1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2017, Microsoft Corporation. 4 * 5 * Author(s): Long Li <longli@microsoft.com> 6 */ 7 #include <linux/module.h> 8 #include <linux/highmem.h> 9 #include "smbdirect.h" 10 #include "cifs_debug.h" 11 #include "cifsproto.h" 12 #include "smb2proto.h" 13 14 static struct smbd_response *get_empty_queue_buffer( 15 struct smbd_connection *info); 16 static struct smbd_response *get_receive_buffer( 17 struct smbd_connection *info); 18 static void put_receive_buffer( 19 struct smbd_connection *info, 20 struct smbd_response *response); 21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf); 22 static void destroy_receive_buffers(struct smbd_connection *info); 23 24 static void put_empty_packet( 25 struct smbd_connection *info, struct smbd_response *response); 26 static void enqueue_reassembly( 27 struct smbd_connection *info, 28 struct smbd_response *response, int data_length); 29 static struct smbd_response *_get_first_reassembly( 30 struct smbd_connection *info); 31 32 static int smbd_post_recv( 33 struct smbd_connection *info, 34 struct smbd_response *response); 35 36 static int smbd_post_send_empty(struct smbd_connection *info); 37 38 static void destroy_mr_list(struct smbd_connection *info); 39 static int allocate_mr_list(struct smbd_connection *info); 40 41 struct smb_extract_to_rdma { 42 struct ib_sge *sge; 43 unsigned int nr_sge; 44 unsigned int max_sge; 45 struct ib_device *device; 46 u32 local_dma_lkey; 47 enum dma_data_direction direction; 48 }; 49 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len, 50 struct smb_extract_to_rdma *rdma); 51 52 /* SMBD version number */ 53 #define SMBD_V1 0x0100 54 55 /* Port numbers for SMBD transport */ 56 #define SMB_PORT 445 57 #define SMBD_PORT 5445 58 59 /* Address lookup and resolve timeout in ms */ 60 #define RDMA_RESOLVE_TIMEOUT 5000 61 62 /* SMBD negotiation timeout in seconds */ 63 #define SMBD_NEGOTIATE_TIMEOUT 120 64 65 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */ 66 #define SMBD_MIN_RECEIVE_SIZE 128 67 #define SMBD_MIN_FRAGMENTED_SIZE 131072 68 69 /* 70 * Default maximum number of RDMA read/write outstanding on this connection 71 * This value is possibly decreased during QP creation on hardware limit 72 */ 73 #define SMBD_CM_RESPONDER_RESOURCES 32 74 75 /* Maximum number of retries on data transfer operations */ 76 #define SMBD_CM_RETRY 6 77 /* No need to retry on Receiver Not Ready since SMBD manages credits */ 78 #define SMBD_CM_RNR_RETRY 0 79 80 /* 81 * User configurable initial values per SMBD transport connection 82 * as defined in [MS-SMBD] 3.1.1.1 83 * Those may change after a SMBD negotiation 84 */ 85 /* The local peer's maximum number of credits to grant to the peer */ 86 int smbd_receive_credit_max = 255; 87 88 /* The remote peer's credit request of local peer */ 89 int smbd_send_credit_target = 255; 90 91 /* The maximum single message size can be sent to remote peer */ 92 int smbd_max_send_size = 1364; 93 94 /* The maximum fragmented upper-layer payload receive size supported */ 95 int smbd_max_fragmented_recv_size = 1024 * 1024; 96 97 /* The maximum single-message size which can be received */ 98 int smbd_max_receive_size = 1364; 99 100 /* The timeout to initiate send of a keepalive message on idle */ 101 int smbd_keep_alive_interval = 120; 102 103 /* 104 * User configurable initial values for RDMA transport 105 * The actual values used may be lower and are limited to hardware capabilities 106 */ 107 /* Default maximum number of pages in a single RDMA write/read */ 108 int smbd_max_frmr_depth = 2048; 109 110 /* If payload is less than this byte, use RDMA send/recv not read/write */ 111 int rdma_readwrite_threshold = 4096; 112 113 /* Transport logging functions 114 * Logging are defined as classes. They can be OR'ed to define the actual 115 * logging level via module parameter smbd_logging_class 116 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and 117 * log_rdma_event() 118 */ 119 #define LOG_OUTGOING 0x1 120 #define LOG_INCOMING 0x2 121 #define LOG_READ 0x4 122 #define LOG_WRITE 0x8 123 #define LOG_RDMA_SEND 0x10 124 #define LOG_RDMA_RECV 0x20 125 #define LOG_KEEP_ALIVE 0x40 126 #define LOG_RDMA_EVENT 0x80 127 #define LOG_RDMA_MR 0x100 128 static unsigned int smbd_logging_class; 129 module_param(smbd_logging_class, uint, 0644); 130 MODULE_PARM_DESC(smbd_logging_class, 131 "Logging class for SMBD transport 0x0 to 0x100"); 132 133 #define ERR 0x0 134 #define INFO 0x1 135 static unsigned int smbd_logging_level = ERR; 136 module_param(smbd_logging_level, uint, 0644); 137 MODULE_PARM_DESC(smbd_logging_level, 138 "Logging level for SMBD transport, 0 (default): error, 1: info"); 139 140 #define log_rdma(level, class, fmt, args...) \ 141 do { \ 142 if (level <= smbd_logging_level || class & smbd_logging_class) \ 143 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\ 144 } while (0) 145 146 #define log_outgoing(level, fmt, args...) \ 147 log_rdma(level, LOG_OUTGOING, fmt, ##args) 148 #define log_incoming(level, fmt, args...) \ 149 log_rdma(level, LOG_INCOMING, fmt, ##args) 150 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args) 151 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args) 152 #define log_rdma_send(level, fmt, args...) \ 153 log_rdma(level, LOG_RDMA_SEND, fmt, ##args) 154 #define log_rdma_recv(level, fmt, args...) \ 155 log_rdma(level, LOG_RDMA_RECV, fmt, ##args) 156 #define log_keep_alive(level, fmt, args...) \ 157 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args) 158 #define log_rdma_event(level, fmt, args...) \ 159 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args) 160 #define log_rdma_mr(level, fmt, args...) \ 161 log_rdma(level, LOG_RDMA_MR, fmt, ##args) 162 163 static void smbd_disconnect_rdma_work(struct work_struct *work) 164 { 165 struct smbd_connection *info = 166 container_of(work, struct smbd_connection, disconnect_work); 167 168 if (info->transport_status == SMBD_CONNECTED) { 169 info->transport_status = SMBD_DISCONNECTING; 170 rdma_disconnect(info->id); 171 } 172 } 173 174 static void smbd_disconnect_rdma_connection(struct smbd_connection *info) 175 { 176 queue_work(info->workqueue, &info->disconnect_work); 177 } 178 179 /* Upcall from RDMA CM */ 180 static int smbd_conn_upcall( 181 struct rdma_cm_id *id, struct rdma_cm_event *event) 182 { 183 struct smbd_connection *info = id->context; 184 185 log_rdma_event(INFO, "event=%d status=%d\n", 186 event->event, event->status); 187 188 switch (event->event) { 189 case RDMA_CM_EVENT_ADDR_RESOLVED: 190 case RDMA_CM_EVENT_ROUTE_RESOLVED: 191 info->ri_rc = 0; 192 complete(&info->ri_done); 193 break; 194 195 case RDMA_CM_EVENT_ADDR_ERROR: 196 info->ri_rc = -EHOSTUNREACH; 197 complete(&info->ri_done); 198 break; 199 200 case RDMA_CM_EVENT_ROUTE_ERROR: 201 info->ri_rc = -ENETUNREACH; 202 complete(&info->ri_done); 203 break; 204 205 case RDMA_CM_EVENT_ESTABLISHED: 206 log_rdma_event(INFO, "connected event=%d\n", event->event); 207 info->transport_status = SMBD_CONNECTED; 208 wake_up_interruptible(&info->conn_wait); 209 break; 210 211 case RDMA_CM_EVENT_CONNECT_ERROR: 212 case RDMA_CM_EVENT_UNREACHABLE: 213 case RDMA_CM_EVENT_REJECTED: 214 log_rdma_event(INFO, "connecting failed event=%d\n", event->event); 215 info->transport_status = SMBD_DISCONNECTED; 216 wake_up_interruptible(&info->conn_wait); 217 break; 218 219 case RDMA_CM_EVENT_DEVICE_REMOVAL: 220 case RDMA_CM_EVENT_DISCONNECTED: 221 /* This happenes when we fail the negotiation */ 222 if (info->transport_status == SMBD_NEGOTIATE_FAILED) { 223 info->transport_status = SMBD_DISCONNECTED; 224 wake_up(&info->conn_wait); 225 break; 226 } 227 228 info->transport_status = SMBD_DISCONNECTED; 229 wake_up_interruptible(&info->disconn_wait); 230 wake_up_interruptible(&info->wait_reassembly_queue); 231 wake_up_interruptible_all(&info->wait_send_queue); 232 break; 233 234 default: 235 break; 236 } 237 238 return 0; 239 } 240 241 /* Upcall from RDMA QP */ 242 static void 243 smbd_qp_async_error_upcall(struct ib_event *event, void *context) 244 { 245 struct smbd_connection *info = context; 246 247 log_rdma_event(ERR, "%s on device %s info %p\n", 248 ib_event_msg(event->event), event->device->name, info); 249 250 switch (event->event) { 251 case IB_EVENT_CQ_ERR: 252 case IB_EVENT_QP_FATAL: 253 smbd_disconnect_rdma_connection(info); 254 break; 255 256 default: 257 break; 258 } 259 } 260 261 static inline void *smbd_request_payload(struct smbd_request *request) 262 { 263 return (void *)request->packet; 264 } 265 266 static inline void *smbd_response_payload(struct smbd_response *response) 267 { 268 return (void *)response->packet; 269 } 270 271 /* Called when a RDMA send is done */ 272 static void send_done(struct ib_cq *cq, struct ib_wc *wc) 273 { 274 int i; 275 struct smbd_request *request = 276 container_of(wc->wr_cqe, struct smbd_request, cqe); 277 278 log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n", 279 request, wc->status); 280 281 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) { 282 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n", 283 wc->status, wc->opcode); 284 smbd_disconnect_rdma_connection(request->info); 285 } 286 287 for (i = 0; i < request->num_sge; i++) 288 ib_dma_unmap_single(request->info->id->device, 289 request->sge[i].addr, 290 request->sge[i].length, 291 DMA_TO_DEVICE); 292 293 if (atomic_dec_and_test(&request->info->send_pending)) 294 wake_up(&request->info->wait_send_pending); 295 296 wake_up(&request->info->wait_post_send); 297 298 mempool_free(request, request->info->request_mempool); 299 } 300 301 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp) 302 { 303 log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n", 304 resp->min_version, resp->max_version, 305 resp->negotiated_version, resp->credits_requested, 306 resp->credits_granted, resp->status, 307 resp->max_readwrite_size, resp->preferred_send_size, 308 resp->max_receive_size, resp->max_fragmented_size); 309 } 310 311 /* 312 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7 313 * response, packet_length: the negotiation response message 314 * return value: true if negotiation is a success, false if failed 315 */ 316 static bool process_negotiation_response( 317 struct smbd_response *response, int packet_length) 318 { 319 struct smbd_connection *info = response->info; 320 struct smbd_negotiate_resp *packet = smbd_response_payload(response); 321 322 if (packet_length < sizeof(struct smbd_negotiate_resp)) { 323 log_rdma_event(ERR, 324 "error: packet_length=%d\n", packet_length); 325 return false; 326 } 327 328 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) { 329 log_rdma_event(ERR, "error: negotiated_version=%x\n", 330 le16_to_cpu(packet->negotiated_version)); 331 return false; 332 } 333 info->protocol = le16_to_cpu(packet->negotiated_version); 334 335 if (packet->credits_requested == 0) { 336 log_rdma_event(ERR, "error: credits_requested==0\n"); 337 return false; 338 } 339 info->receive_credit_target = le16_to_cpu(packet->credits_requested); 340 341 if (packet->credits_granted == 0) { 342 log_rdma_event(ERR, "error: credits_granted==0\n"); 343 return false; 344 } 345 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted)); 346 347 atomic_set(&info->receive_credits, 0); 348 349 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) { 350 log_rdma_event(ERR, "error: preferred_send_size=%d\n", 351 le32_to_cpu(packet->preferred_send_size)); 352 return false; 353 } 354 info->max_receive_size = le32_to_cpu(packet->preferred_send_size); 355 356 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) { 357 log_rdma_event(ERR, "error: max_receive_size=%d\n", 358 le32_to_cpu(packet->max_receive_size)); 359 return false; 360 } 361 info->max_send_size = min_t(int, info->max_send_size, 362 le32_to_cpu(packet->max_receive_size)); 363 364 if (le32_to_cpu(packet->max_fragmented_size) < 365 SMBD_MIN_FRAGMENTED_SIZE) { 366 log_rdma_event(ERR, "error: max_fragmented_size=%d\n", 367 le32_to_cpu(packet->max_fragmented_size)); 368 return false; 369 } 370 info->max_fragmented_send_size = 371 le32_to_cpu(packet->max_fragmented_size); 372 info->rdma_readwrite_threshold = 373 rdma_readwrite_threshold > info->max_fragmented_send_size ? 374 info->max_fragmented_send_size : 375 rdma_readwrite_threshold; 376 377 378 info->max_readwrite_size = min_t(u32, 379 le32_to_cpu(packet->max_readwrite_size), 380 info->max_frmr_depth * PAGE_SIZE); 381 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE; 382 383 return true; 384 } 385 386 static void smbd_post_send_credits(struct work_struct *work) 387 { 388 int ret = 0; 389 int use_receive_queue = 1; 390 int rc; 391 struct smbd_response *response; 392 struct smbd_connection *info = 393 container_of(work, struct smbd_connection, 394 post_send_credits_work); 395 396 if (info->transport_status != SMBD_CONNECTED) { 397 wake_up(&info->wait_receive_queues); 398 return; 399 } 400 401 if (info->receive_credit_target > 402 atomic_read(&info->receive_credits)) { 403 while (true) { 404 if (use_receive_queue) 405 response = get_receive_buffer(info); 406 else 407 response = get_empty_queue_buffer(info); 408 if (!response) { 409 /* now switch to empty packet queue */ 410 if (use_receive_queue) { 411 use_receive_queue = 0; 412 continue; 413 } else 414 break; 415 } 416 417 response->type = SMBD_TRANSFER_DATA; 418 response->first_segment = false; 419 rc = smbd_post_recv(info, response); 420 if (rc) { 421 log_rdma_recv(ERR, 422 "post_recv failed rc=%d\n", rc); 423 put_receive_buffer(info, response); 424 break; 425 } 426 427 ret++; 428 } 429 } 430 431 spin_lock(&info->lock_new_credits_offered); 432 info->new_credits_offered += ret; 433 spin_unlock(&info->lock_new_credits_offered); 434 435 /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */ 436 info->send_immediate = true; 437 if (atomic_read(&info->receive_credits) < 438 info->receive_credit_target - 1) { 439 if (info->keep_alive_requested == KEEP_ALIVE_PENDING || 440 info->send_immediate) { 441 log_keep_alive(INFO, "send an empty message\n"); 442 smbd_post_send_empty(info); 443 } 444 } 445 } 446 447 /* Called from softirq, when recv is done */ 448 static void recv_done(struct ib_cq *cq, struct ib_wc *wc) 449 { 450 struct smbd_data_transfer *data_transfer; 451 struct smbd_response *response = 452 container_of(wc->wr_cqe, struct smbd_response, cqe); 453 struct smbd_connection *info = response->info; 454 int data_length = 0; 455 456 log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n", 457 response, response->type, wc->status, wc->opcode, 458 wc->byte_len, wc->pkey_index); 459 460 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) { 461 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n", 462 wc->status, wc->opcode); 463 smbd_disconnect_rdma_connection(info); 464 goto error; 465 } 466 467 ib_dma_sync_single_for_cpu( 468 wc->qp->device, 469 response->sge.addr, 470 response->sge.length, 471 DMA_FROM_DEVICE); 472 473 switch (response->type) { 474 /* SMBD negotiation response */ 475 case SMBD_NEGOTIATE_RESP: 476 dump_smbd_negotiate_resp(smbd_response_payload(response)); 477 info->full_packet_received = true; 478 info->negotiate_done = 479 process_negotiation_response(response, wc->byte_len); 480 complete(&info->negotiate_completion); 481 break; 482 483 /* SMBD data transfer packet */ 484 case SMBD_TRANSFER_DATA: 485 data_transfer = smbd_response_payload(response); 486 data_length = le32_to_cpu(data_transfer->data_length); 487 488 /* 489 * If this is a packet with data playload place the data in 490 * reassembly queue and wake up the reading thread 491 */ 492 if (data_length) { 493 if (info->full_packet_received) 494 response->first_segment = true; 495 496 if (le32_to_cpu(data_transfer->remaining_data_length)) 497 info->full_packet_received = false; 498 else 499 info->full_packet_received = true; 500 501 enqueue_reassembly( 502 info, 503 response, 504 data_length); 505 } else 506 put_empty_packet(info, response); 507 508 if (data_length) 509 wake_up_interruptible(&info->wait_reassembly_queue); 510 511 atomic_dec(&info->receive_credits); 512 info->receive_credit_target = 513 le16_to_cpu(data_transfer->credits_requested); 514 if (le16_to_cpu(data_transfer->credits_granted)) { 515 atomic_add(le16_to_cpu(data_transfer->credits_granted), 516 &info->send_credits); 517 /* 518 * We have new send credits granted from remote peer 519 * If any sender is waiting for credits, unblock it 520 */ 521 wake_up_interruptible(&info->wait_send_queue); 522 } 523 524 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n", 525 le16_to_cpu(data_transfer->flags), 526 le32_to_cpu(data_transfer->data_offset), 527 le32_to_cpu(data_transfer->data_length), 528 le32_to_cpu(data_transfer->remaining_data_length)); 529 530 /* Send a KEEP_ALIVE response right away if requested */ 531 info->keep_alive_requested = KEEP_ALIVE_NONE; 532 if (le16_to_cpu(data_transfer->flags) & 533 SMB_DIRECT_RESPONSE_REQUESTED) { 534 info->keep_alive_requested = KEEP_ALIVE_PENDING; 535 } 536 537 return; 538 539 default: 540 log_rdma_recv(ERR, 541 "unexpected response type=%d\n", response->type); 542 } 543 544 error: 545 put_receive_buffer(info, response); 546 } 547 548 static struct rdma_cm_id *smbd_create_id( 549 struct smbd_connection *info, 550 struct sockaddr *dstaddr, int port) 551 { 552 struct rdma_cm_id *id; 553 int rc; 554 __be16 *sport; 555 556 id = rdma_create_id(&init_net, smbd_conn_upcall, info, 557 RDMA_PS_TCP, IB_QPT_RC); 558 if (IS_ERR(id)) { 559 rc = PTR_ERR(id); 560 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc); 561 return id; 562 } 563 564 if (dstaddr->sa_family == AF_INET6) 565 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port; 566 else 567 sport = &((struct sockaddr_in *)dstaddr)->sin_port; 568 569 *sport = htons(port); 570 571 init_completion(&info->ri_done); 572 info->ri_rc = -ETIMEDOUT; 573 574 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr, 575 RDMA_RESOLVE_TIMEOUT); 576 if (rc) { 577 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc); 578 goto out; 579 } 580 rc = wait_for_completion_interruptible_timeout( 581 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 582 /* e.g. if interrupted returns -ERESTARTSYS */ 583 if (rc < 0) { 584 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc); 585 goto out; 586 } 587 rc = info->ri_rc; 588 if (rc) { 589 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc); 590 goto out; 591 } 592 593 info->ri_rc = -ETIMEDOUT; 594 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT); 595 if (rc) { 596 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc); 597 goto out; 598 } 599 rc = wait_for_completion_interruptible_timeout( 600 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT)); 601 /* e.g. if interrupted returns -ERESTARTSYS */ 602 if (rc < 0) { 603 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc); 604 goto out; 605 } 606 rc = info->ri_rc; 607 if (rc) { 608 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc); 609 goto out; 610 } 611 612 return id; 613 614 out: 615 rdma_destroy_id(id); 616 return ERR_PTR(rc); 617 } 618 619 /* 620 * Test if FRWR (Fast Registration Work Requests) is supported on the device 621 * This implementation requires FRWR on RDMA read/write 622 * return value: true if it is supported 623 */ 624 static bool frwr_is_supported(struct ib_device_attr *attrs) 625 { 626 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) 627 return false; 628 if (attrs->max_fast_reg_page_list_len == 0) 629 return false; 630 return true; 631 } 632 633 static int smbd_ia_open( 634 struct smbd_connection *info, 635 struct sockaddr *dstaddr, int port) 636 { 637 int rc; 638 639 info->id = smbd_create_id(info, dstaddr, port); 640 if (IS_ERR(info->id)) { 641 rc = PTR_ERR(info->id); 642 goto out1; 643 } 644 645 if (!frwr_is_supported(&info->id->device->attrs)) { 646 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n"); 647 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n", 648 info->id->device->attrs.device_cap_flags, 649 info->id->device->attrs.max_fast_reg_page_list_len); 650 rc = -EPROTONOSUPPORT; 651 goto out2; 652 } 653 info->max_frmr_depth = min_t(int, 654 smbd_max_frmr_depth, 655 info->id->device->attrs.max_fast_reg_page_list_len); 656 info->mr_type = IB_MR_TYPE_MEM_REG; 657 if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG) 658 info->mr_type = IB_MR_TYPE_SG_GAPS; 659 660 info->pd = ib_alloc_pd(info->id->device, 0); 661 if (IS_ERR(info->pd)) { 662 rc = PTR_ERR(info->pd); 663 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc); 664 goto out2; 665 } 666 667 return 0; 668 669 out2: 670 rdma_destroy_id(info->id); 671 info->id = NULL; 672 673 out1: 674 return rc; 675 } 676 677 /* 678 * Send a negotiation request message to the peer 679 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3 680 * After negotiation, the transport is connected and ready for 681 * carrying upper layer SMB payload 682 */ 683 static int smbd_post_send_negotiate_req(struct smbd_connection *info) 684 { 685 struct ib_send_wr send_wr; 686 int rc = -ENOMEM; 687 struct smbd_request *request; 688 struct smbd_negotiate_req *packet; 689 690 request = mempool_alloc(info->request_mempool, GFP_KERNEL); 691 if (!request) 692 return rc; 693 694 request->info = info; 695 696 packet = smbd_request_payload(request); 697 packet->min_version = cpu_to_le16(SMBD_V1); 698 packet->max_version = cpu_to_le16(SMBD_V1); 699 packet->reserved = 0; 700 packet->credits_requested = cpu_to_le16(info->send_credit_target); 701 packet->preferred_send_size = cpu_to_le32(info->max_send_size); 702 packet->max_receive_size = cpu_to_le32(info->max_receive_size); 703 packet->max_fragmented_size = 704 cpu_to_le32(info->max_fragmented_recv_size); 705 706 request->num_sge = 1; 707 request->sge[0].addr = ib_dma_map_single( 708 info->id->device, (void *)packet, 709 sizeof(*packet), DMA_TO_DEVICE); 710 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) { 711 rc = -EIO; 712 goto dma_mapping_failed; 713 } 714 715 request->sge[0].length = sizeof(*packet); 716 request->sge[0].lkey = info->pd->local_dma_lkey; 717 718 ib_dma_sync_single_for_device( 719 info->id->device, request->sge[0].addr, 720 request->sge[0].length, DMA_TO_DEVICE); 721 722 request->cqe.done = send_done; 723 724 send_wr.next = NULL; 725 send_wr.wr_cqe = &request->cqe; 726 send_wr.sg_list = request->sge; 727 send_wr.num_sge = request->num_sge; 728 send_wr.opcode = IB_WR_SEND; 729 send_wr.send_flags = IB_SEND_SIGNALED; 730 731 log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n", 732 request->sge[0].addr, 733 request->sge[0].length, request->sge[0].lkey); 734 735 atomic_inc(&info->send_pending); 736 rc = ib_post_send(info->id->qp, &send_wr, NULL); 737 if (!rc) 738 return 0; 739 740 /* if we reach here, post send failed */ 741 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 742 atomic_dec(&info->send_pending); 743 ib_dma_unmap_single(info->id->device, request->sge[0].addr, 744 request->sge[0].length, DMA_TO_DEVICE); 745 746 smbd_disconnect_rdma_connection(info); 747 748 dma_mapping_failed: 749 mempool_free(request, info->request_mempool); 750 return rc; 751 } 752 753 /* 754 * Extend the credits to remote peer 755 * This implements [MS-SMBD] 3.1.5.9 756 * The idea is that we should extend credits to remote peer as quickly as 757 * it's allowed, to maintain data flow. We allocate as much receive 758 * buffer as possible, and extend the receive credits to remote peer 759 * return value: the new credtis being granted. 760 */ 761 static int manage_credits_prior_sending(struct smbd_connection *info) 762 { 763 int new_credits; 764 765 spin_lock(&info->lock_new_credits_offered); 766 new_credits = info->new_credits_offered; 767 info->new_credits_offered = 0; 768 spin_unlock(&info->lock_new_credits_offered); 769 770 return new_credits; 771 } 772 773 /* 774 * Check if we need to send a KEEP_ALIVE message 775 * The idle connection timer triggers a KEEP_ALIVE message when expires 776 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send 777 * back a response. 778 * return value: 779 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set 780 * 0: otherwise 781 */ 782 static int manage_keep_alive_before_sending(struct smbd_connection *info) 783 { 784 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) { 785 info->keep_alive_requested = KEEP_ALIVE_SENT; 786 return 1; 787 } 788 return 0; 789 } 790 791 /* Post the send request */ 792 static int smbd_post_send(struct smbd_connection *info, 793 struct smbd_request *request) 794 { 795 struct ib_send_wr send_wr; 796 int rc, i; 797 798 for (i = 0; i < request->num_sge; i++) { 799 log_rdma_send(INFO, 800 "rdma_request sge[%d] addr=0x%llx length=%u\n", 801 i, request->sge[i].addr, request->sge[i].length); 802 ib_dma_sync_single_for_device( 803 info->id->device, 804 request->sge[i].addr, 805 request->sge[i].length, 806 DMA_TO_DEVICE); 807 } 808 809 request->cqe.done = send_done; 810 811 send_wr.next = NULL; 812 send_wr.wr_cqe = &request->cqe; 813 send_wr.sg_list = request->sge; 814 send_wr.num_sge = request->num_sge; 815 send_wr.opcode = IB_WR_SEND; 816 send_wr.send_flags = IB_SEND_SIGNALED; 817 818 rc = ib_post_send(info->id->qp, &send_wr, NULL); 819 if (rc) { 820 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc); 821 smbd_disconnect_rdma_connection(info); 822 rc = -EAGAIN; 823 } else 824 /* Reset timer for idle connection after packet is sent */ 825 mod_delayed_work(info->workqueue, &info->idle_timer_work, 826 info->keep_alive_interval*HZ); 827 828 return rc; 829 } 830 831 static int smbd_post_send_iter(struct smbd_connection *info, 832 struct iov_iter *iter, 833 int *_remaining_data_length) 834 { 835 int i, rc; 836 int header_length; 837 int data_length; 838 struct smbd_request *request; 839 struct smbd_data_transfer *packet; 840 int new_credits = 0; 841 842 wait_credit: 843 /* Wait for send credits. A SMBD packet needs one credit */ 844 rc = wait_event_interruptible(info->wait_send_queue, 845 atomic_read(&info->send_credits) > 0 || 846 info->transport_status != SMBD_CONNECTED); 847 if (rc) 848 goto err_wait_credit; 849 850 if (info->transport_status != SMBD_CONNECTED) { 851 log_outgoing(ERR, "disconnected not sending on wait_credit\n"); 852 rc = -EAGAIN; 853 goto err_wait_credit; 854 } 855 if (unlikely(atomic_dec_return(&info->send_credits) < 0)) { 856 atomic_inc(&info->send_credits); 857 goto wait_credit; 858 } 859 860 wait_send_queue: 861 wait_event(info->wait_post_send, 862 atomic_read(&info->send_pending) < info->send_credit_target || 863 info->transport_status != SMBD_CONNECTED); 864 865 if (info->transport_status != SMBD_CONNECTED) { 866 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n"); 867 rc = -EAGAIN; 868 goto err_wait_send_queue; 869 } 870 871 if (unlikely(atomic_inc_return(&info->send_pending) > 872 info->send_credit_target)) { 873 atomic_dec(&info->send_pending); 874 goto wait_send_queue; 875 } 876 877 request = mempool_alloc(info->request_mempool, GFP_KERNEL); 878 if (!request) { 879 rc = -ENOMEM; 880 goto err_alloc; 881 } 882 883 request->info = info; 884 memset(request->sge, 0, sizeof(request->sge)); 885 886 /* Fill in the data payload to find out how much data we can add */ 887 if (iter) { 888 struct smb_extract_to_rdma extract = { 889 .nr_sge = 1, 890 .max_sge = SMBDIRECT_MAX_SEND_SGE, 891 .sge = request->sge, 892 .device = info->id->device, 893 .local_dma_lkey = info->pd->local_dma_lkey, 894 .direction = DMA_TO_DEVICE, 895 }; 896 897 rc = smb_extract_iter_to_rdma(iter, *_remaining_data_length, 898 &extract); 899 if (rc < 0) 900 goto err_dma; 901 data_length = rc; 902 request->num_sge = extract.nr_sge; 903 *_remaining_data_length -= data_length; 904 } else { 905 data_length = 0; 906 request->num_sge = 1; 907 } 908 909 /* Fill in the packet header */ 910 packet = smbd_request_payload(request); 911 packet->credits_requested = cpu_to_le16(info->send_credit_target); 912 913 new_credits = manage_credits_prior_sending(info); 914 atomic_add(new_credits, &info->receive_credits); 915 packet->credits_granted = cpu_to_le16(new_credits); 916 917 info->send_immediate = false; 918 919 packet->flags = 0; 920 if (manage_keep_alive_before_sending(info)) 921 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED); 922 923 packet->reserved = 0; 924 if (!data_length) 925 packet->data_offset = 0; 926 else 927 packet->data_offset = cpu_to_le32(24); 928 packet->data_length = cpu_to_le32(data_length); 929 packet->remaining_data_length = cpu_to_le32(*_remaining_data_length); 930 packet->padding = 0; 931 932 log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n", 933 le16_to_cpu(packet->credits_requested), 934 le16_to_cpu(packet->credits_granted), 935 le32_to_cpu(packet->data_offset), 936 le32_to_cpu(packet->data_length), 937 le32_to_cpu(packet->remaining_data_length)); 938 939 /* Map the packet to DMA */ 940 header_length = sizeof(struct smbd_data_transfer); 941 /* If this is a packet without payload, don't send padding */ 942 if (!data_length) 943 header_length = offsetof(struct smbd_data_transfer, padding); 944 945 request->sge[0].addr = ib_dma_map_single(info->id->device, 946 (void *)packet, 947 header_length, 948 DMA_TO_DEVICE); 949 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) { 950 rc = -EIO; 951 request->sge[0].addr = 0; 952 goto err_dma; 953 } 954 955 request->sge[0].length = header_length; 956 request->sge[0].lkey = info->pd->local_dma_lkey; 957 958 rc = smbd_post_send(info, request); 959 if (!rc) 960 return 0; 961 962 err_dma: 963 for (i = 0; i < request->num_sge; i++) 964 if (request->sge[i].addr) 965 ib_dma_unmap_single(info->id->device, 966 request->sge[i].addr, 967 request->sge[i].length, 968 DMA_TO_DEVICE); 969 mempool_free(request, info->request_mempool); 970 971 /* roll back receive credits and credits to be offered */ 972 spin_lock(&info->lock_new_credits_offered); 973 info->new_credits_offered += new_credits; 974 spin_unlock(&info->lock_new_credits_offered); 975 atomic_sub(new_credits, &info->receive_credits); 976 977 err_alloc: 978 if (atomic_dec_and_test(&info->send_pending)) 979 wake_up(&info->wait_send_pending); 980 981 err_wait_send_queue: 982 /* roll back send credits and pending */ 983 atomic_inc(&info->send_credits); 984 985 err_wait_credit: 986 return rc; 987 } 988 989 /* 990 * Send an empty message 991 * Empty message is used to extend credits to peer to for keep live 992 * while there is no upper layer payload to send at the time 993 */ 994 static int smbd_post_send_empty(struct smbd_connection *info) 995 { 996 int remaining_data_length = 0; 997 998 info->count_send_empty++; 999 return smbd_post_send_iter(info, NULL, &remaining_data_length); 1000 } 1001 1002 /* 1003 * Post a receive request to the transport 1004 * The remote peer can only send data when a receive request is posted 1005 * The interaction is controlled by send/receive credit system 1006 */ 1007 static int smbd_post_recv( 1008 struct smbd_connection *info, struct smbd_response *response) 1009 { 1010 struct ib_recv_wr recv_wr; 1011 int rc = -EIO; 1012 1013 response->sge.addr = ib_dma_map_single( 1014 info->id->device, response->packet, 1015 info->max_receive_size, DMA_FROM_DEVICE); 1016 if (ib_dma_mapping_error(info->id->device, response->sge.addr)) 1017 return rc; 1018 1019 response->sge.length = info->max_receive_size; 1020 response->sge.lkey = info->pd->local_dma_lkey; 1021 1022 response->cqe.done = recv_done; 1023 1024 recv_wr.wr_cqe = &response->cqe; 1025 recv_wr.next = NULL; 1026 recv_wr.sg_list = &response->sge; 1027 recv_wr.num_sge = 1; 1028 1029 rc = ib_post_recv(info->id->qp, &recv_wr, NULL); 1030 if (rc) { 1031 ib_dma_unmap_single(info->id->device, response->sge.addr, 1032 response->sge.length, DMA_FROM_DEVICE); 1033 smbd_disconnect_rdma_connection(info); 1034 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc); 1035 } 1036 1037 return rc; 1038 } 1039 1040 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */ 1041 static int smbd_negotiate(struct smbd_connection *info) 1042 { 1043 int rc; 1044 struct smbd_response *response = get_receive_buffer(info); 1045 1046 response->type = SMBD_NEGOTIATE_RESP; 1047 rc = smbd_post_recv(info, response); 1048 log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n", 1049 rc, response->sge.addr, 1050 response->sge.length, response->sge.lkey); 1051 if (rc) 1052 return rc; 1053 1054 init_completion(&info->negotiate_completion); 1055 info->negotiate_done = false; 1056 rc = smbd_post_send_negotiate_req(info); 1057 if (rc) 1058 return rc; 1059 1060 rc = wait_for_completion_interruptible_timeout( 1061 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ); 1062 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc); 1063 1064 if (info->negotiate_done) 1065 return 0; 1066 1067 if (rc == 0) 1068 rc = -ETIMEDOUT; 1069 else if (rc == -ERESTARTSYS) 1070 rc = -EINTR; 1071 else 1072 rc = -ENOTCONN; 1073 1074 return rc; 1075 } 1076 1077 static void put_empty_packet( 1078 struct smbd_connection *info, struct smbd_response *response) 1079 { 1080 spin_lock(&info->empty_packet_queue_lock); 1081 list_add_tail(&response->list, &info->empty_packet_queue); 1082 info->count_empty_packet_queue++; 1083 spin_unlock(&info->empty_packet_queue_lock); 1084 1085 queue_work(info->workqueue, &info->post_send_credits_work); 1086 } 1087 1088 /* 1089 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1 1090 * This is a queue for reassembling upper layer payload and present to upper 1091 * layer. All the inncoming payload go to the reassembly queue, regardless of 1092 * if reassembly is required. The uuper layer code reads from the queue for all 1093 * incoming payloads. 1094 * Put a received packet to the reassembly queue 1095 * response: the packet received 1096 * data_length: the size of payload in this packet 1097 */ 1098 static void enqueue_reassembly( 1099 struct smbd_connection *info, 1100 struct smbd_response *response, 1101 int data_length) 1102 { 1103 spin_lock(&info->reassembly_queue_lock); 1104 list_add_tail(&response->list, &info->reassembly_queue); 1105 info->reassembly_queue_length++; 1106 /* 1107 * Make sure reassembly_data_length is updated after list and 1108 * reassembly_queue_length are updated. On the dequeue side 1109 * reassembly_data_length is checked without a lock to determine 1110 * if reassembly_queue_length and list is up to date 1111 */ 1112 virt_wmb(); 1113 info->reassembly_data_length += data_length; 1114 spin_unlock(&info->reassembly_queue_lock); 1115 info->count_reassembly_queue++; 1116 info->count_enqueue_reassembly_queue++; 1117 } 1118 1119 /* 1120 * Get the first entry at the front of reassembly queue 1121 * Caller is responsible for locking 1122 * return value: the first entry if any, NULL if queue is empty 1123 */ 1124 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info) 1125 { 1126 struct smbd_response *ret = NULL; 1127 1128 if (!list_empty(&info->reassembly_queue)) { 1129 ret = list_first_entry( 1130 &info->reassembly_queue, 1131 struct smbd_response, list); 1132 } 1133 return ret; 1134 } 1135 1136 static struct smbd_response *get_empty_queue_buffer( 1137 struct smbd_connection *info) 1138 { 1139 struct smbd_response *ret = NULL; 1140 unsigned long flags; 1141 1142 spin_lock_irqsave(&info->empty_packet_queue_lock, flags); 1143 if (!list_empty(&info->empty_packet_queue)) { 1144 ret = list_first_entry( 1145 &info->empty_packet_queue, 1146 struct smbd_response, list); 1147 list_del(&ret->list); 1148 info->count_empty_packet_queue--; 1149 } 1150 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags); 1151 1152 return ret; 1153 } 1154 1155 /* 1156 * Get a receive buffer 1157 * For each remote send, we need to post a receive. The receive buffers are 1158 * pre-allocated in advance. 1159 * return value: the receive buffer, NULL if none is available 1160 */ 1161 static struct smbd_response *get_receive_buffer(struct smbd_connection *info) 1162 { 1163 struct smbd_response *ret = NULL; 1164 unsigned long flags; 1165 1166 spin_lock_irqsave(&info->receive_queue_lock, flags); 1167 if (!list_empty(&info->receive_queue)) { 1168 ret = list_first_entry( 1169 &info->receive_queue, 1170 struct smbd_response, list); 1171 list_del(&ret->list); 1172 info->count_receive_queue--; 1173 info->count_get_receive_buffer++; 1174 } 1175 spin_unlock_irqrestore(&info->receive_queue_lock, flags); 1176 1177 return ret; 1178 } 1179 1180 /* 1181 * Return a receive buffer 1182 * Upon returning of a receive buffer, we can post new receive and extend 1183 * more receive credits to remote peer. This is done immediately after a 1184 * receive buffer is returned. 1185 */ 1186 static void put_receive_buffer( 1187 struct smbd_connection *info, struct smbd_response *response) 1188 { 1189 unsigned long flags; 1190 1191 ib_dma_unmap_single(info->id->device, response->sge.addr, 1192 response->sge.length, DMA_FROM_DEVICE); 1193 1194 spin_lock_irqsave(&info->receive_queue_lock, flags); 1195 list_add_tail(&response->list, &info->receive_queue); 1196 info->count_receive_queue++; 1197 info->count_put_receive_buffer++; 1198 spin_unlock_irqrestore(&info->receive_queue_lock, flags); 1199 1200 queue_work(info->workqueue, &info->post_send_credits_work); 1201 } 1202 1203 /* Preallocate all receive buffer on transport establishment */ 1204 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf) 1205 { 1206 int i; 1207 struct smbd_response *response; 1208 1209 INIT_LIST_HEAD(&info->reassembly_queue); 1210 spin_lock_init(&info->reassembly_queue_lock); 1211 info->reassembly_data_length = 0; 1212 info->reassembly_queue_length = 0; 1213 1214 INIT_LIST_HEAD(&info->receive_queue); 1215 spin_lock_init(&info->receive_queue_lock); 1216 info->count_receive_queue = 0; 1217 1218 INIT_LIST_HEAD(&info->empty_packet_queue); 1219 spin_lock_init(&info->empty_packet_queue_lock); 1220 info->count_empty_packet_queue = 0; 1221 1222 init_waitqueue_head(&info->wait_receive_queues); 1223 1224 for (i = 0; i < num_buf; i++) { 1225 response = mempool_alloc(info->response_mempool, GFP_KERNEL); 1226 if (!response) 1227 goto allocate_failed; 1228 1229 response->info = info; 1230 list_add_tail(&response->list, &info->receive_queue); 1231 info->count_receive_queue++; 1232 } 1233 1234 return 0; 1235 1236 allocate_failed: 1237 while (!list_empty(&info->receive_queue)) { 1238 response = list_first_entry( 1239 &info->receive_queue, 1240 struct smbd_response, list); 1241 list_del(&response->list); 1242 info->count_receive_queue--; 1243 1244 mempool_free(response, info->response_mempool); 1245 } 1246 return -ENOMEM; 1247 } 1248 1249 static void destroy_receive_buffers(struct smbd_connection *info) 1250 { 1251 struct smbd_response *response; 1252 1253 while ((response = get_receive_buffer(info))) 1254 mempool_free(response, info->response_mempool); 1255 1256 while ((response = get_empty_queue_buffer(info))) 1257 mempool_free(response, info->response_mempool); 1258 } 1259 1260 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */ 1261 static void idle_connection_timer(struct work_struct *work) 1262 { 1263 struct smbd_connection *info = container_of( 1264 work, struct smbd_connection, 1265 idle_timer_work.work); 1266 1267 if (info->keep_alive_requested != KEEP_ALIVE_NONE) { 1268 log_keep_alive(ERR, 1269 "error status info->keep_alive_requested=%d\n", 1270 info->keep_alive_requested); 1271 smbd_disconnect_rdma_connection(info); 1272 return; 1273 } 1274 1275 log_keep_alive(INFO, "about to send an empty idle message\n"); 1276 smbd_post_send_empty(info); 1277 1278 /* Setup the next idle timeout work */ 1279 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1280 info->keep_alive_interval*HZ); 1281 } 1282 1283 /* 1284 * Destroy the transport and related RDMA and memory resources 1285 * Need to go through all the pending counters and make sure on one is using 1286 * the transport while it is destroyed 1287 */ 1288 void smbd_destroy(struct TCP_Server_Info *server) 1289 { 1290 struct smbd_connection *info = server->smbd_conn; 1291 struct smbd_response *response; 1292 unsigned long flags; 1293 1294 if (!info) { 1295 log_rdma_event(INFO, "rdma session already destroyed\n"); 1296 return; 1297 } 1298 1299 log_rdma_event(INFO, "destroying rdma session\n"); 1300 if (info->transport_status != SMBD_DISCONNECTED) { 1301 rdma_disconnect(server->smbd_conn->id); 1302 log_rdma_event(INFO, "wait for transport being disconnected\n"); 1303 wait_event_interruptible( 1304 info->disconn_wait, 1305 info->transport_status == SMBD_DISCONNECTED); 1306 } 1307 1308 log_rdma_event(INFO, "destroying qp\n"); 1309 ib_drain_qp(info->id->qp); 1310 rdma_destroy_qp(info->id); 1311 1312 log_rdma_event(INFO, "cancelling idle timer\n"); 1313 cancel_delayed_work_sync(&info->idle_timer_work); 1314 1315 log_rdma_event(INFO, "wait for all send posted to IB to finish\n"); 1316 wait_event(info->wait_send_pending, 1317 atomic_read(&info->send_pending) == 0); 1318 1319 /* It's not possible for upper layer to get to reassembly */ 1320 log_rdma_event(INFO, "drain the reassembly queue\n"); 1321 do { 1322 spin_lock_irqsave(&info->reassembly_queue_lock, flags); 1323 response = _get_first_reassembly(info); 1324 if (response) { 1325 list_del(&response->list); 1326 spin_unlock_irqrestore( 1327 &info->reassembly_queue_lock, flags); 1328 put_receive_buffer(info, response); 1329 } else 1330 spin_unlock_irqrestore( 1331 &info->reassembly_queue_lock, flags); 1332 } while (response); 1333 info->reassembly_data_length = 0; 1334 1335 log_rdma_event(INFO, "free receive buffers\n"); 1336 wait_event(info->wait_receive_queues, 1337 info->count_receive_queue + info->count_empty_packet_queue 1338 == info->receive_credit_max); 1339 destroy_receive_buffers(info); 1340 1341 /* 1342 * For performance reasons, memory registration and deregistration 1343 * are not locked by srv_mutex. It is possible some processes are 1344 * blocked on transport srv_mutex while holding memory registration. 1345 * Release the transport srv_mutex to allow them to hit the failure 1346 * path when sending data, and then release memory registartions. 1347 */ 1348 log_rdma_event(INFO, "freeing mr list\n"); 1349 wake_up_interruptible_all(&info->wait_mr); 1350 while (atomic_read(&info->mr_used_count)) { 1351 cifs_server_unlock(server); 1352 msleep(1000); 1353 cifs_server_lock(server); 1354 } 1355 destroy_mr_list(info); 1356 1357 ib_free_cq(info->send_cq); 1358 ib_free_cq(info->recv_cq); 1359 ib_dealloc_pd(info->pd); 1360 rdma_destroy_id(info->id); 1361 1362 /* free mempools */ 1363 mempool_destroy(info->request_mempool); 1364 kmem_cache_destroy(info->request_cache); 1365 1366 mempool_destroy(info->response_mempool); 1367 kmem_cache_destroy(info->response_cache); 1368 1369 info->transport_status = SMBD_DESTROYED; 1370 1371 destroy_workqueue(info->workqueue); 1372 log_rdma_event(INFO, "rdma session destroyed\n"); 1373 kfree(info); 1374 server->smbd_conn = NULL; 1375 } 1376 1377 /* 1378 * Reconnect this SMBD connection, called from upper layer 1379 * return value: 0 on success, or actual error code 1380 */ 1381 int smbd_reconnect(struct TCP_Server_Info *server) 1382 { 1383 log_rdma_event(INFO, "reconnecting rdma session\n"); 1384 1385 if (!server->smbd_conn) { 1386 log_rdma_event(INFO, "rdma session already destroyed\n"); 1387 goto create_conn; 1388 } 1389 1390 /* 1391 * This is possible if transport is disconnected and we haven't received 1392 * notification from RDMA, but upper layer has detected timeout 1393 */ 1394 if (server->smbd_conn->transport_status == SMBD_CONNECTED) { 1395 log_rdma_event(INFO, "disconnecting transport\n"); 1396 smbd_destroy(server); 1397 } 1398 1399 create_conn: 1400 log_rdma_event(INFO, "creating rdma session\n"); 1401 server->smbd_conn = smbd_get_connection( 1402 server, (struct sockaddr *) &server->dstaddr); 1403 1404 if (server->smbd_conn) { 1405 cifs_dbg(VFS, "RDMA transport re-established\n"); 1406 trace_smb3_smbd_connect_done(server->hostname, server->conn_id, &server->dstaddr); 1407 return 0; 1408 } 1409 trace_smb3_smbd_connect_err(server->hostname, server->conn_id, &server->dstaddr); 1410 return -ENOENT; 1411 } 1412 1413 static void destroy_caches_and_workqueue(struct smbd_connection *info) 1414 { 1415 destroy_receive_buffers(info); 1416 destroy_workqueue(info->workqueue); 1417 mempool_destroy(info->response_mempool); 1418 kmem_cache_destroy(info->response_cache); 1419 mempool_destroy(info->request_mempool); 1420 kmem_cache_destroy(info->request_cache); 1421 } 1422 1423 #define MAX_NAME_LEN 80 1424 static int allocate_caches_and_workqueue(struct smbd_connection *info) 1425 { 1426 char name[MAX_NAME_LEN]; 1427 int rc; 1428 1429 scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info); 1430 info->request_cache = 1431 kmem_cache_create( 1432 name, 1433 sizeof(struct smbd_request) + 1434 sizeof(struct smbd_data_transfer), 1435 0, SLAB_HWCACHE_ALIGN, NULL); 1436 if (!info->request_cache) 1437 return -ENOMEM; 1438 1439 info->request_mempool = 1440 mempool_create(info->send_credit_target, mempool_alloc_slab, 1441 mempool_free_slab, info->request_cache); 1442 if (!info->request_mempool) 1443 goto out1; 1444 1445 scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info); 1446 info->response_cache = 1447 kmem_cache_create( 1448 name, 1449 sizeof(struct smbd_response) + 1450 info->max_receive_size, 1451 0, SLAB_HWCACHE_ALIGN, NULL); 1452 if (!info->response_cache) 1453 goto out2; 1454 1455 info->response_mempool = 1456 mempool_create(info->receive_credit_max, mempool_alloc_slab, 1457 mempool_free_slab, info->response_cache); 1458 if (!info->response_mempool) 1459 goto out3; 1460 1461 scnprintf(name, MAX_NAME_LEN, "smbd_%p", info); 1462 info->workqueue = create_workqueue(name); 1463 if (!info->workqueue) 1464 goto out4; 1465 1466 rc = allocate_receive_buffers(info, info->receive_credit_max); 1467 if (rc) { 1468 log_rdma_event(ERR, "failed to allocate receive buffers\n"); 1469 goto out5; 1470 } 1471 1472 return 0; 1473 1474 out5: 1475 destroy_workqueue(info->workqueue); 1476 out4: 1477 mempool_destroy(info->response_mempool); 1478 out3: 1479 kmem_cache_destroy(info->response_cache); 1480 out2: 1481 mempool_destroy(info->request_mempool); 1482 out1: 1483 kmem_cache_destroy(info->request_cache); 1484 return -ENOMEM; 1485 } 1486 1487 /* Create a SMBD connection, called by upper layer */ 1488 static struct smbd_connection *_smbd_get_connection( 1489 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port) 1490 { 1491 int rc; 1492 struct smbd_connection *info; 1493 struct rdma_conn_param conn_param; 1494 struct ib_qp_init_attr qp_attr; 1495 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr; 1496 struct ib_port_immutable port_immutable; 1497 u32 ird_ord_hdr[2]; 1498 1499 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL); 1500 if (!info) 1501 return NULL; 1502 1503 info->transport_status = SMBD_CONNECTING; 1504 rc = smbd_ia_open(info, dstaddr, port); 1505 if (rc) { 1506 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc); 1507 goto create_id_failed; 1508 } 1509 1510 if (smbd_send_credit_target > info->id->device->attrs.max_cqe || 1511 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) { 1512 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n", 1513 smbd_send_credit_target, 1514 info->id->device->attrs.max_cqe, 1515 info->id->device->attrs.max_qp_wr); 1516 goto config_failed; 1517 } 1518 1519 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe || 1520 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) { 1521 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n", 1522 smbd_receive_credit_max, 1523 info->id->device->attrs.max_cqe, 1524 info->id->device->attrs.max_qp_wr); 1525 goto config_failed; 1526 } 1527 1528 info->receive_credit_max = smbd_receive_credit_max; 1529 info->send_credit_target = smbd_send_credit_target; 1530 info->max_send_size = smbd_max_send_size; 1531 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size; 1532 info->max_receive_size = smbd_max_receive_size; 1533 info->keep_alive_interval = smbd_keep_alive_interval; 1534 1535 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE || 1536 info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) { 1537 log_rdma_event(ERR, 1538 "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n", 1539 IB_DEVICE_NAME_MAX, 1540 info->id->device->name, 1541 info->id->device->attrs.max_send_sge, 1542 info->id->device->attrs.max_recv_sge); 1543 goto config_failed; 1544 } 1545 1546 info->send_cq = NULL; 1547 info->recv_cq = NULL; 1548 info->send_cq = 1549 ib_alloc_cq_any(info->id->device, info, 1550 info->send_credit_target, IB_POLL_SOFTIRQ); 1551 if (IS_ERR(info->send_cq)) { 1552 info->send_cq = NULL; 1553 goto alloc_cq_failed; 1554 } 1555 1556 info->recv_cq = 1557 ib_alloc_cq_any(info->id->device, info, 1558 info->receive_credit_max, IB_POLL_SOFTIRQ); 1559 if (IS_ERR(info->recv_cq)) { 1560 info->recv_cq = NULL; 1561 goto alloc_cq_failed; 1562 } 1563 1564 memset(&qp_attr, 0, sizeof(qp_attr)); 1565 qp_attr.event_handler = smbd_qp_async_error_upcall; 1566 qp_attr.qp_context = info; 1567 qp_attr.cap.max_send_wr = info->send_credit_target; 1568 qp_attr.cap.max_recv_wr = info->receive_credit_max; 1569 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE; 1570 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE; 1571 qp_attr.cap.max_inline_data = 0; 1572 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; 1573 qp_attr.qp_type = IB_QPT_RC; 1574 qp_attr.send_cq = info->send_cq; 1575 qp_attr.recv_cq = info->recv_cq; 1576 qp_attr.port_num = ~0; 1577 1578 rc = rdma_create_qp(info->id, info->pd, &qp_attr); 1579 if (rc) { 1580 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc); 1581 goto create_qp_failed; 1582 } 1583 1584 memset(&conn_param, 0, sizeof(conn_param)); 1585 conn_param.initiator_depth = 0; 1586 1587 conn_param.responder_resources = 1588 info->id->device->attrs.max_qp_rd_atom 1589 < SMBD_CM_RESPONDER_RESOURCES ? 1590 info->id->device->attrs.max_qp_rd_atom : 1591 SMBD_CM_RESPONDER_RESOURCES; 1592 info->responder_resources = conn_param.responder_resources; 1593 log_rdma_mr(INFO, "responder_resources=%d\n", 1594 info->responder_resources); 1595 1596 /* Need to send IRD/ORD in private data for iWARP */ 1597 info->id->device->ops.get_port_immutable( 1598 info->id->device, info->id->port_num, &port_immutable); 1599 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) { 1600 ird_ord_hdr[0] = info->responder_resources; 1601 ird_ord_hdr[1] = 1; 1602 conn_param.private_data = ird_ord_hdr; 1603 conn_param.private_data_len = sizeof(ird_ord_hdr); 1604 } else { 1605 conn_param.private_data = NULL; 1606 conn_param.private_data_len = 0; 1607 } 1608 1609 conn_param.retry_count = SMBD_CM_RETRY; 1610 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY; 1611 conn_param.flow_control = 0; 1612 1613 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n", 1614 &addr_in->sin_addr, port); 1615 1616 init_waitqueue_head(&info->conn_wait); 1617 init_waitqueue_head(&info->disconn_wait); 1618 init_waitqueue_head(&info->wait_reassembly_queue); 1619 rc = rdma_connect(info->id, &conn_param); 1620 if (rc) { 1621 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc); 1622 goto rdma_connect_failed; 1623 } 1624 1625 wait_event_interruptible( 1626 info->conn_wait, info->transport_status != SMBD_CONNECTING); 1627 1628 if (info->transport_status != SMBD_CONNECTED) { 1629 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port); 1630 goto rdma_connect_failed; 1631 } 1632 1633 log_rdma_event(INFO, "rdma_connect connected\n"); 1634 1635 rc = allocate_caches_and_workqueue(info); 1636 if (rc) { 1637 log_rdma_event(ERR, "cache allocation failed\n"); 1638 goto allocate_cache_failed; 1639 } 1640 1641 init_waitqueue_head(&info->wait_send_queue); 1642 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer); 1643 queue_delayed_work(info->workqueue, &info->idle_timer_work, 1644 info->keep_alive_interval*HZ); 1645 1646 init_waitqueue_head(&info->wait_send_pending); 1647 atomic_set(&info->send_pending, 0); 1648 1649 init_waitqueue_head(&info->wait_post_send); 1650 1651 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work); 1652 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits); 1653 info->new_credits_offered = 0; 1654 spin_lock_init(&info->lock_new_credits_offered); 1655 1656 rc = smbd_negotiate(info); 1657 if (rc) { 1658 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc); 1659 goto negotiation_failed; 1660 } 1661 1662 rc = allocate_mr_list(info); 1663 if (rc) { 1664 log_rdma_mr(ERR, "memory registration allocation failed\n"); 1665 goto allocate_mr_failed; 1666 } 1667 1668 return info; 1669 1670 allocate_mr_failed: 1671 /* At this point, need to a full transport shutdown */ 1672 server->smbd_conn = info; 1673 smbd_destroy(server); 1674 return NULL; 1675 1676 negotiation_failed: 1677 cancel_delayed_work_sync(&info->idle_timer_work); 1678 destroy_caches_and_workqueue(info); 1679 info->transport_status = SMBD_NEGOTIATE_FAILED; 1680 init_waitqueue_head(&info->conn_wait); 1681 rdma_disconnect(info->id); 1682 wait_event(info->conn_wait, 1683 info->transport_status == SMBD_DISCONNECTED); 1684 1685 allocate_cache_failed: 1686 rdma_connect_failed: 1687 rdma_destroy_qp(info->id); 1688 1689 create_qp_failed: 1690 alloc_cq_failed: 1691 if (info->send_cq) 1692 ib_free_cq(info->send_cq); 1693 if (info->recv_cq) 1694 ib_free_cq(info->recv_cq); 1695 1696 config_failed: 1697 ib_dealloc_pd(info->pd); 1698 rdma_destroy_id(info->id); 1699 1700 create_id_failed: 1701 kfree(info); 1702 return NULL; 1703 } 1704 1705 struct smbd_connection *smbd_get_connection( 1706 struct TCP_Server_Info *server, struct sockaddr *dstaddr) 1707 { 1708 struct smbd_connection *ret; 1709 int port = SMBD_PORT; 1710 1711 try_again: 1712 ret = _smbd_get_connection(server, dstaddr, port); 1713 1714 /* Try SMB_PORT if SMBD_PORT doesn't work */ 1715 if (!ret && port == SMBD_PORT) { 1716 port = SMB_PORT; 1717 goto try_again; 1718 } 1719 return ret; 1720 } 1721 1722 /* 1723 * Receive data from receive reassembly queue 1724 * All the incoming data packets are placed in reassembly queue 1725 * buf: the buffer to read data into 1726 * size: the length of data to read 1727 * return value: actual data read 1728 * Note: this implementation copies the data from reassebmly queue to receive 1729 * buffers used by upper layer. This is not the optimal code path. A better way 1730 * to do it is to not have upper layer allocate its receive buffers but rather 1731 * borrow the buffer from reassembly queue, and return it after data is 1732 * consumed. But this will require more changes to upper layer code, and also 1733 * need to consider packet boundaries while they still being reassembled. 1734 */ 1735 static int smbd_recv_buf(struct smbd_connection *info, char *buf, 1736 unsigned int size) 1737 { 1738 struct smbd_response *response; 1739 struct smbd_data_transfer *data_transfer; 1740 int to_copy, to_read, data_read, offset; 1741 u32 data_length, remaining_data_length, data_offset; 1742 int rc; 1743 1744 again: 1745 /* 1746 * No need to hold the reassembly queue lock all the time as we are 1747 * the only one reading from the front of the queue. The transport 1748 * may add more entries to the back of the queue at the same time 1749 */ 1750 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size, 1751 info->reassembly_data_length); 1752 if (info->reassembly_data_length >= size) { 1753 int queue_length; 1754 int queue_removed = 0; 1755 1756 /* 1757 * Need to make sure reassembly_data_length is read before 1758 * reading reassembly_queue_length and calling 1759 * _get_first_reassembly. This call is lock free 1760 * as we never read at the end of the queue which are being 1761 * updated in SOFTIRQ as more data is received 1762 */ 1763 virt_rmb(); 1764 queue_length = info->reassembly_queue_length; 1765 data_read = 0; 1766 to_read = size; 1767 offset = info->first_entry_offset; 1768 while (data_read < size) { 1769 response = _get_first_reassembly(info); 1770 data_transfer = smbd_response_payload(response); 1771 data_length = le32_to_cpu(data_transfer->data_length); 1772 remaining_data_length = 1773 le32_to_cpu( 1774 data_transfer->remaining_data_length); 1775 data_offset = le32_to_cpu(data_transfer->data_offset); 1776 1777 /* 1778 * The upper layer expects RFC1002 length at the 1779 * beginning of the payload. Return it to indicate 1780 * the total length of the packet. This minimize the 1781 * change to upper layer packet processing logic. This 1782 * will be eventually remove when an intermediate 1783 * transport layer is added 1784 */ 1785 if (response->first_segment && size == 4) { 1786 unsigned int rfc1002_len = 1787 data_length + remaining_data_length; 1788 *((__be32 *)buf) = cpu_to_be32(rfc1002_len); 1789 data_read = 4; 1790 response->first_segment = false; 1791 log_read(INFO, "returning rfc1002 length %d\n", 1792 rfc1002_len); 1793 goto read_rfc1002_done; 1794 } 1795 1796 to_copy = min_t(int, data_length - offset, to_read); 1797 memcpy( 1798 buf + data_read, 1799 (char *)data_transfer + data_offset + offset, 1800 to_copy); 1801 1802 /* move on to the next buffer? */ 1803 if (to_copy == data_length - offset) { 1804 queue_length--; 1805 /* 1806 * No need to lock if we are not at the 1807 * end of the queue 1808 */ 1809 if (queue_length) 1810 list_del(&response->list); 1811 else { 1812 spin_lock_irq( 1813 &info->reassembly_queue_lock); 1814 list_del(&response->list); 1815 spin_unlock_irq( 1816 &info->reassembly_queue_lock); 1817 } 1818 queue_removed++; 1819 info->count_reassembly_queue--; 1820 info->count_dequeue_reassembly_queue++; 1821 put_receive_buffer(info, response); 1822 offset = 0; 1823 log_read(INFO, "put_receive_buffer offset=0\n"); 1824 } else 1825 offset += to_copy; 1826 1827 to_read -= to_copy; 1828 data_read += to_copy; 1829 1830 log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n", 1831 to_copy, data_length - offset, 1832 to_read, data_read, offset); 1833 } 1834 1835 spin_lock_irq(&info->reassembly_queue_lock); 1836 info->reassembly_data_length -= data_read; 1837 info->reassembly_queue_length -= queue_removed; 1838 spin_unlock_irq(&info->reassembly_queue_lock); 1839 1840 info->first_entry_offset = offset; 1841 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n", 1842 data_read, info->reassembly_data_length, 1843 info->first_entry_offset); 1844 read_rfc1002_done: 1845 return data_read; 1846 } 1847 1848 log_read(INFO, "wait_event on more data\n"); 1849 rc = wait_event_interruptible( 1850 info->wait_reassembly_queue, 1851 info->reassembly_data_length >= size || 1852 info->transport_status != SMBD_CONNECTED); 1853 /* Don't return any data if interrupted */ 1854 if (rc) 1855 return rc; 1856 1857 if (info->transport_status != SMBD_CONNECTED) { 1858 log_read(ERR, "disconnected\n"); 1859 return -ECONNABORTED; 1860 } 1861 1862 goto again; 1863 } 1864 1865 /* 1866 * Receive a page from receive reassembly queue 1867 * page: the page to read data into 1868 * to_read: the length of data to read 1869 * return value: actual data read 1870 */ 1871 static int smbd_recv_page(struct smbd_connection *info, 1872 struct page *page, unsigned int page_offset, 1873 unsigned int to_read) 1874 { 1875 int ret; 1876 char *to_address; 1877 void *page_address; 1878 1879 /* make sure we have the page ready for read */ 1880 ret = wait_event_interruptible( 1881 info->wait_reassembly_queue, 1882 info->reassembly_data_length >= to_read || 1883 info->transport_status != SMBD_CONNECTED); 1884 if (ret) 1885 return ret; 1886 1887 /* now we can read from reassembly queue and not sleep */ 1888 page_address = kmap_atomic(page); 1889 to_address = (char *) page_address + page_offset; 1890 1891 log_read(INFO, "reading from page=%p address=%p to_read=%d\n", 1892 page, to_address, to_read); 1893 1894 ret = smbd_recv_buf(info, to_address, to_read); 1895 kunmap_atomic(page_address); 1896 1897 return ret; 1898 } 1899 1900 /* 1901 * Receive data from transport 1902 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC 1903 * return: total bytes read, or 0. SMB Direct will not do partial read. 1904 */ 1905 int smbd_recv(struct smbd_connection *info, struct msghdr *msg) 1906 { 1907 char *buf; 1908 struct page *page; 1909 unsigned int to_read, page_offset; 1910 int rc; 1911 1912 if (iov_iter_rw(&msg->msg_iter) == WRITE) { 1913 /* It's a bug in upper layer to get there */ 1914 cifs_dbg(VFS, "Invalid msg iter dir %u\n", 1915 iov_iter_rw(&msg->msg_iter)); 1916 rc = -EINVAL; 1917 goto out; 1918 } 1919 1920 switch (iov_iter_type(&msg->msg_iter)) { 1921 case ITER_KVEC: 1922 buf = msg->msg_iter.kvec->iov_base; 1923 to_read = msg->msg_iter.kvec->iov_len; 1924 rc = smbd_recv_buf(info, buf, to_read); 1925 break; 1926 1927 case ITER_BVEC: 1928 page = msg->msg_iter.bvec->bv_page; 1929 page_offset = msg->msg_iter.bvec->bv_offset; 1930 to_read = msg->msg_iter.bvec->bv_len; 1931 rc = smbd_recv_page(info, page, page_offset, to_read); 1932 break; 1933 1934 default: 1935 /* It's a bug in upper layer to get there */ 1936 cifs_dbg(VFS, "Invalid msg type %d\n", 1937 iov_iter_type(&msg->msg_iter)); 1938 rc = -EINVAL; 1939 } 1940 1941 out: 1942 /* SMBDirect will read it all or nothing */ 1943 if (rc > 0) 1944 msg->msg_iter.count = 0; 1945 return rc; 1946 } 1947 1948 /* 1949 * Send data to transport 1950 * Each rqst is transported as a SMBDirect payload 1951 * rqst: the data to write 1952 * return value: 0 if successfully write, otherwise error code 1953 */ 1954 int smbd_send(struct TCP_Server_Info *server, 1955 int num_rqst, struct smb_rqst *rqst_array) 1956 { 1957 struct smbd_connection *info = server->smbd_conn; 1958 struct smb_rqst *rqst; 1959 struct iov_iter iter; 1960 unsigned int remaining_data_length, klen; 1961 int rc, i, rqst_idx; 1962 1963 if (info->transport_status != SMBD_CONNECTED) 1964 return -EAGAIN; 1965 1966 /* 1967 * Add in the page array if there is one. The caller needs to set 1968 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and 1969 * ends at page boundary 1970 */ 1971 remaining_data_length = 0; 1972 for (i = 0; i < num_rqst; i++) 1973 remaining_data_length += smb_rqst_len(server, &rqst_array[i]); 1974 1975 if (unlikely(remaining_data_length > info->max_fragmented_send_size)) { 1976 /* assertion: payload never exceeds negotiated maximum */ 1977 log_write(ERR, "payload size %d > max size %d\n", 1978 remaining_data_length, info->max_fragmented_send_size); 1979 return -EINVAL; 1980 } 1981 1982 log_write(INFO, "num_rqst=%d total length=%u\n", 1983 num_rqst, remaining_data_length); 1984 1985 rqst_idx = 0; 1986 do { 1987 rqst = &rqst_array[rqst_idx]; 1988 1989 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n", 1990 rqst_idx, smb_rqst_len(server, rqst)); 1991 for (i = 0; i < rqst->rq_nvec; i++) 1992 dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len); 1993 1994 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n", 1995 rqst_idx, rqst->rq_nvec, remaining_data_length, 1996 iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst)); 1997 1998 /* Send the metadata pages. */ 1999 klen = 0; 2000 for (i = 0; i < rqst->rq_nvec; i++) 2001 klen += rqst->rq_iov[i].iov_len; 2002 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen); 2003 2004 rc = smbd_post_send_iter(info, &iter, &remaining_data_length); 2005 if (rc < 0) 2006 break; 2007 2008 if (iov_iter_count(&rqst->rq_iter) > 0) { 2009 /* And then the data pages if there are any */ 2010 rc = smbd_post_send_iter(info, &rqst->rq_iter, 2011 &remaining_data_length); 2012 if (rc < 0) 2013 break; 2014 } 2015 2016 } while (++rqst_idx < num_rqst); 2017 2018 /* 2019 * As an optimization, we don't wait for individual I/O to finish 2020 * before sending the next one. 2021 * Send them all and wait for pending send count to get to 0 2022 * that means all the I/Os have been out and we are good to return 2023 */ 2024 2025 wait_event(info->wait_send_pending, 2026 atomic_read(&info->send_pending) == 0); 2027 2028 return rc; 2029 } 2030 2031 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc) 2032 { 2033 struct smbd_mr *mr; 2034 struct ib_cqe *cqe; 2035 2036 if (wc->status) { 2037 log_rdma_mr(ERR, "status=%d\n", wc->status); 2038 cqe = wc->wr_cqe; 2039 mr = container_of(cqe, struct smbd_mr, cqe); 2040 smbd_disconnect_rdma_connection(mr->conn); 2041 } 2042 } 2043 2044 /* 2045 * The work queue function that recovers MRs 2046 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used 2047 * again. Both calls are slow, so finish them in a workqueue. This will not 2048 * block I/O path. 2049 * There is one workqueue that recovers MRs, there is no need to lock as the 2050 * I/O requests calling smbd_register_mr will never update the links in the 2051 * mr_list. 2052 */ 2053 static void smbd_mr_recovery_work(struct work_struct *work) 2054 { 2055 struct smbd_connection *info = 2056 container_of(work, struct smbd_connection, mr_recovery_work); 2057 struct smbd_mr *smbdirect_mr; 2058 int rc; 2059 2060 list_for_each_entry(smbdirect_mr, &info->mr_list, list) { 2061 if (smbdirect_mr->state == MR_ERROR) { 2062 2063 /* recover this MR entry */ 2064 rc = ib_dereg_mr(smbdirect_mr->mr); 2065 if (rc) { 2066 log_rdma_mr(ERR, 2067 "ib_dereg_mr failed rc=%x\n", 2068 rc); 2069 smbd_disconnect_rdma_connection(info); 2070 continue; 2071 } 2072 2073 smbdirect_mr->mr = ib_alloc_mr( 2074 info->pd, info->mr_type, 2075 info->max_frmr_depth); 2076 if (IS_ERR(smbdirect_mr->mr)) { 2077 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n", 2078 info->mr_type, 2079 info->max_frmr_depth); 2080 smbd_disconnect_rdma_connection(info); 2081 continue; 2082 } 2083 } else 2084 /* This MR is being used, don't recover it */ 2085 continue; 2086 2087 smbdirect_mr->state = MR_READY; 2088 2089 /* smbdirect_mr->state is updated by this function 2090 * and is read and updated by I/O issuing CPUs trying 2091 * to get a MR, the call to atomic_inc_return 2092 * implicates a memory barrier and guarantees this 2093 * value is updated before waking up any calls to 2094 * get_mr() from the I/O issuing CPUs 2095 */ 2096 if (atomic_inc_return(&info->mr_ready_count) == 1) 2097 wake_up_interruptible(&info->wait_mr); 2098 } 2099 } 2100 2101 static void destroy_mr_list(struct smbd_connection *info) 2102 { 2103 struct smbd_mr *mr, *tmp; 2104 2105 cancel_work_sync(&info->mr_recovery_work); 2106 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) { 2107 if (mr->state == MR_INVALIDATED) 2108 ib_dma_unmap_sg(info->id->device, mr->sgt.sgl, 2109 mr->sgt.nents, mr->dir); 2110 ib_dereg_mr(mr->mr); 2111 kfree(mr->sgt.sgl); 2112 kfree(mr); 2113 } 2114 } 2115 2116 /* 2117 * Allocate MRs used for RDMA read/write 2118 * The number of MRs will not exceed hardware capability in responder_resources 2119 * All MRs are kept in mr_list. The MR can be recovered after it's used 2120 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes 2121 * as MRs are used and recovered for I/O, but the list links will not change 2122 */ 2123 static int allocate_mr_list(struct smbd_connection *info) 2124 { 2125 int i; 2126 struct smbd_mr *smbdirect_mr, *tmp; 2127 2128 INIT_LIST_HEAD(&info->mr_list); 2129 init_waitqueue_head(&info->wait_mr); 2130 spin_lock_init(&info->mr_list_lock); 2131 atomic_set(&info->mr_ready_count, 0); 2132 atomic_set(&info->mr_used_count, 0); 2133 init_waitqueue_head(&info->wait_for_mr_cleanup); 2134 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work); 2135 /* Allocate more MRs (2x) than hardware responder_resources */ 2136 for (i = 0; i < info->responder_resources * 2; i++) { 2137 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL); 2138 if (!smbdirect_mr) 2139 goto cleanup_entries; 2140 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type, 2141 info->max_frmr_depth); 2142 if (IS_ERR(smbdirect_mr->mr)) { 2143 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n", 2144 info->mr_type, info->max_frmr_depth); 2145 goto out; 2146 } 2147 smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth, 2148 sizeof(struct scatterlist), 2149 GFP_KERNEL); 2150 if (!smbdirect_mr->sgt.sgl) { 2151 log_rdma_mr(ERR, "failed to allocate sgl\n"); 2152 ib_dereg_mr(smbdirect_mr->mr); 2153 goto out; 2154 } 2155 smbdirect_mr->state = MR_READY; 2156 smbdirect_mr->conn = info; 2157 2158 list_add_tail(&smbdirect_mr->list, &info->mr_list); 2159 atomic_inc(&info->mr_ready_count); 2160 } 2161 return 0; 2162 2163 out: 2164 kfree(smbdirect_mr); 2165 cleanup_entries: 2166 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) { 2167 list_del(&smbdirect_mr->list); 2168 ib_dereg_mr(smbdirect_mr->mr); 2169 kfree(smbdirect_mr->sgt.sgl); 2170 kfree(smbdirect_mr); 2171 } 2172 return -ENOMEM; 2173 } 2174 2175 /* 2176 * Get a MR from mr_list. This function waits until there is at least one 2177 * MR available in the list. It may access the list while the 2178 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock 2179 * as they never modify the same places. However, there may be several CPUs 2180 * issuing I/O trying to get MR at the same time, mr_list_lock is used to 2181 * protect this situation. 2182 */ 2183 static struct smbd_mr *get_mr(struct smbd_connection *info) 2184 { 2185 struct smbd_mr *ret; 2186 int rc; 2187 again: 2188 rc = wait_event_interruptible(info->wait_mr, 2189 atomic_read(&info->mr_ready_count) || 2190 info->transport_status != SMBD_CONNECTED); 2191 if (rc) { 2192 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc); 2193 return NULL; 2194 } 2195 2196 if (info->transport_status != SMBD_CONNECTED) { 2197 log_rdma_mr(ERR, "info->transport_status=%x\n", 2198 info->transport_status); 2199 return NULL; 2200 } 2201 2202 spin_lock(&info->mr_list_lock); 2203 list_for_each_entry(ret, &info->mr_list, list) { 2204 if (ret->state == MR_READY) { 2205 ret->state = MR_REGISTERED; 2206 spin_unlock(&info->mr_list_lock); 2207 atomic_dec(&info->mr_ready_count); 2208 atomic_inc(&info->mr_used_count); 2209 return ret; 2210 } 2211 } 2212 2213 spin_unlock(&info->mr_list_lock); 2214 /* 2215 * It is possible that we could fail to get MR because other processes may 2216 * try to acquire a MR at the same time. If this is the case, retry it. 2217 */ 2218 goto again; 2219 } 2220 2221 /* 2222 * Transcribe the pages from an iterator into an MR scatterlist. 2223 */ 2224 static int smbd_iter_to_mr(struct smbd_connection *info, 2225 struct iov_iter *iter, 2226 struct sg_table *sgt, 2227 unsigned int max_sg) 2228 { 2229 int ret; 2230 2231 memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist)); 2232 2233 ret = extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0); 2234 WARN_ON(ret < 0); 2235 if (sgt->nents > 0) 2236 sg_mark_end(&sgt->sgl[sgt->nents - 1]); 2237 return ret; 2238 } 2239 2240 /* 2241 * Register memory for RDMA read/write 2242 * iter: the buffer to register memory with 2243 * writing: true if this is a RDMA write (SMB read), false for RDMA read 2244 * need_invalidate: true if this MR needs to be locally invalidated after I/O 2245 * return value: the MR registered, NULL if failed. 2246 */ 2247 struct smbd_mr *smbd_register_mr(struct smbd_connection *info, 2248 struct iov_iter *iter, 2249 bool writing, bool need_invalidate) 2250 { 2251 struct smbd_mr *smbdirect_mr; 2252 int rc, num_pages; 2253 enum dma_data_direction dir; 2254 struct ib_reg_wr *reg_wr; 2255 2256 num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1); 2257 if (num_pages > info->max_frmr_depth) { 2258 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n", 2259 num_pages, info->max_frmr_depth); 2260 WARN_ON_ONCE(1); 2261 return NULL; 2262 } 2263 2264 smbdirect_mr = get_mr(info); 2265 if (!smbdirect_mr) { 2266 log_rdma_mr(ERR, "get_mr returning NULL\n"); 2267 return NULL; 2268 } 2269 2270 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 2271 smbdirect_mr->dir = dir; 2272 smbdirect_mr->need_invalidate = need_invalidate; 2273 smbdirect_mr->sgt.nents = 0; 2274 smbdirect_mr->sgt.orig_nents = 0; 2275 2276 log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n", 2277 num_pages, iov_iter_count(iter), info->max_frmr_depth); 2278 smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth); 2279 2280 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgt.sgl, 2281 smbdirect_mr->sgt.nents, dir); 2282 if (!rc) { 2283 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n", 2284 num_pages, dir, rc); 2285 goto dma_map_error; 2286 } 2287 2288 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl, 2289 smbdirect_mr->sgt.nents, NULL, PAGE_SIZE); 2290 if (rc != smbdirect_mr->sgt.nents) { 2291 log_rdma_mr(ERR, 2292 "ib_map_mr_sg failed rc = %d nents = %x\n", 2293 rc, smbdirect_mr->sgt.nents); 2294 goto map_mr_error; 2295 } 2296 2297 ib_update_fast_reg_key(smbdirect_mr->mr, 2298 ib_inc_rkey(smbdirect_mr->mr->rkey)); 2299 reg_wr = &smbdirect_mr->wr; 2300 reg_wr->wr.opcode = IB_WR_REG_MR; 2301 smbdirect_mr->cqe.done = register_mr_done; 2302 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe; 2303 reg_wr->wr.num_sge = 0; 2304 reg_wr->wr.send_flags = IB_SEND_SIGNALED; 2305 reg_wr->mr = smbdirect_mr->mr; 2306 reg_wr->key = smbdirect_mr->mr->rkey; 2307 reg_wr->access = writing ? 2308 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE : 2309 IB_ACCESS_REMOTE_READ; 2310 2311 /* 2312 * There is no need for waiting for complemtion on ib_post_send 2313 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution 2314 * on the next ib_post_send when we actually send I/O to remote peer 2315 */ 2316 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL); 2317 if (!rc) 2318 return smbdirect_mr; 2319 2320 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n", 2321 rc, reg_wr->key); 2322 2323 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/ 2324 map_mr_error: 2325 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgt.sgl, 2326 smbdirect_mr->sgt.nents, smbdirect_mr->dir); 2327 2328 dma_map_error: 2329 smbdirect_mr->state = MR_ERROR; 2330 if (atomic_dec_and_test(&info->mr_used_count)) 2331 wake_up(&info->wait_for_mr_cleanup); 2332 2333 smbd_disconnect_rdma_connection(info); 2334 2335 return NULL; 2336 } 2337 2338 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc) 2339 { 2340 struct smbd_mr *smbdirect_mr; 2341 struct ib_cqe *cqe; 2342 2343 cqe = wc->wr_cqe; 2344 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe); 2345 smbdirect_mr->state = MR_INVALIDATED; 2346 if (wc->status != IB_WC_SUCCESS) { 2347 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status); 2348 smbdirect_mr->state = MR_ERROR; 2349 } 2350 complete(&smbdirect_mr->invalidate_done); 2351 } 2352 2353 /* 2354 * Deregister a MR after I/O is done 2355 * This function may wait if remote invalidation is not used 2356 * and we have to locally invalidate the buffer to prevent data is being 2357 * modified by remote peer after upper layer consumes it 2358 */ 2359 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr) 2360 { 2361 struct ib_send_wr *wr; 2362 struct smbd_connection *info = smbdirect_mr->conn; 2363 int rc = 0; 2364 2365 if (smbdirect_mr->need_invalidate) { 2366 /* Need to finish local invalidation before returning */ 2367 wr = &smbdirect_mr->inv_wr; 2368 wr->opcode = IB_WR_LOCAL_INV; 2369 smbdirect_mr->cqe.done = local_inv_done; 2370 wr->wr_cqe = &smbdirect_mr->cqe; 2371 wr->num_sge = 0; 2372 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey; 2373 wr->send_flags = IB_SEND_SIGNALED; 2374 2375 init_completion(&smbdirect_mr->invalidate_done); 2376 rc = ib_post_send(info->id->qp, wr, NULL); 2377 if (rc) { 2378 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc); 2379 smbd_disconnect_rdma_connection(info); 2380 goto done; 2381 } 2382 wait_for_completion(&smbdirect_mr->invalidate_done); 2383 smbdirect_mr->need_invalidate = false; 2384 } else 2385 /* 2386 * For remote invalidation, just set it to MR_INVALIDATED 2387 * and defer to mr_recovery_work to recover the MR for next use 2388 */ 2389 smbdirect_mr->state = MR_INVALIDATED; 2390 2391 if (smbdirect_mr->state == MR_INVALIDATED) { 2392 ib_dma_unmap_sg( 2393 info->id->device, smbdirect_mr->sgt.sgl, 2394 smbdirect_mr->sgt.nents, 2395 smbdirect_mr->dir); 2396 smbdirect_mr->state = MR_READY; 2397 if (atomic_inc_return(&info->mr_ready_count) == 1) 2398 wake_up_interruptible(&info->wait_mr); 2399 } else 2400 /* 2401 * Schedule the work to do MR recovery for future I/Os MR 2402 * recovery is slow and don't want it to block current I/O 2403 */ 2404 queue_work(info->workqueue, &info->mr_recovery_work); 2405 2406 done: 2407 if (atomic_dec_and_test(&info->mr_used_count)) 2408 wake_up(&info->wait_for_mr_cleanup); 2409 2410 return rc; 2411 } 2412 2413 static bool smb_set_sge(struct smb_extract_to_rdma *rdma, 2414 struct page *lowest_page, size_t off, size_t len) 2415 { 2416 struct ib_sge *sge = &rdma->sge[rdma->nr_sge]; 2417 u64 addr; 2418 2419 addr = ib_dma_map_page(rdma->device, lowest_page, 2420 off, len, rdma->direction); 2421 if (ib_dma_mapping_error(rdma->device, addr)) 2422 return false; 2423 2424 sge->addr = addr; 2425 sge->length = len; 2426 sge->lkey = rdma->local_dma_lkey; 2427 rdma->nr_sge++; 2428 return true; 2429 } 2430 2431 /* 2432 * Extract page fragments from a BVEC-class iterator and add them to an RDMA 2433 * element list. The pages are not pinned. 2434 */ 2435 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter, 2436 struct smb_extract_to_rdma *rdma, 2437 ssize_t maxsize) 2438 { 2439 const struct bio_vec *bv = iter->bvec; 2440 unsigned long start = iter->iov_offset; 2441 unsigned int i; 2442 ssize_t ret = 0; 2443 2444 for (i = 0; i < iter->nr_segs; i++) { 2445 size_t off, len; 2446 2447 len = bv[i].bv_len; 2448 if (start >= len) { 2449 start -= len; 2450 continue; 2451 } 2452 2453 len = min_t(size_t, maxsize, len - start); 2454 off = bv[i].bv_offset + start; 2455 2456 if (!smb_set_sge(rdma, bv[i].bv_page, off, len)) 2457 return -EIO; 2458 2459 ret += len; 2460 maxsize -= len; 2461 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2462 break; 2463 start = 0; 2464 } 2465 2466 return ret; 2467 } 2468 2469 /* 2470 * Extract fragments from a KVEC-class iterator and add them to an RDMA list. 2471 * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers. 2472 * The pages are not pinned. 2473 */ 2474 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter, 2475 struct smb_extract_to_rdma *rdma, 2476 ssize_t maxsize) 2477 { 2478 const struct kvec *kv = iter->kvec; 2479 unsigned long start = iter->iov_offset; 2480 unsigned int i; 2481 ssize_t ret = 0; 2482 2483 for (i = 0; i < iter->nr_segs; i++) { 2484 struct page *page; 2485 unsigned long kaddr; 2486 size_t off, len, seg; 2487 2488 len = kv[i].iov_len; 2489 if (start >= len) { 2490 start -= len; 2491 continue; 2492 } 2493 2494 kaddr = (unsigned long)kv[i].iov_base + start; 2495 off = kaddr & ~PAGE_MASK; 2496 len = min_t(size_t, maxsize, len - start); 2497 kaddr &= PAGE_MASK; 2498 2499 maxsize -= len; 2500 do { 2501 seg = min_t(size_t, len, PAGE_SIZE - off); 2502 2503 if (is_vmalloc_or_module_addr((void *)kaddr)) 2504 page = vmalloc_to_page((void *)kaddr); 2505 else 2506 page = virt_to_page((void *)kaddr); 2507 2508 if (!smb_set_sge(rdma, page, off, seg)) 2509 return -EIO; 2510 2511 ret += seg; 2512 len -= seg; 2513 kaddr += PAGE_SIZE; 2514 off = 0; 2515 } while (len > 0 && rdma->nr_sge < rdma->max_sge); 2516 2517 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2518 break; 2519 start = 0; 2520 } 2521 2522 return ret; 2523 } 2524 2525 /* 2526 * Extract folio fragments from an XARRAY-class iterator and add them to an 2527 * RDMA list. The folios are not pinned. 2528 */ 2529 static ssize_t smb_extract_xarray_to_rdma(struct iov_iter *iter, 2530 struct smb_extract_to_rdma *rdma, 2531 ssize_t maxsize) 2532 { 2533 struct xarray *xa = iter->xarray; 2534 struct folio *folio; 2535 loff_t start = iter->xarray_start + iter->iov_offset; 2536 pgoff_t index = start / PAGE_SIZE; 2537 ssize_t ret = 0; 2538 size_t off, len; 2539 XA_STATE(xas, xa, index); 2540 2541 rcu_read_lock(); 2542 2543 xas_for_each(&xas, folio, ULONG_MAX) { 2544 if (xas_retry(&xas, folio)) 2545 continue; 2546 if (WARN_ON(xa_is_value(folio))) 2547 break; 2548 if (WARN_ON(folio_test_hugetlb(folio))) 2549 break; 2550 2551 off = offset_in_folio(folio, start); 2552 len = min_t(size_t, maxsize, folio_size(folio) - off); 2553 2554 if (!smb_set_sge(rdma, folio_page(folio, 0), off, len)) { 2555 rcu_read_unlock(); 2556 return -EIO; 2557 } 2558 2559 maxsize -= len; 2560 ret += len; 2561 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0) 2562 break; 2563 } 2564 2565 rcu_read_unlock(); 2566 return ret; 2567 } 2568 2569 /* 2570 * Extract page fragments from up to the given amount of the source iterator 2571 * and build up an RDMA list that refers to all of those bits. The RDMA list 2572 * is appended to, up to the maximum number of elements set in the parameter 2573 * block. 2574 * 2575 * The extracted page fragments are not pinned or ref'd in any way; if an 2576 * IOVEC/UBUF-type iterator is to be used, it should be converted to a 2577 * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some 2578 * way. 2579 */ 2580 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len, 2581 struct smb_extract_to_rdma *rdma) 2582 { 2583 ssize_t ret; 2584 int before = rdma->nr_sge; 2585 2586 switch (iov_iter_type(iter)) { 2587 case ITER_BVEC: 2588 ret = smb_extract_bvec_to_rdma(iter, rdma, len); 2589 break; 2590 case ITER_KVEC: 2591 ret = smb_extract_kvec_to_rdma(iter, rdma, len); 2592 break; 2593 case ITER_XARRAY: 2594 ret = smb_extract_xarray_to_rdma(iter, rdma, len); 2595 break; 2596 default: 2597 WARN_ON_ONCE(1); 2598 return -EIO; 2599 } 2600 2601 if (ret > 0) { 2602 iov_iter_advance(iter, ret); 2603 } else if (ret < 0) { 2604 while (rdma->nr_sge > before) { 2605 struct ib_sge *sge = &rdma->sge[rdma->nr_sge--]; 2606 2607 ib_dma_unmap_single(rdma->device, sge->addr, sge->length, 2608 rdma->direction); 2609 sge->addr = 0; 2610 } 2611 } 2612 2613 return ret; 2614 } 2615
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.