1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements VFS file and inode operations for regular files, device 13 * nodes and symlinks as well as address space operations. 14 * 15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 16 * the page is dirty and is used for optimization purposes - dirty pages are 17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 18 * the budget for this page. The @PG_checked flag is set if full budgeting is 19 * required for the page e.g., when it corresponds to a file hole or it is 20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 21 * it is OK to fail in this function, and the budget is released in 22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 23 * information about how the page was budgeted, to make it possible to release 24 * the budget properly. 25 * 26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 27 * implement. However, this is not true for 'ubifs_writepage()', which may be 28 * called with @i_mutex unlocked. For example, when flusher thread is doing 29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 32 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 33 * 34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the 35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not 37 * set as well. However, UBIFS disables readahead. 38 */ 39 40 #include "ubifs.h" 41 #include <linux/mount.h> 42 #include <linux/slab.h> 43 #include <linux/migrate.h> 44 45 static int read_block(struct inode *inode, void *addr, unsigned int block, 46 struct ubifs_data_node *dn) 47 { 48 struct ubifs_info *c = inode->i_sb->s_fs_info; 49 int err, len, out_len; 50 union ubifs_key key; 51 unsigned int dlen; 52 53 data_key_init(c, &key, inode->i_ino, block); 54 err = ubifs_tnc_lookup(c, &key, dn); 55 if (err) { 56 if (err == -ENOENT) 57 /* Not found, so it must be a hole */ 58 memset(addr, 0, UBIFS_BLOCK_SIZE); 59 return err; 60 } 61 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 63 ubifs_inode(inode)->creat_sqnum); 64 len = le32_to_cpu(dn->size); 65 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 66 goto dump; 67 68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 69 70 if (IS_ENCRYPTED(inode)) { 71 err = ubifs_decrypt(inode, dn, &dlen, block); 72 if (err) 73 goto dump; 74 } 75 76 out_len = UBIFS_BLOCK_SIZE; 77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 78 le16_to_cpu(dn->compr_type)); 79 if (err || len != out_len) 80 goto dump; 81 82 /* 83 * Data length can be less than a full block, even for blocks that are 84 * not the last in the file (e.g., as a result of making a hole and 85 * appending data). Ensure that the remainder is zeroed out. 86 */ 87 if (len < UBIFS_BLOCK_SIZE) 88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 89 90 return 0; 91 92 dump: 93 ubifs_err(c, "bad data node (block %u, inode %lu)", 94 block, inode->i_ino); 95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ); 96 return -EINVAL; 97 } 98 99 static int do_readpage(struct folio *folio) 100 { 101 void *addr; 102 int err = 0, i; 103 unsigned int block, beyond; 104 struct ubifs_data_node *dn = NULL; 105 struct inode *inode = folio->mapping->host; 106 struct ubifs_info *c = inode->i_sb->s_fs_info; 107 loff_t i_size = i_size_read(inode); 108 109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 110 inode->i_ino, folio->index, i_size, folio->flags); 111 ubifs_assert(c, !folio_test_checked(folio)); 112 ubifs_assert(c, !folio->private); 113 114 addr = kmap_local_folio(folio, 0); 115 116 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 118 if (block >= beyond) { 119 /* Reading beyond inode */ 120 folio_set_checked(folio); 121 addr = folio_zero_tail(folio, 0, addr); 122 goto out; 123 } 124 125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 126 if (!dn) { 127 err = -ENOMEM; 128 goto out; 129 } 130 131 i = 0; 132 while (1) { 133 int ret; 134 135 if (block >= beyond) { 136 /* Reading beyond inode */ 137 err = -ENOENT; 138 memset(addr, 0, UBIFS_BLOCK_SIZE); 139 } else { 140 ret = read_block(inode, addr, block, dn); 141 if (ret) { 142 err = ret; 143 if (err != -ENOENT) 144 break; 145 } else if (block + 1 == beyond) { 146 int dlen = le32_to_cpu(dn->size); 147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 148 149 if (ilen && ilen < dlen) 150 memset(addr + ilen, 0, dlen - ilen); 151 } 152 } 153 if (++i >= (UBIFS_BLOCKS_PER_PAGE << folio_order(folio))) 154 break; 155 block += 1; 156 addr += UBIFS_BLOCK_SIZE; 157 if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) { 158 kunmap_local(addr - UBIFS_BLOCK_SIZE); 159 addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE); 160 } 161 } 162 163 if (err) { 164 struct ubifs_info *c = inode->i_sb->s_fs_info; 165 if (err == -ENOENT) { 166 /* Not found, so it must be a hole */ 167 folio_set_checked(folio); 168 dbg_gen("hole"); 169 err = 0; 170 } else { 171 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 172 folio->index, inode->i_ino, err); 173 } 174 } 175 176 out: 177 kfree(dn); 178 if (!err) 179 folio_mark_uptodate(folio); 180 flush_dcache_folio(folio); 181 kunmap_local(addr); 182 return err; 183 } 184 185 /** 186 * release_new_page_budget - release budget of a new page. 187 * @c: UBIFS file-system description object 188 * 189 * This is a helper function which releases budget corresponding to the budget 190 * of one new page of data. 191 */ 192 static void release_new_page_budget(struct ubifs_info *c) 193 { 194 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 195 196 ubifs_release_budget(c, &req); 197 } 198 199 /** 200 * release_existing_page_budget - release budget of an existing page. 201 * @c: UBIFS file-system description object 202 * 203 * This is a helper function which releases budget corresponding to the budget 204 * of changing one page of data which already exists on the flash media. 205 */ 206 static void release_existing_page_budget(struct ubifs_info *c) 207 { 208 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 209 210 ubifs_release_budget(c, &req); 211 } 212 213 static int write_begin_slow(struct address_space *mapping, 214 loff_t pos, unsigned len, struct page **pagep) 215 { 216 struct inode *inode = mapping->host; 217 struct ubifs_info *c = inode->i_sb->s_fs_info; 218 pgoff_t index = pos >> PAGE_SHIFT; 219 struct ubifs_budget_req req = { .new_page = 1 }; 220 int err, appending = !!(pos + len > inode->i_size); 221 struct folio *folio; 222 223 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 224 inode->i_ino, pos, len, inode->i_size); 225 226 /* 227 * At the slow path we have to budget before locking the folio, because 228 * budgeting may force write-back, which would wait on locked folios and 229 * deadlock if we had the folio locked. At this point we do not know 230 * anything about the folio, so assume that this is a new folio which is 231 * written to a hole. This corresponds to largest budget. Later the 232 * budget will be amended if this is not true. 233 */ 234 if (appending) 235 /* We are appending data, budget for inode change */ 236 req.dirtied_ino = 1; 237 238 err = ubifs_budget_space(c, &req); 239 if (unlikely(err)) 240 return err; 241 242 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 243 mapping_gfp_mask(mapping)); 244 if (IS_ERR(folio)) { 245 ubifs_release_budget(c, &req); 246 return PTR_ERR(folio); 247 } 248 249 if (!folio_test_uptodate(folio)) { 250 if (pos == folio_pos(folio) && len >= folio_size(folio)) 251 folio_set_checked(folio); 252 else { 253 err = do_readpage(folio); 254 if (err) { 255 folio_unlock(folio); 256 folio_put(folio); 257 ubifs_release_budget(c, &req); 258 return err; 259 } 260 } 261 } 262 263 if (folio->private) 264 /* 265 * The folio is dirty, which means it was budgeted twice: 266 * o first time the budget was allocated by the task which 267 * made the folio dirty and set the private field; 268 * o and then we budgeted for it for the second time at the 269 * very beginning of this function. 270 * 271 * So what we have to do is to release the folio budget we 272 * allocated. 273 */ 274 release_new_page_budget(c); 275 else if (!folio_test_checked(folio)) 276 /* 277 * We are changing a folio which already exists on the media. 278 * This means that changing the folio does not make the amount 279 * of indexing information larger, and this part of the budget 280 * which we have already acquired may be released. 281 */ 282 ubifs_convert_page_budget(c); 283 284 if (appending) { 285 struct ubifs_inode *ui = ubifs_inode(inode); 286 287 /* 288 * 'ubifs_write_end()' is optimized from the fast-path part of 289 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 290 * if data is appended. 291 */ 292 mutex_lock(&ui->ui_mutex); 293 if (ui->dirty) 294 /* 295 * The inode is dirty already, so we may free the 296 * budget we allocated. 297 */ 298 ubifs_release_dirty_inode_budget(c, ui); 299 } 300 301 *pagep = &folio->page; 302 return 0; 303 } 304 305 /** 306 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 307 * @c: UBIFS file-system description object 308 * @folio: folio to allocate budget for 309 * @ui: UBIFS inode object the page belongs to 310 * @appending: non-zero if the page is appended 311 * 312 * This is a helper function for 'ubifs_write_begin()' which allocates budget 313 * for the operation. The budget is allocated differently depending on whether 314 * this is appending, whether the page is dirty or not, and so on. This 315 * function leaves the @ui->ui_mutex locked in case of appending. 316 * 317 * Returns: %0 in case of success and %-ENOSPC in case of failure. 318 */ 319 static int allocate_budget(struct ubifs_info *c, struct folio *folio, 320 struct ubifs_inode *ui, int appending) 321 { 322 struct ubifs_budget_req req = { .fast = 1 }; 323 324 if (folio->private) { 325 if (!appending) 326 /* 327 * The folio is dirty and we are not appending, which 328 * means no budget is needed at all. 329 */ 330 return 0; 331 332 mutex_lock(&ui->ui_mutex); 333 if (ui->dirty) 334 /* 335 * The page is dirty and we are appending, so the inode 336 * has to be marked as dirty. However, it is already 337 * dirty, so we do not need any budget. We may return, 338 * but @ui->ui_mutex hast to be left locked because we 339 * should prevent write-back from flushing the inode 340 * and freeing the budget. The lock will be released in 341 * 'ubifs_write_end()'. 342 */ 343 return 0; 344 345 /* 346 * The page is dirty, we are appending, the inode is clean, so 347 * we need to budget the inode change. 348 */ 349 req.dirtied_ino = 1; 350 } else { 351 if (folio_test_checked(folio)) 352 /* 353 * The page corresponds to a hole and does not 354 * exist on the media. So changing it makes 355 * the amount of indexing information 356 * larger, and we have to budget for a new 357 * page. 358 */ 359 req.new_page = 1; 360 else 361 /* 362 * Not a hole, the change will not add any new 363 * indexing information, budget for page 364 * change. 365 */ 366 req.dirtied_page = 1; 367 368 if (appending) { 369 mutex_lock(&ui->ui_mutex); 370 if (!ui->dirty) 371 /* 372 * The inode is clean but we will have to mark 373 * it as dirty because we are appending. This 374 * needs a budget. 375 */ 376 req.dirtied_ino = 1; 377 } 378 } 379 380 return ubifs_budget_space(c, &req); 381 } 382 383 /* 384 * This function is called when a page of data is going to be written. Since 385 * the page of data will not necessarily go to the flash straight away, UBIFS 386 * has to reserve space on the media for it, which is done by means of 387 * budgeting. 388 * 389 * This is the hot-path of the file-system and we are trying to optimize it as 390 * much as possible. For this reasons it is split on 2 parts - slow and fast. 391 * 392 * There many budgeting cases: 393 * o a new page is appended - we have to budget for a new page and for 394 * changing the inode; however, if the inode is already dirty, there is 395 * no need to budget for it; 396 * o an existing clean page is changed - we have budget for it; if the page 397 * does not exist on the media (a hole), we have to budget for a new 398 * page; otherwise, we may budget for changing an existing page; the 399 * difference between these cases is that changing an existing page does 400 * not introduce anything new to the FS indexing information, so it does 401 * not grow, and smaller budget is acquired in this case; 402 * o an existing dirty page is changed - no need to budget at all, because 403 * the page budget has been acquired by earlier, when the page has been 404 * marked dirty. 405 * 406 * UBIFS budgeting sub-system may force write-back if it thinks there is no 407 * space to reserve. This imposes some locking restrictions and makes it 408 * impossible to take into account the above cases, and makes it impossible to 409 * optimize budgeting. 410 * 411 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 412 * there is a plenty of flash space and the budget will be acquired quickly, 413 * without forcing write-back. The slow path does not make this assumption. 414 */ 415 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 416 loff_t pos, unsigned len, 417 struct page **pagep, void **fsdata) 418 { 419 struct inode *inode = mapping->host; 420 struct ubifs_info *c = inode->i_sb->s_fs_info; 421 struct ubifs_inode *ui = ubifs_inode(inode); 422 pgoff_t index = pos >> PAGE_SHIFT; 423 int err, appending = !!(pos + len > inode->i_size); 424 int skipped_read = 0; 425 struct folio *folio; 426 427 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size); 428 ubifs_assert(c, !c->ro_media && !c->ro_mount); 429 430 if (unlikely(c->ro_error)) 431 return -EROFS; 432 433 /* Try out the fast-path part first */ 434 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 435 mapping_gfp_mask(mapping)); 436 if (IS_ERR(folio)) 437 return PTR_ERR(folio); 438 439 if (!folio_test_uptodate(folio)) { 440 /* The page is not loaded from the flash */ 441 if (pos == folio_pos(folio) && len >= folio_size(folio)) { 442 /* 443 * We change whole page so no need to load it. But we 444 * do not know whether this page exists on the media or 445 * not, so we assume the latter because it requires 446 * larger budget. The assumption is that it is better 447 * to budget a bit more than to read the page from the 448 * media. Thus, we are setting the @PG_checked flag 449 * here. 450 */ 451 folio_set_checked(folio); 452 skipped_read = 1; 453 } else { 454 err = do_readpage(folio); 455 if (err) { 456 folio_unlock(folio); 457 folio_put(folio); 458 return err; 459 } 460 } 461 } 462 463 err = allocate_budget(c, folio, ui, appending); 464 if (unlikely(err)) { 465 ubifs_assert(c, err == -ENOSPC); 466 /* 467 * If we skipped reading the page because we were going to 468 * write all of it, then it is not up to date. 469 */ 470 if (skipped_read) 471 folio_clear_checked(folio); 472 /* 473 * Budgeting failed which means it would have to force 474 * write-back but didn't, because we set the @fast flag in the 475 * request. Write-back cannot be done now, while we have the 476 * page locked, because it would deadlock. Unlock and free 477 * everything and fall-back to slow-path. 478 */ 479 if (appending) { 480 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 481 mutex_unlock(&ui->ui_mutex); 482 } 483 folio_unlock(folio); 484 folio_put(folio); 485 486 return write_begin_slow(mapping, pos, len, pagep); 487 } 488 489 /* 490 * Whee, we acquired budgeting quickly - without involving 491 * garbage-collection, committing or forcing write-back. We return 492 * with @ui->ui_mutex locked if we are appending pages, and unlocked 493 * otherwise. This is an optimization (slightly hacky though). 494 */ 495 *pagep = &folio->page; 496 return 0; 497 } 498 499 /** 500 * cancel_budget - cancel budget. 501 * @c: UBIFS file-system description object 502 * @folio: folio to cancel budget for 503 * @ui: UBIFS inode object the page belongs to 504 * @appending: non-zero if the page is appended 505 * 506 * This is a helper function for a page write operation. It unlocks the 507 * @ui->ui_mutex in case of appending. 508 */ 509 static void cancel_budget(struct ubifs_info *c, struct folio *folio, 510 struct ubifs_inode *ui, int appending) 511 { 512 if (appending) { 513 if (!ui->dirty) 514 ubifs_release_dirty_inode_budget(c, ui); 515 mutex_unlock(&ui->ui_mutex); 516 } 517 if (!folio->private) { 518 if (folio_test_checked(folio)) 519 release_new_page_budget(c); 520 else 521 release_existing_page_budget(c); 522 } 523 } 524 525 static int ubifs_write_end(struct file *file, struct address_space *mapping, 526 loff_t pos, unsigned len, unsigned copied, 527 struct page *page, void *fsdata) 528 { 529 struct folio *folio = page_folio(page); 530 struct inode *inode = mapping->host; 531 struct ubifs_inode *ui = ubifs_inode(inode); 532 struct ubifs_info *c = inode->i_sb->s_fs_info; 533 loff_t end_pos = pos + len; 534 int appending = !!(end_pos > inode->i_size); 535 536 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 537 inode->i_ino, pos, folio->index, len, copied, inode->i_size); 538 539 if (unlikely(copied < len && !folio_test_uptodate(folio))) { 540 /* 541 * VFS copied less data to the folio than it intended and 542 * declared in its '->write_begin()' call via the @len 543 * argument. If the folio was not up-to-date, 544 * the 'ubifs_write_begin()' function did 545 * not load it from the media (for optimization reasons). This 546 * means that part of the folio contains garbage. So read the 547 * folio now. 548 */ 549 dbg_gen("copied %d instead of %d, read page and repeat", 550 copied, len); 551 cancel_budget(c, folio, ui, appending); 552 folio_clear_checked(folio); 553 554 /* 555 * Return 0 to force VFS to repeat the whole operation, or the 556 * error code if 'do_readpage()' fails. 557 */ 558 copied = do_readpage(folio); 559 goto out; 560 } 561 562 if (len == folio_size(folio)) 563 folio_mark_uptodate(folio); 564 565 if (!folio->private) { 566 folio_attach_private(folio, (void *)1); 567 atomic_long_inc(&c->dirty_pg_cnt); 568 filemap_dirty_folio(mapping, folio); 569 } 570 571 if (appending) { 572 i_size_write(inode, end_pos); 573 ui->ui_size = end_pos; 574 /* 575 * We do not set @I_DIRTY_PAGES (which means that 576 * the inode has dirty pages), this was done in 577 * filemap_dirty_folio(). 578 */ 579 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 580 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 581 mutex_unlock(&ui->ui_mutex); 582 } 583 584 out: 585 folio_unlock(folio); 586 folio_put(folio); 587 return copied; 588 } 589 590 /** 591 * populate_page - copy data nodes into a page for bulk-read. 592 * @c: UBIFS file-system description object 593 * @folio: folio 594 * @bu: bulk-read information 595 * @n: next zbranch slot 596 * 597 * Returns: %0 on success and a negative error code on failure. 598 */ 599 static int populate_page(struct ubifs_info *c, struct folio *folio, 600 struct bu_info *bu, int *n) 601 { 602 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 603 struct inode *inode = folio->mapping->host; 604 loff_t i_size = i_size_read(inode); 605 unsigned int page_block; 606 void *addr, *zaddr; 607 pgoff_t end_index; 608 609 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 610 inode->i_ino, folio->index, i_size, folio->flags); 611 612 addr = zaddr = kmap_local_folio(folio, 0); 613 614 end_index = (i_size - 1) >> PAGE_SHIFT; 615 if (!i_size || folio->index > end_index) { 616 hole = 1; 617 addr = folio_zero_tail(folio, 0, addr); 618 goto out_hole; 619 } 620 621 page_block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 622 while (1) { 623 int err, len, out_len, dlen; 624 625 if (nn >= bu->cnt) { 626 hole = 1; 627 memset(addr, 0, UBIFS_BLOCK_SIZE); 628 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 629 struct ubifs_data_node *dn; 630 631 dn = bu->buf + (bu->zbranch[nn].offs - offs); 632 633 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 634 ubifs_inode(inode)->creat_sqnum); 635 636 len = le32_to_cpu(dn->size); 637 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 638 goto out_err; 639 640 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 641 out_len = UBIFS_BLOCK_SIZE; 642 643 if (IS_ENCRYPTED(inode)) { 644 err = ubifs_decrypt(inode, dn, &dlen, page_block); 645 if (err) 646 goto out_err; 647 } 648 649 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 650 le16_to_cpu(dn->compr_type)); 651 if (err || len != out_len) 652 goto out_err; 653 654 if (len < UBIFS_BLOCK_SIZE) 655 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 656 657 nn += 1; 658 read = (i << UBIFS_BLOCK_SHIFT) + len; 659 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 660 nn += 1; 661 continue; 662 } else { 663 hole = 1; 664 memset(addr, 0, UBIFS_BLOCK_SIZE); 665 } 666 if (++i >= UBIFS_BLOCKS_PER_PAGE) 667 break; 668 addr += UBIFS_BLOCK_SIZE; 669 page_block += 1; 670 if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) { 671 kunmap_local(addr - UBIFS_BLOCK_SIZE); 672 addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE); 673 } 674 } 675 676 if (end_index == folio->index) { 677 int len = i_size & (PAGE_SIZE - 1); 678 679 if (len && len < read) 680 memset(zaddr + len, 0, read - len); 681 } 682 683 out_hole: 684 if (hole) { 685 folio_set_checked(folio); 686 dbg_gen("hole"); 687 } 688 689 folio_mark_uptodate(folio); 690 flush_dcache_folio(folio); 691 kunmap_local(addr); 692 *n = nn; 693 return 0; 694 695 out_err: 696 flush_dcache_folio(folio); 697 kunmap_local(addr); 698 ubifs_err(c, "bad data node (block %u, inode %lu)", 699 page_block, inode->i_ino); 700 return -EINVAL; 701 } 702 703 /** 704 * ubifs_do_bulk_read - do bulk-read. 705 * @c: UBIFS file-system description object 706 * @bu: bulk-read information 707 * @folio1: first folio to read 708 * 709 * Returns: %1 if the bulk-read is done, otherwise %0 is returned. 710 */ 711 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 712 struct folio *folio1) 713 { 714 pgoff_t offset = folio1->index, end_index; 715 struct address_space *mapping = folio1->mapping; 716 struct inode *inode = mapping->host; 717 struct ubifs_inode *ui = ubifs_inode(inode); 718 int err, page_idx, page_cnt, ret = 0, n = 0; 719 int allocate = bu->buf ? 0 : 1; 720 loff_t isize; 721 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS; 722 723 err = ubifs_tnc_get_bu_keys(c, bu); 724 if (err) 725 goto out_warn; 726 727 if (bu->eof) { 728 /* Turn off bulk-read at the end of the file */ 729 ui->read_in_a_row = 1; 730 ui->bulk_read = 0; 731 } 732 733 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 734 if (!page_cnt) { 735 /* 736 * This happens when there are multiple blocks per page and the 737 * blocks for the first page we are looking for, are not 738 * together. If all the pages were like this, bulk-read would 739 * reduce performance, so we turn it off for a while. 740 */ 741 goto out_bu_off; 742 } 743 744 if (bu->cnt) { 745 if (allocate) { 746 /* 747 * Allocate bulk-read buffer depending on how many data 748 * nodes we are going to read. 749 */ 750 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 751 bu->zbranch[bu->cnt - 1].len - 752 bu->zbranch[0].offs; 753 ubifs_assert(c, bu->buf_len > 0); 754 ubifs_assert(c, bu->buf_len <= c->leb_size); 755 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 756 if (!bu->buf) 757 goto out_bu_off; 758 } 759 760 err = ubifs_tnc_bulk_read(c, bu); 761 if (err) 762 goto out_warn; 763 } 764 765 err = populate_page(c, folio1, bu, &n); 766 if (err) 767 goto out_warn; 768 769 folio_unlock(folio1); 770 ret = 1; 771 772 isize = i_size_read(inode); 773 if (isize == 0) 774 goto out_free; 775 end_index = ((isize - 1) >> PAGE_SHIFT); 776 777 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 778 pgoff_t page_offset = offset + page_idx; 779 struct folio *folio; 780 781 if (page_offset > end_index) 782 break; 783 folio = __filemap_get_folio(mapping, page_offset, 784 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT, 785 ra_gfp_mask); 786 if (IS_ERR(folio)) 787 break; 788 if (!folio_test_uptodate(folio)) 789 err = populate_page(c, folio, bu, &n); 790 folio_unlock(folio); 791 folio_put(folio); 792 if (err) 793 break; 794 } 795 796 ui->last_page_read = offset + page_idx - 1; 797 798 out_free: 799 if (allocate) 800 kfree(bu->buf); 801 return ret; 802 803 out_warn: 804 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 805 goto out_free; 806 807 out_bu_off: 808 ui->read_in_a_row = ui->bulk_read = 0; 809 goto out_free; 810 } 811 812 /** 813 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 814 * @folio: folio from which to start bulk-read. 815 * 816 * Some flash media are capable of reading sequentially at faster rates. UBIFS 817 * bulk-read facility is designed to take advantage of that, by reading in one 818 * go consecutive data nodes that are also located consecutively in the same 819 * LEB. 820 * 821 * Returns: %1 if a bulk-read is done and %0 otherwise. 822 */ 823 static int ubifs_bulk_read(struct folio *folio) 824 { 825 struct inode *inode = folio->mapping->host; 826 struct ubifs_info *c = inode->i_sb->s_fs_info; 827 struct ubifs_inode *ui = ubifs_inode(inode); 828 pgoff_t index = folio->index, last_page_read = ui->last_page_read; 829 struct bu_info *bu; 830 int err = 0, allocated = 0; 831 832 ui->last_page_read = index; 833 if (!c->bulk_read) 834 return 0; 835 836 /* 837 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 838 * so don't bother if we cannot lock the mutex. 839 */ 840 if (!mutex_trylock(&ui->ui_mutex)) 841 return 0; 842 843 if (index != last_page_read + 1) { 844 /* Turn off bulk-read if we stop reading sequentially */ 845 ui->read_in_a_row = 1; 846 if (ui->bulk_read) 847 ui->bulk_read = 0; 848 goto out_unlock; 849 } 850 851 if (!ui->bulk_read) { 852 ui->read_in_a_row += 1; 853 if (ui->read_in_a_row < 3) 854 goto out_unlock; 855 /* Three reads in a row, so switch on bulk-read */ 856 ui->bulk_read = 1; 857 } 858 859 /* 860 * If possible, try to use pre-allocated bulk-read information, which 861 * is protected by @c->bu_mutex. 862 */ 863 if (mutex_trylock(&c->bu_mutex)) 864 bu = &c->bu; 865 else { 866 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 867 if (!bu) 868 goto out_unlock; 869 870 bu->buf = NULL; 871 allocated = 1; 872 } 873 874 bu->buf_len = c->max_bu_buf_len; 875 data_key_init(c, &bu->key, inode->i_ino, 876 folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 877 err = ubifs_do_bulk_read(c, bu, folio); 878 879 if (!allocated) 880 mutex_unlock(&c->bu_mutex); 881 else 882 kfree(bu); 883 884 out_unlock: 885 mutex_unlock(&ui->ui_mutex); 886 return err; 887 } 888 889 static int ubifs_read_folio(struct file *file, struct folio *folio) 890 { 891 if (ubifs_bulk_read(folio)) 892 return 0; 893 do_readpage(folio); 894 folio_unlock(folio); 895 return 0; 896 } 897 898 static int do_writepage(struct folio *folio, size_t len) 899 { 900 int err = 0, blen; 901 unsigned int block; 902 void *addr; 903 size_t offset = 0; 904 union ubifs_key key; 905 struct inode *inode = folio->mapping->host; 906 struct ubifs_info *c = inode->i_sb->s_fs_info; 907 908 #ifdef UBIFS_DEBUG 909 struct ubifs_inode *ui = ubifs_inode(inode); 910 spin_lock(&ui->ui_lock); 911 ubifs_assert(c, folio->index <= ui->synced_i_size >> PAGE_SHIFT); 912 spin_unlock(&ui->ui_lock); 913 #endif 914 915 folio_start_writeback(folio); 916 917 addr = kmap_local_folio(folio, offset); 918 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 919 for (;;) { 920 blen = min_t(size_t, len, UBIFS_BLOCK_SIZE); 921 data_key_init(c, &key, inode->i_ino, block); 922 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 923 if (err) 924 break; 925 len -= blen; 926 if (!len) 927 break; 928 block += 1; 929 addr += blen; 930 if (folio_test_highmem(folio) && !offset_in_page(addr)) { 931 kunmap_local(addr - blen); 932 offset += PAGE_SIZE; 933 addr = kmap_local_folio(folio, offset); 934 } 935 } 936 kunmap_local(addr); 937 if (err) { 938 mapping_set_error(folio->mapping, err); 939 ubifs_err(c, "cannot write folio %lu of inode %lu, error %d", 940 folio->index, inode->i_ino, err); 941 ubifs_ro_mode(c, err); 942 } 943 944 ubifs_assert(c, folio->private != NULL); 945 if (folio_test_checked(folio)) 946 release_new_page_budget(c); 947 else 948 release_existing_page_budget(c); 949 950 atomic_long_dec(&c->dirty_pg_cnt); 951 folio_detach_private(folio); 952 folio_clear_checked(folio); 953 954 folio_unlock(folio); 955 folio_end_writeback(folio); 956 return err; 957 } 958 959 /* 960 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 961 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 962 * situation when a we have an inode with size 0, then a megabyte of data is 963 * appended to the inode, then write-back starts and flushes some amount of the 964 * dirty pages, the journal becomes full, commit happens and finishes, and then 965 * an unclean reboot happens. When the file system is mounted next time, the 966 * inode size would still be 0, but there would be many pages which are beyond 967 * the inode size, they would be indexed and consume flash space. Because the 968 * journal has been committed, the replay would not be able to detect this 969 * situation and correct the inode size. This means UBIFS would have to scan 970 * whole index and correct all inode sizes, which is long an unacceptable. 971 * 972 * To prevent situations like this, UBIFS writes pages back only if they are 973 * within the last synchronized inode size, i.e. the size which has been 974 * written to the flash media last time. Otherwise, UBIFS forces inode 975 * write-back, thus making sure the on-flash inode contains current inode size, 976 * and then keeps writing pages back. 977 * 978 * Some locking issues explanation. 'ubifs_writepage()' first is called with 979 * the page locked, and it locks @ui_mutex. However, write-back does take inode 980 * @i_mutex, which means other VFS operations may be run on this inode at the 981 * same time. And the problematic one is truncation to smaller size, from where 982 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 983 * then drops the truncated pages. And while dropping the pages, it takes the 984 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 985 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 986 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 987 * 988 * XXX(truncate): with the new truncate sequence this is not true anymore, 989 * and the calls to truncate_setsize can be move around freely. They should 990 * be moved to the very end of the truncate sequence. 991 * 992 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 993 * inode size. How do we do this if @inode->i_size may became smaller while we 994 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 995 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 996 * internally and updates it under @ui_mutex. 997 * 998 * Q: why we do not worry that if we race with truncation, we may end up with a 999 * situation when the inode is truncated while we are in the middle of 1000 * 'do_writepage()', so we do write beyond inode size? 1001 * A: If we are in the middle of 'do_writepage()', truncation would be locked 1002 * on the page lock and it would not write the truncated inode node to the 1003 * journal before we have finished. 1004 */ 1005 static int ubifs_writepage(struct folio *folio, struct writeback_control *wbc, 1006 void *data) 1007 { 1008 struct inode *inode = folio->mapping->host; 1009 struct ubifs_info *c = inode->i_sb->s_fs_info; 1010 struct ubifs_inode *ui = ubifs_inode(inode); 1011 loff_t i_size = i_size_read(inode), synced_i_size; 1012 int err, len = folio_size(folio); 1013 1014 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1015 inode->i_ino, folio->index, folio->flags); 1016 ubifs_assert(c, folio->private != NULL); 1017 1018 /* Is the folio fully outside @i_size? (truncate in progress) */ 1019 if (folio_pos(folio) >= i_size) { 1020 err = 0; 1021 goto out_unlock; 1022 } 1023 1024 spin_lock(&ui->ui_lock); 1025 synced_i_size = ui->synced_i_size; 1026 spin_unlock(&ui->ui_lock); 1027 1028 /* Is the folio fully inside i_size? */ 1029 if (folio_pos(folio) + len <= i_size) { 1030 if (folio_pos(folio) + len > synced_i_size) { 1031 err = inode->i_sb->s_op->write_inode(inode, NULL); 1032 if (err) 1033 goto out_redirty; 1034 /* 1035 * The inode has been written, but the write-buffer has 1036 * not been synchronized, so in case of an unclean 1037 * reboot we may end up with some pages beyond inode 1038 * size, but they would be in the journal (because 1039 * commit flushes write buffers) and recovery would deal 1040 * with this. 1041 */ 1042 } 1043 return do_writepage(folio, len); 1044 } 1045 1046 /* 1047 * The folio straddles @i_size. It must be zeroed out on each and every 1048 * writepage invocation because it may be mmapped. "A file is mapped 1049 * in multiples of the page size. For a file that is not a multiple of 1050 * the page size, the remaining memory is zeroed when mapped, and 1051 * writes to that region are not written out to the file." 1052 */ 1053 len = i_size - folio_pos(folio); 1054 folio_zero_segment(folio, len, folio_size(folio)); 1055 1056 if (i_size > synced_i_size) { 1057 err = inode->i_sb->s_op->write_inode(inode, NULL); 1058 if (err) 1059 goto out_redirty; 1060 } 1061 1062 return do_writepage(folio, len); 1063 out_redirty: 1064 /* 1065 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because 1066 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so 1067 * there is no need to do space budget for dirty inode. 1068 */ 1069 folio_redirty_for_writepage(wbc, folio); 1070 out_unlock: 1071 folio_unlock(folio); 1072 return err; 1073 } 1074 1075 static int ubifs_writepages(struct address_space *mapping, 1076 struct writeback_control *wbc) 1077 { 1078 return write_cache_pages(mapping, wbc, ubifs_writepage, NULL); 1079 } 1080 1081 /** 1082 * do_attr_changes - change inode attributes. 1083 * @inode: inode to change attributes for 1084 * @attr: describes attributes to change 1085 */ 1086 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1087 { 1088 if (attr->ia_valid & ATTR_UID) 1089 inode->i_uid = attr->ia_uid; 1090 if (attr->ia_valid & ATTR_GID) 1091 inode->i_gid = attr->ia_gid; 1092 if (attr->ia_valid & ATTR_ATIME) 1093 inode_set_atime_to_ts(inode, attr->ia_atime); 1094 if (attr->ia_valid & ATTR_MTIME) 1095 inode_set_mtime_to_ts(inode, attr->ia_mtime); 1096 if (attr->ia_valid & ATTR_CTIME) 1097 inode_set_ctime_to_ts(inode, attr->ia_ctime); 1098 if (attr->ia_valid & ATTR_MODE) { 1099 umode_t mode = attr->ia_mode; 1100 1101 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1102 mode &= ~S_ISGID; 1103 inode->i_mode = mode; 1104 } 1105 } 1106 1107 /** 1108 * do_truncation - truncate an inode. 1109 * @c: UBIFS file-system description object 1110 * @inode: inode to truncate 1111 * @attr: inode attribute changes description 1112 * 1113 * This function implements VFS '->setattr()' call when the inode is truncated 1114 * to a smaller size. 1115 * 1116 * Returns: %0 in case of success and a negative error code 1117 * in case of failure. 1118 */ 1119 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1120 const struct iattr *attr) 1121 { 1122 int err; 1123 struct ubifs_budget_req req; 1124 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1125 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1126 struct ubifs_inode *ui = ubifs_inode(inode); 1127 1128 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1129 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1130 1131 /* 1132 * If this is truncation to a smaller size, and we do not truncate on a 1133 * block boundary, budget for changing one data block, because the last 1134 * block will be re-written. 1135 */ 1136 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1137 req.dirtied_page = 1; 1138 1139 req.dirtied_ino = 1; 1140 /* A funny way to budget for truncation node */ 1141 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1142 err = ubifs_budget_space(c, &req); 1143 if (err) { 1144 /* 1145 * Treat truncations to zero as deletion and always allow them, 1146 * just like we do for '->unlink()'. 1147 */ 1148 if (new_size || err != -ENOSPC) 1149 return err; 1150 budgeted = 0; 1151 } 1152 1153 truncate_setsize(inode, new_size); 1154 1155 if (offset) { 1156 pgoff_t index = new_size >> PAGE_SHIFT; 1157 struct folio *folio; 1158 1159 folio = filemap_lock_folio(inode->i_mapping, index); 1160 if (!IS_ERR(folio)) { 1161 if (folio_test_dirty(folio)) { 1162 /* 1163 * 'ubifs_jnl_truncate()' will try to truncate 1164 * the last data node, but it contains 1165 * out-of-date data because the page is dirty. 1166 * Write the page now, so that 1167 * 'ubifs_jnl_truncate()' will see an already 1168 * truncated (and up to date) data node. 1169 */ 1170 ubifs_assert(c, folio->private != NULL); 1171 1172 folio_clear_dirty_for_io(folio); 1173 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1174 offset = offset_in_folio(folio, 1175 new_size); 1176 err = do_writepage(folio, offset); 1177 folio_put(folio); 1178 if (err) 1179 goto out_budg; 1180 /* 1181 * We could now tell 'ubifs_jnl_truncate()' not 1182 * to read the last block. 1183 */ 1184 } else { 1185 /* 1186 * We could 'kmap()' the page and pass the data 1187 * to 'ubifs_jnl_truncate()' to save it from 1188 * having to read it. 1189 */ 1190 folio_unlock(folio); 1191 folio_put(folio); 1192 } 1193 } 1194 } 1195 1196 mutex_lock(&ui->ui_mutex); 1197 ui->ui_size = inode->i_size; 1198 /* Truncation changes inode [mc]time */ 1199 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1200 /* Other attributes may be changed at the same time as well */ 1201 do_attr_changes(inode, attr); 1202 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1203 mutex_unlock(&ui->ui_mutex); 1204 1205 out_budg: 1206 if (budgeted) 1207 ubifs_release_budget(c, &req); 1208 else { 1209 c->bi.nospace = c->bi.nospace_rp = 0; 1210 smp_wmb(); 1211 } 1212 return err; 1213 } 1214 1215 /** 1216 * do_setattr - change inode attributes. 1217 * @c: UBIFS file-system description object 1218 * @inode: inode to change attributes for 1219 * @attr: inode attribute changes description 1220 * 1221 * This function implements VFS '->setattr()' call for all cases except 1222 * truncations to smaller size. 1223 * 1224 * Returns: %0 in case of success and a negative 1225 * error code in case of failure. 1226 */ 1227 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1228 const struct iattr *attr) 1229 { 1230 int err, release; 1231 loff_t new_size = attr->ia_size; 1232 struct ubifs_inode *ui = ubifs_inode(inode); 1233 struct ubifs_budget_req req = { .dirtied_ino = 1, 1234 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1235 1236 err = ubifs_budget_space(c, &req); 1237 if (err) 1238 return err; 1239 1240 if (attr->ia_valid & ATTR_SIZE) { 1241 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1242 truncate_setsize(inode, new_size); 1243 } 1244 1245 mutex_lock(&ui->ui_mutex); 1246 if (attr->ia_valid & ATTR_SIZE) { 1247 /* Truncation changes inode [mc]time */ 1248 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1249 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1250 ui->ui_size = inode->i_size; 1251 } 1252 1253 do_attr_changes(inode, attr); 1254 1255 release = ui->dirty; 1256 if (attr->ia_valid & ATTR_SIZE) 1257 /* 1258 * Inode length changed, so we have to make sure 1259 * @I_DIRTY_DATASYNC is set. 1260 */ 1261 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1262 else 1263 mark_inode_dirty_sync(inode); 1264 mutex_unlock(&ui->ui_mutex); 1265 1266 if (release) 1267 ubifs_release_budget(c, &req); 1268 if (IS_SYNC(inode)) 1269 err = inode->i_sb->s_op->write_inode(inode, NULL); 1270 return err; 1271 } 1272 1273 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1274 struct iattr *attr) 1275 { 1276 int err; 1277 struct inode *inode = d_inode(dentry); 1278 struct ubifs_info *c = inode->i_sb->s_fs_info; 1279 1280 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1281 inode->i_ino, inode->i_mode, attr->ia_valid); 1282 err = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1283 if (err) 1284 return err; 1285 1286 err = dbg_check_synced_i_size(c, inode); 1287 if (err) 1288 return err; 1289 1290 err = fscrypt_prepare_setattr(dentry, attr); 1291 if (err) 1292 return err; 1293 1294 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1295 /* Truncation to a smaller size */ 1296 err = do_truncation(c, inode, attr); 1297 else 1298 err = do_setattr(c, inode, attr); 1299 1300 return err; 1301 } 1302 1303 static void ubifs_invalidate_folio(struct folio *folio, size_t offset, 1304 size_t length) 1305 { 1306 struct inode *inode = folio->mapping->host; 1307 struct ubifs_info *c = inode->i_sb->s_fs_info; 1308 1309 ubifs_assert(c, folio_test_private(folio)); 1310 if (offset || length < folio_size(folio)) 1311 /* Partial folio remains dirty */ 1312 return; 1313 1314 if (folio_test_checked(folio)) 1315 release_new_page_budget(c); 1316 else 1317 release_existing_page_budget(c); 1318 1319 atomic_long_dec(&c->dirty_pg_cnt); 1320 folio_detach_private(folio); 1321 folio_clear_checked(folio); 1322 } 1323 1324 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1325 { 1326 struct inode *inode = file->f_mapping->host; 1327 struct ubifs_info *c = inode->i_sb->s_fs_info; 1328 int err; 1329 1330 dbg_gen("syncing inode %lu", inode->i_ino); 1331 1332 if (c->ro_mount) 1333 /* 1334 * For some really strange reasons VFS does not filter out 1335 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1336 */ 1337 return 0; 1338 1339 err = file_write_and_wait_range(file, start, end); 1340 if (err) 1341 return err; 1342 inode_lock(inode); 1343 1344 /* Synchronize the inode unless this is a 'datasync()' call. */ 1345 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1346 err = inode->i_sb->s_op->write_inode(inode, NULL); 1347 if (err) 1348 goto out; 1349 } 1350 1351 /* 1352 * Nodes related to this inode may still sit in a write-buffer. Flush 1353 * them. 1354 */ 1355 err = ubifs_sync_wbufs_by_inode(c, inode); 1356 out: 1357 inode_unlock(inode); 1358 return err; 1359 } 1360 1361 /** 1362 * mctime_update_needed - check if mtime or ctime update is needed. 1363 * @inode: the inode to do the check for 1364 * @now: current time 1365 * 1366 * This helper function checks if the inode mtime/ctime should be updated or 1367 * not. If current values of the time-stamps are within the UBIFS inode time 1368 * granularity, they are not updated. This is an optimization. 1369 * 1370 * Returns: %1 if time update is needed, %0 if not 1371 */ 1372 static inline int mctime_update_needed(const struct inode *inode, 1373 const struct timespec64 *now) 1374 { 1375 struct timespec64 ctime = inode_get_ctime(inode); 1376 struct timespec64 mtime = inode_get_mtime(inode); 1377 1378 if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now)) 1379 return 1; 1380 return 0; 1381 } 1382 1383 /** 1384 * ubifs_update_time - update time of inode. 1385 * @inode: inode to update 1386 * @flags: time updating control flag determines updating 1387 * which time fields of @inode 1388 * 1389 * This function updates time of the inode. 1390 * 1391 * Returns: %0 for success or a negative error code otherwise. 1392 */ 1393 int ubifs_update_time(struct inode *inode, int flags) 1394 { 1395 struct ubifs_inode *ui = ubifs_inode(inode); 1396 struct ubifs_info *c = inode->i_sb->s_fs_info; 1397 struct ubifs_budget_req req = { .dirtied_ino = 1, 1398 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1399 int err, release; 1400 1401 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) { 1402 generic_update_time(inode, flags); 1403 return 0; 1404 } 1405 1406 err = ubifs_budget_space(c, &req); 1407 if (err) 1408 return err; 1409 1410 mutex_lock(&ui->ui_mutex); 1411 inode_update_timestamps(inode, flags); 1412 release = ui->dirty; 1413 __mark_inode_dirty(inode, I_DIRTY_SYNC); 1414 mutex_unlock(&ui->ui_mutex); 1415 if (release) 1416 ubifs_release_budget(c, &req); 1417 return 0; 1418 } 1419 1420 /** 1421 * update_mctime - update mtime and ctime of an inode. 1422 * @inode: inode to update 1423 * 1424 * This function updates mtime and ctime of the inode if it is not equivalent to 1425 * current time. 1426 * 1427 * Returns: %0 in case of success and a negative error code in 1428 * case of failure. 1429 */ 1430 static int update_mctime(struct inode *inode) 1431 { 1432 struct timespec64 now = current_time(inode); 1433 struct ubifs_inode *ui = ubifs_inode(inode); 1434 struct ubifs_info *c = inode->i_sb->s_fs_info; 1435 1436 if (mctime_update_needed(inode, &now)) { 1437 int err, release; 1438 struct ubifs_budget_req req = { .dirtied_ino = 1, 1439 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1440 1441 err = ubifs_budget_space(c, &req); 1442 if (err) 1443 return err; 1444 1445 mutex_lock(&ui->ui_mutex); 1446 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1447 release = ui->dirty; 1448 mark_inode_dirty_sync(inode); 1449 mutex_unlock(&ui->ui_mutex); 1450 if (release) 1451 ubifs_release_budget(c, &req); 1452 } 1453 1454 return 0; 1455 } 1456 1457 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1458 { 1459 int err = update_mctime(file_inode(iocb->ki_filp)); 1460 if (err) 1461 return err; 1462 1463 return generic_file_write_iter(iocb, from); 1464 } 1465 1466 static bool ubifs_dirty_folio(struct address_space *mapping, 1467 struct folio *folio) 1468 { 1469 bool ret; 1470 struct ubifs_info *c = mapping->host->i_sb->s_fs_info; 1471 1472 ret = filemap_dirty_folio(mapping, folio); 1473 /* 1474 * An attempt to dirty a page without budgeting for it - should not 1475 * happen. 1476 */ 1477 ubifs_assert(c, ret == false); 1478 return ret; 1479 } 1480 1481 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags) 1482 { 1483 struct inode *inode = folio->mapping->host; 1484 struct ubifs_info *c = inode->i_sb->s_fs_info; 1485 1486 if (folio_test_writeback(folio)) 1487 return false; 1488 1489 /* 1490 * Page is private but not dirty, weird? There is one condition 1491 * making it happened. ubifs_writepage skipped the page because 1492 * page index beyonds isize (for example. truncated by other 1493 * process named A), then the page is invalidated by fadvise64 1494 * syscall before being truncated by process A. 1495 */ 1496 ubifs_assert(c, folio_test_private(folio)); 1497 if (folio_test_checked(folio)) 1498 release_new_page_budget(c); 1499 else 1500 release_existing_page_budget(c); 1501 1502 atomic_long_dec(&c->dirty_pg_cnt); 1503 folio_detach_private(folio); 1504 folio_clear_checked(folio); 1505 return true; 1506 } 1507 1508 /* 1509 * mmap()d file has taken write protection fault and is being made writable. 1510 * UBIFS must ensure page is budgeted for. 1511 */ 1512 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf) 1513 { 1514 struct folio *folio = page_folio(vmf->page); 1515 struct inode *inode = file_inode(vmf->vma->vm_file); 1516 struct ubifs_info *c = inode->i_sb->s_fs_info; 1517 struct timespec64 now = current_time(inode); 1518 struct ubifs_budget_req req = { .new_page = 1 }; 1519 int err, update_time; 1520 1521 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, folio->index, 1522 i_size_read(inode)); 1523 ubifs_assert(c, !c->ro_media && !c->ro_mount); 1524 1525 if (unlikely(c->ro_error)) 1526 return VM_FAULT_SIGBUS; /* -EROFS */ 1527 1528 /* 1529 * We have not locked @folio so far so we may budget for changing the 1530 * folio. Note, we cannot do this after we locked the folio, because 1531 * budgeting may cause write-back which would cause deadlock. 1532 * 1533 * At the moment we do not know whether the folio is dirty or not, so we 1534 * assume that it is not and budget for a new folio. We could look at 1535 * the @PG_private flag and figure this out, but we may race with write 1536 * back and the folio state may change by the time we lock it, so this 1537 * would need additional care. We do not bother with this at the 1538 * moment, although it might be good idea to do. Instead, we allocate 1539 * budget for a new folio and amend it later on if the folio was in fact 1540 * dirty. 1541 * 1542 * The budgeting-related logic of this function is similar to what we 1543 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1544 * for more comments. 1545 */ 1546 update_time = mctime_update_needed(inode, &now); 1547 if (update_time) 1548 /* 1549 * We have to change inode time stamp which requires extra 1550 * budgeting. 1551 */ 1552 req.dirtied_ino = 1; 1553 1554 err = ubifs_budget_space(c, &req); 1555 if (unlikely(err)) { 1556 if (err == -ENOSPC) 1557 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1558 inode->i_ino); 1559 return VM_FAULT_SIGBUS; 1560 } 1561 1562 folio_lock(folio); 1563 if (unlikely(folio->mapping != inode->i_mapping || 1564 folio_pos(folio) >= i_size_read(inode))) { 1565 /* Folio got truncated out from underneath us */ 1566 goto sigbus; 1567 } 1568 1569 if (folio->private) 1570 release_new_page_budget(c); 1571 else { 1572 if (!folio_test_checked(folio)) 1573 ubifs_convert_page_budget(c); 1574 folio_attach_private(folio, (void *)1); 1575 atomic_long_inc(&c->dirty_pg_cnt); 1576 filemap_dirty_folio(folio->mapping, folio); 1577 } 1578 1579 if (update_time) { 1580 int release; 1581 struct ubifs_inode *ui = ubifs_inode(inode); 1582 1583 mutex_lock(&ui->ui_mutex); 1584 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1585 release = ui->dirty; 1586 mark_inode_dirty_sync(inode); 1587 mutex_unlock(&ui->ui_mutex); 1588 if (release) 1589 ubifs_release_dirty_inode_budget(c, ui); 1590 } 1591 1592 folio_wait_stable(folio); 1593 return VM_FAULT_LOCKED; 1594 1595 sigbus: 1596 folio_unlock(folio); 1597 ubifs_release_budget(c, &req); 1598 return VM_FAULT_SIGBUS; 1599 } 1600 1601 static const struct vm_operations_struct ubifs_file_vm_ops = { 1602 .fault = filemap_fault, 1603 .map_pages = filemap_map_pages, 1604 .page_mkwrite = ubifs_vm_page_mkwrite, 1605 }; 1606 1607 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1608 { 1609 int err; 1610 1611 err = generic_file_mmap(file, vma); 1612 if (err) 1613 return err; 1614 vma->vm_ops = &ubifs_file_vm_ops; 1615 1616 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1617 file_accessed(file); 1618 1619 return 0; 1620 } 1621 1622 static const char *ubifs_get_link(struct dentry *dentry, 1623 struct inode *inode, 1624 struct delayed_call *done) 1625 { 1626 struct ubifs_inode *ui = ubifs_inode(inode); 1627 1628 if (!IS_ENCRYPTED(inode)) 1629 return ui->data; 1630 1631 if (!dentry) 1632 return ERR_PTR(-ECHILD); 1633 1634 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done); 1635 } 1636 1637 static int ubifs_symlink_getattr(struct mnt_idmap *idmap, 1638 const struct path *path, struct kstat *stat, 1639 u32 request_mask, unsigned int query_flags) 1640 { 1641 ubifs_getattr(idmap, path, stat, request_mask, query_flags); 1642 1643 if (IS_ENCRYPTED(d_inode(path->dentry))) 1644 return fscrypt_symlink_getattr(path, stat); 1645 return 0; 1646 } 1647 1648 const struct address_space_operations ubifs_file_address_operations = { 1649 .read_folio = ubifs_read_folio, 1650 .writepages = ubifs_writepages, 1651 .write_begin = ubifs_write_begin, 1652 .write_end = ubifs_write_end, 1653 .invalidate_folio = ubifs_invalidate_folio, 1654 .dirty_folio = ubifs_dirty_folio, 1655 .migrate_folio = filemap_migrate_folio, 1656 .release_folio = ubifs_release_folio, 1657 }; 1658 1659 const struct inode_operations ubifs_file_inode_operations = { 1660 .setattr = ubifs_setattr, 1661 .getattr = ubifs_getattr, 1662 .listxattr = ubifs_listxattr, 1663 .update_time = ubifs_update_time, 1664 .fileattr_get = ubifs_fileattr_get, 1665 .fileattr_set = ubifs_fileattr_set, 1666 }; 1667 1668 const struct inode_operations ubifs_symlink_inode_operations = { 1669 .get_link = ubifs_get_link, 1670 .setattr = ubifs_setattr, 1671 .getattr = ubifs_symlink_getattr, 1672 .listxattr = ubifs_listxattr, 1673 .update_time = ubifs_update_time, 1674 }; 1675 1676 const struct file_operations ubifs_file_operations = { 1677 .llseek = generic_file_llseek, 1678 .read_iter = generic_file_read_iter, 1679 .write_iter = ubifs_write_iter, 1680 .mmap = ubifs_file_mmap, 1681 .fsync = ubifs_fsync, 1682 .unlocked_ioctl = ubifs_ioctl, 1683 .splice_read = filemap_splice_read, 1684 .splice_write = iter_file_splice_write, 1685 .open = fscrypt_file_open, 1686 #ifdef CONFIG_COMPAT 1687 .compat_ioctl = ubifs_compat_ioctl, 1688 #endif 1689 }; 1690
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.