1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DFS referral cache routines 4 * 5 * Copyright (c) 2018-2019 Paulo Alcantara <palcantara@suse.de> 6 */ 7 8 #include <linux/jhash.h> 9 #include <linux/ktime.h> 10 #include <linux/slab.h> 11 #include <linux/proc_fs.h> 12 #include <linux/nls.h> 13 #include <linux/workqueue.h> 14 #include <linux/uuid.h> 15 #include "cifsglob.h" 16 #include "smb2pdu.h" 17 #include "smb2proto.h" 18 #include "cifsproto.h" 19 #include "cifs_debug.h" 20 #include "cifs_unicode.h" 21 #include "smb2glob.h" 22 #include "dns_resolve.h" 23 #include "dfs.h" 24 25 #include "dfs_cache.h" 26 27 #define CACHE_HTABLE_SIZE 32 28 #define CACHE_MAX_ENTRIES 64 29 #define CACHE_MIN_TTL 120 /* 2 minutes */ 30 #define CACHE_DEFAULT_TTL 300 /* 5 minutes */ 31 32 struct cache_dfs_tgt { 33 char *name; 34 int path_consumed; 35 struct list_head list; 36 }; 37 38 struct cache_entry { 39 struct hlist_node hlist; 40 const char *path; 41 int hdr_flags; /* RESP_GET_DFS_REFERRAL.ReferralHeaderFlags */ 42 int ttl; /* DFS_REREFERRAL_V3.TimeToLive */ 43 int srvtype; /* DFS_REREFERRAL_V3.ServerType */ 44 int ref_flags; /* DFS_REREFERRAL_V3.ReferralEntryFlags */ 45 struct timespec64 etime; 46 int path_consumed; /* RESP_GET_DFS_REFERRAL.PathConsumed */ 47 int numtgts; 48 struct list_head tlist; 49 struct cache_dfs_tgt *tgthint; 50 }; 51 52 static struct kmem_cache *cache_slab __read_mostly; 53 struct workqueue_struct *dfscache_wq; 54 55 atomic_t dfs_cache_ttl; 56 57 static struct nls_table *cache_cp; 58 59 /* 60 * Number of entries in the cache 61 */ 62 static atomic_t cache_count; 63 64 static struct hlist_head cache_htable[CACHE_HTABLE_SIZE]; 65 static DECLARE_RWSEM(htable_rw_lock); 66 67 /** 68 * dfs_cache_canonical_path - get a canonical DFS path 69 * 70 * @path: DFS path 71 * @cp: codepage 72 * @remap: mapping type 73 * 74 * Return canonical path if success, otherwise error. 75 */ 76 char *dfs_cache_canonical_path(const char *path, const struct nls_table *cp, int remap) 77 { 78 char *tmp; 79 int plen = 0; 80 char *npath; 81 82 if (!path || strlen(path) < 3 || (*path != '\\' && *path != '/')) 83 return ERR_PTR(-EINVAL); 84 85 if (unlikely(strcmp(cp->charset, cache_cp->charset))) { 86 tmp = (char *)cifs_strndup_to_utf16(path, strlen(path), &plen, cp, remap); 87 if (!tmp) { 88 cifs_dbg(VFS, "%s: failed to convert path to utf16\n", __func__); 89 return ERR_PTR(-EINVAL); 90 } 91 92 npath = cifs_strndup_from_utf16(tmp, plen, true, cache_cp); 93 kfree(tmp); 94 95 if (!npath) { 96 cifs_dbg(VFS, "%s: failed to convert path from utf16\n", __func__); 97 return ERR_PTR(-EINVAL); 98 } 99 } else { 100 npath = kstrdup(path, GFP_KERNEL); 101 if (!npath) 102 return ERR_PTR(-ENOMEM); 103 } 104 convert_delimiter(npath, '\\'); 105 return npath; 106 } 107 108 static inline bool cache_entry_expired(const struct cache_entry *ce) 109 { 110 struct timespec64 ts; 111 112 ktime_get_coarse_real_ts64(&ts); 113 return timespec64_compare(&ts, &ce->etime) >= 0; 114 } 115 116 static inline void free_tgts(struct cache_entry *ce) 117 { 118 struct cache_dfs_tgt *t, *n; 119 120 list_for_each_entry_safe(t, n, &ce->tlist, list) { 121 list_del(&t->list); 122 kfree(t->name); 123 kfree(t); 124 } 125 } 126 127 static inline void flush_cache_ent(struct cache_entry *ce) 128 { 129 hlist_del_init(&ce->hlist); 130 kfree(ce->path); 131 free_tgts(ce); 132 atomic_dec(&cache_count); 133 kmem_cache_free(cache_slab, ce); 134 } 135 136 static void flush_cache_ents(void) 137 { 138 int i; 139 140 for (i = 0; i < CACHE_HTABLE_SIZE; i++) { 141 struct hlist_head *l = &cache_htable[i]; 142 struct hlist_node *n; 143 struct cache_entry *ce; 144 145 hlist_for_each_entry_safe(ce, n, l, hlist) { 146 if (!hlist_unhashed(&ce->hlist)) 147 flush_cache_ent(ce); 148 } 149 } 150 } 151 152 /* 153 * dfs cache /proc file 154 */ 155 static int dfscache_proc_show(struct seq_file *m, void *v) 156 { 157 int i; 158 struct cache_entry *ce; 159 struct cache_dfs_tgt *t; 160 161 seq_puts(m, "DFS cache\n---------\n"); 162 163 down_read(&htable_rw_lock); 164 for (i = 0; i < CACHE_HTABLE_SIZE; i++) { 165 struct hlist_head *l = &cache_htable[i]; 166 167 hlist_for_each_entry(ce, l, hlist) { 168 if (hlist_unhashed(&ce->hlist)) 169 continue; 170 171 seq_printf(m, 172 "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n", 173 ce->path, ce->srvtype == DFS_TYPE_ROOT ? "root" : "link", 174 ce->ttl, ce->etime.tv_nsec, ce->hdr_flags, ce->ref_flags, 175 DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no", 176 ce->path_consumed, cache_entry_expired(ce) ? "yes" : "no"); 177 178 list_for_each_entry(t, &ce->tlist, list) { 179 seq_printf(m, " %s%s\n", 180 t->name, 181 READ_ONCE(ce->tgthint) == t ? " (target hint)" : ""); 182 } 183 } 184 } 185 up_read(&htable_rw_lock); 186 187 return 0; 188 } 189 190 static ssize_t dfscache_proc_write(struct file *file, const char __user *buffer, 191 size_t count, loff_t *ppos) 192 { 193 char c; 194 int rc; 195 196 rc = get_user(c, buffer); 197 if (rc) 198 return rc; 199 200 if (c != '') 201 return -EINVAL; 202 203 cifs_dbg(FYI, "clearing dfs cache\n"); 204 205 down_write(&htable_rw_lock); 206 flush_cache_ents(); 207 up_write(&htable_rw_lock); 208 209 return count; 210 } 211 212 static int dfscache_proc_open(struct inode *inode, struct file *file) 213 { 214 return single_open(file, dfscache_proc_show, NULL); 215 } 216 217 const struct proc_ops dfscache_proc_ops = { 218 .proc_open = dfscache_proc_open, 219 .proc_read = seq_read, 220 .proc_lseek = seq_lseek, 221 .proc_release = single_release, 222 .proc_write = dfscache_proc_write, 223 }; 224 225 #ifdef CONFIG_CIFS_DEBUG2 226 static inline void dump_tgts(const struct cache_entry *ce) 227 { 228 struct cache_dfs_tgt *t; 229 230 cifs_dbg(FYI, "target list:\n"); 231 list_for_each_entry(t, &ce->tlist, list) { 232 cifs_dbg(FYI, " %s%s\n", t->name, 233 READ_ONCE(ce->tgthint) == t ? " (target hint)" : ""); 234 } 235 } 236 237 static inline void dump_ce(const struct cache_entry *ce) 238 { 239 cifs_dbg(FYI, "cache entry: path=%s,type=%s,ttl=%d,etime=%ld,hdr_flags=0x%x,ref_flags=0x%x,interlink=%s,path_consumed=%d,expired=%s\n", 240 ce->path, 241 ce->srvtype == DFS_TYPE_ROOT ? "root" : "link", ce->ttl, 242 ce->etime.tv_nsec, 243 ce->hdr_flags, ce->ref_flags, 244 DFS_INTERLINK(ce->hdr_flags) ? "yes" : "no", 245 ce->path_consumed, 246 cache_entry_expired(ce) ? "yes" : "no"); 247 dump_tgts(ce); 248 } 249 250 static inline void dump_refs(const struct dfs_info3_param *refs, int numrefs) 251 { 252 int i; 253 254 cifs_dbg(FYI, "DFS referrals returned by the server:\n"); 255 for (i = 0; i < numrefs; i++) { 256 const struct dfs_info3_param *ref = &refs[i]; 257 258 cifs_dbg(FYI, 259 "\n" 260 "flags: 0x%x\n" 261 "path_consumed: %d\n" 262 "server_type: 0x%x\n" 263 "ref_flag: 0x%x\n" 264 "path_name: %s\n" 265 "node_name: %s\n" 266 "ttl: %d (%dm)\n", 267 ref->flags, ref->path_consumed, ref->server_type, 268 ref->ref_flag, ref->path_name, ref->node_name, 269 ref->ttl, ref->ttl / 60); 270 } 271 } 272 #else 273 #define dump_tgts(e) 274 #define dump_ce(e) 275 #define dump_refs(r, n) 276 #endif 277 278 /** 279 * dfs_cache_init - Initialize DFS referral cache. 280 * 281 * Return zero if initialized successfully, otherwise non-zero. 282 */ 283 int dfs_cache_init(void) 284 { 285 int rc; 286 int i; 287 288 dfscache_wq = alloc_workqueue("cifs-dfscache", 289 WQ_UNBOUND|WQ_FREEZABLE|WQ_MEM_RECLAIM, 290 0); 291 if (!dfscache_wq) 292 return -ENOMEM; 293 294 cache_slab = kmem_cache_create("cifs_dfs_cache", 295 sizeof(struct cache_entry), 0, 296 SLAB_HWCACHE_ALIGN, NULL); 297 if (!cache_slab) { 298 rc = -ENOMEM; 299 goto out_destroy_wq; 300 } 301 302 for (i = 0; i < CACHE_HTABLE_SIZE; i++) 303 INIT_HLIST_HEAD(&cache_htable[i]); 304 305 atomic_set(&cache_count, 0); 306 atomic_set(&dfs_cache_ttl, CACHE_DEFAULT_TTL); 307 cache_cp = load_nls("utf8"); 308 if (!cache_cp) 309 cache_cp = load_nls_default(); 310 311 cifs_dbg(FYI, "%s: initialized DFS referral cache\n", __func__); 312 return 0; 313 314 out_destroy_wq: 315 destroy_workqueue(dfscache_wq); 316 return rc; 317 } 318 319 static int cache_entry_hash(const void *data, int size, unsigned int *hash) 320 { 321 int i, clen; 322 const unsigned char *s = data; 323 wchar_t c; 324 unsigned int h = 0; 325 326 for (i = 0; i < size; i += clen) { 327 clen = cache_cp->char2uni(&s[i], size - i, &c); 328 if (unlikely(clen < 0)) { 329 cifs_dbg(VFS, "%s: can't convert char\n", __func__); 330 return clen; 331 } 332 c = cifs_toupper(c); 333 h = jhash(&c, sizeof(c), h); 334 } 335 *hash = h % CACHE_HTABLE_SIZE; 336 return 0; 337 } 338 339 /* Return target hint of a DFS cache entry */ 340 static inline char *get_tgt_name(const struct cache_entry *ce) 341 { 342 struct cache_dfs_tgt *t = READ_ONCE(ce->tgthint); 343 344 return t ? t->name : ERR_PTR(-ENOENT); 345 } 346 347 /* Return expire time out of a new entry's TTL */ 348 static inline struct timespec64 get_expire_time(int ttl) 349 { 350 struct timespec64 ts = { 351 .tv_sec = ttl, 352 .tv_nsec = 0, 353 }; 354 struct timespec64 now; 355 356 ktime_get_coarse_real_ts64(&now); 357 return timespec64_add(now, ts); 358 } 359 360 /* Allocate a new DFS target */ 361 static struct cache_dfs_tgt *alloc_target(const char *name, int path_consumed) 362 { 363 struct cache_dfs_tgt *t; 364 365 t = kmalloc(sizeof(*t), GFP_ATOMIC); 366 if (!t) 367 return ERR_PTR(-ENOMEM); 368 t->name = kstrdup(name, GFP_ATOMIC); 369 if (!t->name) { 370 kfree(t); 371 return ERR_PTR(-ENOMEM); 372 } 373 t->path_consumed = path_consumed; 374 INIT_LIST_HEAD(&t->list); 375 return t; 376 } 377 378 /* 379 * Copy DFS referral information to a cache entry and conditionally update 380 * target hint. 381 */ 382 static int copy_ref_data(const struct dfs_info3_param *refs, int numrefs, 383 struct cache_entry *ce, const char *tgthint) 384 { 385 struct cache_dfs_tgt *target; 386 int i; 387 388 ce->ttl = max_t(int, refs[0].ttl, CACHE_MIN_TTL); 389 ce->etime = get_expire_time(ce->ttl); 390 ce->srvtype = refs[0].server_type; 391 ce->hdr_flags = refs[0].flags; 392 ce->ref_flags = refs[0].ref_flag; 393 ce->path_consumed = refs[0].path_consumed; 394 395 for (i = 0; i < numrefs; i++) { 396 struct cache_dfs_tgt *t; 397 398 t = alloc_target(refs[i].node_name, refs[i].path_consumed); 399 if (IS_ERR(t)) { 400 free_tgts(ce); 401 return PTR_ERR(t); 402 } 403 if (tgthint && !strcasecmp(t->name, tgthint)) { 404 list_add(&t->list, &ce->tlist); 405 tgthint = NULL; 406 } else { 407 list_add_tail(&t->list, &ce->tlist); 408 } 409 ce->numtgts++; 410 } 411 412 target = list_first_entry_or_null(&ce->tlist, struct cache_dfs_tgt, 413 list); 414 WRITE_ONCE(ce->tgthint, target); 415 416 return 0; 417 } 418 419 /* Allocate a new cache entry */ 420 static struct cache_entry *alloc_cache_entry(struct dfs_info3_param *refs, int numrefs) 421 { 422 struct cache_entry *ce; 423 int rc; 424 425 ce = kmem_cache_zalloc(cache_slab, GFP_KERNEL); 426 if (!ce) 427 return ERR_PTR(-ENOMEM); 428 429 ce->path = refs[0].path_name; 430 refs[0].path_name = NULL; 431 432 INIT_HLIST_NODE(&ce->hlist); 433 INIT_LIST_HEAD(&ce->tlist); 434 435 rc = copy_ref_data(refs, numrefs, ce, NULL); 436 if (rc) { 437 kfree(ce->path); 438 kmem_cache_free(cache_slab, ce); 439 ce = ERR_PTR(rc); 440 } 441 return ce; 442 } 443 444 static void remove_oldest_entry_locked(void) 445 { 446 int i; 447 struct cache_entry *ce; 448 struct cache_entry *to_del = NULL; 449 450 WARN_ON(!rwsem_is_locked(&htable_rw_lock)); 451 452 for (i = 0; i < CACHE_HTABLE_SIZE; i++) { 453 struct hlist_head *l = &cache_htable[i]; 454 455 hlist_for_each_entry(ce, l, hlist) { 456 if (hlist_unhashed(&ce->hlist)) 457 continue; 458 if (!to_del || timespec64_compare(&ce->etime, 459 &to_del->etime) < 0) 460 to_del = ce; 461 } 462 } 463 464 if (!to_del) { 465 cifs_dbg(FYI, "%s: no entry to remove\n", __func__); 466 return; 467 } 468 469 cifs_dbg(FYI, "%s: removing entry\n", __func__); 470 dump_ce(to_del); 471 flush_cache_ent(to_del); 472 } 473 474 /* Add a new DFS cache entry */ 475 static struct cache_entry *add_cache_entry_locked(struct dfs_info3_param *refs, 476 int numrefs) 477 { 478 int rc; 479 struct cache_entry *ce; 480 unsigned int hash; 481 int ttl; 482 483 WARN_ON(!rwsem_is_locked(&htable_rw_lock)); 484 485 if (atomic_read(&cache_count) >= CACHE_MAX_ENTRIES) { 486 cifs_dbg(FYI, "%s: reached max cache size (%d)\n", __func__, CACHE_MAX_ENTRIES); 487 remove_oldest_entry_locked(); 488 } 489 490 rc = cache_entry_hash(refs[0].path_name, strlen(refs[0].path_name), &hash); 491 if (rc) 492 return ERR_PTR(rc); 493 494 ce = alloc_cache_entry(refs, numrefs); 495 if (IS_ERR(ce)) 496 return ce; 497 498 ttl = min_t(int, atomic_read(&dfs_cache_ttl), ce->ttl); 499 atomic_set(&dfs_cache_ttl, ttl); 500 501 hlist_add_head(&ce->hlist, &cache_htable[hash]); 502 dump_ce(ce); 503 504 atomic_inc(&cache_count); 505 506 return ce; 507 } 508 509 /* Check if two DFS paths are equal. @s1 and @s2 are expected to be in @cache_cp's charset */ 510 static bool dfs_path_equal(const char *s1, int len1, const char *s2, int len2) 511 { 512 int i, l1, l2; 513 wchar_t c1, c2; 514 515 if (len1 != len2) 516 return false; 517 518 for (i = 0; i < len1; i += l1) { 519 l1 = cache_cp->char2uni(&s1[i], len1 - i, &c1); 520 l2 = cache_cp->char2uni(&s2[i], len2 - i, &c2); 521 if (unlikely(l1 < 0 && l2 < 0)) { 522 if (s1[i] != s2[i]) 523 return false; 524 l1 = 1; 525 continue; 526 } 527 if (l1 != l2) 528 return false; 529 if (cifs_toupper(c1) != cifs_toupper(c2)) 530 return false; 531 } 532 return true; 533 } 534 535 static struct cache_entry *__lookup_cache_entry(const char *path, unsigned int hash, int len) 536 { 537 struct cache_entry *ce; 538 539 hlist_for_each_entry(ce, &cache_htable[hash], hlist) { 540 if (dfs_path_equal(ce->path, strlen(ce->path), path, len)) { 541 dump_ce(ce); 542 return ce; 543 } 544 } 545 return ERR_PTR(-ENOENT); 546 } 547 548 /* 549 * Find a DFS cache entry in hash table and optionally check prefix path against normalized @path. 550 * 551 * Use whole path components in the match. Must be called with htable_rw_lock held. 552 * 553 * Return cached entry if successful. 554 * Return ERR_PTR(-ENOENT) if the entry is not found. 555 * Return error ptr otherwise. 556 */ 557 static struct cache_entry *lookup_cache_entry(const char *path) 558 { 559 struct cache_entry *ce; 560 int cnt = 0; 561 const char *s = path, *e; 562 char sep = *s; 563 unsigned int hash; 564 int rc; 565 566 while ((s = strchr(s, sep)) && ++cnt < 3) 567 s++; 568 569 if (cnt < 3) { 570 rc = cache_entry_hash(path, strlen(path), &hash); 571 if (rc) 572 return ERR_PTR(rc); 573 return __lookup_cache_entry(path, hash, strlen(path)); 574 } 575 /* 576 * Handle paths that have more than two path components and are a complete prefix of the DFS 577 * referral request path (@path). 578 * 579 * See MS-DFSC 3.2.5.5 "Receiving a Root Referral Request or Link Referral Request". 580 */ 581 e = path + strlen(path) - 1; 582 while (e > s) { 583 int len; 584 585 /* skip separators */ 586 while (e > s && *e == sep) 587 e--; 588 if (e == s) 589 break; 590 591 len = e + 1 - path; 592 rc = cache_entry_hash(path, len, &hash); 593 if (rc) 594 return ERR_PTR(rc); 595 ce = __lookup_cache_entry(path, hash, len); 596 if (!IS_ERR(ce)) 597 return ce; 598 599 /* backward until separator */ 600 while (e > s && *e != sep) 601 e--; 602 } 603 return ERR_PTR(-ENOENT); 604 } 605 606 /** 607 * dfs_cache_destroy - destroy DFS referral cache 608 */ 609 void dfs_cache_destroy(void) 610 { 611 unload_nls(cache_cp); 612 flush_cache_ents(); 613 kmem_cache_destroy(cache_slab); 614 destroy_workqueue(dfscache_wq); 615 616 cifs_dbg(FYI, "%s: destroyed DFS referral cache\n", __func__); 617 } 618 619 /* Update a cache entry with the new referral in @refs */ 620 static int update_cache_entry_locked(struct cache_entry *ce, const struct dfs_info3_param *refs, 621 int numrefs) 622 { 623 struct cache_dfs_tgt *target; 624 char *th = NULL; 625 int rc; 626 627 WARN_ON(!rwsem_is_locked(&htable_rw_lock)); 628 629 target = READ_ONCE(ce->tgthint); 630 if (target) { 631 th = kstrdup(target->name, GFP_ATOMIC); 632 if (!th) 633 return -ENOMEM; 634 } 635 636 free_tgts(ce); 637 ce->numtgts = 0; 638 639 rc = copy_ref_data(refs, numrefs, ce, th); 640 641 kfree(th); 642 643 return rc; 644 } 645 646 static int get_dfs_referral(const unsigned int xid, struct cifs_ses *ses, const char *path, 647 struct dfs_info3_param **refs, int *numrefs) 648 { 649 int rc; 650 int i; 651 652 *refs = NULL; 653 *numrefs = 0; 654 655 if (!ses || !ses->server || !ses->server->ops->get_dfs_refer) 656 return -EOPNOTSUPP; 657 if (unlikely(!cache_cp)) 658 return -EINVAL; 659 660 cifs_dbg(FYI, "%s: ipc=%s referral=%s\n", __func__, ses->tcon_ipc->tree_name, path); 661 rc = ses->server->ops->get_dfs_refer(xid, ses, path, refs, numrefs, cache_cp, 662 NO_MAP_UNI_RSVD); 663 if (!rc) { 664 struct dfs_info3_param *ref = *refs; 665 666 for (i = 0; i < *numrefs; i++) 667 convert_delimiter(ref[i].path_name, '\\'); 668 } 669 return rc; 670 } 671 672 /* 673 * Find, create or update a DFS cache entry. 674 * 675 * If the entry wasn't found, it will create a new one. Or if it was found but 676 * expired, then it will update the entry accordingly. 677 * 678 * For interlinks, cifs_mount() and expand_dfs_referral() are supposed to 679 * handle them properly. 680 * 681 * On success, return entry with acquired lock for reading, otherwise error ptr. 682 */ 683 static struct cache_entry *cache_refresh_path(const unsigned int xid, 684 struct cifs_ses *ses, 685 const char *path, 686 bool force_refresh) 687 { 688 struct dfs_info3_param *refs = NULL; 689 struct cache_entry *ce; 690 int numrefs = 0; 691 int rc; 692 693 cifs_dbg(FYI, "%s: search path: %s\n", __func__, path); 694 695 down_read(&htable_rw_lock); 696 697 ce = lookup_cache_entry(path); 698 if (!IS_ERR(ce)) { 699 if (!force_refresh && !cache_entry_expired(ce)) 700 return ce; 701 } else if (PTR_ERR(ce) != -ENOENT) { 702 up_read(&htable_rw_lock); 703 return ce; 704 } 705 706 /* 707 * Unlock shared access as we don't want to hold any locks while getting 708 * a new referral. The @ses used for performing the I/O could be 709 * reconnecting and it acquires @htable_rw_lock to look up the dfs cache 710 * in order to failover -- if necessary. 711 */ 712 up_read(&htable_rw_lock); 713 714 /* 715 * Either the entry was not found, or it is expired, or it is a forced 716 * refresh. 717 * Request a new DFS referral in order to create or update a cache entry. 718 */ 719 rc = get_dfs_referral(xid, ses, path, &refs, &numrefs); 720 if (rc) { 721 ce = ERR_PTR(rc); 722 goto out; 723 } 724 725 dump_refs(refs, numrefs); 726 727 down_write(&htable_rw_lock); 728 /* Re-check as another task might have it added or refreshed already */ 729 ce = lookup_cache_entry(path); 730 if (!IS_ERR(ce)) { 731 if (force_refresh || cache_entry_expired(ce)) { 732 rc = update_cache_entry_locked(ce, refs, numrefs); 733 if (rc) 734 ce = ERR_PTR(rc); 735 } 736 } else if (PTR_ERR(ce) == -ENOENT) { 737 ce = add_cache_entry_locked(refs, numrefs); 738 } 739 740 if (IS_ERR(ce)) { 741 up_write(&htable_rw_lock); 742 goto out; 743 } 744 745 downgrade_write(&htable_rw_lock); 746 out: 747 free_dfs_info_array(refs, numrefs); 748 return ce; 749 } 750 751 /* 752 * Set up a DFS referral from a given cache entry. 753 * 754 * Must be called with htable_rw_lock held. 755 */ 756 static int setup_referral(const char *path, struct cache_entry *ce, 757 struct dfs_info3_param *ref, const char *target) 758 { 759 int rc; 760 761 cifs_dbg(FYI, "%s: set up new ref\n", __func__); 762 763 memset(ref, 0, sizeof(*ref)); 764 765 ref->path_name = kstrdup(path, GFP_ATOMIC); 766 if (!ref->path_name) 767 return -ENOMEM; 768 769 ref->node_name = kstrdup(target, GFP_ATOMIC); 770 if (!ref->node_name) { 771 rc = -ENOMEM; 772 goto err_free_path; 773 } 774 775 ref->path_consumed = ce->path_consumed; 776 ref->ttl = ce->ttl; 777 ref->server_type = ce->srvtype; 778 ref->ref_flag = ce->ref_flags; 779 ref->flags = ce->hdr_flags; 780 781 return 0; 782 783 err_free_path: 784 kfree(ref->path_name); 785 ref->path_name = NULL; 786 return rc; 787 } 788 789 /* Return target list of a DFS cache entry */ 790 static int get_targets(struct cache_entry *ce, struct dfs_cache_tgt_list *tl) 791 { 792 int rc; 793 struct list_head *head = &tl->tl_list; 794 struct cache_dfs_tgt *t; 795 struct dfs_cache_tgt_iterator *it, *nit; 796 797 memset(tl, 0, sizeof(*tl)); 798 INIT_LIST_HEAD(head); 799 800 list_for_each_entry(t, &ce->tlist, list) { 801 it = kzalloc(sizeof(*it), GFP_ATOMIC); 802 if (!it) { 803 rc = -ENOMEM; 804 goto err_free_it; 805 } 806 807 it->it_name = kstrdup(t->name, GFP_ATOMIC); 808 if (!it->it_name) { 809 kfree(it); 810 rc = -ENOMEM; 811 goto err_free_it; 812 } 813 it->it_path_consumed = t->path_consumed; 814 815 if (READ_ONCE(ce->tgthint) == t) 816 list_add(&it->it_list, head); 817 else 818 list_add_tail(&it->it_list, head); 819 } 820 821 tl->tl_numtgts = ce->numtgts; 822 823 return 0; 824 825 err_free_it: 826 list_for_each_entry_safe(it, nit, head, it_list) { 827 list_del(&it->it_list); 828 kfree(it->it_name); 829 kfree(it); 830 } 831 return rc; 832 } 833 834 /** 835 * dfs_cache_find - find a DFS cache entry 836 * 837 * If it doesn't find the cache entry, then it will get a DFS referral 838 * for @path and create a new entry. 839 * 840 * In case the cache entry exists but expired, it will get a DFS referral 841 * for @path and then update the respective cache entry. 842 * 843 * These parameters are passed down to the get_dfs_refer() call if it 844 * needs to be issued: 845 * @xid: syscall xid 846 * @ses: smb session to issue the request on 847 * @cp: codepage 848 * @remap: path character remapping type 849 * @path: path to lookup in DFS referral cache. 850 * 851 * @ref: when non-NULL, store single DFS referral result in it. 852 * @tgt_list: when non-NULL, store complete DFS target list in it. 853 * 854 * Return zero if the target was found, otherwise non-zero. 855 */ 856 int dfs_cache_find(const unsigned int xid, struct cifs_ses *ses, const struct nls_table *cp, 857 int remap, const char *path, struct dfs_info3_param *ref, 858 struct dfs_cache_tgt_list *tgt_list) 859 { 860 int rc; 861 const char *npath; 862 struct cache_entry *ce; 863 864 npath = dfs_cache_canonical_path(path, cp, remap); 865 if (IS_ERR(npath)) 866 return PTR_ERR(npath); 867 868 ce = cache_refresh_path(xid, ses, npath, false); 869 if (IS_ERR(ce)) { 870 rc = PTR_ERR(ce); 871 goto out_free_path; 872 } 873 874 if (ref) 875 rc = setup_referral(path, ce, ref, get_tgt_name(ce)); 876 else 877 rc = 0; 878 if (!rc && tgt_list) 879 rc = get_targets(ce, tgt_list); 880 881 up_read(&htable_rw_lock); 882 883 out_free_path: 884 kfree(npath); 885 return rc; 886 } 887 888 /** 889 * dfs_cache_noreq_find - find a DFS cache entry without sending any requests to 890 * the currently connected server. 891 * 892 * NOTE: This function will neither update a cache entry in case it was 893 * expired, nor create a new cache entry if @path hasn't been found. It heavily 894 * relies on an existing cache entry. 895 * 896 * @path: canonical DFS path to lookup in the DFS referral cache. 897 * @ref: when non-NULL, store single DFS referral result in it. 898 * @tgt_list: when non-NULL, store complete DFS target list in it. 899 * 900 * Return 0 if successful. 901 * Return -ENOENT if the entry was not found. 902 * Return non-zero for other errors. 903 */ 904 int dfs_cache_noreq_find(const char *path, struct dfs_info3_param *ref, 905 struct dfs_cache_tgt_list *tgt_list) 906 { 907 int rc; 908 struct cache_entry *ce; 909 910 cifs_dbg(FYI, "%s: path: %s\n", __func__, path); 911 912 down_read(&htable_rw_lock); 913 914 ce = lookup_cache_entry(path); 915 if (IS_ERR(ce)) { 916 rc = PTR_ERR(ce); 917 goto out_unlock; 918 } 919 920 if (ref) 921 rc = setup_referral(path, ce, ref, get_tgt_name(ce)); 922 else 923 rc = 0; 924 if (!rc && tgt_list) 925 rc = get_targets(ce, tgt_list); 926 927 out_unlock: 928 up_read(&htable_rw_lock); 929 return rc; 930 } 931 932 /** 933 * dfs_cache_noreq_update_tgthint - update target hint of a DFS cache entry 934 * without sending any requests to the currently connected server. 935 * 936 * NOTE: This function will neither update a cache entry in case it was 937 * expired, nor create a new cache entry if @path hasn't been found. It heavily 938 * relies on an existing cache entry. 939 * 940 * @path: canonical DFS path to lookup in DFS referral cache. 941 * @it: target iterator which contains the target hint to update the cache 942 * entry with. 943 * 944 * Return zero if the target hint was updated successfully, otherwise non-zero. 945 */ 946 void dfs_cache_noreq_update_tgthint(const char *path, const struct dfs_cache_tgt_iterator *it) 947 { 948 struct cache_dfs_tgt *t; 949 struct cache_entry *ce; 950 951 if (!path || !it) 952 return; 953 954 cifs_dbg(FYI, "%s: path: %s\n", __func__, path); 955 956 down_read(&htable_rw_lock); 957 958 ce = lookup_cache_entry(path); 959 if (IS_ERR(ce)) 960 goto out_unlock; 961 962 t = READ_ONCE(ce->tgthint); 963 964 if (unlikely(!strcasecmp(it->it_name, t->name))) 965 goto out_unlock; 966 967 list_for_each_entry(t, &ce->tlist, list) { 968 if (!strcasecmp(t->name, it->it_name)) { 969 WRITE_ONCE(ce->tgthint, t); 970 cifs_dbg(FYI, "%s: new target hint: %s\n", __func__, 971 it->it_name); 972 break; 973 } 974 } 975 976 out_unlock: 977 up_read(&htable_rw_lock); 978 } 979 980 /** 981 * dfs_cache_get_tgt_referral - returns a DFS referral (@ref) from a given 982 * target iterator (@it). 983 * 984 * @path: canonical DFS path to lookup in DFS referral cache. 985 * @it: DFS target iterator. 986 * @ref: DFS referral pointer to set up the gathered information. 987 * 988 * Return zero if the DFS referral was set up correctly, otherwise non-zero. 989 */ 990 int dfs_cache_get_tgt_referral(const char *path, const struct dfs_cache_tgt_iterator *it, 991 struct dfs_info3_param *ref) 992 { 993 int rc; 994 struct cache_entry *ce; 995 996 if (!it || !ref) 997 return -EINVAL; 998 999 cifs_dbg(FYI, "%s: path: %s\n", __func__, path); 1000 1001 down_read(&htable_rw_lock); 1002 1003 ce = lookup_cache_entry(path); 1004 if (IS_ERR(ce)) { 1005 rc = PTR_ERR(ce); 1006 goto out_unlock; 1007 } 1008 1009 cifs_dbg(FYI, "%s: target name: %s\n", __func__, it->it_name); 1010 1011 rc = setup_referral(path, ce, ref, it->it_name); 1012 1013 out_unlock: 1014 up_read(&htable_rw_lock); 1015 return rc; 1016 } 1017 1018 /* Extract share from DFS target and return a pointer to prefix path or NULL */ 1019 static const char *parse_target_share(const char *target, char **share) 1020 { 1021 const char *s, *seps = "/\\"; 1022 size_t len; 1023 1024 s = strpbrk(target + 1, seps); 1025 if (!s) 1026 return ERR_PTR(-EINVAL); 1027 1028 len = strcspn(s + 1, seps); 1029 if (!len) 1030 return ERR_PTR(-EINVAL); 1031 s += len; 1032 1033 len = s - target + 1; 1034 *share = kstrndup(target, len, GFP_KERNEL); 1035 if (!*share) 1036 return ERR_PTR(-ENOMEM); 1037 1038 s = target + len; 1039 return s + strspn(s, seps); 1040 } 1041 1042 /** 1043 * dfs_cache_get_tgt_share - parse a DFS target 1044 * 1045 * @path: DFS full path 1046 * @it: DFS target iterator. 1047 * @share: tree name. 1048 * @prefix: prefix path. 1049 * 1050 * Return zero if target was parsed correctly, otherwise non-zero. 1051 */ 1052 int dfs_cache_get_tgt_share(char *path, const struct dfs_cache_tgt_iterator *it, char **share, 1053 char **prefix) 1054 { 1055 char sep; 1056 char *target_share; 1057 char *ppath = NULL; 1058 const char *target_ppath, *dfsref_ppath; 1059 size_t target_pplen, dfsref_pplen; 1060 size_t len, c; 1061 1062 if (!it || !path || !share || !prefix || strlen(path) < it->it_path_consumed) 1063 return -EINVAL; 1064 1065 sep = it->it_name[0]; 1066 if (sep != '\\' && sep != '/') 1067 return -EINVAL; 1068 1069 target_ppath = parse_target_share(it->it_name, &target_share); 1070 if (IS_ERR(target_ppath)) 1071 return PTR_ERR(target_ppath); 1072 1073 /* point to prefix in DFS referral path */ 1074 dfsref_ppath = path + it->it_path_consumed; 1075 dfsref_ppath += strspn(dfsref_ppath, "/\\"); 1076 1077 target_pplen = strlen(target_ppath); 1078 dfsref_pplen = strlen(dfsref_ppath); 1079 1080 /* merge prefix paths from DFS referral path and target node */ 1081 if (target_pplen || dfsref_pplen) { 1082 len = target_pplen + dfsref_pplen + 2; 1083 ppath = kzalloc(len, GFP_KERNEL); 1084 if (!ppath) { 1085 kfree(target_share); 1086 return -ENOMEM; 1087 } 1088 c = strscpy(ppath, target_ppath, len); 1089 if (c && dfsref_pplen) 1090 ppath[c] = sep; 1091 strlcat(ppath, dfsref_ppath, len); 1092 } 1093 *share = target_share; 1094 *prefix = ppath; 1095 return 0; 1096 } 1097 1098 static bool target_share_equal(struct TCP_Server_Info *server, const char *s1, const char *s2) 1099 { 1100 char unc[sizeof("\\\\") + SERVER_NAME_LENGTH] = {0}; 1101 const char *host; 1102 size_t hostlen; 1103 struct sockaddr_storage ss; 1104 bool match; 1105 int rc; 1106 1107 if (strcasecmp(s1, s2)) 1108 return false; 1109 1110 /* 1111 * Resolve share's hostname and check if server address matches. Otherwise just ignore it 1112 * as we could not have upcall to resolve hostname or failed to convert ip address. 1113 */ 1114 extract_unc_hostname(s1, &host, &hostlen); 1115 scnprintf(unc, sizeof(unc), "\\\\%.*s", (int)hostlen, host); 1116 1117 rc = dns_resolve_server_name_to_ip(unc, (struct sockaddr *)&ss, NULL); 1118 if (rc < 0) { 1119 cifs_dbg(FYI, "%s: could not resolve %.*s. assuming server address matches.\n", 1120 __func__, (int)hostlen, host); 1121 return true; 1122 } 1123 1124 cifs_server_lock(server); 1125 match = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss); 1126 cifs_server_unlock(server); 1127 1128 return match; 1129 } 1130 1131 /* 1132 * Mark dfs tcon for reconnecting when the currently connected tcon does not match any of the new 1133 * target shares in @refs. 1134 */ 1135 static void mark_for_reconnect_if_needed(struct TCP_Server_Info *server, 1136 const char *path, 1137 struct dfs_cache_tgt_list *old_tl, 1138 struct dfs_cache_tgt_list *new_tl) 1139 { 1140 struct dfs_cache_tgt_iterator *oit, *nit; 1141 1142 for (oit = dfs_cache_get_tgt_iterator(old_tl); oit; 1143 oit = dfs_cache_get_next_tgt(old_tl, oit)) { 1144 for (nit = dfs_cache_get_tgt_iterator(new_tl); nit; 1145 nit = dfs_cache_get_next_tgt(new_tl, nit)) { 1146 if (target_share_equal(server, 1147 dfs_cache_get_tgt_name(oit), 1148 dfs_cache_get_tgt_name(nit))) { 1149 dfs_cache_noreq_update_tgthint(path, nit); 1150 return; 1151 } 1152 } 1153 } 1154 1155 cifs_dbg(FYI, "%s: no cached or matched targets. mark dfs share for reconnect.\n", __func__); 1156 cifs_signal_cifsd_for_reconnect(server, true); 1157 } 1158 1159 static bool is_ses_good(struct cifs_ses *ses) 1160 { 1161 struct TCP_Server_Info *server = ses->server; 1162 struct cifs_tcon *tcon = ses->tcon_ipc; 1163 bool ret; 1164 1165 spin_lock(&ses->ses_lock); 1166 spin_lock(&ses->chan_lock); 1167 ret = !cifs_chan_needs_reconnect(ses, server) && 1168 ses->ses_status == SES_GOOD && 1169 !tcon->need_reconnect; 1170 spin_unlock(&ses->chan_lock); 1171 spin_unlock(&ses->ses_lock); 1172 return ret; 1173 } 1174 1175 /* Refresh dfs referral of @ses and mark it for reconnect if needed */ 1176 static void __refresh_ses_referral(struct cifs_ses *ses, bool force_refresh) 1177 { 1178 struct TCP_Server_Info *server = ses->server; 1179 DFS_CACHE_TGT_LIST(old_tl); 1180 DFS_CACHE_TGT_LIST(new_tl); 1181 bool needs_refresh = false; 1182 struct cache_entry *ce; 1183 unsigned int xid; 1184 char *path = NULL; 1185 int rc = 0; 1186 1187 xid = get_xid(); 1188 1189 mutex_lock(&server->refpath_lock); 1190 if (server->leaf_fullpath) { 1191 path = kstrdup(server->leaf_fullpath + 1, GFP_ATOMIC); 1192 if (!path) 1193 rc = -ENOMEM; 1194 } 1195 mutex_unlock(&server->refpath_lock); 1196 if (!path) 1197 goto out; 1198 1199 down_read(&htable_rw_lock); 1200 ce = lookup_cache_entry(path); 1201 needs_refresh = force_refresh || IS_ERR(ce) || cache_entry_expired(ce); 1202 if (!IS_ERR(ce)) { 1203 rc = get_targets(ce, &old_tl); 1204 cifs_dbg(FYI, "%s: get_targets: %d\n", __func__, rc); 1205 } 1206 up_read(&htable_rw_lock); 1207 1208 if (!needs_refresh) { 1209 rc = 0; 1210 goto out; 1211 } 1212 1213 ses = CIFS_DFS_ROOT_SES(ses); 1214 if (!is_ses_good(ses)) { 1215 cifs_dbg(FYI, "%s: skip cache refresh due to disconnected ipc\n", 1216 __func__); 1217 goto out; 1218 } 1219 1220 ce = cache_refresh_path(xid, ses, path, true); 1221 if (!IS_ERR(ce)) { 1222 rc = get_targets(ce, &new_tl); 1223 up_read(&htable_rw_lock); 1224 cifs_dbg(FYI, "%s: get_targets: %d\n", __func__, rc); 1225 mark_for_reconnect_if_needed(server, path, &old_tl, &new_tl); 1226 } 1227 1228 out: 1229 free_xid(xid); 1230 dfs_cache_free_tgts(&old_tl); 1231 dfs_cache_free_tgts(&new_tl); 1232 kfree(path); 1233 } 1234 1235 static inline void refresh_ses_referral(struct cifs_ses *ses) 1236 { 1237 __refresh_ses_referral(ses, false); 1238 } 1239 1240 static inline void force_refresh_ses_referral(struct cifs_ses *ses) 1241 { 1242 __refresh_ses_referral(ses, true); 1243 } 1244 1245 /** 1246 * dfs_cache_remount_fs - remount a DFS share 1247 * 1248 * Reconfigure dfs mount by forcing a new DFS referral and if the currently cached targets do not 1249 * match any of the new targets, mark it for reconnect. 1250 * 1251 * @cifs_sb: cifs superblock. 1252 * 1253 * Return zero if remounted, otherwise non-zero. 1254 */ 1255 int dfs_cache_remount_fs(struct cifs_sb_info *cifs_sb) 1256 { 1257 struct cifs_tcon *tcon; 1258 1259 if (!cifs_sb || !cifs_sb->master_tlink) 1260 return -EINVAL; 1261 1262 tcon = cifs_sb_master_tcon(cifs_sb); 1263 1264 spin_lock(&tcon->tc_lock); 1265 if (!tcon->origin_fullpath) { 1266 spin_unlock(&tcon->tc_lock); 1267 cifs_dbg(FYI, "%s: not a dfs mount\n", __func__); 1268 return 0; 1269 } 1270 spin_unlock(&tcon->tc_lock); 1271 1272 /* 1273 * After reconnecting to a different server, unique ids won't match anymore, so we disable 1274 * serverino. This prevents dentry revalidation to think the dentry are stale (ESTALE). 1275 */ 1276 cifs_autodisable_serverino(cifs_sb); 1277 /* 1278 * Force the use of prefix path to support failover on DFS paths that resolve to targets 1279 * that have different prefix paths. 1280 */ 1281 cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH; 1282 1283 force_refresh_ses_referral(tcon->ses); 1284 return 0; 1285 } 1286 1287 /* Refresh all DFS referrals related to DFS tcon */ 1288 void dfs_cache_refresh(struct work_struct *work) 1289 { 1290 struct cifs_tcon *tcon; 1291 struct cifs_ses *ses; 1292 1293 tcon = container_of(work, struct cifs_tcon, dfs_cache_work.work); 1294 1295 for (ses = tcon->ses; ses; ses = ses->dfs_root_ses) 1296 refresh_ses_referral(ses); 1297 1298 queue_delayed_work(dfscache_wq, &tcon->dfs_cache_work, 1299 atomic_read(&dfs_cache_ttl) * HZ); 1300 } 1301
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.