~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/squashfs/cache.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-or-later
  2 /*
  3  * Squashfs - a compressed read only filesystem for Linux
  4  *
  5  * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008
  6  * Phillip Lougher <phillip@squashfs.org.uk>
  7  *
  8  * cache.c
  9  */
 10 
 11 /*
 12  * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing
 13  * recently accessed data Squashfs uses two small metadata and fragment caches.
 14  *
 15  * This file implements a generic cache implementation used for both caches,
 16  * plus functions layered ontop of the generic cache implementation to
 17  * access the metadata and fragment caches.
 18  *
 19  * To avoid out of memory and fragmentation issues with vmalloc the cache
 20  * uses sequences of kmalloced PAGE_SIZE buffers.
 21  *
 22  * It should be noted that the cache is not used for file datablocks, these
 23  * are decompressed and cached in the page-cache in the normal way.  The
 24  * cache is only used to temporarily cache fragment and metadata blocks
 25  * which have been read as as a result of a metadata (i.e. inode or
 26  * directory) or fragment access.  Because metadata and fragments are packed
 27  * together into blocks (to gain greater compression) the read of a particular
 28  * piece of metadata or fragment will retrieve other metadata/fragments which
 29  * have been packed with it, these because of locality-of-reference may be read
 30  * in the near future. Temporarily caching them ensures they are available for
 31  * near future access without requiring an additional read and decompress.
 32  */
 33 
 34 #include <linux/fs.h>
 35 #include <linux/vfs.h>
 36 #include <linux/slab.h>
 37 #include <linux/vmalloc.h>
 38 #include <linux/sched.h>
 39 #include <linux/spinlock.h>
 40 #include <linux/wait.h>
 41 #include <linux/pagemap.h>
 42 
 43 #include "squashfs_fs.h"
 44 #include "squashfs_fs_sb.h"
 45 #include "squashfs.h"
 46 #include "page_actor.h"
 47 
 48 /*
 49  * Look-up block in cache, and increment usage count.  If not in cache, read
 50  * and decompress it from disk.
 51  */
 52 struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb,
 53         struct squashfs_cache *cache, u64 block, int length)
 54 {
 55         int i, n;
 56         struct squashfs_cache_entry *entry;
 57 
 58         spin_lock(&cache->lock);
 59 
 60         while (1) {
 61                 for (i = cache->curr_blk, n = 0; n < cache->entries; n++) {
 62                         if (cache->entry[i].block == block) {
 63                                 cache->curr_blk = i;
 64                                 break;
 65                         }
 66                         i = (i + 1) % cache->entries;
 67                 }
 68 
 69                 if (n == cache->entries) {
 70                         /*
 71                          * Block not in cache, if all cache entries are used
 72                          * go to sleep waiting for one to become available.
 73                          */
 74                         if (cache->unused == 0) {
 75                                 cache->num_waiters++;
 76                                 spin_unlock(&cache->lock);
 77                                 wait_event(cache->wait_queue, cache->unused);
 78                                 spin_lock(&cache->lock);
 79                                 cache->num_waiters--;
 80                                 continue;
 81                         }
 82 
 83                         /*
 84                          * At least one unused cache entry.  A simple
 85                          * round-robin strategy is used to choose the entry to
 86                          * be evicted from the cache.
 87                          */
 88                         i = cache->next_blk;
 89                         for (n = 0; n < cache->entries; n++) {
 90                                 if (cache->entry[i].refcount == 0)
 91                                         break;
 92                                 i = (i + 1) % cache->entries;
 93                         }
 94 
 95                         cache->next_blk = (i + 1) % cache->entries;
 96                         entry = &cache->entry[i];
 97 
 98                         /*
 99                          * Initialise chosen cache entry, and fill it in from
100                          * disk.
101                          */
102                         cache->unused--;
103                         entry->block = block;
104                         entry->refcount = 1;
105                         entry->pending = 1;
106                         entry->num_waiters = 0;
107                         entry->error = 0;
108                         spin_unlock(&cache->lock);
109 
110                         entry->length = squashfs_read_data(sb, block, length,
111                                 &entry->next_index, entry->actor);
112 
113                         spin_lock(&cache->lock);
114 
115                         if (entry->length < 0)
116                                 entry->error = entry->length;
117 
118                         entry->pending = 0;
119 
120                         /*
121                          * While filling this entry one or more other processes
122                          * have looked it up in the cache, and have slept
123                          * waiting for it to become available.
124                          */
125                         if (entry->num_waiters) {
126                                 spin_unlock(&cache->lock);
127                                 wake_up_all(&entry->wait_queue);
128                         } else
129                                 spin_unlock(&cache->lock);
130 
131                         goto out;
132                 }
133 
134                 /*
135                  * Block already in cache.  Increment refcount so it doesn't
136                  * get reused until we're finished with it, if it was
137                  * previously unused there's one less cache entry available
138                  * for reuse.
139                  */
140                 entry = &cache->entry[i];
141                 if (entry->refcount == 0)
142                         cache->unused--;
143                 entry->refcount++;
144 
145                 /*
146                  * If the entry is currently being filled in by another process
147                  * go to sleep waiting for it to become available.
148                  */
149                 if (entry->pending) {
150                         entry->num_waiters++;
151                         spin_unlock(&cache->lock);
152                         wait_event(entry->wait_queue, !entry->pending);
153                 } else
154                         spin_unlock(&cache->lock);
155 
156                 goto out;
157         }
158 
159 out:
160         TRACE("Got %s %d, start block %lld, refcount %d, error %d\n",
161                 cache->name, i, entry->block, entry->refcount, entry->error);
162 
163         if (entry->error)
164                 ERROR("Unable to read %s cache entry [%llx]\n", cache->name,
165                                                         block);
166         return entry;
167 }
168 
169 
170 /*
171  * Release cache entry, once usage count is zero it can be reused.
172  */
173 void squashfs_cache_put(struct squashfs_cache_entry *entry)
174 {
175         struct squashfs_cache *cache = entry->cache;
176 
177         spin_lock(&cache->lock);
178         entry->refcount--;
179         if (entry->refcount == 0) {
180                 cache->unused++;
181                 /*
182                  * If there's any processes waiting for a block to become
183                  * available, wake one up.
184                  */
185                 if (cache->num_waiters) {
186                         spin_unlock(&cache->lock);
187                         wake_up(&cache->wait_queue);
188                         return;
189                 }
190         }
191         spin_unlock(&cache->lock);
192 }
193 
194 /*
195  * Delete cache reclaiming all kmalloced buffers.
196  */
197 void squashfs_cache_delete(struct squashfs_cache *cache)
198 {
199         int i, j;
200 
201         if (cache == NULL)
202                 return;
203 
204         for (i = 0; i < cache->entries; i++) {
205                 if (cache->entry[i].data) {
206                         for (j = 0; j < cache->pages; j++)
207                                 kfree(cache->entry[i].data[j]);
208                         kfree(cache->entry[i].data);
209                 }
210                 kfree(cache->entry[i].actor);
211         }
212 
213         kfree(cache->entry);
214         kfree(cache);
215 }
216 
217 
218 /*
219  * Initialise cache allocating the specified number of entries, each of
220  * size block_size.  To avoid vmalloc fragmentation issues each entry
221  * is allocated as a sequence of kmalloced PAGE_SIZE buffers.
222  */
223 struct squashfs_cache *squashfs_cache_init(char *name, int entries,
224         int block_size)
225 {
226         int i, j;
227         struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL);
228 
229         if (cache == NULL) {
230                 ERROR("Failed to allocate %s cache\n", name);
231                 return NULL;
232         }
233 
234         cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL);
235         if (cache->entry == NULL) {
236                 ERROR("Failed to allocate %s cache\n", name);
237                 goto cleanup;
238         }
239 
240         cache->curr_blk = 0;
241         cache->next_blk = 0;
242         cache->unused = entries;
243         cache->entries = entries;
244         cache->block_size = block_size;
245         cache->pages = block_size >> PAGE_SHIFT;
246         cache->pages = cache->pages ? cache->pages : 1;
247         cache->name = name;
248         cache->num_waiters = 0;
249         spin_lock_init(&cache->lock);
250         init_waitqueue_head(&cache->wait_queue);
251 
252         for (i = 0; i < entries; i++) {
253                 struct squashfs_cache_entry *entry = &cache->entry[i];
254 
255                 init_waitqueue_head(&cache->entry[i].wait_queue);
256                 entry->cache = cache;
257                 entry->block = SQUASHFS_INVALID_BLK;
258                 entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL);
259                 if (entry->data == NULL) {
260                         ERROR("Failed to allocate %s cache entry\n", name);
261                         goto cleanup;
262                 }
263 
264                 for (j = 0; j < cache->pages; j++) {
265                         entry->data[j] = kmalloc(PAGE_SIZE, GFP_KERNEL);
266                         if (entry->data[j] == NULL) {
267                                 ERROR("Failed to allocate %s buffer\n", name);
268                                 goto cleanup;
269                         }
270                 }
271 
272                 entry->actor = squashfs_page_actor_init(entry->data,
273                                                 cache->pages, 0);
274                 if (entry->actor == NULL) {
275                         ERROR("Failed to allocate %s cache entry\n", name);
276                         goto cleanup;
277                 }
278         }
279 
280         return cache;
281 
282 cleanup:
283         squashfs_cache_delete(cache);
284         return NULL;
285 }
286 
287 
288 /*
289  * Copy up to length bytes from cache entry to buffer starting at offset bytes
290  * into the cache entry.  If there's not length bytes then copy the number of
291  * bytes available.  In all cases return the number of bytes copied.
292  */
293 int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry,
294                 int offset, int length)
295 {
296         int remaining = length;
297 
298         if (length == 0)
299                 return 0;
300         else if (buffer == NULL)
301                 return min(length, entry->length - offset);
302 
303         while (offset < entry->length) {
304                 void *buff = entry->data[offset / PAGE_SIZE]
305                                 + (offset % PAGE_SIZE);
306                 int bytes = min_t(int, entry->length - offset,
307                                 PAGE_SIZE - (offset % PAGE_SIZE));
308 
309                 if (bytes >= remaining) {
310                         memcpy(buffer, buff, remaining);
311                         remaining = 0;
312                         break;
313                 }
314 
315                 memcpy(buffer, buff, bytes);
316                 buffer += bytes;
317                 remaining -= bytes;
318                 offset += bytes;
319         }
320 
321         return length - remaining;
322 }
323 
324 
325 /*
326  * Read length bytes from metadata position <block, offset> (block is the
327  * start of the compressed block on disk, and offset is the offset into
328  * the block once decompressed).  Data is packed into consecutive blocks,
329  * and length bytes may require reading more than one block.
330  */
331 int squashfs_read_metadata(struct super_block *sb, void *buffer,
332                 u64 *block, int *offset, int length)
333 {
334         struct squashfs_sb_info *msblk = sb->s_fs_info;
335         int bytes, res = length;
336         struct squashfs_cache_entry *entry;
337 
338         TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset);
339 
340         if (unlikely(length < 0))
341                 return -EIO;
342 
343         while (length) {
344                 entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0);
345                 if (entry->error) {
346                         res = entry->error;
347                         goto error;
348                 } else if (*offset >= entry->length) {
349                         res = -EIO;
350                         goto error;
351                 }
352 
353                 bytes = squashfs_copy_data(buffer, entry, *offset, length);
354                 if (buffer)
355                         buffer += bytes;
356                 length -= bytes;
357                 *offset += bytes;
358 
359                 if (*offset == entry->length) {
360                         *block = entry->next_index;
361                         *offset = 0;
362                 }
363 
364                 squashfs_cache_put(entry);
365         }
366 
367         return res;
368 
369 error:
370         squashfs_cache_put(entry);
371         return res;
372 }
373 
374 
375 /*
376  * Look-up in the fragmment cache the fragment located at <start_block> in the
377  * filesystem.  If necessary read and decompress it from disk.
378  */
379 struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb,
380                                 u64 start_block, int length)
381 {
382         struct squashfs_sb_info *msblk = sb->s_fs_info;
383 
384         return squashfs_cache_get(sb, msblk->fragment_cache, start_block,
385                 length);
386 }
387 
388 
389 /*
390  * Read and decompress the datablock located at <start_block> in the
391  * filesystem.  The cache is used here to avoid duplicating locking and
392  * read/decompress code.
393  */
394 struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb,
395                                 u64 start_block, int length)
396 {
397         struct squashfs_sb_info *msblk = sb->s_fs_info;
398 
399         return squashfs_cache_get(sb, msblk->read_page, start_block, length);
400 }
401 
402 
403 /*
404  * Read a filesystem table (uncompressed sequence of bytes) from disk
405  */
406 void *squashfs_read_table(struct super_block *sb, u64 block, int length)
407 {
408         int pages = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
409         int i, res;
410         void *table, *buffer, **data;
411         struct squashfs_page_actor *actor;
412 
413         table = buffer = kmalloc(length, GFP_KERNEL);
414         if (table == NULL)
415                 return ERR_PTR(-ENOMEM);
416 
417         data = kcalloc(pages, sizeof(void *), GFP_KERNEL);
418         if (data == NULL) {
419                 res = -ENOMEM;
420                 goto failed;
421         }
422 
423         actor = squashfs_page_actor_init(data, pages, length);
424         if (actor == NULL) {
425                 res = -ENOMEM;
426                 goto failed2;
427         }
428 
429         for (i = 0; i < pages; i++, buffer += PAGE_SIZE)
430                 data[i] = buffer;
431 
432         res = squashfs_read_data(sb, block, length |
433                 SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, actor);
434 
435         kfree(data);
436         kfree(actor);
437 
438         if (res < 0)
439                 goto failed;
440 
441         return table;
442 
443 failed2:
444         kfree(data);
445 failed:
446         kfree(table);
447         return ERR_PTR(res);
448 }
449 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php