~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/super.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  *  linux/fs/super.c
  4  *
  5  *  Copyright (C) 1991, 1992  Linus Torvalds
  6  *
  7  *  super.c contains code to handle: - mount structures
  8  *                                   - super-block tables
  9  *                                   - filesystem drivers list
 10  *                                   - mount system call
 11  *                                   - umount system call
 12  *                                   - ustat system call
 13  *
 14  * GK 2/5/95  -  Changed to support mounting the root fs via NFS
 15  *
 16  *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
 17  *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
 18  *  Added options to /proc/mounts:
 19  *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
 20  *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
 21  *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
 22  */
 23 
 24 #include <linux/export.h>
 25 #include <linux/slab.h>
 26 #include <linux/blkdev.h>
 27 #include <linux/mount.h>
 28 #include <linux/security.h>
 29 #include <linux/writeback.h>            /* for the emergency remount stuff */
 30 #include <linux/idr.h>
 31 #include <linux/mutex.h>
 32 #include <linux/backing-dev.h>
 33 #include <linux/rculist_bl.h>
 34 #include <linux/fscrypt.h>
 35 #include <linux/fsnotify.h>
 36 #include <linux/lockdep.h>
 37 #include <linux/user_namespace.h>
 38 #include <linux/fs_context.h>
 39 #include <uapi/linux/mount.h>
 40 #include "internal.h"
 41 
 42 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who);
 43 
 44 static LIST_HEAD(super_blocks);
 45 static DEFINE_SPINLOCK(sb_lock);
 46 
 47 static char *sb_writers_name[SB_FREEZE_LEVELS] = {
 48         "sb_writers",
 49         "sb_pagefaults",
 50         "sb_internal",
 51 };
 52 
 53 static inline void __super_lock(struct super_block *sb, bool excl)
 54 {
 55         if (excl)
 56                 down_write(&sb->s_umount);
 57         else
 58                 down_read(&sb->s_umount);
 59 }
 60 
 61 static inline void super_unlock(struct super_block *sb, bool excl)
 62 {
 63         if (excl)
 64                 up_write(&sb->s_umount);
 65         else
 66                 up_read(&sb->s_umount);
 67 }
 68 
 69 static inline void __super_lock_excl(struct super_block *sb)
 70 {
 71         __super_lock(sb, true);
 72 }
 73 
 74 static inline void super_unlock_excl(struct super_block *sb)
 75 {
 76         super_unlock(sb, true);
 77 }
 78 
 79 static inline void super_unlock_shared(struct super_block *sb)
 80 {
 81         super_unlock(sb, false);
 82 }
 83 
 84 static bool super_flags(const struct super_block *sb, unsigned int flags)
 85 {
 86         /*
 87          * Pairs with smp_store_release() in super_wake() and ensures
 88          * that we see @flags after we're woken.
 89          */
 90         return smp_load_acquire(&sb->s_flags) & flags;
 91 }
 92 
 93 /**
 94  * super_lock - wait for superblock to become ready and lock it
 95  * @sb: superblock to wait for
 96  * @excl: whether exclusive access is required
 97  *
 98  * If the superblock has neither passed through vfs_get_tree() or
 99  * generic_shutdown_super() yet wait for it to happen. Either superblock
100  * creation will succeed and SB_BORN is set by vfs_get_tree() or we're
101  * woken and we'll see SB_DYING.
102  *
103  * The caller must have acquired a temporary reference on @sb->s_count.
104  *
105  * Return: The function returns true if SB_BORN was set and with
106  *         s_umount held. The function returns false if SB_DYING was
107  *         set and without s_umount held.
108  */
109 static __must_check bool super_lock(struct super_block *sb, bool excl)
110 {
111         lockdep_assert_not_held(&sb->s_umount);
112 
113         /* wait until the superblock is ready or dying */
114         wait_var_event(&sb->s_flags, super_flags(sb, SB_BORN | SB_DYING));
115 
116         /* Don't pointlessly acquire s_umount. */
117         if (super_flags(sb, SB_DYING))
118                 return false;
119 
120         __super_lock(sb, excl);
121 
122         /*
123          * Has gone through generic_shutdown_super() in the meantime.
124          * @sb->s_root is NULL and @sb->s_active is 0. No one needs to
125          * grab a reference to this. Tell them so.
126          */
127         if (sb->s_flags & SB_DYING) {
128                 super_unlock(sb, excl);
129                 return false;
130         }
131 
132         WARN_ON_ONCE(!(sb->s_flags & SB_BORN));
133         return true;
134 }
135 
136 /* wait and try to acquire read-side of @sb->s_umount */
137 static inline bool super_lock_shared(struct super_block *sb)
138 {
139         return super_lock(sb, false);
140 }
141 
142 /* wait and try to acquire write-side of @sb->s_umount */
143 static inline bool super_lock_excl(struct super_block *sb)
144 {
145         return super_lock(sb, true);
146 }
147 
148 /* wake waiters */
149 #define SUPER_WAKE_FLAGS (SB_BORN | SB_DYING | SB_DEAD)
150 static void super_wake(struct super_block *sb, unsigned int flag)
151 {
152         WARN_ON_ONCE((flag & ~SUPER_WAKE_FLAGS));
153         WARN_ON_ONCE(hweight32(flag & SUPER_WAKE_FLAGS) > 1);
154 
155         /*
156          * Pairs with smp_load_acquire() in super_lock() to make sure
157          * all initializations in the superblock are seen by the user
158          * seeing SB_BORN sent.
159          */
160         smp_store_release(&sb->s_flags, sb->s_flags | flag);
161         /*
162          * Pairs with the barrier in prepare_to_wait_event() to make sure
163          * ___wait_var_event() either sees SB_BORN set or
164          * waitqueue_active() check in wake_up_var() sees the waiter.
165          */
166         smp_mb();
167         wake_up_var(&sb->s_flags);
168 }
169 
170 /*
171  * One thing we have to be careful of with a per-sb shrinker is that we don't
172  * drop the last active reference to the superblock from within the shrinker.
173  * If that happens we could trigger unregistering the shrinker from within the
174  * shrinker path and that leads to deadlock on the shrinker_mutex. Hence we
175  * take a passive reference to the superblock to avoid this from occurring.
176  */
177 static unsigned long super_cache_scan(struct shrinker *shrink,
178                                       struct shrink_control *sc)
179 {
180         struct super_block *sb;
181         long    fs_objects = 0;
182         long    total_objects;
183         long    freed = 0;
184         long    dentries;
185         long    inodes;
186 
187         sb = shrink->private_data;
188 
189         /*
190          * Deadlock avoidance.  We may hold various FS locks, and we don't want
191          * to recurse into the FS that called us in clear_inode() and friends..
192          */
193         if (!(sc->gfp_mask & __GFP_FS))
194                 return SHRINK_STOP;
195 
196         if (!super_trylock_shared(sb))
197                 return SHRINK_STOP;
198 
199         if (sb->s_op->nr_cached_objects)
200                 fs_objects = sb->s_op->nr_cached_objects(sb, sc);
201 
202         inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
203         dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
204         total_objects = dentries + inodes + fs_objects + 1;
205         if (!total_objects)
206                 total_objects = 1;
207 
208         /* proportion the scan between the caches */
209         dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
210         inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
211         fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
212 
213         /*
214          * prune the dcache first as the icache is pinned by it, then
215          * prune the icache, followed by the filesystem specific caches
216          *
217          * Ensure that we always scan at least one object - memcg kmem
218          * accounting uses this to fully empty the caches.
219          */
220         sc->nr_to_scan = dentries + 1;
221         freed = prune_dcache_sb(sb, sc);
222         sc->nr_to_scan = inodes + 1;
223         freed += prune_icache_sb(sb, sc);
224 
225         if (fs_objects) {
226                 sc->nr_to_scan = fs_objects + 1;
227                 freed += sb->s_op->free_cached_objects(sb, sc);
228         }
229 
230         super_unlock_shared(sb);
231         return freed;
232 }
233 
234 static unsigned long super_cache_count(struct shrinker *shrink,
235                                        struct shrink_control *sc)
236 {
237         struct super_block *sb;
238         long    total_objects = 0;
239 
240         sb = shrink->private_data;
241 
242         /*
243          * We don't call super_trylock_shared() here as it is a scalability
244          * bottleneck, so we're exposed to partial setup state. The shrinker
245          * rwsem does not protect filesystem operations backing
246          * list_lru_shrink_count() or s_op->nr_cached_objects(). Counts can
247          * change between super_cache_count and super_cache_scan, so we really
248          * don't need locks here.
249          *
250          * However, if we are currently mounting the superblock, the underlying
251          * filesystem might be in a state of partial construction and hence it
252          * is dangerous to access it.  super_trylock_shared() uses a SB_BORN check
253          * to avoid this situation, so do the same here. The memory barrier is
254          * matched with the one in mount_fs() as we don't hold locks here.
255          */
256         if (!(sb->s_flags & SB_BORN))
257                 return 0;
258         smp_rmb();
259 
260         if (sb->s_op && sb->s_op->nr_cached_objects)
261                 total_objects = sb->s_op->nr_cached_objects(sb, sc);
262 
263         total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
264         total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
265 
266         if (!total_objects)
267                 return SHRINK_EMPTY;
268 
269         total_objects = vfs_pressure_ratio(total_objects);
270         return total_objects;
271 }
272 
273 static void destroy_super_work(struct work_struct *work)
274 {
275         struct super_block *s = container_of(work, struct super_block,
276                                                         destroy_work);
277         fsnotify_sb_free(s);
278         security_sb_free(s);
279         put_user_ns(s->s_user_ns);
280         kfree(s->s_subtype);
281         for (int i = 0; i < SB_FREEZE_LEVELS; i++)
282                 percpu_free_rwsem(&s->s_writers.rw_sem[i]);
283         kfree(s);
284 }
285 
286 static void destroy_super_rcu(struct rcu_head *head)
287 {
288         struct super_block *s = container_of(head, struct super_block, rcu);
289         INIT_WORK(&s->destroy_work, destroy_super_work);
290         schedule_work(&s->destroy_work);
291 }
292 
293 /* Free a superblock that has never been seen by anyone */
294 static void destroy_unused_super(struct super_block *s)
295 {
296         if (!s)
297                 return;
298         super_unlock_excl(s);
299         list_lru_destroy(&s->s_dentry_lru);
300         list_lru_destroy(&s->s_inode_lru);
301         shrinker_free(s->s_shrink);
302         /* no delays needed */
303         destroy_super_work(&s->destroy_work);
304 }
305 
306 /**
307  *      alloc_super     -       create new superblock
308  *      @type:  filesystem type superblock should belong to
309  *      @flags: the mount flags
310  *      @user_ns: User namespace for the super_block
311  *
312  *      Allocates and initializes a new &struct super_block.  alloc_super()
313  *      returns a pointer new superblock or %NULL if allocation had failed.
314  */
315 static struct super_block *alloc_super(struct file_system_type *type, int flags,
316                                        struct user_namespace *user_ns)
317 {
318         struct super_block *s = kzalloc(sizeof(struct super_block), GFP_KERNEL);
319         static const struct super_operations default_op;
320         int i;
321 
322         if (!s)
323                 return NULL;
324 
325         INIT_LIST_HEAD(&s->s_mounts);
326         s->s_user_ns = get_user_ns(user_ns);
327         init_rwsem(&s->s_umount);
328         lockdep_set_class(&s->s_umount, &type->s_umount_key);
329         /*
330          * sget() can have s_umount recursion.
331          *
332          * When it cannot find a suitable sb, it allocates a new
333          * one (this one), and tries again to find a suitable old
334          * one.
335          *
336          * In case that succeeds, it will acquire the s_umount
337          * lock of the old one. Since these are clearly distrinct
338          * locks, and this object isn't exposed yet, there's no
339          * risk of deadlocks.
340          *
341          * Annotate this by putting this lock in a different
342          * subclass.
343          */
344         down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
345 
346         if (security_sb_alloc(s))
347                 goto fail;
348 
349         for (i = 0; i < SB_FREEZE_LEVELS; i++) {
350                 if (__percpu_init_rwsem(&s->s_writers.rw_sem[i],
351                                         sb_writers_name[i],
352                                         &type->s_writers_key[i]))
353                         goto fail;
354         }
355         s->s_bdi = &noop_backing_dev_info;
356         s->s_flags = flags;
357         if (s->s_user_ns != &init_user_ns)
358                 s->s_iflags |= SB_I_NODEV;
359         INIT_HLIST_NODE(&s->s_instances);
360         INIT_HLIST_BL_HEAD(&s->s_roots);
361         mutex_init(&s->s_sync_lock);
362         INIT_LIST_HEAD(&s->s_inodes);
363         spin_lock_init(&s->s_inode_list_lock);
364         INIT_LIST_HEAD(&s->s_inodes_wb);
365         spin_lock_init(&s->s_inode_wblist_lock);
366 
367         s->s_count = 1;
368         atomic_set(&s->s_active, 1);
369         mutex_init(&s->s_vfs_rename_mutex);
370         lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
371         init_rwsem(&s->s_dquot.dqio_sem);
372         s->s_maxbytes = MAX_NON_LFS;
373         s->s_op = &default_op;
374         s->s_time_gran = 1000000000;
375         s->s_time_min = TIME64_MIN;
376         s->s_time_max = TIME64_MAX;
377 
378         s->s_shrink = shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
379                                      "sb-%s", type->name);
380         if (!s->s_shrink)
381                 goto fail;
382 
383         s->s_shrink->scan_objects = super_cache_scan;
384         s->s_shrink->count_objects = super_cache_count;
385         s->s_shrink->batch = 1024;
386         s->s_shrink->private_data = s;
387 
388         if (list_lru_init_memcg(&s->s_dentry_lru, s->s_shrink))
389                 goto fail;
390         if (list_lru_init_memcg(&s->s_inode_lru, s->s_shrink))
391                 goto fail;
392         return s;
393 
394 fail:
395         destroy_unused_super(s);
396         return NULL;
397 }
398 
399 /* Superblock refcounting  */
400 
401 /*
402  * Drop a superblock's refcount.  The caller must hold sb_lock.
403  */
404 static void __put_super(struct super_block *s)
405 {
406         if (!--s->s_count) {
407                 list_del_init(&s->s_list);
408                 WARN_ON(s->s_dentry_lru.node);
409                 WARN_ON(s->s_inode_lru.node);
410                 WARN_ON(!list_empty(&s->s_mounts));
411                 call_rcu(&s->rcu, destroy_super_rcu);
412         }
413 }
414 
415 /**
416  *      put_super       -       drop a temporary reference to superblock
417  *      @sb: superblock in question
418  *
419  *      Drops a temporary reference, frees superblock if there's no
420  *      references left.
421  */
422 void put_super(struct super_block *sb)
423 {
424         spin_lock(&sb_lock);
425         __put_super(sb);
426         spin_unlock(&sb_lock);
427 }
428 
429 static void kill_super_notify(struct super_block *sb)
430 {
431         lockdep_assert_not_held(&sb->s_umount);
432 
433         /* already notified earlier */
434         if (sb->s_flags & SB_DEAD)
435                 return;
436 
437         /*
438          * Remove it from @fs_supers so it isn't found by new
439          * sget{_fc}() walkers anymore. Any concurrent mounter still
440          * managing to grab a temporary reference is guaranteed to
441          * already see SB_DYING and will wait until we notify them about
442          * SB_DEAD.
443          */
444         spin_lock(&sb_lock);
445         hlist_del_init(&sb->s_instances);
446         spin_unlock(&sb_lock);
447 
448         /*
449          * Let concurrent mounts know that this thing is really dead.
450          * We don't need @sb->s_umount here as every concurrent caller
451          * will see SB_DYING and either discard the superblock or wait
452          * for SB_DEAD.
453          */
454         super_wake(sb, SB_DEAD);
455 }
456 
457 /**
458  *      deactivate_locked_super -       drop an active reference to superblock
459  *      @s: superblock to deactivate
460  *
461  *      Drops an active reference to superblock, converting it into a temporary
462  *      one if there is no other active references left.  In that case we
463  *      tell fs driver to shut it down and drop the temporary reference we
464  *      had just acquired.
465  *
466  *      Caller holds exclusive lock on superblock; that lock is released.
467  */
468 void deactivate_locked_super(struct super_block *s)
469 {
470         struct file_system_type *fs = s->s_type;
471         if (atomic_dec_and_test(&s->s_active)) {
472                 shrinker_free(s->s_shrink);
473                 fs->kill_sb(s);
474 
475                 kill_super_notify(s);
476 
477                 /*
478                  * Since list_lru_destroy() may sleep, we cannot call it from
479                  * put_super(), where we hold the sb_lock. Therefore we destroy
480                  * the lru lists right now.
481                  */
482                 list_lru_destroy(&s->s_dentry_lru);
483                 list_lru_destroy(&s->s_inode_lru);
484 
485                 put_filesystem(fs);
486                 put_super(s);
487         } else {
488                 super_unlock_excl(s);
489         }
490 }
491 
492 EXPORT_SYMBOL(deactivate_locked_super);
493 
494 /**
495  *      deactivate_super        -       drop an active reference to superblock
496  *      @s: superblock to deactivate
497  *
498  *      Variant of deactivate_locked_super(), except that superblock is *not*
499  *      locked by caller.  If we are going to drop the final active reference,
500  *      lock will be acquired prior to that.
501  */
502 void deactivate_super(struct super_block *s)
503 {
504         if (!atomic_add_unless(&s->s_active, -1, 1)) {
505                 __super_lock_excl(s);
506                 deactivate_locked_super(s);
507         }
508 }
509 
510 EXPORT_SYMBOL(deactivate_super);
511 
512 /**
513  * grab_super - acquire an active reference to a superblock
514  * @sb: superblock to acquire
515  *
516  * Acquire a temporary reference on a superblock and try to trade it for
517  * an active reference. This is used in sget{_fc}() to wait for a
518  * superblock to either become SB_BORN or for it to pass through
519  * sb->kill() and be marked as SB_DEAD.
520  *
521  * Return: This returns true if an active reference could be acquired,
522  *         false if not.
523  */
524 static bool grab_super(struct super_block *sb)
525 {
526         bool locked;
527 
528         sb->s_count++;
529         spin_unlock(&sb_lock);
530         locked = super_lock_excl(sb);
531         if (locked) {
532                 if (atomic_inc_not_zero(&sb->s_active)) {
533                         put_super(sb);
534                         return true;
535                 }
536                 super_unlock_excl(sb);
537         }
538         wait_var_event(&sb->s_flags, super_flags(sb, SB_DEAD));
539         put_super(sb);
540         return false;
541 }
542 
543 /*
544  *      super_trylock_shared - try to grab ->s_umount shared
545  *      @sb: reference we are trying to grab
546  *
547  *      Try to prevent fs shutdown.  This is used in places where we
548  *      cannot take an active reference but we need to ensure that the
549  *      filesystem is not shut down while we are working on it. It returns
550  *      false if we cannot acquire s_umount or if we lose the race and
551  *      filesystem already got into shutdown, and returns true with the s_umount
552  *      lock held in read mode in case of success. On successful return,
553  *      the caller must drop the s_umount lock when done.
554  *
555  *      Note that unlike get_super() et.al. this one does *not* bump ->s_count.
556  *      The reason why it's safe is that we are OK with doing trylock instead
557  *      of down_read().  There's a couple of places that are OK with that, but
558  *      it's very much not a general-purpose interface.
559  */
560 bool super_trylock_shared(struct super_block *sb)
561 {
562         if (down_read_trylock(&sb->s_umount)) {
563                 if (!(sb->s_flags & SB_DYING) && sb->s_root &&
564                     (sb->s_flags & SB_BORN))
565                         return true;
566                 super_unlock_shared(sb);
567         }
568 
569         return false;
570 }
571 
572 /**
573  *      retire_super    -       prevents superblock from being reused
574  *      @sb: superblock to retire
575  *
576  *      The function marks superblock to be ignored in superblock test, which
577  *      prevents it from being reused for any new mounts.  If the superblock has
578  *      a private bdi, it also unregisters it, but doesn't reduce the refcount
579  *      of the superblock to prevent potential races.  The refcount is reduced
580  *      by generic_shutdown_super().  The function can not be called
581  *      concurrently with generic_shutdown_super().  It is safe to call the
582  *      function multiple times, subsequent calls have no effect.
583  *
584  *      The marker will affect the re-use only for block-device-based
585  *      superblocks.  Other superblocks will still get marked if this function
586  *      is used, but that will not affect their reusability.
587  */
588 void retire_super(struct super_block *sb)
589 {
590         WARN_ON(!sb->s_bdev);
591         __super_lock_excl(sb);
592         if (sb->s_iflags & SB_I_PERSB_BDI) {
593                 bdi_unregister(sb->s_bdi);
594                 sb->s_iflags &= ~SB_I_PERSB_BDI;
595         }
596         sb->s_iflags |= SB_I_RETIRED;
597         super_unlock_excl(sb);
598 }
599 EXPORT_SYMBOL(retire_super);
600 
601 /**
602  *      generic_shutdown_super  -       common helper for ->kill_sb()
603  *      @sb: superblock to kill
604  *
605  *      generic_shutdown_super() does all fs-independent work on superblock
606  *      shutdown.  Typical ->kill_sb() should pick all fs-specific objects
607  *      that need destruction out of superblock, call generic_shutdown_super()
608  *      and release aforementioned objects.  Note: dentries and inodes _are_
609  *      taken care of and do not need specific handling.
610  *
611  *      Upon calling this function, the filesystem may no longer alter or
612  *      rearrange the set of dentries belonging to this super_block, nor may it
613  *      change the attachments of dentries to inodes.
614  */
615 void generic_shutdown_super(struct super_block *sb)
616 {
617         const struct super_operations *sop = sb->s_op;
618 
619         if (sb->s_root) {
620                 shrink_dcache_for_umount(sb);
621                 sync_filesystem(sb);
622                 sb->s_flags &= ~SB_ACTIVE;
623 
624                 cgroup_writeback_umount();
625 
626                 /* Evict all inodes with zero refcount. */
627                 evict_inodes(sb);
628 
629                 /*
630                  * Clean up and evict any inodes that still have references due
631                  * to fsnotify or the security policy.
632                  */
633                 fsnotify_sb_delete(sb);
634                 security_sb_delete(sb);
635 
636                 if (sb->s_dio_done_wq) {
637                         destroy_workqueue(sb->s_dio_done_wq);
638                         sb->s_dio_done_wq = NULL;
639                 }
640 
641                 if (sop->put_super)
642                         sop->put_super(sb);
643 
644                 /*
645                  * Now that all potentially-encrypted inodes have been evicted,
646                  * the fscrypt keyring can be destroyed.
647                  */
648                 fscrypt_destroy_keyring(sb);
649 
650                 if (CHECK_DATA_CORRUPTION(!list_empty(&sb->s_inodes),
651                                 "VFS: Busy inodes after unmount of %s (%s)",
652                                 sb->s_id, sb->s_type->name)) {
653                         /*
654                          * Adding a proper bailout path here would be hard, but
655                          * we can at least make it more likely that a later
656                          * iput_final() or such crashes cleanly.
657                          */
658                         struct inode *inode;
659 
660                         spin_lock(&sb->s_inode_list_lock);
661                         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
662                                 inode->i_op = VFS_PTR_POISON;
663                                 inode->i_sb = VFS_PTR_POISON;
664                                 inode->i_mapping = VFS_PTR_POISON;
665                         }
666                         spin_unlock(&sb->s_inode_list_lock);
667                 }
668         }
669         /*
670          * Broadcast to everyone that grabbed a temporary reference to this
671          * superblock before we removed it from @fs_supers that the superblock
672          * is dying. Every walker of @fs_supers outside of sget{_fc}() will now
673          * discard this superblock and treat it as dead.
674          *
675          * We leave the superblock on @fs_supers so it can be found by
676          * sget{_fc}() until we passed sb->kill_sb().
677          */
678         super_wake(sb, SB_DYING);
679         super_unlock_excl(sb);
680         if (sb->s_bdi != &noop_backing_dev_info) {
681                 if (sb->s_iflags & SB_I_PERSB_BDI)
682                         bdi_unregister(sb->s_bdi);
683                 bdi_put(sb->s_bdi);
684                 sb->s_bdi = &noop_backing_dev_info;
685         }
686 }
687 
688 EXPORT_SYMBOL(generic_shutdown_super);
689 
690 bool mount_capable(struct fs_context *fc)
691 {
692         if (!(fc->fs_type->fs_flags & FS_USERNS_MOUNT))
693                 return capable(CAP_SYS_ADMIN);
694         else
695                 return ns_capable(fc->user_ns, CAP_SYS_ADMIN);
696 }
697 
698 /**
699  * sget_fc - Find or create a superblock
700  * @fc: Filesystem context.
701  * @test: Comparison callback
702  * @set: Setup callback
703  *
704  * Create a new superblock or find an existing one.
705  *
706  * The @test callback is used to find a matching existing superblock.
707  * Whether or not the requested parameters in @fc are taken into account
708  * is specific to the @test callback that is used. They may even be
709  * completely ignored.
710  *
711  * If an extant superblock is matched, it will be returned unless:
712  *
713  * (1) the namespace the filesystem context @fc and the extant
714  *     superblock's namespace differ
715  *
716  * (2) the filesystem context @fc has requested that reusing an extant
717  *     superblock is not allowed
718  *
719  * In both cases EBUSY will be returned.
720  *
721  * If no match is made, a new superblock will be allocated and basic
722  * initialisation will be performed (s_type, s_fs_info and s_id will be
723  * set and the @set callback will be invoked), the superblock will be
724  * published and it will be returned in a partially constructed state
725  * with SB_BORN and SB_ACTIVE as yet unset.
726  *
727  * Return: On success, an extant or newly created superblock is
728  *         returned. On failure an error pointer is returned.
729  */
730 struct super_block *sget_fc(struct fs_context *fc,
731                             int (*test)(struct super_block *, struct fs_context *),
732                             int (*set)(struct super_block *, struct fs_context *))
733 {
734         struct super_block *s = NULL;
735         struct super_block *old;
736         struct user_namespace *user_ns = fc->global ? &init_user_ns : fc->user_ns;
737         int err;
738 
739         /*
740          * Never allow s_user_ns != &init_user_ns when FS_USERNS_MOUNT is
741          * not set, as the filesystem is likely unprepared to handle it.
742          * This can happen when fsconfig() is called from init_user_ns with
743          * an fs_fd opened in another user namespace.
744          */
745         if (user_ns != &init_user_ns && !(fc->fs_type->fs_flags & FS_USERNS_MOUNT)) {
746                 errorfc(fc, "VFS: Mounting from non-initial user namespace is not allowed");
747                 return ERR_PTR(-EPERM);
748         }
749 
750 retry:
751         spin_lock(&sb_lock);
752         if (test) {
753                 hlist_for_each_entry(old, &fc->fs_type->fs_supers, s_instances) {
754                         if (test(old, fc))
755                                 goto share_extant_sb;
756                 }
757         }
758         if (!s) {
759                 spin_unlock(&sb_lock);
760                 s = alloc_super(fc->fs_type, fc->sb_flags, user_ns);
761                 if (!s)
762                         return ERR_PTR(-ENOMEM);
763                 goto retry;
764         }
765 
766         s->s_fs_info = fc->s_fs_info;
767         err = set(s, fc);
768         if (err) {
769                 s->s_fs_info = NULL;
770                 spin_unlock(&sb_lock);
771                 destroy_unused_super(s);
772                 return ERR_PTR(err);
773         }
774         fc->s_fs_info = NULL;
775         s->s_type = fc->fs_type;
776         s->s_iflags |= fc->s_iflags;
777         strscpy(s->s_id, s->s_type->name, sizeof(s->s_id));
778         /*
779          * Make the superblock visible on @super_blocks and @fs_supers.
780          * It's in a nascent state and users should wait on SB_BORN or
781          * SB_DYING to be set.
782          */
783         list_add_tail(&s->s_list, &super_blocks);
784         hlist_add_head(&s->s_instances, &s->s_type->fs_supers);
785         spin_unlock(&sb_lock);
786         get_filesystem(s->s_type);
787         shrinker_register(s->s_shrink);
788         return s;
789 
790 share_extant_sb:
791         if (user_ns != old->s_user_ns || fc->exclusive) {
792                 spin_unlock(&sb_lock);
793                 destroy_unused_super(s);
794                 if (fc->exclusive)
795                         warnfc(fc, "reusing existing filesystem not allowed");
796                 else
797                         warnfc(fc, "reusing existing filesystem in another namespace not allowed");
798                 return ERR_PTR(-EBUSY);
799         }
800         if (!grab_super(old))
801                 goto retry;
802         destroy_unused_super(s);
803         return old;
804 }
805 EXPORT_SYMBOL(sget_fc);
806 
807 /**
808  *      sget    -       find or create a superblock
809  *      @type:    filesystem type superblock should belong to
810  *      @test:    comparison callback
811  *      @set:     setup callback
812  *      @flags:   mount flags
813  *      @data:    argument to each of them
814  */
815 struct super_block *sget(struct file_system_type *type,
816                         int (*test)(struct super_block *,void *),
817                         int (*set)(struct super_block *,void *),
818                         int flags,
819                         void *data)
820 {
821         struct user_namespace *user_ns = current_user_ns();
822         struct super_block *s = NULL;
823         struct super_block *old;
824         int err;
825 
826         /* We don't yet pass the user namespace of the parent
827          * mount through to here so always use &init_user_ns
828          * until that changes.
829          */
830         if (flags & SB_SUBMOUNT)
831                 user_ns = &init_user_ns;
832 
833 retry:
834         spin_lock(&sb_lock);
835         if (test) {
836                 hlist_for_each_entry(old, &type->fs_supers, s_instances) {
837                         if (!test(old, data))
838                                 continue;
839                         if (user_ns != old->s_user_ns) {
840                                 spin_unlock(&sb_lock);
841                                 destroy_unused_super(s);
842                                 return ERR_PTR(-EBUSY);
843                         }
844                         if (!grab_super(old))
845                                 goto retry;
846                         destroy_unused_super(s);
847                         return old;
848                 }
849         }
850         if (!s) {
851                 spin_unlock(&sb_lock);
852                 s = alloc_super(type, (flags & ~SB_SUBMOUNT), user_ns);
853                 if (!s)
854                         return ERR_PTR(-ENOMEM);
855                 goto retry;
856         }
857 
858         err = set(s, data);
859         if (err) {
860                 spin_unlock(&sb_lock);
861                 destroy_unused_super(s);
862                 return ERR_PTR(err);
863         }
864         s->s_type = type;
865         strscpy(s->s_id, type->name, sizeof(s->s_id));
866         list_add_tail(&s->s_list, &super_blocks);
867         hlist_add_head(&s->s_instances, &type->fs_supers);
868         spin_unlock(&sb_lock);
869         get_filesystem(type);
870         shrinker_register(s->s_shrink);
871         return s;
872 }
873 EXPORT_SYMBOL(sget);
874 
875 void drop_super(struct super_block *sb)
876 {
877         super_unlock_shared(sb);
878         put_super(sb);
879 }
880 
881 EXPORT_SYMBOL(drop_super);
882 
883 void drop_super_exclusive(struct super_block *sb)
884 {
885         super_unlock_excl(sb);
886         put_super(sb);
887 }
888 EXPORT_SYMBOL(drop_super_exclusive);
889 
890 static void __iterate_supers(void (*f)(struct super_block *))
891 {
892         struct super_block *sb, *p = NULL;
893 
894         spin_lock(&sb_lock);
895         list_for_each_entry(sb, &super_blocks, s_list) {
896                 if (super_flags(sb, SB_DYING))
897                         continue;
898                 sb->s_count++;
899                 spin_unlock(&sb_lock);
900 
901                 f(sb);
902 
903                 spin_lock(&sb_lock);
904                 if (p)
905                         __put_super(p);
906                 p = sb;
907         }
908         if (p)
909                 __put_super(p);
910         spin_unlock(&sb_lock);
911 }
912 /**
913  *      iterate_supers - call function for all active superblocks
914  *      @f: function to call
915  *      @arg: argument to pass to it
916  *
917  *      Scans the superblock list and calls given function, passing it
918  *      locked superblock and given argument.
919  */
920 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
921 {
922         struct super_block *sb, *p = NULL;
923 
924         spin_lock(&sb_lock);
925         list_for_each_entry(sb, &super_blocks, s_list) {
926                 bool locked;
927 
928                 sb->s_count++;
929                 spin_unlock(&sb_lock);
930 
931                 locked = super_lock_shared(sb);
932                 if (locked) {
933                         if (sb->s_root)
934                                 f(sb, arg);
935                         super_unlock_shared(sb);
936                 }
937 
938                 spin_lock(&sb_lock);
939                 if (p)
940                         __put_super(p);
941                 p = sb;
942         }
943         if (p)
944                 __put_super(p);
945         spin_unlock(&sb_lock);
946 }
947 
948 /**
949  *      iterate_supers_type - call function for superblocks of given type
950  *      @type: fs type
951  *      @f: function to call
952  *      @arg: argument to pass to it
953  *
954  *      Scans the superblock list and calls given function, passing it
955  *      locked superblock and given argument.
956  */
957 void iterate_supers_type(struct file_system_type *type,
958         void (*f)(struct super_block *, void *), void *arg)
959 {
960         struct super_block *sb, *p = NULL;
961 
962         spin_lock(&sb_lock);
963         hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
964                 bool locked;
965 
966                 sb->s_count++;
967                 spin_unlock(&sb_lock);
968 
969                 locked = super_lock_shared(sb);
970                 if (locked) {
971                         if (sb->s_root)
972                                 f(sb, arg);
973                         super_unlock_shared(sb);
974                 }
975 
976                 spin_lock(&sb_lock);
977                 if (p)
978                         __put_super(p);
979                 p = sb;
980         }
981         if (p)
982                 __put_super(p);
983         spin_unlock(&sb_lock);
984 }
985 
986 EXPORT_SYMBOL(iterate_supers_type);
987 
988 struct super_block *user_get_super(dev_t dev, bool excl)
989 {
990         struct super_block *sb;
991 
992         spin_lock(&sb_lock);
993         list_for_each_entry(sb, &super_blocks, s_list) {
994                 if (sb->s_dev ==  dev) {
995                         bool locked;
996 
997                         sb->s_count++;
998                         spin_unlock(&sb_lock);
999                         /* still alive? */
1000                         locked = super_lock(sb, excl);
1001                         if (locked) {
1002                                 if (sb->s_root)
1003                                         return sb;
1004                                 super_unlock(sb, excl);
1005                         }
1006                         /* nope, got unmounted */
1007                         spin_lock(&sb_lock);
1008                         __put_super(sb);
1009                         break;
1010                 }
1011         }
1012         spin_unlock(&sb_lock);
1013         return NULL;
1014 }
1015 
1016 /**
1017  * reconfigure_super - asks filesystem to change superblock parameters
1018  * @fc: The superblock and configuration
1019  *
1020  * Alters the configuration parameters of a live superblock.
1021  */
1022 int reconfigure_super(struct fs_context *fc)
1023 {
1024         struct super_block *sb = fc->root->d_sb;
1025         int retval;
1026         bool remount_ro = false;
1027         bool remount_rw = false;
1028         bool force = fc->sb_flags & SB_FORCE;
1029 
1030         if (fc->sb_flags_mask & ~MS_RMT_MASK)
1031                 return -EINVAL;
1032         if (sb->s_writers.frozen != SB_UNFROZEN)
1033                 return -EBUSY;
1034 
1035         retval = security_sb_remount(sb, fc->security);
1036         if (retval)
1037                 return retval;
1038 
1039         if (fc->sb_flags_mask & SB_RDONLY) {
1040 #ifdef CONFIG_BLOCK
1041                 if (!(fc->sb_flags & SB_RDONLY) && sb->s_bdev &&
1042                     bdev_read_only(sb->s_bdev))
1043                         return -EACCES;
1044 #endif
1045                 remount_rw = !(fc->sb_flags & SB_RDONLY) && sb_rdonly(sb);
1046                 remount_ro = (fc->sb_flags & SB_RDONLY) && !sb_rdonly(sb);
1047         }
1048 
1049         if (remount_ro) {
1050                 if (!hlist_empty(&sb->s_pins)) {
1051                         super_unlock_excl(sb);
1052                         group_pin_kill(&sb->s_pins);
1053                         __super_lock_excl(sb);
1054                         if (!sb->s_root)
1055                                 return 0;
1056                         if (sb->s_writers.frozen != SB_UNFROZEN)
1057                                 return -EBUSY;
1058                         remount_ro = !sb_rdonly(sb);
1059                 }
1060         }
1061         shrink_dcache_sb(sb);
1062 
1063         /* If we are reconfiguring to RDONLY and current sb is read/write,
1064          * make sure there are no files open for writing.
1065          */
1066         if (remount_ro) {
1067                 if (force) {
1068                         sb_start_ro_state_change(sb);
1069                 } else {
1070                         retval = sb_prepare_remount_readonly(sb);
1071                         if (retval)
1072                                 return retval;
1073                 }
1074         } else if (remount_rw) {
1075                 /*
1076                  * Protect filesystem's reconfigure code from writes from
1077                  * userspace until reconfigure finishes.
1078                  */
1079                 sb_start_ro_state_change(sb);
1080         }
1081 
1082         if (fc->ops->reconfigure) {
1083                 retval = fc->ops->reconfigure(fc);
1084                 if (retval) {
1085                         if (!force)
1086                                 goto cancel_readonly;
1087                         /* If forced remount, go ahead despite any errors */
1088                         WARN(1, "forced remount of a %s fs returned %i\n",
1089                              sb->s_type->name, retval);
1090                 }
1091         }
1092 
1093         WRITE_ONCE(sb->s_flags, ((sb->s_flags & ~fc->sb_flags_mask) |
1094                                  (fc->sb_flags & fc->sb_flags_mask)));
1095         sb_end_ro_state_change(sb);
1096 
1097         /*
1098          * Some filesystems modify their metadata via some other path than the
1099          * bdev buffer cache (eg. use a private mapping, or directories in
1100          * pagecache, etc). Also file data modifications go via their own
1101          * mappings. So If we try to mount readonly then copy the filesystem
1102          * from bdev, we could get stale data, so invalidate it to give a best
1103          * effort at coherency.
1104          */
1105         if (remount_ro && sb->s_bdev)
1106                 invalidate_bdev(sb->s_bdev);
1107         return 0;
1108 
1109 cancel_readonly:
1110         sb_end_ro_state_change(sb);
1111         return retval;
1112 }
1113 
1114 static void do_emergency_remount_callback(struct super_block *sb)
1115 {
1116         bool locked = super_lock_excl(sb);
1117 
1118         if (locked && sb->s_root && sb->s_bdev && !sb_rdonly(sb)) {
1119                 struct fs_context *fc;
1120 
1121                 fc = fs_context_for_reconfigure(sb->s_root,
1122                                         SB_RDONLY | SB_FORCE, SB_RDONLY);
1123                 if (!IS_ERR(fc)) {
1124                         if (parse_monolithic_mount_data(fc, NULL) == 0)
1125                                 (void)reconfigure_super(fc);
1126                         put_fs_context(fc);
1127                 }
1128         }
1129         if (locked)
1130                 super_unlock_excl(sb);
1131 }
1132 
1133 static void do_emergency_remount(struct work_struct *work)
1134 {
1135         __iterate_supers(do_emergency_remount_callback);
1136         kfree(work);
1137         printk("Emergency Remount complete\n");
1138 }
1139 
1140 void emergency_remount(void)
1141 {
1142         struct work_struct *work;
1143 
1144         work = kmalloc(sizeof(*work), GFP_ATOMIC);
1145         if (work) {
1146                 INIT_WORK(work, do_emergency_remount);
1147                 schedule_work(work);
1148         }
1149 }
1150 
1151 static void do_thaw_all_callback(struct super_block *sb)
1152 {
1153         bool locked = super_lock_excl(sb);
1154 
1155         if (locked && sb->s_root) {
1156                 if (IS_ENABLED(CONFIG_BLOCK))
1157                         while (sb->s_bdev && !bdev_thaw(sb->s_bdev))
1158                                 pr_warn("Emergency Thaw on %pg\n", sb->s_bdev);
1159                 thaw_super_locked(sb, FREEZE_HOLDER_USERSPACE);
1160                 return;
1161         }
1162         if (locked)
1163                 super_unlock_excl(sb);
1164 }
1165 
1166 static void do_thaw_all(struct work_struct *work)
1167 {
1168         __iterate_supers(do_thaw_all_callback);
1169         kfree(work);
1170         printk(KERN_WARNING "Emergency Thaw complete\n");
1171 }
1172 
1173 /**
1174  * emergency_thaw_all -- forcibly thaw every frozen filesystem
1175  *
1176  * Used for emergency unfreeze of all filesystems via SysRq
1177  */
1178 void emergency_thaw_all(void)
1179 {
1180         struct work_struct *work;
1181 
1182         work = kmalloc(sizeof(*work), GFP_ATOMIC);
1183         if (work) {
1184                 INIT_WORK(work, do_thaw_all);
1185                 schedule_work(work);
1186         }
1187 }
1188 
1189 static DEFINE_IDA(unnamed_dev_ida);
1190 
1191 /**
1192  * get_anon_bdev - Allocate a block device for filesystems which don't have one.
1193  * @p: Pointer to a dev_t.
1194  *
1195  * Filesystems which don't use real block devices can call this function
1196  * to allocate a virtual block device.
1197  *
1198  * Context: Any context.  Frequently called while holding sb_lock.
1199  * Return: 0 on success, -EMFILE if there are no anonymous bdevs left
1200  * or -ENOMEM if memory allocation failed.
1201  */
1202 int get_anon_bdev(dev_t *p)
1203 {
1204         int dev;
1205 
1206         /*
1207          * Many userspace utilities consider an FSID of 0 invalid.
1208          * Always return at least 1 from get_anon_bdev.
1209          */
1210         dev = ida_alloc_range(&unnamed_dev_ida, 1, (1 << MINORBITS) - 1,
1211                         GFP_ATOMIC);
1212         if (dev == -ENOSPC)
1213                 dev = -EMFILE;
1214         if (dev < 0)
1215                 return dev;
1216 
1217         *p = MKDEV(0, dev);
1218         return 0;
1219 }
1220 EXPORT_SYMBOL(get_anon_bdev);
1221 
1222 void free_anon_bdev(dev_t dev)
1223 {
1224         ida_free(&unnamed_dev_ida, MINOR(dev));
1225 }
1226 EXPORT_SYMBOL(free_anon_bdev);
1227 
1228 int set_anon_super(struct super_block *s, void *data)
1229 {
1230         return get_anon_bdev(&s->s_dev);
1231 }
1232 EXPORT_SYMBOL(set_anon_super);
1233 
1234 void kill_anon_super(struct super_block *sb)
1235 {
1236         dev_t dev = sb->s_dev;
1237         generic_shutdown_super(sb);
1238         kill_super_notify(sb);
1239         free_anon_bdev(dev);
1240 }
1241 EXPORT_SYMBOL(kill_anon_super);
1242 
1243 void kill_litter_super(struct super_block *sb)
1244 {
1245         if (sb->s_root)
1246                 d_genocide(sb->s_root);
1247         kill_anon_super(sb);
1248 }
1249 EXPORT_SYMBOL(kill_litter_super);
1250 
1251 int set_anon_super_fc(struct super_block *sb, struct fs_context *fc)
1252 {
1253         return set_anon_super(sb, NULL);
1254 }
1255 EXPORT_SYMBOL(set_anon_super_fc);
1256 
1257 static int test_keyed_super(struct super_block *sb, struct fs_context *fc)
1258 {
1259         return sb->s_fs_info == fc->s_fs_info;
1260 }
1261 
1262 static int test_single_super(struct super_block *s, struct fs_context *fc)
1263 {
1264         return 1;
1265 }
1266 
1267 static int vfs_get_super(struct fs_context *fc,
1268                 int (*test)(struct super_block *, struct fs_context *),
1269                 int (*fill_super)(struct super_block *sb,
1270                                   struct fs_context *fc))
1271 {
1272         struct super_block *sb;
1273         int err;
1274 
1275         sb = sget_fc(fc, test, set_anon_super_fc);
1276         if (IS_ERR(sb))
1277                 return PTR_ERR(sb);
1278 
1279         if (!sb->s_root) {
1280                 err = fill_super(sb, fc);
1281                 if (err)
1282                         goto error;
1283 
1284                 sb->s_flags |= SB_ACTIVE;
1285         }
1286 
1287         fc->root = dget(sb->s_root);
1288         return 0;
1289 
1290 error:
1291         deactivate_locked_super(sb);
1292         return err;
1293 }
1294 
1295 int get_tree_nodev(struct fs_context *fc,
1296                   int (*fill_super)(struct super_block *sb,
1297                                     struct fs_context *fc))
1298 {
1299         return vfs_get_super(fc, NULL, fill_super);
1300 }
1301 EXPORT_SYMBOL(get_tree_nodev);
1302 
1303 int get_tree_single(struct fs_context *fc,
1304                   int (*fill_super)(struct super_block *sb,
1305                                     struct fs_context *fc))
1306 {
1307         return vfs_get_super(fc, test_single_super, fill_super);
1308 }
1309 EXPORT_SYMBOL(get_tree_single);
1310 
1311 int get_tree_keyed(struct fs_context *fc,
1312                   int (*fill_super)(struct super_block *sb,
1313                                     struct fs_context *fc),
1314                 void *key)
1315 {
1316         fc->s_fs_info = key;
1317         return vfs_get_super(fc, test_keyed_super, fill_super);
1318 }
1319 EXPORT_SYMBOL(get_tree_keyed);
1320 
1321 static int set_bdev_super(struct super_block *s, void *data)
1322 {
1323         s->s_dev = *(dev_t *)data;
1324         return 0;
1325 }
1326 
1327 static int super_s_dev_set(struct super_block *s, struct fs_context *fc)
1328 {
1329         return set_bdev_super(s, fc->sget_key);
1330 }
1331 
1332 static int super_s_dev_test(struct super_block *s, struct fs_context *fc)
1333 {
1334         return !(s->s_iflags & SB_I_RETIRED) &&
1335                 s->s_dev == *(dev_t *)fc->sget_key;
1336 }
1337 
1338 /**
1339  * sget_dev - Find or create a superblock by device number
1340  * @fc: Filesystem context.
1341  * @dev: device number
1342  *
1343  * Find or create a superblock using the provided device number that
1344  * will be stored in fc->sget_key.
1345  *
1346  * If an extant superblock is matched, then that will be returned with
1347  * an elevated reference count that the caller must transfer or discard.
1348  *
1349  * If no match is made, a new superblock will be allocated and basic
1350  * initialisation will be performed (s_type, s_fs_info, s_id, s_dev will
1351  * be set). The superblock will be published and it will be returned in
1352  * a partially constructed state with SB_BORN and SB_ACTIVE as yet
1353  * unset.
1354  *
1355  * Return: an existing or newly created superblock on success, an error
1356  *         pointer on failure.
1357  */
1358 struct super_block *sget_dev(struct fs_context *fc, dev_t dev)
1359 {
1360         fc->sget_key = &dev;
1361         return sget_fc(fc, super_s_dev_test, super_s_dev_set);
1362 }
1363 EXPORT_SYMBOL(sget_dev);
1364 
1365 #ifdef CONFIG_BLOCK
1366 /*
1367  * Lock the superblock that is holder of the bdev. Returns the superblock
1368  * pointer if we successfully locked the superblock and it is alive. Otherwise
1369  * we return NULL and just unlock bdev->bd_holder_lock.
1370  *
1371  * The function must be called with bdev->bd_holder_lock and releases it.
1372  */
1373 static struct super_block *bdev_super_lock(struct block_device *bdev, bool excl)
1374         __releases(&bdev->bd_holder_lock)
1375 {
1376         struct super_block *sb = bdev->bd_holder;
1377         bool locked;
1378 
1379         lockdep_assert_held(&bdev->bd_holder_lock);
1380         lockdep_assert_not_held(&sb->s_umount);
1381         lockdep_assert_not_held(&bdev->bd_disk->open_mutex);
1382 
1383         /* Make sure sb doesn't go away from under us */
1384         spin_lock(&sb_lock);
1385         sb->s_count++;
1386         spin_unlock(&sb_lock);
1387 
1388         mutex_unlock(&bdev->bd_holder_lock);
1389 
1390         locked = super_lock(sb, excl);
1391 
1392         /*
1393          * If the superblock wasn't already SB_DYING then we hold
1394          * s_umount and can safely drop our temporary reference.
1395          */
1396         put_super(sb);
1397 
1398         if (!locked)
1399                 return NULL;
1400 
1401         if (!sb->s_root || !(sb->s_flags & SB_ACTIVE)) {
1402                 super_unlock(sb, excl);
1403                 return NULL;
1404         }
1405 
1406         return sb;
1407 }
1408 
1409 static void fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
1410 {
1411         struct super_block *sb;
1412 
1413         sb = bdev_super_lock(bdev, false);
1414         if (!sb)
1415                 return;
1416 
1417         if (!surprise)
1418                 sync_filesystem(sb);
1419         shrink_dcache_sb(sb);
1420         invalidate_inodes(sb);
1421         if (sb->s_op->shutdown)
1422                 sb->s_op->shutdown(sb);
1423 
1424         super_unlock_shared(sb);
1425 }
1426 
1427 static void fs_bdev_sync(struct block_device *bdev)
1428 {
1429         struct super_block *sb;
1430 
1431         sb = bdev_super_lock(bdev, false);
1432         if (!sb)
1433                 return;
1434 
1435         sync_filesystem(sb);
1436         super_unlock_shared(sb);
1437 }
1438 
1439 static struct super_block *get_bdev_super(struct block_device *bdev)
1440 {
1441         bool active = false;
1442         struct super_block *sb;
1443 
1444         sb = bdev_super_lock(bdev, true);
1445         if (sb) {
1446                 active = atomic_inc_not_zero(&sb->s_active);
1447                 super_unlock_excl(sb);
1448         }
1449         if (!active)
1450                 return NULL;
1451         return sb;
1452 }
1453 
1454 /**
1455  * fs_bdev_freeze - freeze owning filesystem of block device
1456  * @bdev: block device
1457  *
1458  * Freeze the filesystem that owns this block device if it is still
1459  * active.
1460  *
1461  * A filesystem that owns multiple block devices may be frozen from each
1462  * block device and won't be unfrozen until all block devices are
1463  * unfrozen. Each block device can only freeze the filesystem once as we
1464  * nest freezes for block devices in the block layer.
1465  *
1466  * Return: If the freeze was successful zero is returned. If the freeze
1467  *         failed a negative error code is returned.
1468  */
1469 static int fs_bdev_freeze(struct block_device *bdev)
1470 {
1471         struct super_block *sb;
1472         int error = 0;
1473 
1474         lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1475 
1476         sb = get_bdev_super(bdev);
1477         if (!sb)
1478                 return -EINVAL;
1479 
1480         if (sb->s_op->freeze_super)
1481                 error = sb->s_op->freeze_super(sb,
1482                                 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1483         else
1484                 error = freeze_super(sb,
1485                                 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1486         if (!error)
1487                 error = sync_blockdev(bdev);
1488         deactivate_super(sb);
1489         return error;
1490 }
1491 
1492 /**
1493  * fs_bdev_thaw - thaw owning filesystem of block device
1494  * @bdev: block device
1495  *
1496  * Thaw the filesystem that owns this block device.
1497  *
1498  * A filesystem that owns multiple block devices may be frozen from each
1499  * block device and won't be unfrozen until all block devices are
1500  * unfrozen. Each block device can only freeze the filesystem once as we
1501  * nest freezes for block devices in the block layer.
1502  *
1503  * Return: If the thaw was successful zero is returned. If the thaw
1504  *         failed a negative error code is returned. If this function
1505  *         returns zero it doesn't mean that the filesystem is unfrozen
1506  *         as it may have been frozen multiple times (kernel may hold a
1507  *         freeze or might be frozen from other block devices).
1508  */
1509 static int fs_bdev_thaw(struct block_device *bdev)
1510 {
1511         struct super_block *sb;
1512         int error;
1513 
1514         lockdep_assert_held(&bdev->bd_fsfreeze_mutex);
1515 
1516         /*
1517          * The block device may have been frozen before it was claimed by a
1518          * filesystem. Concurrently another process might try to mount that
1519          * frozen block device and has temporarily claimed the block device for
1520          * that purpose causing a concurrent fs_bdev_thaw() to end up here. The
1521          * mounter is already about to abort mounting because they still saw an
1522          * elevanted bdev->bd_fsfreeze_count so get_bdev_super() will return
1523          * NULL in that case.
1524          */
1525         sb = get_bdev_super(bdev);
1526         if (!sb)
1527                 return -EINVAL;
1528 
1529         if (sb->s_op->thaw_super)
1530                 error = sb->s_op->thaw_super(sb,
1531                                 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1532         else
1533                 error = thaw_super(sb,
1534                                 FREEZE_MAY_NEST | FREEZE_HOLDER_USERSPACE);
1535         deactivate_super(sb);
1536         return error;
1537 }
1538 
1539 const struct blk_holder_ops fs_holder_ops = {
1540         .mark_dead              = fs_bdev_mark_dead,
1541         .sync                   = fs_bdev_sync,
1542         .freeze                 = fs_bdev_freeze,
1543         .thaw                   = fs_bdev_thaw,
1544 };
1545 EXPORT_SYMBOL_GPL(fs_holder_ops);
1546 
1547 int setup_bdev_super(struct super_block *sb, int sb_flags,
1548                 struct fs_context *fc)
1549 {
1550         blk_mode_t mode = sb_open_mode(sb_flags);
1551         struct file *bdev_file;
1552         struct block_device *bdev;
1553 
1554         bdev_file = bdev_file_open_by_dev(sb->s_dev, mode, sb, &fs_holder_ops);
1555         if (IS_ERR(bdev_file)) {
1556                 if (fc)
1557                         errorf(fc, "%s: Can't open blockdev", fc->source);
1558                 return PTR_ERR(bdev_file);
1559         }
1560         bdev = file_bdev(bdev_file);
1561 
1562         /*
1563          * This really should be in blkdev_get_by_dev, but right now can't due
1564          * to legacy issues that require us to allow opening a block device node
1565          * writable from userspace even for a read-only block device.
1566          */
1567         if ((mode & BLK_OPEN_WRITE) && bdev_read_only(bdev)) {
1568                 bdev_fput(bdev_file);
1569                 return -EACCES;
1570         }
1571 
1572         /*
1573          * It is enough to check bdev was not frozen before we set
1574          * s_bdev as freezing will wait until SB_BORN is set.
1575          */
1576         if (atomic_read(&bdev->bd_fsfreeze_count) > 0) {
1577                 if (fc)
1578                         warnf(fc, "%pg: Can't mount, blockdev is frozen", bdev);
1579                 bdev_fput(bdev_file);
1580                 return -EBUSY;
1581         }
1582         spin_lock(&sb_lock);
1583         sb->s_bdev_file = bdev_file;
1584         sb->s_bdev = bdev;
1585         sb->s_bdi = bdi_get(bdev->bd_disk->bdi);
1586         if (bdev_stable_writes(bdev))
1587                 sb->s_iflags |= SB_I_STABLE_WRITES;
1588         spin_unlock(&sb_lock);
1589 
1590         snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1591         shrinker_debugfs_rename(sb->s_shrink, "sb-%s:%s", sb->s_type->name,
1592                                 sb->s_id);
1593         sb_set_blocksize(sb, block_size(bdev));
1594         return 0;
1595 }
1596 EXPORT_SYMBOL_GPL(setup_bdev_super);
1597 
1598 /**
1599  * get_tree_bdev - Get a superblock based on a single block device
1600  * @fc: The filesystem context holding the parameters
1601  * @fill_super: Helper to initialise a new superblock
1602  */
1603 int get_tree_bdev(struct fs_context *fc,
1604                 int (*fill_super)(struct super_block *,
1605                                   struct fs_context *))
1606 {
1607         struct super_block *s;
1608         int error = 0;
1609         dev_t dev;
1610 
1611         if (!fc->source)
1612                 return invalf(fc, "No source specified");
1613 
1614         error = lookup_bdev(fc->source, &dev);
1615         if (error) {
1616                 errorf(fc, "%s: Can't lookup blockdev", fc->source);
1617                 return error;
1618         }
1619 
1620         fc->sb_flags |= SB_NOSEC;
1621         s = sget_dev(fc, dev);
1622         if (IS_ERR(s))
1623                 return PTR_ERR(s);
1624 
1625         if (s->s_root) {
1626                 /* Don't summarily change the RO/RW state. */
1627                 if ((fc->sb_flags ^ s->s_flags) & SB_RDONLY) {
1628                         warnf(fc, "%pg: Can't mount, would change RO state", s->s_bdev);
1629                         deactivate_locked_super(s);
1630                         return -EBUSY;
1631                 }
1632         } else {
1633                 error = setup_bdev_super(s, fc->sb_flags, fc);
1634                 if (!error)
1635                         error = fill_super(s, fc);
1636                 if (error) {
1637                         deactivate_locked_super(s);
1638                         return error;
1639                 }
1640                 s->s_flags |= SB_ACTIVE;
1641         }
1642 
1643         BUG_ON(fc->root);
1644         fc->root = dget(s->s_root);
1645         return 0;
1646 }
1647 EXPORT_SYMBOL(get_tree_bdev);
1648 
1649 static int test_bdev_super(struct super_block *s, void *data)
1650 {
1651         return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1652 }
1653 
1654 struct dentry *mount_bdev(struct file_system_type *fs_type,
1655         int flags, const char *dev_name, void *data,
1656         int (*fill_super)(struct super_block *, void *, int))
1657 {
1658         struct super_block *s;
1659         int error;
1660         dev_t dev;
1661 
1662         error = lookup_bdev(dev_name, &dev);
1663         if (error)
1664                 return ERR_PTR(error);
1665 
1666         flags |= SB_NOSEC;
1667         s = sget(fs_type, test_bdev_super, set_bdev_super, flags, &dev);
1668         if (IS_ERR(s))
1669                 return ERR_CAST(s);
1670 
1671         if (s->s_root) {
1672                 if ((flags ^ s->s_flags) & SB_RDONLY) {
1673                         deactivate_locked_super(s);
1674                         return ERR_PTR(-EBUSY);
1675                 }
1676         } else {
1677                 error = setup_bdev_super(s, flags, NULL);
1678                 if (!error)
1679                         error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1680                 if (error) {
1681                         deactivate_locked_super(s);
1682                         return ERR_PTR(error);
1683                 }
1684 
1685                 s->s_flags |= SB_ACTIVE;
1686         }
1687 
1688         return dget(s->s_root);
1689 }
1690 EXPORT_SYMBOL(mount_bdev);
1691 
1692 void kill_block_super(struct super_block *sb)
1693 {
1694         struct block_device *bdev = sb->s_bdev;
1695 
1696         generic_shutdown_super(sb);
1697         if (bdev) {
1698                 sync_blockdev(bdev);
1699                 bdev_fput(sb->s_bdev_file);
1700         }
1701 }
1702 
1703 EXPORT_SYMBOL(kill_block_super);
1704 #endif
1705 
1706 struct dentry *mount_nodev(struct file_system_type *fs_type,
1707         int flags, void *data,
1708         int (*fill_super)(struct super_block *, void *, int))
1709 {
1710         int error;
1711         struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1712 
1713         if (IS_ERR(s))
1714                 return ERR_CAST(s);
1715 
1716         error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1717         if (error) {
1718                 deactivate_locked_super(s);
1719                 return ERR_PTR(error);
1720         }
1721         s->s_flags |= SB_ACTIVE;
1722         return dget(s->s_root);
1723 }
1724 EXPORT_SYMBOL(mount_nodev);
1725 
1726 int reconfigure_single(struct super_block *s,
1727                        int flags, void *data)
1728 {
1729         struct fs_context *fc;
1730         int ret;
1731 
1732         /* The caller really need to be passing fc down into mount_single(),
1733          * then a chunk of this can be removed.  [Bollocks -- AV]
1734          * Better yet, reconfiguration shouldn't happen, but rather the second
1735          * mount should be rejected if the parameters are not compatible.
1736          */
1737         fc = fs_context_for_reconfigure(s->s_root, flags, MS_RMT_MASK);
1738         if (IS_ERR(fc))
1739                 return PTR_ERR(fc);
1740 
1741         ret = parse_monolithic_mount_data(fc, data);
1742         if (ret < 0)
1743                 goto out;
1744 
1745         ret = reconfigure_super(fc);
1746 out:
1747         put_fs_context(fc);
1748         return ret;
1749 }
1750 
1751 static int compare_single(struct super_block *s, void *p)
1752 {
1753         return 1;
1754 }
1755 
1756 struct dentry *mount_single(struct file_system_type *fs_type,
1757         int flags, void *data,
1758         int (*fill_super)(struct super_block *, void *, int))
1759 {
1760         struct super_block *s;
1761         int error;
1762 
1763         s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1764         if (IS_ERR(s))
1765                 return ERR_CAST(s);
1766         if (!s->s_root) {
1767                 error = fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1768                 if (!error)
1769                         s->s_flags |= SB_ACTIVE;
1770         } else {
1771                 error = reconfigure_single(s, flags, data);
1772         }
1773         if (unlikely(error)) {
1774                 deactivate_locked_super(s);
1775                 return ERR_PTR(error);
1776         }
1777         return dget(s->s_root);
1778 }
1779 EXPORT_SYMBOL(mount_single);
1780 
1781 /**
1782  * vfs_get_tree - Get the mountable root
1783  * @fc: The superblock configuration context.
1784  *
1785  * The filesystem is invoked to get or create a superblock which can then later
1786  * be used for mounting.  The filesystem places a pointer to the root to be
1787  * used for mounting in @fc->root.
1788  */
1789 int vfs_get_tree(struct fs_context *fc)
1790 {
1791         struct super_block *sb;
1792         int error;
1793 
1794         if (fc->root)
1795                 return -EBUSY;
1796 
1797         /* Get the mountable root in fc->root, with a ref on the root and a ref
1798          * on the superblock.
1799          */
1800         error = fc->ops->get_tree(fc);
1801         if (error < 0)
1802                 return error;
1803 
1804         if (!fc->root) {
1805                 pr_err("Filesystem %s get_tree() didn't set fc->root, returned %i\n",
1806                        fc->fs_type->name, error);
1807                 /* We don't know what the locking state of the superblock is -
1808                  * if there is a superblock.
1809                  */
1810                 BUG();
1811         }
1812 
1813         sb = fc->root->d_sb;
1814         WARN_ON(!sb->s_bdi);
1815 
1816         /*
1817          * super_wake() contains a memory barrier which also care of
1818          * ordering for super_cache_count(). We place it before setting
1819          * SB_BORN as the data dependency between the two functions is
1820          * the superblock structure contents that we just set up, not
1821          * the SB_BORN flag.
1822          */
1823         super_wake(sb, SB_BORN);
1824 
1825         error = security_sb_set_mnt_opts(sb, fc->security, 0, NULL);
1826         if (unlikely(error)) {
1827                 fc_drop_locked(fc);
1828                 return error;
1829         }
1830 
1831         /*
1832          * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1833          * but s_maxbytes was an unsigned long long for many releases. Throw
1834          * this warning for a little while to try and catch filesystems that
1835          * violate this rule.
1836          */
1837         WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1838                 "negative value (%lld)\n", fc->fs_type->name, sb->s_maxbytes);
1839 
1840         return 0;
1841 }
1842 EXPORT_SYMBOL(vfs_get_tree);
1843 
1844 /*
1845  * Setup private BDI for given superblock. It gets automatically cleaned up
1846  * in generic_shutdown_super().
1847  */
1848 int super_setup_bdi_name(struct super_block *sb, char *fmt, ...)
1849 {
1850         struct backing_dev_info *bdi;
1851         int err;
1852         va_list args;
1853 
1854         bdi = bdi_alloc(NUMA_NO_NODE);
1855         if (!bdi)
1856                 return -ENOMEM;
1857 
1858         va_start(args, fmt);
1859         err = bdi_register_va(bdi, fmt, args);
1860         va_end(args);
1861         if (err) {
1862                 bdi_put(bdi);
1863                 return err;
1864         }
1865         WARN_ON(sb->s_bdi != &noop_backing_dev_info);
1866         sb->s_bdi = bdi;
1867         sb->s_iflags |= SB_I_PERSB_BDI;
1868 
1869         return 0;
1870 }
1871 EXPORT_SYMBOL(super_setup_bdi_name);
1872 
1873 /*
1874  * Setup private BDI for given superblock. I gets automatically cleaned up
1875  * in generic_shutdown_super().
1876  */
1877 int super_setup_bdi(struct super_block *sb)
1878 {
1879         static atomic_long_t bdi_seq = ATOMIC_LONG_INIT(0);
1880 
1881         return super_setup_bdi_name(sb, "%.28s-%ld", sb->s_type->name,
1882                                     atomic_long_inc_return(&bdi_seq));
1883 }
1884 EXPORT_SYMBOL(super_setup_bdi);
1885 
1886 /**
1887  * sb_wait_write - wait until all writers to given file system finish
1888  * @sb: the super for which we wait
1889  * @level: type of writers we wait for (normal vs page fault)
1890  *
1891  * This function waits until there are no writers of given type to given file
1892  * system.
1893  */
1894 static void sb_wait_write(struct super_block *sb, int level)
1895 {
1896         percpu_down_write(sb->s_writers.rw_sem + level-1);
1897 }
1898 
1899 /*
1900  * We are going to return to userspace and forget about these locks, the
1901  * ownership goes to the caller of thaw_super() which does unlock().
1902  */
1903 static void lockdep_sb_freeze_release(struct super_block *sb)
1904 {
1905         int level;
1906 
1907         for (level = SB_FREEZE_LEVELS - 1; level >= 0; level--)
1908                 percpu_rwsem_release(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1909 }
1910 
1911 /*
1912  * Tell lockdep we are holding these locks before we call ->unfreeze_fs(sb).
1913  */
1914 static void lockdep_sb_freeze_acquire(struct super_block *sb)
1915 {
1916         int level;
1917 
1918         for (level = 0; level < SB_FREEZE_LEVELS; ++level)
1919                 percpu_rwsem_acquire(sb->s_writers.rw_sem + level, 0, _THIS_IP_);
1920 }
1921 
1922 static void sb_freeze_unlock(struct super_block *sb, int level)
1923 {
1924         for (level--; level >= 0; level--)
1925                 percpu_up_write(sb->s_writers.rw_sem + level);
1926 }
1927 
1928 static int wait_for_partially_frozen(struct super_block *sb)
1929 {
1930         int ret = 0;
1931 
1932         do {
1933                 unsigned short old = sb->s_writers.frozen;
1934 
1935                 up_write(&sb->s_umount);
1936                 ret = wait_var_event_killable(&sb->s_writers.frozen,
1937                                                sb->s_writers.frozen != old);
1938                 down_write(&sb->s_umount);
1939         } while (ret == 0 &&
1940                  sb->s_writers.frozen != SB_UNFROZEN &&
1941                  sb->s_writers.frozen != SB_FREEZE_COMPLETE);
1942 
1943         return ret;
1944 }
1945 
1946 #define FREEZE_HOLDERS (FREEZE_HOLDER_KERNEL | FREEZE_HOLDER_USERSPACE)
1947 #define FREEZE_FLAGS (FREEZE_HOLDERS | FREEZE_MAY_NEST)
1948 
1949 static inline int freeze_inc(struct super_block *sb, enum freeze_holder who)
1950 {
1951         WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1952         WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1953 
1954         if (who & FREEZE_HOLDER_KERNEL)
1955                 ++sb->s_writers.freeze_kcount;
1956         if (who & FREEZE_HOLDER_USERSPACE)
1957                 ++sb->s_writers.freeze_ucount;
1958         return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1959 }
1960 
1961 static inline int freeze_dec(struct super_block *sb, enum freeze_holder who)
1962 {
1963         WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1964         WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1965 
1966         if ((who & FREEZE_HOLDER_KERNEL) && sb->s_writers.freeze_kcount)
1967                 --sb->s_writers.freeze_kcount;
1968         if ((who & FREEZE_HOLDER_USERSPACE) && sb->s_writers.freeze_ucount)
1969                 --sb->s_writers.freeze_ucount;
1970         return sb->s_writers.freeze_kcount + sb->s_writers.freeze_ucount;
1971 }
1972 
1973 static inline bool may_freeze(struct super_block *sb, enum freeze_holder who)
1974 {
1975         WARN_ON_ONCE((who & ~FREEZE_FLAGS));
1976         WARN_ON_ONCE(hweight32(who & FREEZE_HOLDERS) > 1);
1977 
1978         if (who & FREEZE_HOLDER_KERNEL)
1979                 return (who & FREEZE_MAY_NEST) ||
1980                        sb->s_writers.freeze_kcount == 0;
1981         if (who & FREEZE_HOLDER_USERSPACE)
1982                 return (who & FREEZE_MAY_NEST) ||
1983                        sb->s_writers.freeze_ucount == 0;
1984         return false;
1985 }
1986 
1987 /**
1988  * freeze_super - lock the filesystem and force it into a consistent state
1989  * @sb: the super to lock
1990  * @who: context that wants to freeze
1991  *
1992  * Syncs the super to make sure the filesystem is consistent and calls the fs's
1993  * freeze_fs.  Subsequent calls to this without first thawing the fs may return
1994  * -EBUSY.
1995  *
1996  * @who should be:
1997  * * %FREEZE_HOLDER_USERSPACE if userspace wants to freeze the fs;
1998  * * %FREEZE_HOLDER_KERNEL if the kernel wants to freeze the fs.
1999  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed.
2000  *
2001  * The @who argument distinguishes between the kernel and userspace trying to
2002  * freeze the filesystem.  Although there cannot be multiple kernel freezes or
2003  * multiple userspace freezes in effect at any given time, the kernel and
2004  * userspace can both hold a filesystem frozen.  The filesystem remains frozen
2005  * until there are no kernel or userspace freezes in effect.
2006  *
2007  * A filesystem may hold multiple devices and thus a filesystems may be
2008  * frozen through the block layer via multiple block devices. In this
2009  * case the request is marked as being allowed to nest by passing
2010  * FREEZE_MAY_NEST. The filesystem remains frozen until all block
2011  * devices are unfrozen. If multiple freezes are attempted without
2012  * FREEZE_MAY_NEST -EBUSY will be returned.
2013  *
2014  * During this function, sb->s_writers.frozen goes through these values:
2015  *
2016  * SB_UNFROZEN: File system is normal, all writes progress as usual.
2017  *
2018  * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
2019  * writes should be blocked, though page faults are still allowed. We wait for
2020  * all writes to complete and then proceed to the next stage.
2021  *
2022  * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
2023  * but internal fs threads can still modify the filesystem (although they
2024  * should not dirty new pages or inodes), writeback can run etc. After waiting
2025  * for all running page faults we sync the filesystem which will clean all
2026  * dirty pages and inodes (no new dirty pages or inodes can be created when
2027  * sync is running).
2028  *
2029  * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
2030  * modification are blocked (e.g. XFS preallocation truncation on inode
2031  * reclaim). This is usually implemented by blocking new transactions for
2032  * filesystems that have them and need this additional guard. After all
2033  * internal writers are finished we call ->freeze_fs() to finish filesystem
2034  * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
2035  * mostly auxiliary for filesystems to verify they do not modify frozen fs.
2036  *
2037  * sb->s_writers.frozen is protected by sb->s_umount.
2038  *
2039  * Return: If the freeze was successful zero is returned. If the freeze
2040  *         failed a negative error code is returned.
2041  */
2042 int freeze_super(struct super_block *sb, enum freeze_holder who)
2043 {
2044         int ret;
2045 
2046         if (!super_lock_excl(sb)) {
2047                 WARN_ON_ONCE("Dying superblock while freezing!");
2048                 return -EINVAL;
2049         }
2050         atomic_inc(&sb->s_active);
2051 
2052 retry:
2053         if (sb->s_writers.frozen == SB_FREEZE_COMPLETE) {
2054                 if (may_freeze(sb, who))
2055                         ret = !!WARN_ON_ONCE(freeze_inc(sb, who) == 1);
2056                 else
2057                         ret = -EBUSY;
2058                 /* All freezers share a single active reference. */
2059                 deactivate_locked_super(sb);
2060                 return ret;
2061         }
2062 
2063         if (sb->s_writers.frozen != SB_UNFROZEN) {
2064                 ret = wait_for_partially_frozen(sb);
2065                 if (ret) {
2066                         deactivate_locked_super(sb);
2067                         return ret;
2068                 }
2069 
2070                 goto retry;
2071         }
2072 
2073         if (sb_rdonly(sb)) {
2074                 /* Nothing to do really... */
2075                 WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2076                 sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2077                 wake_up_var(&sb->s_writers.frozen);
2078                 super_unlock_excl(sb);
2079                 return 0;
2080         }
2081 
2082         sb->s_writers.frozen = SB_FREEZE_WRITE;
2083         /* Release s_umount to preserve sb_start_write -> s_umount ordering */
2084         super_unlock_excl(sb);
2085         sb_wait_write(sb, SB_FREEZE_WRITE);
2086         __super_lock_excl(sb);
2087 
2088         /* Now we go and block page faults... */
2089         sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
2090         sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
2091 
2092         /* All writers are done so after syncing there won't be dirty data */
2093         ret = sync_filesystem(sb);
2094         if (ret) {
2095                 sb->s_writers.frozen = SB_UNFROZEN;
2096                 sb_freeze_unlock(sb, SB_FREEZE_PAGEFAULT);
2097                 wake_up_var(&sb->s_writers.frozen);
2098                 deactivate_locked_super(sb);
2099                 return ret;
2100         }
2101 
2102         /* Now wait for internal filesystem counter */
2103         sb->s_writers.frozen = SB_FREEZE_FS;
2104         sb_wait_write(sb, SB_FREEZE_FS);
2105 
2106         if (sb->s_op->freeze_fs) {
2107                 ret = sb->s_op->freeze_fs(sb);
2108                 if (ret) {
2109                         printk(KERN_ERR
2110                                 "VFS:Filesystem freeze failed\n");
2111                         sb->s_writers.frozen = SB_UNFROZEN;
2112                         sb_freeze_unlock(sb, SB_FREEZE_FS);
2113                         wake_up_var(&sb->s_writers.frozen);
2114                         deactivate_locked_super(sb);
2115                         return ret;
2116                 }
2117         }
2118         /*
2119          * For debugging purposes so that fs can warn if it sees write activity
2120          * when frozen is set to SB_FREEZE_COMPLETE, and for thaw_super().
2121          */
2122         WARN_ON_ONCE(freeze_inc(sb, who) > 1);
2123         sb->s_writers.frozen = SB_FREEZE_COMPLETE;
2124         wake_up_var(&sb->s_writers.frozen);
2125         lockdep_sb_freeze_release(sb);
2126         super_unlock_excl(sb);
2127         return 0;
2128 }
2129 EXPORT_SYMBOL(freeze_super);
2130 
2131 /*
2132  * Undoes the effect of a freeze_super_locked call.  If the filesystem is
2133  * frozen both by userspace and the kernel, a thaw call from either source
2134  * removes that state without releasing the other state or unlocking the
2135  * filesystem.
2136  */
2137 static int thaw_super_locked(struct super_block *sb, enum freeze_holder who)
2138 {
2139         int error = -EINVAL;
2140 
2141         if (sb->s_writers.frozen != SB_FREEZE_COMPLETE)
2142                 goto out_unlock;
2143 
2144         /*
2145          * All freezers share a single active reference.
2146          * So just unlock in case there are any left.
2147          */
2148         if (freeze_dec(sb, who))
2149                 goto out_unlock;
2150 
2151         if (sb_rdonly(sb)) {
2152                 sb->s_writers.frozen = SB_UNFROZEN;
2153                 wake_up_var(&sb->s_writers.frozen);
2154                 goto out_deactivate;
2155         }
2156 
2157         lockdep_sb_freeze_acquire(sb);
2158 
2159         if (sb->s_op->unfreeze_fs) {
2160                 error = sb->s_op->unfreeze_fs(sb);
2161                 if (error) {
2162                         pr_err("VFS: Filesystem thaw failed\n");
2163                         freeze_inc(sb, who);
2164                         lockdep_sb_freeze_release(sb);
2165                         goto out_unlock;
2166                 }
2167         }
2168 
2169         sb->s_writers.frozen = SB_UNFROZEN;
2170         wake_up_var(&sb->s_writers.frozen);
2171         sb_freeze_unlock(sb, SB_FREEZE_FS);
2172 out_deactivate:
2173         deactivate_locked_super(sb);
2174         return 0;
2175 
2176 out_unlock:
2177         super_unlock_excl(sb);
2178         return error;
2179 }
2180 
2181 /**
2182  * thaw_super -- unlock filesystem
2183  * @sb: the super to thaw
2184  * @who: context that wants to freeze
2185  *
2186  * Unlocks the filesystem and marks it writeable again after freeze_super()
2187  * if there are no remaining freezes on the filesystem.
2188  *
2189  * @who should be:
2190  * * %FREEZE_HOLDER_USERSPACE if userspace wants to thaw the fs;
2191  * * %FREEZE_HOLDER_KERNEL if the kernel wants to thaw the fs.
2192  * * %FREEZE_MAY_NEST whether nesting freeze and thaw requests is allowed
2193  *
2194  * A filesystem may hold multiple devices and thus a filesystems may
2195  * have been frozen through the block layer via multiple block devices.
2196  * The filesystem remains frozen until all block devices are unfrozen.
2197  */
2198 int thaw_super(struct super_block *sb, enum freeze_holder who)
2199 {
2200         if (!super_lock_excl(sb)) {
2201                 WARN_ON_ONCE("Dying superblock while thawing!");
2202                 return -EINVAL;
2203         }
2204         return thaw_super_locked(sb, who);
2205 }
2206 EXPORT_SYMBOL(thaw_super);
2207 
2208 /*
2209  * Create workqueue for deferred direct IO completions. We allocate the
2210  * workqueue when it's first needed. This avoids creating workqueue for
2211  * filesystems that don't need it and also allows us to create the workqueue
2212  * late enough so the we can include s_id in the name of the workqueue.
2213  */
2214 int sb_init_dio_done_wq(struct super_block *sb)
2215 {
2216         struct workqueue_struct *old;
2217         struct workqueue_struct *wq = alloc_workqueue("dio/%s",
2218                                                       WQ_MEM_RECLAIM, 0,
2219                                                       sb->s_id);
2220         if (!wq)
2221                 return -ENOMEM;
2222         /*
2223          * This has to be atomic as more DIOs can race to create the workqueue
2224          */
2225         old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
2226         /* Someone created workqueue before us? Free ours... */
2227         if (old)
2228                 destroy_workqueue(wq);
2229         return 0;
2230 }
2231 EXPORT_SYMBOL_GPL(sb_init_dio_done_wq);
2232 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php