 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) 2733 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) 2734 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) 2735 2736 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) 2737 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) 2738 2739 /* 2740 * this header block gets written whenever a transaction is considered 2741 * fully flushed, and is more recent than the last fully flushed transaction. 2742 * fully flushed means all the log blocks and all the real blocks are on 2743 * disk, and this transaction does not need to be replayed. 2744 */ 2745 struct reiserfs_journal_header { 2746 /* id of last fully flushed transaction */ 2747 __le32 j_last_flush_trans_id; 2748 2749 /* offset in the log of where to start replay after a crash */ 2750 __le32 j_first_unflushed_offset; 2751 2752 __le32 j_mount_id; 2753 /* 12 */ struct journal_params jh_journal; 2754 }; 2755 2756 /* biggest tunable defines are right here */ 2757 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ 2758 2759 /* biggest possible single transaction, don't change for now (8/3/99) */ 2760 #define JOURNAL_TRANS_MAX_DEFAULT 1024 2761 #define JOURNAL_TRANS_MIN_DEFAULT 256 2762 2763 /* 2764 * max blocks to batch into one transaction, 2765 * don't make this any bigger than 900 2766 */ 2767 #define JOURNAL_MAX_BATCH_DEFAULT 900 2768 #define JOURNAL_MIN_RATIO 2 2769 #define JOURNAL_MAX_COMMIT_AGE 30 2770 #define JOURNAL_MAX_TRANS_AGE 30 2771 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) 2772 #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ 2773 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ 2774 REISERFS_QUOTA_TRANS_BLOCKS(sb))) 2775 2776 #ifdef CONFIG_QUOTA 2777 #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) 2778 /* We need to update data and inode (atime) */ 2779 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) 2780 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ 2781 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2782 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) 2783 /* same as with INIT */ 2784 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ 2785 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) 2786 #else 2787 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 2788 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 2789 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 2790 #endif 2791 2792 /* 2793 * both of these can be as low as 1, or as high as you want. The min is the 2794 * number of 4k bitmap nodes preallocated on mount. New nodes are allocated 2795 * as needed, and released when transactions are committed. On release, if 2796 * the current number of nodes is > max, the node is freed, otherwise, 2797 * it is put on a free list for faster use later. 2798 */ 2799 #define REISERFS_MIN_BITMAP_NODES 10 2800 #define REISERFS_MAX_BITMAP_NODES 100 2801 2802 /* these are based on journal hash size of 8192 */ 2803 #define JBH_HASH_SHIFT 13 2804 #define JBH_HASH_MASK 8191 2805 2806 #define _jhashfn(sb,block) \ 2807 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ 2808 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) 2809 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) 2810 2811 /* We need these to make journal.c code more readable */ 2812 #define journal_find_get_block(s, block) __find_get_block(\ 2813 file_bdev(SB_JOURNAL(s)->j_bdev_file), block, s->s_blocksize) 2814 #define journal_getblk(s, block) __getblk(file_bdev(SB_JOURNAL(s)->j_bdev_file),\ 2815 block, s->s_blocksize) 2816 #define journal_bread(s, block) __bread(file_bdev(SB_JOURNAL(s)->j_bdev_file),\ 2817 block, s->s_blocksize) 2818 2819 enum reiserfs_bh_state_bits { 2820 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ 2821 BH_JDirty_wait, 2822 /* 2823 * disk block was taken off free list before being in a 2824 * finished transaction, or written to disk. Can be reused immed. 2825 */ 2826 BH_JNew, 2827 BH_JPrepared, 2828 BH_JRestore_dirty, 2829 BH_JTest, /* debugging only will go away */ 2830 }; 2831 2832 BUFFER_FNS(JDirty, journaled); 2833 TAS_BUFFER_FNS(JDirty, journaled); 2834 BUFFER_FNS(JDirty_wait, journal_dirty); 2835 TAS_BUFFER_FNS(JDirty_wait, journal_dirty); 2836 BUFFER_FNS(JNew, journal_new); 2837 TAS_BUFFER_FNS(JNew, journal_new); 2838 BUFFER_FNS(JPrepared, journal_prepared); 2839 TAS_BUFFER_FNS(JPrepared, journal_prepared); 2840 BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2841 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); 2842 BUFFER_FNS(JTest, journal_test); 2843 TAS_BUFFER_FNS(JTest, journal_test); 2844 2845 /* transaction handle which is passed around for all journal calls */ 2846 struct reiserfs_transaction_handle { 2847 /* 2848 * super for this FS when journal_begin was called. saves calls to 2849 * reiserfs_get_super also used by nested transactions to make 2850 * sure they are nesting on the right FS _must_ be first 2851 * in the handle 2852 */ 2853 struct super_block *t_super; 2854 2855 int t_refcount; 2856 int t_blocks_logged; /* number of blocks this writer has logged */ 2857 int t_blocks_allocated; /* number of blocks this writer allocated */ 2858 2859 /* sanity check, equals the current trans id */ 2860 unsigned int t_trans_id; 2861 2862 void *t_handle_save; /* save existing current->journal_info */ 2863 2864 /* 2865 * if new block allocation occurres, that block 2866 * should be displaced from others 2867 */ 2868 unsigned displace_new_blocks:1; 2869 2870 struct list_head t_list; 2871 }; 2872 2873 /* 2874 * used to keep track of ordered and tail writes, attached to the buffer 2875 * head through b_journal_head. 2876 */ 2877 struct reiserfs_jh { 2878 struct reiserfs_journal_list *jl; 2879 struct buffer_head *bh; 2880 struct list_head list; 2881 }; 2882 2883 void reiserfs_free_jh(struct buffer_head *bh); 2884 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); 2885 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); 2886 int journal_mark_dirty(struct reiserfs_transaction_handle *, 2887 struct buffer_head *bh); 2888 2889 static inline int reiserfs_file_data_log(struct inode *inode) 2890 { 2891 if (reiserfs_data_log(inode->i_sb) || 2892 (REISERFS_I(inode)->i_flags & i_data_log)) 2893 return 1; 2894 return 0; 2895 } 2896 2897 static inline int reiserfs_transaction_running(struct super_block *s) 2898 { 2899 struct reiserfs_transaction_handle *th = current->journal_info; 2900 if (th && th->t_super == s) 2901 return 1; 2902 if (th && th->t_super == NULL) 2903 BUG(); 2904 return 0; 2905 } 2906 2907 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) 2908 { 2909 return th->t_blocks_allocated - th->t_blocks_logged; 2910 } 2911 2912 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct 2913 super_block 2914 *, 2915 int count); 2916 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); 2917 void reiserfs_vfs_truncate_file(struct inode *inode); 2918 int reiserfs_commit_page(struct inode *inode, struct page *page, 2919 unsigned from, unsigned to); 2920 void reiserfs_flush_old_commits(struct super_block *); 2921 int reiserfs_commit_for_inode(struct inode *); 2922 int reiserfs_inode_needs_commit(struct inode *); 2923 void reiserfs_update_inode_transaction(struct inode *); 2924 void reiserfs_wait_on_write_block(struct super_block *s); 2925 void reiserfs_block_writes(struct reiserfs_transaction_handle *th); 2926 void reiserfs_allow_writes(struct super_block *s); 2927 void reiserfs_check_lock_depth(struct super_block *s, char *caller); 2928 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, 2929 int wait); 2930 void reiserfs_restore_prepared_buffer(struct super_block *, 2931 struct buffer_head *bh); 2932 int journal_init(struct super_block *, const char *j_dev_name, int old_format, 2933 unsigned int); 2934 int journal_release(struct reiserfs_transaction_handle *, struct super_block *); 2935 int journal_release_error(struct reiserfs_transaction_handle *, 2936 struct super_block *); 2937 int journal_end(struct reiserfs_transaction_handle *); 2938 int journal_end_sync(struct reiserfs_transaction_handle *); 2939 int journal_mark_freed(struct reiserfs_transaction_handle *, 2940 struct super_block *, b_blocknr_t blocknr); 2941 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); 2942 int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, 2943 int bit_nr, int searchall, b_blocknr_t *next); 2944 int journal_begin(struct reiserfs_transaction_handle *, 2945 struct super_block *sb, unsigned long); 2946 int journal_join_abort(struct reiserfs_transaction_handle *, 2947 struct super_block *sb); 2948 void reiserfs_abort_journal(struct super_block *sb, int errno); 2949 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); 2950 int reiserfs_allocate_list_bitmaps(struct super_block *s, 2951 struct reiserfs_list_bitmap *, unsigned int); 2952 2953 void reiserfs_schedule_old_flush(struct super_block *s); 2954 void reiserfs_cancel_old_flush(struct super_block *s); 2955 void add_save_link(struct reiserfs_transaction_handle *th, 2956 struct inode *inode, int truncate); 2957 int remove_save_link(struct inode *inode, int truncate); 2958 2959 /* objectid.c */ 2960 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); 2961 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, 2962 __u32 objectid_to_release); 2963 int reiserfs_convert_objectid_map_v1(struct super_block *); 2964 2965 /* stree.c */ 2966 int B_IS_IN_TREE(const struct buffer_head *); 2967 extern void copy_item_head(struct item_head *to, 2968 const struct item_head *from); 2969 2970 /* first key is in cpu form, second - le */ 2971 extern int comp_short_keys(const struct reiserfs_key *le_key, 2972 const struct cpu_key *cpu_key); 2973 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); 2974 2975 /* both are in le form */ 2976 extern int comp_le_keys(const struct reiserfs_key *, 2977 const struct reiserfs_key *); 2978 extern int comp_short_le_keys(const struct reiserfs_key *, 2979 const struct reiserfs_key *); 2980 2981 /* * get key version from on disk key - kludge */ 2982 static inline int le_key_version(const struct reiserfs_key *key) 2983 { 2984 int type; 2985 2986 type = offset_v2_k_type(&(key->u.k_offset_v2)); 2987 if (type != TYPE_DIRECT && type != TYPE_INDIRECT 2988 && type != TYPE_DIRENTRY) 2989 return KEY_FORMAT_3_5; 2990 2991 return KEY_FORMAT_3_6; 2992 2993 } 2994 2995 static inline void copy_key(struct reiserfs_key *to, 2996 const struct reiserfs_key *from) 2997 { 2998 memcpy(to, from, KEY_SIZE); 2999 } 3000 3001 int comp_items(const struct item_head *stored_ih, const struct treepath *path); 3002 const struct reiserfs_key *get_rkey(const struct treepath *chk_path, 3003 const struct super_block *sb); 3004 int search_by_key(struct super_block *, const struct cpu_key *, 3005 struct treepath *, int); 3006 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) 3007 int search_for_position_by_key(struct super_block *sb, 3008 const struct cpu_key *cpu_key, 3009 struct treepath *search_path); 3010 extern void decrement_bcount(struct buffer_head *bh); 3011 void decrement_counters_in_path(struct treepath *search_path); 3012 void pathrelse(struct treepath *search_path); 3013 int reiserfs_check_path(struct treepath *p); 3014 void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); 3015 3016 int reiserfs_insert_item(struct reiserfs_transaction_handle *th, 3017 struct treepath *path, 3018 const struct cpu_key *key, 3019 struct item_head *ih, 3020 struct inode *inode, const char *body); 3021 3022 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, 3023 struct treepath *path, 3024 const struct cpu_key *key, 3025 struct inode *inode, 3026 const char *body, int paste_size); 3027 3028 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, 3029 struct treepath *path, 3030 struct cpu_key *key, 3031 struct inode *inode, 3032 struct page *page, loff_t new_file_size); 3033 3034 int reiserfs_delete_item(struct reiserfs_transaction_handle *th, 3035 struct treepath *path, 3036 const struct cpu_key *key, 3037 struct inode *inode, struct buffer_head *un_bh); 3038 3039 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, 3040 struct inode *inode, struct reiserfs_key *key); 3041 int reiserfs_delete_object(struct reiserfs_transaction_handle *th, 3042 struct inode *inode); 3043 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, 3044 struct inode *inode, struct page *, 3045 int update_timestamps); 3046 3047 #define i_block_size(inode) ((inode)->i_sb->s_blocksize) 3048 #define file_size(inode) ((inode)->i_size) 3049 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) 3050 3051 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ 3052 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) 3053 3054 void padd_item(char *item, int total_length, int length); 3055 3056 /* inode.c */ 3057 /* args for the create parameter of reiserfs_get_block */ 3058 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ 3059 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ 3060 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ 3061 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ 3062 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ 3063 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ 3064 3065 void reiserfs_read_locked_inode(struct inode *inode, 3066 struct reiserfs_iget_args *args); 3067 int reiserfs_find_actor(struct inode *inode, void *p); 3068 int reiserfs_init_locked_inode(struct inode *inode, void *p); 3069 void reiserfs_evict_inode(struct inode *inode); 3070 int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3071 int reiserfs_get_block(struct inode *inode, sector_t block, 3072 struct buffer_head *bh_result, int create); 3073 struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3074 int fh_len, int fh_type); 3075 struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, 3076 int fh_len, int fh_type); 3077 int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, 3078 struct inode *parent); 3079 3080 int reiserfs_truncate_file(struct inode *, int update_timestamps); 3081 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, 3082 int type, int key_length); 3083 void make_le_item_head(struct item_head *ih, const struct cpu_key *key, 3084 int version, 3085 loff_t offset, int type, int length, int entry_count); 3086 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); 3087 3088 struct reiserfs_security_handle; 3089 int reiserfs_new_inode(struct reiserfs_transaction_handle *th, 3090 struct inode *dir, umode_t mode, 3091 const char *symname, loff_t i_size, 3092 struct dentry *dentry, struct inode *inode, 3093 struct reiserfs_security_handle *security); 3094 3095 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, 3096 struct inode *inode, loff_t size); 3097 3098 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, 3099 struct inode *inode) 3100 { 3101 reiserfs_update_sd_size(th, inode, inode->i_size); 3102 } 3103 3104 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); 3105 int reiserfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3106 struct iattr *attr); 3107 3108 int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); 3109 3110 /* namei.c */ 3111 void reiserfs_init_priv_inode(struct inode *inode); 3112 void set_de_name_and_namelen(struct reiserfs_dir_entry *de); 3113 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, 3114 struct treepath *path, struct reiserfs_dir_entry *de); 3115 struct dentry *reiserfs_get_parent(struct dentry *); 3116 3117 #ifdef CONFIG_REISERFS_PROC_INFO 3118 int reiserfs_proc_info_init(struct super_block *sb); 3119 int reiserfs_proc_info_done(struct super_block *sb); 3120 int reiserfs_proc_info_global_init(void); 3121 int reiserfs_proc_info_global_done(void); 3122 3123 #define PROC_EXP( e ) e 3124 3125 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data 3126 #define PROC_INFO_MAX( sb, field, value ) \ 3127 __PINFO( sb ).field = \ 3128 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value ) 3129 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) ) 3130 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) ) 3131 #define PROC_INFO_BH_STAT( sb, bh, level ) \ 3132 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \ 3133 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \ 3134 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) ) 3135 #else 3136 static inline int reiserfs_proc_info_init(struct super_block *sb) 3137 { 3138 return 0; 3139 } 3140 3141 static inline int reiserfs_proc_info_done(struct super_block *sb) 3142 { 3143 return 0; 3144 } 3145 3146 static inline int reiserfs_proc_info_global_init(void) 3147 { 3148 return 0; 3149 } 3150 3151 static inline int reiserfs_proc_info_global_done(void) 3152 { 3153 return 0; 3154 } 3155 3156 #define PROC_EXP( e ) 3157 #define VOID_V ( ( void ) 0 ) 3158 #define PROC_INFO_MAX( sb, field, value ) VOID_V 3159 #define PROC_INFO_INC( sb, field ) VOID_V 3160 #define PROC_INFO_ADD( sb, field, val ) VOID_V 3161 #define PROC_INFO_BH_STAT(sb, bh, n_node_level) VOID_V 3162 #endif 3163 3164 /* dir.c */ 3165 extern const struct inode_operations reiserfs_dir_inode_operations; 3166 extern const struct inode_operations reiserfs_symlink_inode_operations; 3167 extern const struct inode_operations reiserfs_special_inode_operations; 3168 extern const struct file_operations reiserfs_dir_operations; 3169 int reiserfs_readdir_inode(struct inode *, struct dir_context *); 3170 3171 /* tail_conversion.c */ 3172 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *, 3173 struct treepath *, struct buffer_head *, loff_t); 3174 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *, 3175 struct page *, struct treepath *, const struct cpu_key *, 3176 loff_t, char *); 3177 void reiserfs_unmap_buffer(struct buffer_head *); 3178 3179 /* file.c */ 3180 extern const struct inode_operations reiserfs_file_inode_operations; 3181 extern const struct inode_operations reiserfs_priv_file_inode_operations; 3182 extern const struct file_operations reiserfs_file_operations; 3183 extern const struct address_space_operations reiserfs_address_space_operations; 3184 3185 /* fix_nodes.c */ 3186 3187 int fix_nodes(int n_op_mode, struct tree_balance *tb, 3188 struct item_head *ins_ih, const void *); 3189 void unfix_nodes(struct tree_balance *); 3190 3191 /* prints.c */ 3192 void __reiserfs_panic(struct super_block *s, const char *id, 3193 const char *function, const char *fmt, ...) 3194 __attribute__ ((noreturn)); 3195 #define reiserfs_panic(s, id, fmt, args...) \ 3196 __reiserfs_panic(s, id, __func__, fmt, ##args) 3197 void __reiserfs_error(struct super_block *s, const char *id, 3198 const char *function, const char *fmt, ...); 3199 #define reiserfs_error(s, id, fmt, args...) \ 3200 __reiserfs_error(s, id, __func__, fmt, ##args) 3201 void reiserfs_info(struct super_block *s, const char *fmt, ...); 3202 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...); 3203 void print_indirect_item(struct buffer_head *bh, int item_num); 3204 void store_print_tb(struct tree_balance *tb); 3205 void print_cur_tb(char *mes); 3206 void print_de(struct reiserfs_dir_entry *de); 3207 void print_bi(struct buffer_info *bi, char *mes); 3208 #define PRINT_LEAF_ITEMS 1 /* print all items */ 3209 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */ 3210 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */ 3211 void print_block(struct buffer_head *bh, ...); 3212 void print_bmap(struct super_block *s, int silent); 3213 void print_bmap_block(int i, char *data, int size, int silent); 3214 /*void print_super_block (struct super_block * s, char * mes);*/ 3215 void print_objectid_map(struct super_block *s); 3216 void print_block_head(struct buffer_head *bh, char *mes); 3217 void check_leaf(struct buffer_head *bh); 3218 void check_internal(struct buffer_head *bh); 3219 void print_statistics(struct super_block *s); 3220 char *reiserfs_hashname(int code); 3221 3222 /* lbalance.c */ 3223 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num, 3224 int mov_bytes, struct buffer_head *Snew); 3225 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes); 3226 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes); 3227 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first, 3228 int del_num, int del_bytes); 3229 void leaf_insert_into_buf(struct buffer_info *bi, int before, 3230 struct item_head * const inserted_item_ih, 3231 const char * const inserted_item_body, 3232 int zeros_number); 3233 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num, 3234 int pos_in_item, int paste_size, 3235 const char * const body, int zeros_number); 3236 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num, 3237 int pos_in_item, int cut_size); 3238 void leaf_paste_entries(struct buffer_info *bi, int item_num, int before, 3239 int new_entry_count, struct reiserfs_de_head *new_dehs, 3240 const char *records, int paste_size); 3241 /* ibalance.c */ 3242 int balance_internal(struct tree_balance *, int, int, struct item_head *, 3243 struct buffer_head **); 3244 3245 /* do_balance.c */ 3246 void do_balance_mark_leaf_dirty(struct tree_balance *tb, 3247 struct buffer_head *bh, int flag); 3248 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty 3249 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty 3250 3251 void do_balance(struct tree_balance *tb, struct item_head *ih, 3252 const char *body, int flag); 3253 void reiserfs_invalidate_buffer(struct tree_balance *tb, 3254 struct buffer_head *bh); 3255 3256 int get_left_neighbor_position(struct tree_balance *tb, int h); 3257 int get_right_neighbor_position(struct tree_balance *tb, int h); 3258 void replace_key(struct tree_balance *tb, struct buffer_head *, int, 3259 struct buffer_head *, int); 3260 void make_empty_node(struct buffer_info *); 3261 struct buffer_head *get_FEB(struct tree_balance *); 3262 3263 /* bitmap.c */ 3264 3265 /* 3266 * structure contains hints for block allocator, and it is a container for 3267 * arguments, such as node, search path, transaction_handle, etc. 3268 */ 3269 struct __reiserfs_blocknr_hint { 3270 /* inode passed to allocator, if we allocate unf. nodes */ 3271 struct inode *inode; 3272 3273 sector_t block; /* file offset, in blocks */ 3274 struct in_core_key key; 3275 3276 /* 3277 * search path, used by allocator to deternine search_start by 3278 * various ways 3279 */ 3280 struct treepath *path; 3281 3282 /* 3283 * transaction handle is needed to log super blocks 3284 * and bitmap blocks changes 3285 */ 3286 struct reiserfs_transaction_handle *th; 3287 3288 b_blocknr_t beg, end; 3289 3290 /* 3291 * a field used to transfer search start value (block number) 3292 * between different block allocator procedures 3293 * (determine_search_start() and others) 3294 */ 3295 b_blocknr_t search_start; 3296 3297 /* 3298 * is set in determine_prealloc_size() function, 3299 * used by underlayed function that do actual allocation 3300 */ 3301 int prealloc_size; 3302 3303 /* 3304 * the allocator uses different polices for getting disk 3305 * space for formatted/unformatted blocks with/without preallocation 3306 */ 3307 unsigned formatted_node:1; 3308 unsigned preallocate:1; 3309 }; 3310 3311 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t; 3312 3313 int reiserfs_parse_alloc_options(struct super_block *, char *); 3314 void reiserfs_init_alloc_options(struct super_block *s); 3315 3316 /* 3317 * given a directory, this will tell you what packing locality 3318 * to use for a new object underneat it. The locality is returned 3319 * in disk byte order (le). 3320 */ 3321 __le32 reiserfs_choose_packing(struct inode *dir); 3322 3323 void show_alloc_options(struct seq_file *seq, struct super_block *s); 3324 int reiserfs_init_bitmap_cache(struct super_block *sb); 3325 void reiserfs_free_bitmap_cache(struct super_block *sb); 3326 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info); 3327 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap); 3328 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value); 3329 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *, 3330 b_blocknr_t, int for_unformatted); 3331 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int, 3332 int); 3333 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb, 3334 b_blocknr_t * new_blocknrs, 3335 int amount_needed) 3336 { 3337 reiserfs_blocknr_hint_t hint = { 3338 .th = tb->transaction_handle, 3339 .path = tb->tb_path, 3340 .inode = NULL, 3341 .key = tb->key, 3342 .block = 0, 3343 .formatted_node = 1 3344 }; 3345 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed, 3346 0); 3347 } 3348 3349 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle 3350 *th, struct inode *inode, 3351 b_blocknr_t * new_blocknrs, 3352 struct treepath *path, 3353 sector_t block) 3354 { 3355 reiserfs_blocknr_hint_t hint = { 3356 .th = th, 3357 .path = path, 3358 .inode = inode, 3359 .block = block, 3360 .formatted_node = 0, 3361 .preallocate = 0 3362 }; 3363 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3364 } 3365 3366 #ifdef REISERFS_PREALLOCATE 3367 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle 3368 *th, struct inode *inode, 3369 b_blocknr_t * new_blocknrs, 3370 struct treepath *path, 3371 sector_t block) 3372 { 3373 reiserfs_blocknr_hint_t hint = { 3374 .th = th, 3375 .path = path, 3376 .inode = inode, 3377 .block = block, 3378 .formatted_node = 0, 3379 .preallocate = 1 3380 }; 3381 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0); 3382 } 3383 3384 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th, 3385 struct inode *inode); 3386 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th); 3387 #endif 3388 3389 /* hashes.c */ 3390 __u32 keyed_hash(const signed char *msg, int len); 3391 __u32 yura_hash(const signed char *msg, int len); 3392 __u32 r5_hash(const signed char *msg, int len); 3393 3394 #define reiserfs_set_le_bit __set_bit_le 3395 #define reiserfs_test_and_set_le_bit __test_and_set_bit_le 3396 #define reiserfs_clear_le_bit __clear_bit_le 3397 #define reiserfs_test_and_clear_le_bit __test_and_clear_bit_le 3398 #define reiserfs_test_le_bit test_bit_le 3399 #define reiserfs_find_next_zero_le_bit find_next_zero_bit_le 3400 3401 /* 3402 * sometimes reiserfs_truncate may require to allocate few new blocks 3403 * to perform indirect2direct conversion. People probably used to 3404 * think, that truncate should work without problems on a filesystem 3405 * without free disk space. They may complain that they can not 3406 * truncate due to lack of free disk space. This spare space allows us 3407 * to not worry about it. 500 is probably too much, but it should be 3408 * absolutely safe 3409 */ 3410 #define SPARE_SPACE 500 3411 3412 /* prototypes from ioctl.c */ 3413 int reiserfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3414 int reiserfs_fileattr_set(struct mnt_idmap *idmap, 3415 struct dentry *dentry, struct fileattr *fa); 3416 long reiserfs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg); 3417 long reiserfs_compat_ioctl(struct file *filp, 3418 unsigned int cmd, unsigned long arg); 3419 int reiserfs_unpack(struct inode *inode); 3420
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.