~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ubifs/tnc.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * This file is part of UBIFS.
  4  *
  5  * Copyright (C) 2006-2008 Nokia Corporation.
  6  *
  7  * Authors: Adrian Hunter
  8  *          Artem Bityutskiy (Битюцкий Артём)
  9  */
 10 
 11 /*
 12  * This file implements TNC (Tree Node Cache) which caches indexing nodes of
 13  * the UBIFS B-tree.
 14  *
 15  * At the moment the locking rules of the TNC tree are quite simple and
 16  * straightforward. We just have a mutex and lock it when we traverse the
 17  * tree. If a znode is not in memory, we read it from flash while still having
 18  * the mutex locked.
 19  */
 20 
 21 #include <linux/crc32.h>
 22 #include <linux/slab.h>
 23 #include "ubifs.h"
 24 
 25 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
 26                          struct ubifs_zbranch *zbr);
 27 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
 28                               struct ubifs_zbranch *zbr, void *node);
 29 
 30 /*
 31  * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
 32  * @NAME_LESS: name corresponding to the first argument is less than second
 33  * @NAME_MATCHES: names match
 34  * @NAME_GREATER: name corresponding to the second argument is greater than
 35  *                first
 36  * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
 37  *
 38  * These constants were introduce to improve readability.
 39  */
 40 enum {
 41         NAME_LESS    = 0,
 42         NAME_MATCHES = 1,
 43         NAME_GREATER = 2,
 44         NOT_ON_MEDIA = 3,
 45 };
 46 
 47 static void do_insert_old_idx(struct ubifs_info *c,
 48                               struct ubifs_old_idx *old_idx)
 49 {
 50         struct ubifs_old_idx *o;
 51         struct rb_node **p, *parent = NULL;
 52 
 53         p = &c->old_idx.rb_node;
 54         while (*p) {
 55                 parent = *p;
 56                 o = rb_entry(parent, struct ubifs_old_idx, rb);
 57                 if (old_idx->lnum < o->lnum)
 58                         p = &(*p)->rb_left;
 59                 else if (old_idx->lnum > o->lnum)
 60                         p = &(*p)->rb_right;
 61                 else if (old_idx->offs < o->offs)
 62                         p = &(*p)->rb_left;
 63                 else if (old_idx->offs > o->offs)
 64                         p = &(*p)->rb_right;
 65                 else {
 66                         ubifs_err(c, "old idx added twice!");
 67                         kfree(old_idx);
 68                         return;
 69                 }
 70         }
 71         rb_link_node(&old_idx->rb, parent, p);
 72         rb_insert_color(&old_idx->rb, &c->old_idx);
 73 }
 74 
 75 /**
 76  * insert_old_idx - record an index node obsoleted since the last commit start.
 77  * @c: UBIFS file-system description object
 78  * @lnum: LEB number of obsoleted index node
 79  * @offs: offset of obsoleted index node
 80  *
 81  * Returns %0 on success, and a negative error code on failure.
 82  *
 83  * For recovery, there must always be a complete intact version of the index on
 84  * flash at all times. That is called the "old index". It is the index as at the
 85  * time of the last successful commit. Many of the index nodes in the old index
 86  * may be dirty, but they must not be erased until the next successful commit
 87  * (at which point that index becomes the old index).
 88  *
 89  * That means that the garbage collection and the in-the-gaps method of
 90  * committing must be able to determine if an index node is in the old index.
 91  * Most of the old index nodes can be found by looking up the TNC using the
 92  * 'lookup_znode()' function. However, some of the old index nodes may have
 93  * been deleted from the current index or may have been changed so much that
 94  * they cannot be easily found. In those cases, an entry is added to an RB-tree.
 95  * That is what this function does. The RB-tree is ordered by LEB number and
 96  * offset because they uniquely identify the old index node.
 97  */
 98 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
 99 {
100         struct ubifs_old_idx *old_idx;
101 
102         old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
103         if (unlikely(!old_idx))
104                 return -ENOMEM;
105         old_idx->lnum = lnum;
106         old_idx->offs = offs;
107         do_insert_old_idx(c, old_idx);
108 
109         return 0;
110 }
111 
112 /**
113  * insert_old_idx_znode - record a znode obsoleted since last commit start.
114  * @c: UBIFS file-system description object
115  * @znode: znode of obsoleted index node
116  *
117  * Returns %0 on success, and a negative error code on failure.
118  */
119 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
120 {
121         if (znode->parent) {
122                 struct ubifs_zbranch *zbr;
123 
124                 zbr = &znode->parent->zbranch[znode->iip];
125                 if (zbr->len)
126                         return insert_old_idx(c, zbr->lnum, zbr->offs);
127         } else
128                 if (c->zroot.len)
129                         return insert_old_idx(c, c->zroot.lnum,
130                                               c->zroot.offs);
131         return 0;
132 }
133 
134 /**
135  * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
136  * @c: UBIFS file-system description object
137  * @znode: znode of obsoleted index node
138  *
139  * Returns %0 on success, and a negative error code on failure.
140  */
141 static int ins_clr_old_idx_znode(struct ubifs_info *c,
142                                  struct ubifs_znode *znode)
143 {
144         int err;
145 
146         if (znode->parent) {
147                 struct ubifs_zbranch *zbr;
148 
149                 zbr = &znode->parent->zbranch[znode->iip];
150                 if (zbr->len) {
151                         err = insert_old_idx(c, zbr->lnum, zbr->offs);
152                         if (err)
153                                 return err;
154                         zbr->lnum = 0;
155                         zbr->offs = 0;
156                         zbr->len = 0;
157                 }
158         } else
159                 if (c->zroot.len) {
160                         err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
161                         if (err)
162                                 return err;
163                         c->zroot.lnum = 0;
164                         c->zroot.offs = 0;
165                         c->zroot.len = 0;
166                 }
167         return 0;
168 }
169 
170 /**
171  * destroy_old_idx - destroy the old_idx RB-tree.
172  * @c: UBIFS file-system description object
173  *
174  * During start commit, the old_idx RB-tree is used to avoid overwriting index
175  * nodes that were in the index last commit but have since been deleted.  This
176  * is necessary for recovery i.e. the old index must be kept intact until the
177  * new index is successfully written.  The old-idx RB-tree is used for the
178  * in-the-gaps method of writing index nodes and is destroyed every commit.
179  */
180 void destroy_old_idx(struct ubifs_info *c)
181 {
182         struct ubifs_old_idx *old_idx, *n;
183 
184         rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
185                 kfree(old_idx);
186 
187         c->old_idx = RB_ROOT;
188 }
189 
190 /**
191  * copy_znode - copy a dirty znode.
192  * @c: UBIFS file-system description object
193  * @znode: znode to copy
194  *
195  * A dirty znode being committed may not be changed, so it is copied.
196  */
197 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
198                                       struct ubifs_znode *znode)
199 {
200         struct ubifs_znode *zn;
201 
202         zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
203         if (unlikely(!zn))
204                 return ERR_PTR(-ENOMEM);
205 
206         zn->cnext = NULL;
207         __set_bit(DIRTY_ZNODE, &zn->flags);
208         __clear_bit(COW_ZNODE, &zn->flags);
209 
210         return zn;
211 }
212 
213 /**
214  * add_idx_dirt - add dirt due to a dirty znode.
215  * @c: UBIFS file-system description object
216  * @lnum: LEB number of index node
217  * @dirt: size of index node
218  *
219  * This function updates lprops dirty space and the new size of the index.
220  */
221 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
222 {
223         c->calc_idx_sz -= ALIGN(dirt, 8);
224         return ubifs_add_dirt(c, lnum, dirt);
225 }
226 
227 /**
228  * replace_znode - replace old znode with new znode.
229  * @c: UBIFS file-system description object
230  * @new_zn: new znode
231  * @old_zn: old znode
232  * @zbr: the branch of parent znode
233  *
234  * Replace old znode with new znode in TNC.
235  */
236 static void replace_znode(struct ubifs_info *c, struct ubifs_znode *new_zn,
237                           struct ubifs_znode *old_zn, struct ubifs_zbranch *zbr)
238 {
239         ubifs_assert(c, !ubifs_zn_obsolete(old_zn));
240         __set_bit(OBSOLETE_ZNODE, &old_zn->flags);
241 
242         if (old_zn->level != 0) {
243                 int i;
244                 const int n = new_zn->child_cnt;
245 
246                 /* The children now have new parent */
247                 for (i = 0; i < n; i++) {
248                         struct ubifs_zbranch *child = &new_zn->zbranch[i];
249 
250                         if (child->znode)
251                                 child->znode->parent = new_zn;
252                 }
253         }
254 
255         zbr->znode = new_zn;
256         zbr->lnum = 0;
257         zbr->offs = 0;
258         zbr->len = 0;
259 
260         atomic_long_inc(&c->dirty_zn_cnt);
261 }
262 
263 /**
264  * dirty_cow_znode - ensure a znode is not being committed.
265  * @c: UBIFS file-system description object
266  * @zbr: branch of znode to check
267  *
268  * Returns dirtied znode on success or negative error code on failure.
269  */
270 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
271                                            struct ubifs_zbranch *zbr)
272 {
273         struct ubifs_znode *znode = zbr->znode;
274         struct ubifs_znode *zn;
275         int err;
276 
277         if (!ubifs_zn_cow(znode)) {
278                 /* znode is not being committed */
279                 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
280                         atomic_long_inc(&c->dirty_zn_cnt);
281                         atomic_long_dec(&c->clean_zn_cnt);
282                         atomic_long_dec(&ubifs_clean_zn_cnt);
283                         err = add_idx_dirt(c, zbr->lnum, zbr->len);
284                         if (unlikely(err))
285                                 return ERR_PTR(err);
286                 }
287                 return znode;
288         }
289 
290         zn = copy_znode(c, znode);
291         if (IS_ERR(zn))
292                 return zn;
293 
294         if (zbr->len) {
295                 struct ubifs_old_idx *old_idx;
296 
297                 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
298                 if (unlikely(!old_idx)) {
299                         err = -ENOMEM;
300                         goto out;
301                 }
302                 old_idx->lnum = zbr->lnum;
303                 old_idx->offs = zbr->offs;
304 
305                 err = add_idx_dirt(c, zbr->lnum, zbr->len);
306                 if (err) {
307                         kfree(old_idx);
308                         goto out;
309                 }
310 
311                 do_insert_old_idx(c, old_idx);
312         }
313 
314         replace_znode(c, zn, znode, zbr);
315 
316         return zn;
317 
318 out:
319         kfree(zn);
320         return ERR_PTR(err);
321 }
322 
323 /**
324  * lnc_add - add a leaf node to the leaf node cache.
325  * @c: UBIFS file-system description object
326  * @zbr: zbranch of leaf node
327  * @node: leaf node
328  *
329  * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
330  * purpose of the leaf node cache is to save re-reading the same leaf node over
331  * and over again. Most things are cached by VFS, however the file system must
332  * cache directory entries for readdir and for resolving hash collisions. The
333  * present implementation of the leaf node cache is extremely simple, and
334  * allows for error returns that are not used but that may be needed if a more
335  * complex implementation is created.
336  *
337  * Note, this function does not add the @node object to LNC directly, but
338  * allocates a copy of the object and adds the copy to LNC. The reason for this
339  * is that @node has been allocated outside of the TNC subsystem and will be
340  * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
341  * may be changed at any time, e.g. freed by the shrinker.
342  */
343 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
344                    const void *node)
345 {
346         int err;
347         void *lnc_node;
348         const struct ubifs_dent_node *dent = node;
349 
350         ubifs_assert(c, !zbr->leaf);
351         ubifs_assert(c, zbr->len != 0);
352         ubifs_assert(c, is_hash_key(c, &zbr->key));
353 
354         err = ubifs_validate_entry(c, dent);
355         if (err) {
356                 dump_stack();
357                 ubifs_dump_node(c, dent, zbr->len);
358                 return err;
359         }
360 
361         lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
362         if (!lnc_node)
363                 /* We don't have to have the cache, so no error */
364                 return 0;
365 
366         zbr->leaf = lnc_node;
367         return 0;
368 }
369 
370  /**
371  * lnc_add_directly - add a leaf node to the leaf-node-cache.
372  * @c: UBIFS file-system description object
373  * @zbr: zbranch of leaf node
374  * @node: leaf node
375  *
376  * This function is similar to 'lnc_add()', but it does not create a copy of
377  * @node but inserts @node to TNC directly.
378  */
379 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
380                             void *node)
381 {
382         int err;
383 
384         ubifs_assert(c, !zbr->leaf);
385         ubifs_assert(c, zbr->len != 0);
386 
387         err = ubifs_validate_entry(c, node);
388         if (err) {
389                 dump_stack();
390                 ubifs_dump_node(c, node, zbr->len);
391                 return err;
392         }
393 
394         zbr->leaf = node;
395         return 0;
396 }
397 
398 /**
399  * lnc_free - remove a leaf node from the leaf node cache.
400  * @zbr: zbranch of leaf node
401  */
402 static void lnc_free(struct ubifs_zbranch *zbr)
403 {
404         if (!zbr->leaf)
405                 return;
406         kfree(zbr->leaf);
407         zbr->leaf = NULL;
408 }
409 
410 /**
411  * tnc_read_hashed_node - read a "hashed" leaf node.
412  * @c: UBIFS file-system description object
413  * @zbr: key and position of the node
414  * @node: node is returned here
415  *
416  * This function reads a "hashed" node defined by @zbr from the leaf node cache
417  * (in it is there) or from the hash media, in which case the node is also
418  * added to LNC. Returns zero in case of success or a negative error
419  * code in case of failure.
420  */
421 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
422                                 void *node)
423 {
424         int err;
425 
426         ubifs_assert(c, is_hash_key(c, &zbr->key));
427 
428         if (zbr->leaf) {
429                 /* Read from the leaf node cache */
430                 ubifs_assert(c, zbr->len != 0);
431                 memcpy(node, zbr->leaf, zbr->len);
432                 return 0;
433         }
434 
435         if (c->replaying) {
436                 err = fallible_read_node(c, &zbr->key, zbr, node);
437                 /*
438                  * When the node was not found, return -ENOENT, 0 otherwise.
439                  * Negative return codes stay as-is.
440                  */
441                 if (err == 0)
442                         err = -ENOENT;
443                 else if (err == 1)
444                         err = 0;
445         } else {
446                 err = ubifs_tnc_read_node(c, zbr, node);
447         }
448         if (err)
449                 return err;
450 
451         /* Add the node to the leaf node cache */
452         err = lnc_add(c, zbr, node);
453         return err;
454 }
455 
456 /**
457  * try_read_node - read a node if it is a node.
458  * @c: UBIFS file-system description object
459  * @buf: buffer to read to
460  * @type: node type
461  * @zbr: the zbranch describing the node to read
462  *
463  * This function tries to read a node of known type and length, checks it and
464  * stores it in @buf. This function returns %1 if a node is present and %0 if
465  * a node is not present. A negative error code is returned for I/O errors.
466  * This function performs that same function as ubifs_read_node except that
467  * it does not require that there is actually a node present and instead
468  * the return code indicates if a node was read.
469  *
470  * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
471  * is true (it is controlled by corresponding mount option). However, if
472  * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
473  * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
474  * because during mounting or re-mounting from R/O mode to R/W mode we may read
475  * journal nodes (when replying the journal or doing the recovery) and the
476  * journal nodes may potentially be corrupted, so checking is required.
477  */
478 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
479                          struct ubifs_zbranch *zbr)
480 {
481         int len = zbr->len;
482         int lnum = zbr->lnum;
483         int offs = zbr->offs;
484         int err, node_len;
485         struct ubifs_ch *ch = buf;
486         uint32_t crc, node_crc;
487 
488         dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
489 
490         err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
491         if (err) {
492                 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
493                           type, lnum, offs, err);
494                 return err;
495         }
496 
497         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
498                 return 0;
499 
500         if (ch->node_type != type)
501                 return 0;
502 
503         node_len = le32_to_cpu(ch->len);
504         if (node_len != len)
505                 return 0;
506 
507         if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
508             c->remounting_rw) {
509                 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
510                 node_crc = le32_to_cpu(ch->crc);
511                 if (crc != node_crc)
512                         return 0;
513         }
514 
515         err = ubifs_node_check_hash(c, buf, zbr->hash);
516         if (err) {
517                 ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
518                 return 0;
519         }
520 
521         return 1;
522 }
523 
524 /**
525  * fallible_read_node - try to read a leaf node.
526  * @c: UBIFS file-system description object
527  * @key:  key of node to read
528  * @zbr:  position of node
529  * @node: node returned
530  *
531  * This function tries to read a node and returns %1 if the node is read, %0
532  * if the node is not present, and a negative error code in the case of error.
533  */
534 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
535                               struct ubifs_zbranch *zbr, void *node)
536 {
537         int ret;
538 
539         dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
540 
541         ret = try_read_node(c, node, key_type(c, key), zbr);
542         if (ret == 1) {
543                 union ubifs_key node_key;
544                 struct ubifs_dent_node *dent = node;
545 
546                 /* All nodes have key in the same place */
547                 key_read(c, &dent->key, &node_key);
548                 if (keys_cmp(c, key, &node_key) != 0)
549                         ret = 0;
550         }
551         if (ret == 0 && c->replaying)
552                 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
553                         zbr->lnum, zbr->offs, zbr->len);
554         return ret;
555 }
556 
557 /**
558  * matches_name - determine if a direntry or xattr entry matches a given name.
559  * @c: UBIFS file-system description object
560  * @zbr: zbranch of dent
561  * @nm: name to match
562  *
563  * This function checks if xentry/direntry referred by zbranch @zbr matches name
564  * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
565  * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
566  * of failure, a negative error code is returned.
567  */
568 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
569                         const struct fscrypt_name *nm)
570 {
571         struct ubifs_dent_node *dent;
572         int nlen, err;
573 
574         /* If possible, match against the dent in the leaf node cache */
575         if (!zbr->leaf) {
576                 dent = kmalloc(zbr->len, GFP_NOFS);
577                 if (!dent)
578                         return -ENOMEM;
579 
580                 err = ubifs_tnc_read_node(c, zbr, dent);
581                 if (err)
582                         goto out_free;
583 
584                 /* Add the node to the leaf node cache */
585                 err = lnc_add_directly(c, zbr, dent);
586                 if (err)
587                         goto out_free;
588         } else
589                 dent = zbr->leaf;
590 
591         nlen = le16_to_cpu(dent->nlen);
592         err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
593         if (err == 0) {
594                 if (nlen == fname_len(nm))
595                         return NAME_MATCHES;
596                 else if (nlen < fname_len(nm))
597                         return NAME_LESS;
598                 else
599                         return NAME_GREATER;
600         } else if (err < 0)
601                 return NAME_LESS;
602         else
603                 return NAME_GREATER;
604 
605 out_free:
606         kfree(dent);
607         return err;
608 }
609 
610 /**
611  * get_znode - get a TNC znode that may not be loaded yet.
612  * @c: UBIFS file-system description object
613  * @znode: parent znode
614  * @n: znode branch slot number
615  *
616  * This function returns the znode or a negative error code.
617  */
618 static struct ubifs_znode *get_znode(struct ubifs_info *c,
619                                      struct ubifs_znode *znode, int n)
620 {
621         struct ubifs_zbranch *zbr;
622 
623         zbr = &znode->zbranch[n];
624         if (zbr->znode)
625                 znode = zbr->znode;
626         else
627                 znode = ubifs_load_znode(c, zbr, znode, n);
628         return znode;
629 }
630 
631 /**
632  * tnc_next - find next TNC entry.
633  * @c: UBIFS file-system description object
634  * @zn: znode is passed and returned here
635  * @n: znode branch slot number is passed and returned here
636  *
637  * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
638  * no next entry, or a negative error code otherwise.
639  */
640 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
641 {
642         struct ubifs_znode *znode = *zn;
643         int nn = *n;
644 
645         nn += 1;
646         if (nn < znode->child_cnt) {
647                 *n = nn;
648                 return 0;
649         }
650         while (1) {
651                 struct ubifs_znode *zp;
652 
653                 zp = znode->parent;
654                 if (!zp)
655                         return -ENOENT;
656                 nn = znode->iip + 1;
657                 znode = zp;
658                 if (nn < znode->child_cnt) {
659                         znode = get_znode(c, znode, nn);
660                         if (IS_ERR(znode))
661                                 return PTR_ERR(znode);
662                         while (znode->level != 0) {
663                                 znode = get_znode(c, znode, 0);
664                                 if (IS_ERR(znode))
665                                         return PTR_ERR(znode);
666                         }
667                         nn = 0;
668                         break;
669                 }
670         }
671         *zn = znode;
672         *n = nn;
673         return 0;
674 }
675 
676 /**
677  * tnc_prev - find previous TNC entry.
678  * @c: UBIFS file-system description object
679  * @zn: znode is returned here
680  * @n: znode branch slot number is passed and returned here
681  *
682  * This function returns %0 if the previous TNC entry is found, %-ENOENT if
683  * there is no next entry, or a negative error code otherwise.
684  */
685 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
686 {
687         struct ubifs_znode *znode = *zn;
688         int nn = *n;
689 
690         if (nn > 0) {
691                 *n = nn - 1;
692                 return 0;
693         }
694         while (1) {
695                 struct ubifs_znode *zp;
696 
697                 zp = znode->parent;
698                 if (!zp)
699                         return -ENOENT;
700                 nn = znode->iip - 1;
701                 znode = zp;
702                 if (nn >= 0) {
703                         znode = get_znode(c, znode, nn);
704                         if (IS_ERR(znode))
705                                 return PTR_ERR(znode);
706                         while (znode->level != 0) {
707                                 nn = znode->child_cnt - 1;
708                                 znode = get_znode(c, znode, nn);
709                                 if (IS_ERR(znode))
710                                         return PTR_ERR(znode);
711                         }
712                         nn = znode->child_cnt - 1;
713                         break;
714                 }
715         }
716         *zn = znode;
717         *n = nn;
718         return 0;
719 }
720 
721 /**
722  * resolve_collision - resolve a collision.
723  * @c: UBIFS file-system description object
724  * @key: key of a directory or extended attribute entry
725  * @zn: znode is returned here
726  * @n: zbranch number is passed and returned here
727  * @nm: name of the entry
728  *
729  * This function is called for "hashed" keys to make sure that the found key
730  * really corresponds to the looked up node (directory or extended attribute
731  * entry). It returns %1 and sets @zn and @n if the collision is resolved.
732  * %0 is returned if @nm is not found and @zn and @n are set to the previous
733  * entry, i.e. to the entry after which @nm could follow if it were in TNC.
734  * This means that @n may be set to %-1 if the leftmost key in @zn is the
735  * previous one. A negative error code is returned on failures.
736  */
737 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
738                              struct ubifs_znode **zn, int *n,
739                              const struct fscrypt_name *nm)
740 {
741         int err;
742 
743         err = matches_name(c, &(*zn)->zbranch[*n], nm);
744         if (unlikely(err < 0))
745                 return err;
746         if (err == NAME_MATCHES)
747                 return 1;
748 
749         if (err == NAME_GREATER) {
750                 /* Look left */
751                 while (1) {
752                         err = tnc_prev(c, zn, n);
753                         if (err == -ENOENT) {
754                                 ubifs_assert(c, *n == 0);
755                                 *n = -1;
756                                 return 0;
757                         }
758                         if (err < 0)
759                                 return err;
760                         if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
761                                 /*
762                                  * We have found the branch after which we would
763                                  * like to insert, but inserting in this znode
764                                  * may still be wrong. Consider the following 3
765                                  * znodes, in the case where we are resolving a
766                                  * collision with Key2.
767                                  *
768                                  *                  znode zp
769                                  *            ----------------------
770                                  * level 1     |  Key0  |  Key1  |
771                                  *            -----------------------
772                                  *                 |            |
773                                  *       znode za  |            |  znode zb
774                                  *          ------------      ------------
775                                  * level 0  |  Key0  |        |  Key2  |
776                                  *          ------------      ------------
777                                  *
778                                  * The lookup finds Key2 in znode zb. Lets say
779                                  * there is no match and the name is greater so
780                                  * we look left. When we find Key0, we end up
781                                  * here. If we return now, we will insert into
782                                  * znode za at slot n = 1.  But that is invalid
783                                  * according to the parent's keys.  Key2 must
784                                  * be inserted into znode zb.
785                                  *
786                                  * Note, this problem is not relevant for the
787                                  * case when we go right, because
788                                  * 'tnc_insert()' would correct the parent key.
789                                  */
790                                 if (*n == (*zn)->child_cnt - 1) {
791                                         err = tnc_next(c, zn, n);
792                                         if (err) {
793                                                 /* Should be impossible */
794                                                 ubifs_assert(c, 0);
795                                                 if (err == -ENOENT)
796                                                         err = -EINVAL;
797                                                 return err;
798                                         }
799                                         ubifs_assert(c, *n == 0);
800                                         *n = -1;
801                                 }
802                                 return 0;
803                         }
804                         err = matches_name(c, &(*zn)->zbranch[*n], nm);
805                         if (err < 0)
806                                 return err;
807                         if (err == NAME_LESS)
808                                 return 0;
809                         if (err == NAME_MATCHES)
810                                 return 1;
811                         ubifs_assert(c, err == NAME_GREATER);
812                 }
813         } else {
814                 int nn = *n;
815                 struct ubifs_znode *znode = *zn;
816 
817                 /* Look right */
818                 while (1) {
819                         err = tnc_next(c, &znode, &nn);
820                         if (err == -ENOENT)
821                                 return 0;
822                         if (err < 0)
823                                 return err;
824                         if (keys_cmp(c, &znode->zbranch[nn].key, key))
825                                 return 0;
826                         err = matches_name(c, &znode->zbranch[nn], nm);
827                         if (err < 0)
828                                 return err;
829                         if (err == NAME_GREATER)
830                                 return 0;
831                         *zn = znode;
832                         *n = nn;
833                         if (err == NAME_MATCHES)
834                                 return 1;
835                         ubifs_assert(c, err == NAME_LESS);
836                 }
837         }
838 }
839 
840 /**
841  * fallible_matches_name - determine if a dent matches a given name.
842  * @c: UBIFS file-system description object
843  * @zbr: zbranch of dent
844  * @nm: name to match
845  *
846  * This is a "fallible" version of 'matches_name()' function which does not
847  * panic if the direntry/xentry referred by @zbr does not exist on the media.
848  *
849  * This function checks if xentry/direntry referred by zbranch @zbr matches name
850  * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
851  * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
852  * if xentry/direntry referred by @zbr does not exist on the media. A negative
853  * error code is returned in case of failure.
854  */
855 static int fallible_matches_name(struct ubifs_info *c,
856                                  struct ubifs_zbranch *zbr,
857                                  const struct fscrypt_name *nm)
858 {
859         struct ubifs_dent_node *dent;
860         int nlen, err;
861 
862         /* If possible, match against the dent in the leaf node cache */
863         if (!zbr->leaf) {
864                 dent = kmalloc(zbr->len, GFP_NOFS);
865                 if (!dent)
866                         return -ENOMEM;
867 
868                 err = fallible_read_node(c, &zbr->key, zbr, dent);
869                 if (err < 0)
870                         goto out_free;
871                 if (err == 0) {
872                         /* The node was not present */
873                         err = NOT_ON_MEDIA;
874                         goto out_free;
875                 }
876                 ubifs_assert(c, err == 1);
877 
878                 err = lnc_add_directly(c, zbr, dent);
879                 if (err)
880                         goto out_free;
881         } else
882                 dent = zbr->leaf;
883 
884         nlen = le16_to_cpu(dent->nlen);
885         err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
886         if (err == 0) {
887                 if (nlen == fname_len(nm))
888                         return NAME_MATCHES;
889                 else if (nlen < fname_len(nm))
890                         return NAME_LESS;
891                 else
892                         return NAME_GREATER;
893         } else if (err < 0)
894                 return NAME_LESS;
895         else
896                 return NAME_GREATER;
897 
898 out_free:
899         kfree(dent);
900         return err;
901 }
902 
903 /**
904  * fallible_resolve_collision - resolve a collision even if nodes are missing.
905  * @c: UBIFS file-system description object
906  * @key: key
907  * @zn: znode is returned here
908  * @n: branch number is passed and returned here
909  * @nm: name of directory entry
910  * @adding: indicates caller is adding a key to the TNC
911  *
912  * This is a "fallible" version of the 'resolve_collision()' function which
913  * does not panic if one of the nodes referred to by TNC does not exist on the
914  * media. This may happen when replaying the journal if a deleted node was
915  * Garbage-collected and the commit was not done. A branch that refers to a node
916  * that is not present is called a dangling branch. The following are the return
917  * codes for this function:
918  *  o if @nm was found, %1 is returned and @zn and @n are set to the found
919  *    branch;
920  *  o if we are @adding and @nm was not found, %0 is returned;
921  *  o if we are not @adding and @nm was not found, but a dangling branch was
922  *    found, then %1 is returned and @zn and @n are set to the dangling branch;
923  *  o a negative error code is returned in case of failure.
924  */
925 static int fallible_resolve_collision(struct ubifs_info *c,
926                                       const union ubifs_key *key,
927                                       struct ubifs_znode **zn, int *n,
928                                       const struct fscrypt_name *nm,
929                                       int adding)
930 {
931         struct ubifs_znode *o_znode = NULL, *znode = *zn;
932         int o_n, err, cmp, unsure = 0, nn = *n;
933 
934         cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
935         if (unlikely(cmp < 0))
936                 return cmp;
937         if (cmp == NAME_MATCHES)
938                 return 1;
939         if (cmp == NOT_ON_MEDIA) {
940                 o_znode = znode;
941                 o_n = nn;
942                 /*
943                  * We are unlucky and hit a dangling branch straight away.
944                  * Now we do not really know where to go to find the needed
945                  * branch - to the left or to the right. Well, let's try left.
946                  */
947                 unsure = 1;
948         } else if (!adding)
949                 unsure = 1; /* Remove a dangling branch wherever it is */
950 
951         if (cmp == NAME_GREATER || unsure) {
952                 /* Look left */
953                 while (1) {
954                         err = tnc_prev(c, zn, n);
955                         if (err == -ENOENT) {
956                                 ubifs_assert(c, *n == 0);
957                                 *n = -1;
958                                 break;
959                         }
960                         if (err < 0)
961                                 return err;
962                         if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
963                                 /* See comments in 'resolve_collision()' */
964                                 if (*n == (*zn)->child_cnt - 1) {
965                                         err = tnc_next(c, zn, n);
966                                         if (err) {
967                                                 /* Should be impossible */
968                                                 ubifs_assert(c, 0);
969                                                 if (err == -ENOENT)
970                                                         err = -EINVAL;
971                                                 return err;
972                                         }
973                                         ubifs_assert(c, *n == 0);
974                                         *n = -1;
975                                 }
976                                 break;
977                         }
978                         err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
979                         if (err < 0)
980                                 return err;
981                         if (err == NAME_MATCHES)
982                                 return 1;
983                         if (err == NOT_ON_MEDIA) {
984                                 o_znode = *zn;
985                                 o_n = *n;
986                                 continue;
987                         }
988                         if (!adding)
989                                 continue;
990                         if (err == NAME_LESS)
991                                 break;
992                         else
993                                 unsure = 0;
994                 }
995         }
996 
997         if (cmp == NAME_LESS || unsure) {
998                 /* Look right */
999                 *zn = znode;
1000                 *n = nn;
1001                 while (1) {
1002                         err = tnc_next(c, &znode, &nn);
1003                         if (err == -ENOENT)
1004                                 break;
1005                         if (err < 0)
1006                                 return err;
1007                         if (keys_cmp(c, &znode->zbranch[nn].key, key))
1008                                 break;
1009                         err = fallible_matches_name(c, &znode->zbranch[nn], nm);
1010                         if (err < 0)
1011                                 return err;
1012                         if (err == NAME_GREATER)
1013                                 break;
1014                         *zn = znode;
1015                         *n = nn;
1016                         if (err == NAME_MATCHES)
1017                                 return 1;
1018                         if (err == NOT_ON_MEDIA) {
1019                                 o_znode = znode;
1020                                 o_n = nn;
1021                         }
1022                 }
1023         }
1024 
1025         /* Never match a dangling branch when adding */
1026         if (adding || !o_znode)
1027                 return 0;
1028 
1029         dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1030                 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1031                 o_znode->zbranch[o_n].len);
1032         *zn = o_znode;
1033         *n = o_n;
1034         return 1;
1035 }
1036 
1037 /**
1038  * matches_position - determine if a zbranch matches a given position.
1039  * @zbr: zbranch of dent
1040  * @lnum: LEB number of dent to match
1041  * @offs: offset of dent to match
1042  *
1043  * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1044  */
1045 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1046 {
1047         if (zbr->lnum == lnum && zbr->offs == offs)
1048                 return 1;
1049         else
1050                 return 0;
1051 }
1052 
1053 /**
1054  * resolve_collision_directly - resolve a collision directly.
1055  * @c: UBIFS file-system description object
1056  * @key: key of directory entry
1057  * @zn: znode is passed and returned here
1058  * @n: zbranch number is passed and returned here
1059  * @lnum: LEB number of dent node to match
1060  * @offs: offset of dent node to match
1061  *
1062  * This function is used for "hashed" keys to make sure the found directory or
1063  * extended attribute entry node is what was looked for. It is used when the
1064  * flash address of the right node is known (@lnum:@offs) which makes it much
1065  * easier to resolve collisions (no need to read entries and match full
1066  * names). This function returns %1 and sets @zn and @n if the collision is
1067  * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1068  * previous directory entry. Otherwise a negative error code is returned.
1069  */
1070 static int resolve_collision_directly(struct ubifs_info *c,
1071                                       const union ubifs_key *key,
1072                                       struct ubifs_znode **zn, int *n,
1073                                       int lnum, int offs)
1074 {
1075         struct ubifs_znode *znode;
1076         int nn, err;
1077 
1078         znode = *zn;
1079         nn = *n;
1080         if (matches_position(&znode->zbranch[nn], lnum, offs))
1081                 return 1;
1082 
1083         /* Look left */
1084         while (1) {
1085                 err = tnc_prev(c, &znode, &nn);
1086                 if (err == -ENOENT)
1087                         break;
1088                 if (err < 0)
1089                         return err;
1090                 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1091                         break;
1092                 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1093                         *zn = znode;
1094                         *n = nn;
1095                         return 1;
1096                 }
1097         }
1098 
1099         /* Look right */
1100         znode = *zn;
1101         nn = *n;
1102         while (1) {
1103                 err = tnc_next(c, &znode, &nn);
1104                 if (err == -ENOENT)
1105                         return 0;
1106                 if (err < 0)
1107                         return err;
1108                 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1109                         return 0;
1110                 *zn = znode;
1111                 *n = nn;
1112                 if (matches_position(&znode->zbranch[nn], lnum, offs))
1113                         return 1;
1114         }
1115 }
1116 
1117 /**
1118  * dirty_cow_bottom_up - dirty a znode and its ancestors.
1119  * @c: UBIFS file-system description object
1120  * @znode: znode to dirty
1121  *
1122  * If we do not have a unique key that resides in a znode, then we cannot
1123  * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1124  * This function records the path back to the last dirty ancestor, and then
1125  * dirties the znodes on that path.
1126  */
1127 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1128                                                struct ubifs_znode *znode)
1129 {
1130         struct ubifs_znode *zp;
1131         int *path = c->bottom_up_buf, p = 0;
1132 
1133         ubifs_assert(c, c->zroot.znode);
1134         ubifs_assert(c, znode);
1135         if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1136                 kfree(c->bottom_up_buf);
1137                 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1138                                                  sizeof(int),
1139                                                  GFP_NOFS);
1140                 if (!c->bottom_up_buf)
1141                         return ERR_PTR(-ENOMEM);
1142                 path = c->bottom_up_buf;
1143         }
1144         if (c->zroot.znode->level) {
1145                 /* Go up until parent is dirty */
1146                 while (1) {
1147                         int n;
1148 
1149                         zp = znode->parent;
1150                         if (!zp)
1151                                 break;
1152                         n = znode->iip;
1153                         ubifs_assert(c, p < c->zroot.znode->level);
1154                         path[p++] = n;
1155                         if (!zp->cnext && ubifs_zn_dirty(znode))
1156                                 break;
1157                         znode = zp;
1158                 }
1159         }
1160 
1161         /* Come back down, dirtying as we go */
1162         while (1) {
1163                 struct ubifs_zbranch *zbr;
1164 
1165                 zp = znode->parent;
1166                 if (zp) {
1167                         ubifs_assert(c, path[p - 1] >= 0);
1168                         ubifs_assert(c, path[p - 1] < zp->child_cnt);
1169                         zbr = &zp->zbranch[path[--p]];
1170                         znode = dirty_cow_znode(c, zbr);
1171                 } else {
1172                         ubifs_assert(c, znode == c->zroot.znode);
1173                         znode = dirty_cow_znode(c, &c->zroot);
1174                 }
1175                 if (IS_ERR(znode) || !p)
1176                         break;
1177                 ubifs_assert(c, path[p - 1] >= 0);
1178                 ubifs_assert(c, path[p - 1] < znode->child_cnt);
1179                 znode = znode->zbranch[path[p - 1]].znode;
1180         }
1181 
1182         return znode;
1183 }
1184 
1185 /**
1186  * ubifs_lookup_level0 - search for zero-level znode.
1187  * @c: UBIFS file-system description object
1188  * @key:  key to lookup
1189  * @zn: znode is returned here
1190  * @n: znode branch slot number is returned here
1191  *
1192  * This function looks up the TNC tree and search for zero-level znode which
1193  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1194  * cases:
1195  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1196  *     is returned and slot number of the matched branch is stored in @n;
1197  *   o not exact match, which means that zero-level znode does not contain
1198  *     @key, then %0 is returned and slot number of the closest branch or %-1
1199  *     is stored in @n; In this case calling tnc_next() is mandatory.
1200  *   o @key is so small that it is even less than the lowest key of the
1201  *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1202  *
1203  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1204  * function reads corresponding indexing nodes and inserts them to TNC. In
1205  * case of failure, a negative error code is returned.
1206  */
1207 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1208                         struct ubifs_znode **zn, int *n)
1209 {
1210         int err, exact;
1211         struct ubifs_znode *znode;
1212         time64_t time = ktime_get_seconds();
1213 
1214         dbg_tnck(key, "search key ");
1215         ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1216 
1217         znode = c->zroot.znode;
1218         if (unlikely(!znode)) {
1219                 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1220                 if (IS_ERR(znode))
1221                         return PTR_ERR(znode);
1222         }
1223 
1224         znode->time = time;
1225 
1226         while (1) {
1227                 struct ubifs_zbranch *zbr;
1228 
1229                 exact = ubifs_search_zbranch(c, znode, key, n);
1230 
1231                 if (znode->level == 0)
1232                         break;
1233 
1234                 if (*n < 0)
1235                         *n = 0;
1236                 zbr = &znode->zbranch[*n];
1237 
1238                 if (zbr->znode) {
1239                         znode->time = time;
1240                         znode = zbr->znode;
1241                         continue;
1242                 }
1243 
1244                 /* znode is not in TNC cache, load it from the media */
1245                 znode = ubifs_load_znode(c, zbr, znode, *n);
1246                 if (IS_ERR(znode))
1247                         return PTR_ERR(znode);
1248         }
1249 
1250         *zn = znode;
1251         if (exact || !is_hash_key(c, key) || *n != -1) {
1252                 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1253                 return exact;
1254         }
1255 
1256         /*
1257          * Here is a tricky place. We have not found the key and this is a
1258          * "hashed" key, which may collide. The rest of the code deals with
1259          * situations like this:
1260          *
1261          *                  | 3 | 5 |
1262          *                  /       \
1263          *          | 3 | 5 |      | 6 | 7 | (x)
1264          *
1265          * Or more a complex example:
1266          *
1267          *                | 1 | 5 |
1268          *                /       \
1269          *       | 1 | 3 |         | 5 | 8 |
1270          *              \           /
1271          *          | 5 | 5 |   | 6 | 7 | (x)
1272          *
1273          * In the examples, if we are looking for key "5", we may reach nodes
1274          * marked with "(x)". In this case what we have do is to look at the
1275          * left and see if there is "5" key there. If there is, we have to
1276          * return it.
1277          *
1278          * Note, this whole situation is possible because we allow to have
1279          * elements which are equivalent to the next key in the parent in the
1280          * children of current znode. For example, this happens if we split a
1281          * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1282          * like this:
1283          *                      | 3 | 5 |
1284          *                       /     \
1285          *                | 3 | 5 |   | 5 | 6 | 7 |
1286          *                              ^
1287          * And this becomes what is at the first "picture" after key "5" marked
1288          * with "^" is removed. What could be done is we could prohibit
1289          * splitting in the middle of the colliding sequence. Also, when
1290          * removing the leftmost key, we would have to correct the key of the
1291          * parent node, which would introduce additional complications. Namely,
1292          * if we changed the leftmost key of the parent znode, the garbage
1293          * collector would be unable to find it (GC is doing this when GC'ing
1294          * indexing LEBs). Although we already have an additional RB-tree where
1295          * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1296          * after the commit. But anyway, this does not look easy to implement
1297          * so we did not try this.
1298          */
1299         err = tnc_prev(c, &znode, n);
1300         if (err == -ENOENT) {
1301                 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1302                 *n = -1;
1303                 return 0;
1304         }
1305         if (unlikely(err < 0))
1306                 return err;
1307         if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1308                 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1309                 *n = -1;
1310                 return 0;
1311         }
1312 
1313         dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1314         *zn = znode;
1315         return 1;
1316 }
1317 
1318 /**
1319  * lookup_level0_dirty - search for zero-level znode dirtying.
1320  * @c: UBIFS file-system description object
1321  * @key:  key to lookup
1322  * @zn: znode is returned here
1323  * @n: znode branch slot number is returned here
1324  *
1325  * This function looks up the TNC tree and search for zero-level znode which
1326  * refers key @key. The found zero-level znode is returned in @zn. There are 3
1327  * cases:
1328  *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1329  *     is returned and slot number of the matched branch is stored in @n;
1330  *   o not exact match, which means that zero-level znode does not contain @key
1331  *     then %0 is returned and slot number of the closed branch is stored in
1332  *     @n;
1333  *   o @key is so small that it is even less than the lowest key of the
1334  *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1335  *
1336  * Additionally all znodes in the path from the root to the located zero-level
1337  * znode are marked as dirty.
1338  *
1339  * Note, when the TNC tree is traversed, some znodes may be absent, then this
1340  * function reads corresponding indexing nodes and inserts them to TNC. In
1341  * case of failure, a negative error code is returned.
1342  */
1343 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1344                                struct ubifs_znode **zn, int *n)
1345 {
1346         int err, exact;
1347         struct ubifs_znode *znode;
1348         time64_t time = ktime_get_seconds();
1349 
1350         dbg_tnck(key, "search and dirty key ");
1351 
1352         znode = c->zroot.znode;
1353         if (unlikely(!znode)) {
1354                 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1355                 if (IS_ERR(znode))
1356                         return PTR_ERR(znode);
1357         }
1358 
1359         znode = dirty_cow_znode(c, &c->zroot);
1360         if (IS_ERR(znode))
1361                 return PTR_ERR(znode);
1362 
1363         znode->time = time;
1364 
1365         while (1) {
1366                 struct ubifs_zbranch *zbr;
1367 
1368                 exact = ubifs_search_zbranch(c, znode, key, n);
1369 
1370                 if (znode->level == 0)
1371                         break;
1372 
1373                 if (*n < 0)
1374                         *n = 0;
1375                 zbr = &znode->zbranch[*n];
1376 
1377                 if (zbr->znode) {
1378                         znode->time = time;
1379                         znode = dirty_cow_znode(c, zbr);
1380                         if (IS_ERR(znode))
1381                                 return PTR_ERR(znode);
1382                         continue;
1383                 }
1384 
1385                 /* znode is not in TNC cache, load it from the media */
1386                 znode = ubifs_load_znode(c, zbr, znode, *n);
1387                 if (IS_ERR(znode))
1388                         return PTR_ERR(znode);
1389                 znode = dirty_cow_znode(c, zbr);
1390                 if (IS_ERR(znode))
1391                         return PTR_ERR(znode);
1392         }
1393 
1394         *zn = znode;
1395         if (exact || !is_hash_key(c, key) || *n != -1) {
1396                 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1397                 return exact;
1398         }
1399 
1400         /*
1401          * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1402          * code.
1403          */
1404         err = tnc_prev(c, &znode, n);
1405         if (err == -ENOENT) {
1406                 *n = -1;
1407                 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1408                 return 0;
1409         }
1410         if (unlikely(err < 0))
1411                 return err;
1412         if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1413                 *n = -1;
1414                 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1415                 return 0;
1416         }
1417 
1418         if (znode->cnext || !ubifs_zn_dirty(znode)) {
1419                 znode = dirty_cow_bottom_up(c, znode);
1420                 if (IS_ERR(znode))
1421                         return PTR_ERR(znode);
1422         }
1423 
1424         dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1425         *zn = znode;
1426         return 1;
1427 }
1428 
1429 /**
1430  * maybe_leb_gced - determine if a LEB may have been garbage collected.
1431  * @c: UBIFS file-system description object
1432  * @lnum: LEB number
1433  * @gc_seq1: garbage collection sequence number
1434  *
1435  * This function determines if @lnum may have been garbage collected since
1436  * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1437  * %0 is returned.
1438  */
1439 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1440 {
1441         int gc_seq2, gced_lnum;
1442 
1443         gced_lnum = c->gced_lnum;
1444         smp_rmb();
1445         gc_seq2 = c->gc_seq;
1446         /* Same seq means no GC */
1447         if (gc_seq1 == gc_seq2)
1448                 return 0;
1449         /* Different by more than 1 means we don't know */
1450         if (gc_seq1 + 1 != gc_seq2)
1451                 return 1;
1452         /*
1453          * We have seen the sequence number has increased by 1. Now we need to
1454          * be sure we read the right LEB number, so read it again.
1455          */
1456         smp_rmb();
1457         if (gced_lnum != c->gced_lnum)
1458                 return 1;
1459         /* Finally we can check lnum */
1460         if (gced_lnum == lnum)
1461                 return 1;
1462         return 0;
1463 }
1464 
1465 /**
1466  * ubifs_tnc_locate - look up a file-system node and return it and its location.
1467  * @c: UBIFS file-system description object
1468  * @key: node key to lookup
1469  * @node: the node is returned here
1470  * @lnum: LEB number is returned here
1471  * @offs: offset is returned here
1472  *
1473  * This function looks up and reads node with key @key. The caller has to make
1474  * sure the @node buffer is large enough to fit the node. Returns zero in case
1475  * of success, %-ENOENT if the node was not found, and a negative error code in
1476  * case of failure. The node location can be returned in @lnum and @offs.
1477  */
1478 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1479                      void *node, int *lnum, int *offs)
1480 {
1481         int found, n, err, safely = 0, gc_seq1;
1482         struct ubifs_znode *znode;
1483         struct ubifs_zbranch zbr, *zt;
1484 
1485 again:
1486         mutex_lock(&c->tnc_mutex);
1487         found = ubifs_lookup_level0(c, key, &znode, &n);
1488         if (!found) {
1489                 err = -ENOENT;
1490                 goto out;
1491         } else if (found < 0) {
1492                 err = found;
1493                 goto out;
1494         }
1495         zt = &znode->zbranch[n];
1496         if (lnum) {
1497                 *lnum = zt->lnum;
1498                 *offs = zt->offs;
1499         }
1500         if (is_hash_key(c, key)) {
1501                 /*
1502                  * In this case the leaf node cache gets used, so we pass the
1503                  * address of the zbranch and keep the mutex locked
1504                  */
1505                 err = tnc_read_hashed_node(c, zt, node);
1506                 goto out;
1507         }
1508         if (safely) {
1509                 err = ubifs_tnc_read_node(c, zt, node);
1510                 goto out;
1511         }
1512         /* Drop the TNC mutex prematurely and race with garbage collection */
1513         zbr = znode->zbranch[n];
1514         gc_seq1 = c->gc_seq;
1515         mutex_unlock(&c->tnc_mutex);
1516 
1517         if (ubifs_get_wbuf(c, zbr.lnum)) {
1518                 /* We do not GC journal heads */
1519                 err = ubifs_tnc_read_node(c, &zbr, node);
1520                 return err;
1521         }
1522 
1523         err = fallible_read_node(c, key, &zbr, node);
1524         if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1525                 /*
1526                  * The node may have been GC'ed out from under us so try again
1527                  * while keeping the TNC mutex locked.
1528                  */
1529                 safely = 1;
1530                 goto again;
1531         }
1532         return 0;
1533 
1534 out:
1535         mutex_unlock(&c->tnc_mutex);
1536         return err;
1537 }
1538 
1539 /**
1540  * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1541  * @c: UBIFS file-system description object
1542  * @bu: bulk-read parameters and results
1543  *
1544  * Lookup consecutive data node keys for the same inode that reside
1545  * consecutively in the same LEB. This function returns zero in case of success
1546  * and a negative error code in case of failure.
1547  *
1548  * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1549  * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1550  * maximum possible amount of nodes for bulk-read.
1551  */
1552 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1553 {
1554         int n, err = 0, lnum = -1, offs;
1555         int len;
1556         unsigned int block = key_block(c, &bu->key);
1557         struct ubifs_znode *znode;
1558 
1559         bu->cnt = 0;
1560         bu->blk_cnt = 0;
1561         bu->eof = 0;
1562 
1563         mutex_lock(&c->tnc_mutex);
1564         /* Find first key */
1565         err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1566         if (err < 0)
1567                 goto out;
1568         if (err) {
1569                 /* Key found */
1570                 len = znode->zbranch[n].len;
1571                 /* The buffer must be big enough for at least 1 node */
1572                 if (len > bu->buf_len) {
1573                         err = -EINVAL;
1574                         goto out;
1575                 }
1576                 /* Add this key */
1577                 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1578                 bu->blk_cnt += 1;
1579                 lnum = znode->zbranch[n].lnum;
1580                 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1581         }
1582         while (1) {
1583                 struct ubifs_zbranch *zbr;
1584                 union ubifs_key *key;
1585                 unsigned int next_block;
1586 
1587                 /* Find next key */
1588                 err = tnc_next(c, &znode, &n);
1589                 if (err)
1590                         goto out;
1591                 zbr = &znode->zbranch[n];
1592                 key = &zbr->key;
1593                 /* See if there is another data key for this file */
1594                 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1595                     key_type(c, key) != UBIFS_DATA_KEY) {
1596                         err = -ENOENT;
1597                         goto out;
1598                 }
1599                 if (lnum < 0) {
1600                         /* First key found */
1601                         lnum = zbr->lnum;
1602                         offs = ALIGN(zbr->offs + zbr->len, 8);
1603                         len = zbr->len;
1604                         if (len > bu->buf_len) {
1605                                 err = -EINVAL;
1606                                 goto out;
1607                         }
1608                 } else {
1609                         /*
1610                          * The data nodes must be in consecutive positions in
1611                          * the same LEB.
1612                          */
1613                         if (zbr->lnum != lnum || zbr->offs != offs)
1614                                 goto out;
1615                         offs += ALIGN(zbr->len, 8);
1616                         len = ALIGN(len, 8) + zbr->len;
1617                         /* Must not exceed buffer length */
1618                         if (len > bu->buf_len)
1619                                 goto out;
1620                 }
1621                 /* Allow for holes */
1622                 next_block = key_block(c, key);
1623                 bu->blk_cnt += (next_block - block - 1);
1624                 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1625                         goto out;
1626                 block = next_block;
1627                 /* Add this key */
1628                 bu->zbranch[bu->cnt++] = *zbr;
1629                 bu->blk_cnt += 1;
1630                 /* See if we have room for more */
1631                 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1632                         goto out;
1633                 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1634                         goto out;
1635         }
1636 out:
1637         if (err == -ENOENT) {
1638                 bu->eof = 1;
1639                 err = 0;
1640         }
1641         bu->gc_seq = c->gc_seq;
1642         mutex_unlock(&c->tnc_mutex);
1643         if (err)
1644                 return err;
1645         /*
1646          * An enormous hole could cause bulk-read to encompass too many
1647          * page cache pages, so limit the number here.
1648          */
1649         if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1650                 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1651         /*
1652          * Ensure that bulk-read covers a whole number of page cache
1653          * pages.
1654          */
1655         if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1656             !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1657                 return 0;
1658         if (bu->eof) {
1659                 /* At the end of file we can round up */
1660                 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1661                 return 0;
1662         }
1663         /* Exclude data nodes that do not make up a whole page cache page */
1664         block = key_block(c, &bu->key) + bu->blk_cnt;
1665         block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1666         while (bu->cnt) {
1667                 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1668                         break;
1669                 bu->cnt -= 1;
1670         }
1671         return 0;
1672 }
1673 
1674 /**
1675  * read_wbuf - bulk-read from a LEB with a wbuf.
1676  * @wbuf: wbuf that may overlap the read
1677  * @buf: buffer into which to read
1678  * @len: read length
1679  * @lnum: LEB number from which to read
1680  * @offs: offset from which to read
1681  *
1682  * This functions returns %0 on success or a negative error code on failure.
1683  */
1684 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1685                      int offs)
1686 {
1687         const struct ubifs_info *c = wbuf->c;
1688         int rlen, overlap;
1689 
1690         dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1691         ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1692         ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1693         ubifs_assert(c, offs + len <= c->leb_size);
1694 
1695         spin_lock(&wbuf->lock);
1696         overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1697         if (!overlap) {
1698                 /* We may safely unlock the write-buffer and read the data */
1699                 spin_unlock(&wbuf->lock);
1700                 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1701         }
1702 
1703         /* Don't read under wbuf */
1704         rlen = wbuf->offs - offs;
1705         if (rlen < 0)
1706                 rlen = 0;
1707 
1708         /* Copy the rest from the write-buffer */
1709         memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1710         spin_unlock(&wbuf->lock);
1711 
1712         if (rlen > 0)
1713                 /* Read everything that goes before write-buffer */
1714                 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1715 
1716         return 0;
1717 }
1718 
1719 /**
1720  * validate_data_node - validate data nodes for bulk-read.
1721  * @c: UBIFS file-system description object
1722  * @buf: buffer containing data node to validate
1723  * @zbr: zbranch of data node to validate
1724  *
1725  * This functions returns %0 on success or a negative error code on failure.
1726  */
1727 static int validate_data_node(struct ubifs_info *c, void *buf,
1728                               struct ubifs_zbranch *zbr)
1729 {
1730         union ubifs_key key1;
1731         struct ubifs_ch *ch = buf;
1732         int err, len;
1733 
1734         if (ch->node_type != UBIFS_DATA_NODE) {
1735                 ubifs_err(c, "bad node type (%d but expected %d)",
1736                           ch->node_type, UBIFS_DATA_NODE);
1737                 goto out_err;
1738         }
1739 
1740         err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1741         if (err) {
1742                 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1743                 goto out;
1744         }
1745 
1746         err = ubifs_node_check_hash(c, buf, zbr->hash);
1747         if (err) {
1748                 ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1749                 return err;
1750         }
1751 
1752         len = le32_to_cpu(ch->len);
1753         if (len != zbr->len) {
1754                 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1755                 goto out_err;
1756         }
1757 
1758         /* Make sure the key of the read node is correct */
1759         key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1760         if (!keys_eq(c, &zbr->key, &key1)) {
1761                 ubifs_err(c, "bad key in node at LEB %d:%d",
1762                           zbr->lnum, zbr->offs);
1763                 dbg_tnck(&zbr->key, "looked for key ");
1764                 dbg_tnck(&key1, "found node's key ");
1765                 goto out_err;
1766         }
1767 
1768         return 0;
1769 
1770 out_err:
1771         err = -EINVAL;
1772 out:
1773         ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1774         ubifs_dump_node(c, buf, zbr->len);
1775         dump_stack();
1776         return err;
1777 }
1778 
1779 /**
1780  * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1781  * @c: UBIFS file-system description object
1782  * @bu: bulk-read parameters and results
1783  *
1784  * This functions reads and validates the data nodes that were identified by the
1785  * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1786  * -EAGAIN to indicate a race with GC, or another negative error code on
1787  * failure.
1788  */
1789 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1790 {
1791         int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1792         struct ubifs_wbuf *wbuf;
1793         void *buf;
1794 
1795         len = bu->zbranch[bu->cnt - 1].offs;
1796         len += bu->zbranch[bu->cnt - 1].len - offs;
1797         if (len > bu->buf_len) {
1798                 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1799                 return -EINVAL;
1800         }
1801 
1802         /* Do the read */
1803         wbuf = ubifs_get_wbuf(c, lnum);
1804         if (wbuf)
1805                 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1806         else
1807                 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1808 
1809         /* Check for a race with GC */
1810         if (maybe_leb_gced(c, lnum, bu->gc_seq))
1811                 return -EAGAIN;
1812 
1813         if (err && err != -EBADMSG) {
1814                 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1815                           lnum, offs, err);
1816                 dump_stack();
1817                 dbg_tnck(&bu->key, "key ");
1818                 return err;
1819         }
1820 
1821         /* Validate the nodes read */
1822         buf = bu->buf;
1823         for (i = 0; i < bu->cnt; i++) {
1824                 err = validate_data_node(c, buf, &bu->zbranch[i]);
1825                 if (err)
1826                         return err;
1827                 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1828         }
1829 
1830         return 0;
1831 }
1832 
1833 /**
1834  * do_lookup_nm- look up a "hashed" node.
1835  * @c: UBIFS file-system description object
1836  * @key: node key to lookup
1837  * @node: the node is returned here
1838  * @nm: node name
1839  *
1840  * This function looks up and reads a node which contains name hash in the key.
1841  * Since the hash may have collisions, there may be many nodes with the same
1842  * key, so we have to sequentially look to all of them until the needed one is
1843  * found. This function returns zero in case of success, %-ENOENT if the node
1844  * was not found, and a negative error code in case of failure.
1845  */
1846 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1847                         void *node, const struct fscrypt_name *nm)
1848 {
1849         int found, n, err;
1850         struct ubifs_znode *znode;
1851 
1852         dbg_tnck(key, "key ");
1853         mutex_lock(&c->tnc_mutex);
1854         found = ubifs_lookup_level0(c, key, &znode, &n);
1855         if (!found) {
1856                 err = -ENOENT;
1857                 goto out_unlock;
1858         } else if (found < 0) {
1859                 err = found;
1860                 goto out_unlock;
1861         }
1862 
1863         ubifs_assert(c, n >= 0);
1864 
1865         err = resolve_collision(c, key, &znode, &n, nm);
1866         dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1867         if (unlikely(err < 0))
1868                 goto out_unlock;
1869         if (err == 0) {
1870                 err = -ENOENT;
1871                 goto out_unlock;
1872         }
1873 
1874         err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1875 
1876 out_unlock:
1877         mutex_unlock(&c->tnc_mutex);
1878         return err;
1879 }
1880 
1881 /**
1882  * ubifs_tnc_lookup_nm - look up a "hashed" node.
1883  * @c: UBIFS file-system description object
1884  * @key: node key to lookup
1885  * @node: the node is returned here
1886  * @nm: node name
1887  *
1888  * This function looks up and reads a node which contains name hash in the key.
1889  * Since the hash may have collisions, there may be many nodes with the same
1890  * key, so we have to sequentially look to all of them until the needed one is
1891  * found. This function returns zero in case of success, %-ENOENT if the node
1892  * was not found, and a negative error code in case of failure.
1893  */
1894 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1895                         void *node, const struct fscrypt_name *nm)
1896 {
1897         int err, len;
1898         const struct ubifs_dent_node *dent = node;
1899 
1900         /*
1901          * We assume that in most of the cases there are no name collisions and
1902          * 'ubifs_tnc_lookup()' returns us the right direntry.
1903          */
1904         err = ubifs_tnc_lookup(c, key, node);
1905         if (err)
1906                 return err;
1907 
1908         len = le16_to_cpu(dent->nlen);
1909         if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1910                 return 0;
1911 
1912         /*
1913          * Unluckily, there are hash collisions and we have to iterate over
1914          * them look at each direntry with colliding name hash sequentially.
1915          */
1916 
1917         return do_lookup_nm(c, key, node, nm);
1918 }
1919 
1920 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1921                             struct ubifs_dent_node *dent, uint32_t cookie,
1922                             struct ubifs_znode **zn, int *n, int exact)
1923 {
1924         int err;
1925         struct ubifs_znode *znode = *zn;
1926         struct ubifs_zbranch *zbr;
1927         union ubifs_key *dkey;
1928 
1929         if (!exact) {
1930                 err = tnc_next(c, &znode, n);
1931                 if (err)
1932                         return err;
1933         }
1934 
1935         for (;;) {
1936                 zbr = &znode->zbranch[*n];
1937                 dkey = &zbr->key;
1938 
1939                 if (key_inum(c, dkey) != key_inum(c, key) ||
1940                     key_type(c, dkey) != key_type(c, key)) {
1941                         return -ENOENT;
1942                 }
1943 
1944                 err = tnc_read_hashed_node(c, zbr, dent);
1945                 if (err)
1946                         return err;
1947 
1948                 if (key_hash(c, key) == key_hash(c, dkey) &&
1949                     le32_to_cpu(dent->cookie) == cookie) {
1950                         *zn = znode;
1951                         return 0;
1952                 }
1953 
1954                 err = tnc_next(c, &znode, n);
1955                 if (err)
1956                         return err;
1957         }
1958 }
1959 
1960 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1961                         struct ubifs_dent_node *dent, uint32_t cookie)
1962 {
1963         int n, err;
1964         struct ubifs_znode *znode;
1965         union ubifs_key start_key;
1966 
1967         ubifs_assert(c, is_hash_key(c, key));
1968 
1969         lowest_dent_key(c, &start_key, key_inum(c, key));
1970 
1971         mutex_lock(&c->tnc_mutex);
1972         err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1973         if (unlikely(err < 0))
1974                 goto out_unlock;
1975 
1976         err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1977 
1978 out_unlock:
1979         mutex_unlock(&c->tnc_mutex);
1980         return err;
1981 }
1982 
1983 /**
1984  * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1985  * @c: UBIFS file-system description object
1986  * @key: node key to lookup
1987  * @node: the node is returned here
1988  * @cookie: node cookie for collision resolution
1989  *
1990  * This function looks up and reads a node which contains name hash in the key.
1991  * Since the hash may have collisions, there may be many nodes with the same
1992  * key, so we have to sequentially look to all of them until the needed one
1993  * with the same cookie value is found.
1994  * This function returns zero in case of success, %-ENOENT if the node
1995  * was not found, and a negative error code in case of failure.
1996  */
1997 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1998                         void *node, uint32_t cookie)
1999 {
2000         int err;
2001         const struct ubifs_dent_node *dent = node;
2002 
2003         if (!c->double_hash)
2004                 return -EOPNOTSUPP;
2005 
2006         /*
2007          * We assume that in most of the cases there are no name collisions and
2008          * 'ubifs_tnc_lookup()' returns us the right direntry.
2009          */
2010         err = ubifs_tnc_lookup(c, key, node);
2011         if (err)
2012                 return err;
2013 
2014         if (le32_to_cpu(dent->cookie) == cookie)
2015                 return 0;
2016 
2017         /*
2018          * Unluckily, there are hash collisions and we have to iterate over
2019          * them look at each direntry with colliding name hash sequentially.
2020          */
2021         return do_lookup_dh(c, key, node, cookie);
2022 }
2023 
2024 /**
2025  * correct_parent_keys - correct parent znodes' keys.
2026  * @c: UBIFS file-system description object
2027  * @znode: znode to correct parent znodes for
2028  *
2029  * This is a helper function for 'tnc_insert()'. When the key of the leftmost
2030  * zbranch changes, keys of parent znodes have to be corrected. This helper
2031  * function is called in such situations and corrects the keys if needed.
2032  */
2033 static void correct_parent_keys(const struct ubifs_info *c,
2034                                 struct ubifs_znode *znode)
2035 {
2036         union ubifs_key *key, *key1;
2037 
2038         ubifs_assert(c, znode->parent);
2039         ubifs_assert(c, znode->iip == 0);
2040 
2041         key = &znode->zbranch[0].key;
2042         key1 = &znode->parent->zbranch[0].key;
2043 
2044         while (keys_cmp(c, key, key1) < 0) {
2045                 key_copy(c, key, key1);
2046                 znode = znode->parent;
2047                 znode->alt = 1;
2048                 if (!znode->parent || znode->iip)
2049                         break;
2050                 key1 = &znode->parent->zbranch[0].key;
2051         }
2052 }
2053 
2054 /**
2055  * insert_zbranch - insert a zbranch into a znode.
2056  * @c: UBIFS file-system description object
2057  * @znode: znode into which to insert
2058  * @zbr: zbranch to insert
2059  * @n: slot number to insert to
2060  *
2061  * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2062  * znode's array of zbranches and keeps zbranches consolidated, so when a new
2063  * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2064  * slot, zbranches starting from @n have to be moved right.
2065  */
2066 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2067                            const struct ubifs_zbranch *zbr, int n)
2068 {
2069         int i;
2070 
2071         ubifs_assert(c, ubifs_zn_dirty(znode));
2072 
2073         if (znode->level) {
2074                 for (i = znode->child_cnt; i > n; i--) {
2075                         znode->zbranch[i] = znode->zbranch[i - 1];
2076                         if (znode->zbranch[i].znode)
2077                                 znode->zbranch[i].znode->iip = i;
2078                 }
2079                 if (zbr->znode)
2080                         zbr->znode->iip = n;
2081         } else
2082                 for (i = znode->child_cnt; i > n; i--)
2083                         znode->zbranch[i] = znode->zbranch[i - 1];
2084 
2085         znode->zbranch[n] = *zbr;
2086         znode->child_cnt += 1;
2087 
2088         /*
2089          * After inserting at slot zero, the lower bound of the key range of
2090          * this znode may have changed. If this znode is subsequently split
2091          * then the upper bound of the key range may change, and furthermore
2092          * it could change to be lower than the original lower bound. If that
2093          * happens, then it will no longer be possible to find this znode in the
2094          * TNC using the key from the index node on flash. That is bad because
2095          * if it is not found, we will assume it is obsolete and may overwrite
2096          * it. Then if there is an unclean unmount, we will start using the
2097          * old index which will be broken.
2098          *
2099          * So we first mark znodes that have insertions at slot zero, and then
2100          * if they are split we add their lnum/offs to the old_idx tree.
2101          */
2102         if (n == 0)
2103                 znode->alt = 1;
2104 }
2105 
2106 /**
2107  * tnc_insert - insert a node into TNC.
2108  * @c: UBIFS file-system description object
2109  * @znode: znode to insert into
2110  * @zbr: branch to insert
2111  * @n: slot number to insert new zbranch to
2112  *
2113  * This function inserts a new node described by @zbr into znode @znode. If
2114  * znode does not have a free slot for new zbranch, it is split. Parent znodes
2115  * are splat as well if needed. Returns zero in case of success or a negative
2116  * error code in case of failure.
2117  */
2118 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2119                       struct ubifs_zbranch *zbr, int n)
2120 {
2121         struct ubifs_znode *zn, *zi, *zp;
2122         int i, keep, move, appending = 0;
2123         union ubifs_key *key = &zbr->key, *key1;
2124 
2125         ubifs_assert(c, n >= 0 && n <= c->fanout);
2126 
2127         /* Implement naive insert for now */
2128 again:
2129         zp = znode->parent;
2130         if (znode->child_cnt < c->fanout) {
2131                 ubifs_assert(c, n != c->fanout);
2132                 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2133 
2134                 insert_zbranch(c, znode, zbr, n);
2135 
2136                 /* Ensure parent's key is correct */
2137                 if (n == 0 && zp && znode->iip == 0)
2138                         correct_parent_keys(c, znode);
2139 
2140                 return 0;
2141         }
2142 
2143         /*
2144          * Unfortunately, @znode does not have more empty slots and we have to
2145          * split it.
2146          */
2147         dbg_tnck(key, "splitting level %d, key ", znode->level);
2148 
2149         if (znode->alt)
2150                 /*
2151                  * We can no longer be sure of finding this znode by key, so we
2152                  * record it in the old_idx tree.
2153                  */
2154                 ins_clr_old_idx_znode(c, znode);
2155 
2156         zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2157         if (!zn)
2158                 return -ENOMEM;
2159         zn->parent = zp;
2160         zn->level = znode->level;
2161 
2162         /* Decide where to split */
2163         if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2164                 /* Try not to split consecutive data keys */
2165                 if (n == c->fanout) {
2166                         key1 = &znode->zbranch[n - 1].key;
2167                         if (key_inum(c, key1) == key_inum(c, key) &&
2168                             key_type(c, key1) == UBIFS_DATA_KEY)
2169                                 appending = 1;
2170                 } else
2171                         goto check_split;
2172         } else if (appending && n != c->fanout) {
2173                 /* Try not to split consecutive data keys */
2174                 appending = 0;
2175 check_split:
2176                 if (n >= (c->fanout + 1) / 2) {
2177                         key1 = &znode->zbranch[0].key;
2178                         if (key_inum(c, key1) == key_inum(c, key) &&
2179                             key_type(c, key1) == UBIFS_DATA_KEY) {
2180                                 key1 = &znode->zbranch[n].key;
2181                                 if (key_inum(c, key1) != key_inum(c, key) ||
2182                                     key_type(c, key1) != UBIFS_DATA_KEY) {
2183                                         keep = n;
2184                                         move = c->fanout - keep;
2185                                         zi = znode;
2186                                         goto do_split;
2187                                 }
2188                         }
2189                 }
2190         }
2191 
2192         if (appending) {
2193                 keep = c->fanout;
2194                 move = 0;
2195         } else {
2196                 keep = (c->fanout + 1) / 2;
2197                 move = c->fanout - keep;
2198         }
2199 
2200         /*
2201          * Although we don't at present, we could look at the neighbors and see
2202          * if we can move some zbranches there.
2203          */
2204 
2205         if (n < keep) {
2206                 /* Insert into existing znode */
2207                 zi = znode;
2208                 move += 1;
2209                 keep -= 1;
2210         } else {
2211                 /* Insert into new znode */
2212                 zi = zn;
2213                 n -= keep;
2214                 /* Re-parent */
2215                 if (zn->level != 0)
2216                         zbr->znode->parent = zn;
2217         }
2218 
2219 do_split:
2220 
2221         __set_bit(DIRTY_ZNODE, &zn->flags);
2222         atomic_long_inc(&c->dirty_zn_cnt);
2223 
2224         zn->child_cnt = move;
2225         znode->child_cnt = keep;
2226 
2227         dbg_tnc("moving %d, keeping %d", move, keep);
2228 
2229         /* Move zbranch */
2230         for (i = 0; i < move; i++) {
2231                 zn->zbranch[i] = znode->zbranch[keep + i];
2232                 /* Re-parent */
2233                 if (zn->level != 0)
2234                         if (zn->zbranch[i].znode) {
2235                                 zn->zbranch[i].znode->parent = zn;
2236                                 zn->zbranch[i].znode->iip = i;
2237                         }
2238         }
2239 
2240         /* Insert new key and branch */
2241         dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2242 
2243         insert_zbranch(c, zi, zbr, n);
2244 
2245         /* Insert new znode (produced by spitting) into the parent */
2246         if (zp) {
2247                 if (n == 0 && zi == znode && znode->iip == 0)
2248                         correct_parent_keys(c, znode);
2249 
2250                 /* Locate insertion point */
2251                 n = znode->iip + 1;
2252 
2253                 /* Tail recursion */
2254                 zbr->key = zn->zbranch[0].key;
2255                 zbr->znode = zn;
2256                 zbr->lnum = 0;
2257                 zbr->offs = 0;
2258                 zbr->len = 0;
2259                 znode = zp;
2260 
2261                 goto again;
2262         }
2263 
2264         /* We have to split root znode */
2265         dbg_tnc("creating new zroot at level %d", znode->level + 1);
2266 
2267         zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2268         if (!zi)
2269                 return -ENOMEM;
2270 
2271         zi->child_cnt = 2;
2272         zi->level = znode->level + 1;
2273 
2274         __set_bit(DIRTY_ZNODE, &zi->flags);
2275         atomic_long_inc(&c->dirty_zn_cnt);
2276 
2277         zi->zbranch[0].key = znode->zbranch[0].key;
2278         zi->zbranch[0].znode = znode;
2279         zi->zbranch[0].lnum = c->zroot.lnum;
2280         zi->zbranch[0].offs = c->zroot.offs;
2281         zi->zbranch[0].len = c->zroot.len;
2282         zi->zbranch[1].key = zn->zbranch[0].key;
2283         zi->zbranch[1].znode = zn;
2284 
2285         c->zroot.lnum = 0;
2286         c->zroot.offs = 0;
2287         c->zroot.len = 0;
2288         c->zroot.znode = zi;
2289 
2290         zn->parent = zi;
2291         zn->iip = 1;
2292         znode->parent = zi;
2293         znode->iip = 0;
2294 
2295         return 0;
2296 }
2297 
2298 /**
2299  * ubifs_tnc_add - add a node to TNC.
2300  * @c: UBIFS file-system description object
2301  * @key: key to add
2302  * @lnum: LEB number of node
2303  * @offs: node offset
2304  * @len: node length
2305  * @hash: The hash over the node
2306  *
2307  * This function adds a node with key @key to TNC. The node may be new or it may
2308  * obsolete some existing one. Returns %0 on success or negative error code on
2309  * failure.
2310  */
2311 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2312                   int offs, int len, const u8 *hash)
2313 {
2314         int found, n, err = 0;
2315         struct ubifs_znode *znode;
2316 
2317         mutex_lock(&c->tnc_mutex);
2318         dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2319         found = lookup_level0_dirty(c, key, &znode, &n);
2320         if (!found) {
2321                 struct ubifs_zbranch zbr;
2322 
2323                 zbr.znode = NULL;
2324                 zbr.lnum = lnum;
2325                 zbr.offs = offs;
2326                 zbr.len = len;
2327                 ubifs_copy_hash(c, hash, zbr.hash);
2328                 key_copy(c, key, &zbr.key);
2329                 err = tnc_insert(c, znode, &zbr, n + 1);
2330         } else if (found == 1) {
2331                 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2332 
2333                 lnc_free(zbr);
2334                 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2335                 zbr->lnum = lnum;
2336                 zbr->offs = offs;
2337                 zbr->len = len;
2338                 ubifs_copy_hash(c, hash, zbr->hash);
2339         } else
2340                 err = found;
2341         if (!err)
2342                 err = dbg_check_tnc(c, 0);
2343         mutex_unlock(&c->tnc_mutex);
2344 
2345         return err;
2346 }
2347 
2348 /**
2349  * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2350  * @c: UBIFS file-system description object
2351  * @key: key to add
2352  * @old_lnum: LEB number of old node
2353  * @old_offs: old node offset
2354  * @lnum: LEB number of node
2355  * @offs: node offset
2356  * @len: node length
2357  *
2358  * This function replaces a node with key @key in the TNC only if the old node
2359  * is found.  This function is called by garbage collection when node are moved.
2360  * Returns %0 on success or negative error code on failure.
2361  */
2362 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2363                       int old_lnum, int old_offs, int lnum, int offs, int len)
2364 {
2365         int found, n, err = 0;
2366         struct ubifs_znode *znode;
2367 
2368         mutex_lock(&c->tnc_mutex);
2369         dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2370                  old_offs, lnum, offs, len);
2371         found = lookup_level0_dirty(c, key, &znode, &n);
2372         if (found < 0) {
2373                 err = found;
2374                 goto out_unlock;
2375         }
2376 
2377         if (found == 1) {
2378                 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2379 
2380                 found = 0;
2381                 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2382                         lnc_free(zbr);
2383                         err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2384                         if (err)
2385                                 goto out_unlock;
2386                         zbr->lnum = lnum;
2387                         zbr->offs = offs;
2388                         zbr->len = len;
2389                         found = 1;
2390                 } else if (is_hash_key(c, key)) {
2391                         found = resolve_collision_directly(c, key, &znode, &n,
2392                                                            old_lnum, old_offs);
2393                         dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2394                                 found, znode, n, old_lnum, old_offs);
2395                         if (found < 0) {
2396                                 err = found;
2397                                 goto out_unlock;
2398                         }
2399 
2400                         if (found) {
2401                                 /* Ensure the znode is dirtied */
2402                                 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2403                                         znode = dirty_cow_bottom_up(c, znode);
2404                                         if (IS_ERR(znode)) {
2405                                                 err = PTR_ERR(znode);
2406                                                 goto out_unlock;
2407                                         }
2408                                 }
2409                                 zbr = &znode->zbranch[n];
2410                                 lnc_free(zbr);
2411                                 err = ubifs_add_dirt(c, zbr->lnum,
2412                                                      zbr->len);
2413                                 if (err)
2414                                         goto out_unlock;
2415                                 zbr->lnum = lnum;
2416                                 zbr->offs = offs;
2417                                 zbr->len = len;
2418                         }
2419                 }
2420         }
2421 
2422         if (!found)
2423                 err = ubifs_add_dirt(c, lnum, len);
2424 
2425         if (!err)
2426                 err = dbg_check_tnc(c, 0);
2427 
2428 out_unlock:
2429         mutex_unlock(&c->tnc_mutex);
2430         return err;
2431 }
2432 
2433 /**
2434  * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2435  * @c: UBIFS file-system description object
2436  * @key: key to add
2437  * @lnum: LEB number of node
2438  * @offs: node offset
2439  * @len: node length
2440  * @hash: The hash over the node
2441  * @nm: node name
2442  *
2443  * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2444  * may have collisions, like directory entry keys.
2445  */
2446 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2447                      int lnum, int offs, int len, const u8 *hash,
2448                      const struct fscrypt_name *nm)
2449 {
2450         int found, n, err = 0;
2451         struct ubifs_znode *znode;
2452 
2453         mutex_lock(&c->tnc_mutex);
2454         dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2455         found = lookup_level0_dirty(c, key, &znode, &n);
2456         if (found < 0) {
2457                 err = found;
2458                 goto out_unlock;
2459         }
2460 
2461         if (found == 1) {
2462                 if (c->replaying)
2463                         found = fallible_resolve_collision(c, key, &znode, &n,
2464                                                            nm, 1);
2465                 else
2466                         found = resolve_collision(c, key, &znode, &n, nm);
2467                 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2468                 if (found < 0) {
2469                         err = found;
2470                         goto out_unlock;
2471                 }
2472 
2473                 /* Ensure the znode is dirtied */
2474                 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2475                         znode = dirty_cow_bottom_up(c, znode);
2476                         if (IS_ERR(znode)) {
2477                                 err = PTR_ERR(znode);
2478                                 goto out_unlock;
2479                         }
2480                 }
2481 
2482                 if (found == 1) {
2483                         struct ubifs_zbranch *zbr = &znode->zbranch[n];
2484 
2485                         lnc_free(zbr);
2486                         err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2487                         zbr->lnum = lnum;
2488                         zbr->offs = offs;
2489                         zbr->len = len;
2490                         ubifs_copy_hash(c, hash, zbr->hash);
2491                         goto out_unlock;
2492                 }
2493         }
2494 
2495         if (!found) {
2496                 struct ubifs_zbranch zbr;
2497 
2498                 zbr.znode = NULL;
2499                 zbr.lnum = lnum;
2500                 zbr.offs = offs;
2501                 zbr.len = len;
2502                 ubifs_copy_hash(c, hash, zbr.hash);
2503                 key_copy(c, key, &zbr.key);
2504                 err = tnc_insert(c, znode, &zbr, n + 1);
2505                 if (err)
2506                         goto out_unlock;
2507                 if (c->replaying) {
2508                         /*
2509                          * We did not find it in the index so there may be a
2510                          * dangling branch still in the index. So we remove it
2511                          * by passing 'ubifs_tnc_remove_nm()' the same key but
2512                          * an unmatchable name.
2513                          */
2514                         struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2515 
2516                         err = dbg_check_tnc(c, 0);
2517                         mutex_unlock(&c->tnc_mutex);
2518                         if (err)
2519                                 return err;
2520                         return ubifs_tnc_remove_nm(c, key, &noname);
2521                 }
2522         }
2523 
2524 out_unlock:
2525         if (!err)
2526                 err = dbg_check_tnc(c, 0);
2527         mutex_unlock(&c->tnc_mutex);
2528         return err;
2529 }
2530 
2531 /**
2532  * tnc_delete - delete a znode form TNC.
2533  * @c: UBIFS file-system description object
2534  * @znode: znode to delete from
2535  * @n: zbranch slot number to delete
2536  *
2537  * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2538  * case of success and a negative error code in case of failure.
2539  */
2540 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2541 {
2542         struct ubifs_zbranch *zbr;
2543         struct ubifs_znode *zp;
2544         int i, err;
2545 
2546         /* Delete without merge for now */
2547         ubifs_assert(c, znode->level == 0);
2548         ubifs_assert(c, n >= 0 && n < c->fanout);
2549         dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2550 
2551         zbr = &znode->zbranch[n];
2552         lnc_free(zbr);
2553 
2554         err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2555         if (err) {
2556                 ubifs_dump_znode(c, znode);
2557                 return err;
2558         }
2559 
2560         /* We do not "gap" zbranch slots */
2561         for (i = n; i < znode->child_cnt - 1; i++)
2562                 znode->zbranch[i] = znode->zbranch[i + 1];
2563         znode->child_cnt -= 1;
2564 
2565         if (znode->child_cnt > 0)
2566                 return 0;
2567 
2568         /*
2569          * This was the last zbranch, we have to delete this znode from the
2570          * parent.
2571          */
2572 
2573         do {
2574                 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2575                 ubifs_assert(c, ubifs_zn_dirty(znode));
2576 
2577                 zp = znode->parent;
2578                 n = znode->iip;
2579 
2580                 atomic_long_dec(&c->dirty_zn_cnt);
2581 
2582                 err = insert_old_idx_znode(c, znode);
2583                 if (err)
2584                         return err;
2585 
2586                 if (znode->cnext) {
2587                         __set_bit(OBSOLETE_ZNODE, &znode->flags);
2588                         atomic_long_inc(&c->clean_zn_cnt);
2589                         atomic_long_inc(&ubifs_clean_zn_cnt);
2590                 } else
2591                         kfree(znode);
2592                 znode = zp;
2593         } while (znode->child_cnt == 1); /* while removing last child */
2594 
2595         /* Remove from znode, entry n - 1 */
2596         znode->child_cnt -= 1;
2597         ubifs_assert(c, znode->level != 0);
2598         for (i = n; i < znode->child_cnt; i++) {
2599                 znode->zbranch[i] = znode->zbranch[i + 1];
2600                 if (znode->zbranch[i].znode)
2601                         znode->zbranch[i].znode->iip = i;
2602         }
2603 
2604         /*
2605          * If this is the root and it has only 1 child then
2606          * collapse the tree.
2607          */
2608         if (!znode->parent) {
2609                 while (znode->child_cnt == 1 && znode->level != 0) {
2610                         zp = znode;
2611                         zbr = &znode->zbranch[0];
2612                         znode = get_znode(c, znode, 0);
2613                         if (IS_ERR(znode))
2614                                 return PTR_ERR(znode);
2615                         znode = dirty_cow_znode(c, zbr);
2616                         if (IS_ERR(znode))
2617                                 return PTR_ERR(znode);
2618                         znode->parent = NULL;
2619                         znode->iip = 0;
2620                         if (c->zroot.len) {
2621                                 err = insert_old_idx(c, c->zroot.lnum,
2622                                                      c->zroot.offs);
2623                                 if (err)
2624                                         return err;
2625                         }
2626                         c->zroot.lnum = zbr->lnum;
2627                         c->zroot.offs = zbr->offs;
2628                         c->zroot.len = zbr->len;
2629                         c->zroot.znode = znode;
2630                         ubifs_assert(c, !ubifs_zn_obsolete(zp));
2631                         ubifs_assert(c, ubifs_zn_dirty(zp));
2632                         atomic_long_dec(&c->dirty_zn_cnt);
2633 
2634                         if (zp->cnext) {
2635                                 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2636                                 atomic_long_inc(&c->clean_zn_cnt);
2637                                 atomic_long_inc(&ubifs_clean_zn_cnt);
2638                         } else
2639                                 kfree(zp);
2640                 }
2641         }
2642 
2643         return 0;
2644 }
2645 
2646 /**
2647  * ubifs_tnc_remove - remove an index entry of a node.
2648  * @c: UBIFS file-system description object
2649  * @key: key of node
2650  *
2651  * Returns %0 on success or negative error code on failure.
2652  */
2653 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2654 {
2655         int found, n, err = 0;
2656         struct ubifs_znode *znode;
2657 
2658         mutex_lock(&c->tnc_mutex);
2659         dbg_tnck(key, "key ");
2660         found = lookup_level0_dirty(c, key, &znode, &n);
2661         if (found < 0) {
2662                 err = found;
2663                 goto out_unlock;
2664         }
2665         if (found == 1)
2666                 err = tnc_delete(c, znode, n);
2667         if (!err)
2668                 err = dbg_check_tnc(c, 0);
2669 
2670 out_unlock:
2671         mutex_unlock(&c->tnc_mutex);
2672         return err;
2673 }
2674 
2675 /**
2676  * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2677  * @c: UBIFS file-system description object
2678  * @key: key of node
2679  * @nm: directory entry name
2680  *
2681  * Returns %0 on success or negative error code on failure.
2682  */
2683 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2684                         const struct fscrypt_name *nm)
2685 {
2686         int n, err;
2687         struct ubifs_znode *znode;
2688 
2689         mutex_lock(&c->tnc_mutex);
2690         dbg_tnck(key, "key ");
2691         err = lookup_level0_dirty(c, key, &znode, &n);
2692         if (err < 0)
2693                 goto out_unlock;
2694 
2695         if (err) {
2696                 if (c->replaying)
2697                         err = fallible_resolve_collision(c, key, &znode, &n,
2698                                                          nm, 0);
2699                 else
2700                         err = resolve_collision(c, key, &znode, &n, nm);
2701                 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2702                 if (err < 0)
2703                         goto out_unlock;
2704                 if (err) {
2705                         /* Ensure the znode is dirtied */
2706                         if (znode->cnext || !ubifs_zn_dirty(znode)) {
2707                                 znode = dirty_cow_bottom_up(c, znode);
2708                                 if (IS_ERR(znode)) {
2709                                         err = PTR_ERR(znode);
2710                                         goto out_unlock;
2711                                 }
2712                         }
2713                         err = tnc_delete(c, znode, n);
2714                 }
2715         }
2716 
2717 out_unlock:
2718         if (!err)
2719                 err = dbg_check_tnc(c, 0);
2720         mutex_unlock(&c->tnc_mutex);
2721         return err;
2722 }
2723 
2724 /**
2725  * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2726  * @c: UBIFS file-system description object
2727  * @key: key of node
2728  * @cookie: node cookie for collision resolution
2729  *
2730  * Returns %0 on success or negative error code on failure.
2731  */
2732 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2733                         uint32_t cookie)
2734 {
2735         int n, err;
2736         struct ubifs_znode *znode;
2737         struct ubifs_dent_node *dent;
2738         struct ubifs_zbranch *zbr;
2739 
2740         if (!c->double_hash)
2741                 return -EOPNOTSUPP;
2742 
2743         mutex_lock(&c->tnc_mutex);
2744         err = lookup_level0_dirty(c, key, &znode, &n);
2745         if (err <= 0)
2746                 goto out_unlock;
2747 
2748         zbr = &znode->zbranch[n];
2749         dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2750         if (!dent) {
2751                 err = -ENOMEM;
2752                 goto out_unlock;
2753         }
2754 
2755         err = tnc_read_hashed_node(c, zbr, dent);
2756         if (err)
2757                 goto out_free;
2758 
2759         /* If the cookie does not match, we're facing a hash collision. */
2760         if (le32_to_cpu(dent->cookie) != cookie) {
2761                 union ubifs_key start_key;
2762 
2763                 lowest_dent_key(c, &start_key, key_inum(c, key));
2764 
2765                 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2766                 if (unlikely(err < 0))
2767                         goto out_free;
2768 
2769                 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2770                 if (err)
2771                         goto out_free;
2772         }
2773 
2774         if (znode->cnext || !ubifs_zn_dirty(znode)) {
2775                 znode = dirty_cow_bottom_up(c, znode);
2776                 if (IS_ERR(znode)) {
2777                         err = PTR_ERR(znode);
2778                         goto out_free;
2779                 }
2780         }
2781         err = tnc_delete(c, znode, n);
2782 
2783 out_free:
2784         kfree(dent);
2785 out_unlock:
2786         if (!err)
2787                 err = dbg_check_tnc(c, 0);
2788         mutex_unlock(&c->tnc_mutex);
2789         return err;
2790 }
2791 
2792 /**
2793  * key_in_range - determine if a key falls within a range of keys.
2794  * @c: UBIFS file-system description object
2795  * @key: key to check
2796  * @from_key: lowest key in range
2797  * @to_key: highest key in range
2798  *
2799  * This function returns %1 if the key is in range and %0 otherwise.
2800  */
2801 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2802                         union ubifs_key *from_key, union ubifs_key *to_key)
2803 {
2804         if (keys_cmp(c, key, from_key) < 0)
2805                 return 0;
2806         if (keys_cmp(c, key, to_key) > 0)
2807                 return 0;
2808         return 1;
2809 }
2810 
2811 /**
2812  * ubifs_tnc_remove_range - remove index entries in range.
2813  * @c: UBIFS file-system description object
2814  * @from_key: lowest key to remove
2815  * @to_key: highest key to remove
2816  *
2817  * This function removes index entries starting at @from_key and ending at
2818  * @to_key.  This function returns zero in case of success and a negative error
2819  * code in case of failure.
2820  */
2821 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2822                            union ubifs_key *to_key)
2823 {
2824         int i, n, k, err = 0;
2825         struct ubifs_znode *znode;
2826         union ubifs_key *key;
2827 
2828         mutex_lock(&c->tnc_mutex);
2829         while (1) {
2830                 /* Find first level 0 znode that contains keys to remove */
2831                 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2832                 if (err < 0)
2833                         goto out_unlock;
2834 
2835                 if (err)
2836                         key = from_key;
2837                 else {
2838                         err = tnc_next(c, &znode, &n);
2839                         if (err == -ENOENT) {
2840                                 err = 0;
2841                                 goto out_unlock;
2842                         }
2843                         if (err < 0)
2844                                 goto out_unlock;
2845                         key = &znode->zbranch[n].key;
2846                         if (!key_in_range(c, key, from_key, to_key)) {
2847                                 err = 0;
2848                                 goto out_unlock;
2849                         }
2850                 }
2851 
2852                 /* Ensure the znode is dirtied */
2853                 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2854                         znode = dirty_cow_bottom_up(c, znode);
2855                         if (IS_ERR(znode)) {
2856                                 err = PTR_ERR(znode);
2857                                 goto out_unlock;
2858                         }
2859                 }
2860 
2861                 /* Remove all keys in range except the first */
2862                 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2863                         key = &znode->zbranch[i].key;
2864                         if (!key_in_range(c, key, from_key, to_key))
2865                                 break;
2866                         lnc_free(&znode->zbranch[i]);
2867                         err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2868                                              znode->zbranch[i].len);
2869                         if (err) {
2870                                 ubifs_dump_znode(c, znode);
2871                                 goto out_unlock;
2872                         }
2873                         dbg_tnck(key, "removing key ");
2874                 }
2875                 if (k) {
2876                         for (i = n + 1 + k; i < znode->child_cnt; i++)
2877                                 znode->zbranch[i - k] = znode->zbranch[i];
2878                         znode->child_cnt -= k;
2879                 }
2880 
2881                 /* Now delete the first */
2882                 err = tnc_delete(c, znode, n);
2883                 if (err)
2884                         goto out_unlock;
2885         }
2886 
2887 out_unlock:
2888         if (!err)
2889                 err = dbg_check_tnc(c, 0);
2890         mutex_unlock(&c->tnc_mutex);
2891         return err;
2892 }
2893 
2894 /**
2895  * ubifs_tnc_remove_ino - remove an inode from TNC.
2896  * @c: UBIFS file-system description object
2897  * @inum: inode number to remove
2898  *
2899  * This function remove inode @inum and all the extended attributes associated
2900  * with the anode from TNC and returns zero in case of success or a negative
2901  * error code in case of failure.
2902  */
2903 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2904 {
2905         union ubifs_key key1, key2;
2906         struct ubifs_dent_node *xent, *pxent = NULL;
2907         struct fscrypt_name nm = {0};
2908 
2909         dbg_tnc("ino %lu", (unsigned long)inum);
2910 
2911         /*
2912          * Walk all extended attribute entries and remove them together with
2913          * corresponding extended attribute inodes.
2914          */
2915         lowest_xent_key(c, &key1, inum);
2916         while (1) {
2917                 ino_t xattr_inum;
2918                 int err;
2919 
2920                 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2921                 if (IS_ERR(xent)) {
2922                         err = PTR_ERR(xent);
2923                         if (err == -ENOENT)
2924                                 break;
2925                         kfree(pxent);
2926                         return err;
2927                 }
2928 
2929                 xattr_inum = le64_to_cpu(xent->inum);
2930                 dbg_tnc("xent '%s', ino %lu", xent->name,
2931                         (unsigned long)xattr_inum);
2932 
2933                 ubifs_evict_xattr_inode(c, xattr_inum);
2934 
2935                 fname_name(&nm) = xent->name;
2936                 fname_len(&nm) = le16_to_cpu(xent->nlen);
2937                 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2938                 if (err) {
2939                         kfree(pxent);
2940                         kfree(xent);
2941                         return err;
2942                 }
2943 
2944                 lowest_ino_key(c, &key1, xattr_inum);
2945                 highest_ino_key(c, &key2, xattr_inum);
2946                 err = ubifs_tnc_remove_range(c, &key1, &key2);
2947                 if (err) {
2948                         kfree(pxent);
2949                         kfree(xent);
2950                         return err;
2951                 }
2952 
2953                 kfree(pxent);
2954                 pxent = xent;
2955                 key_read(c, &xent->key, &key1);
2956         }
2957 
2958         kfree(pxent);
2959         lowest_ino_key(c, &key1, inum);
2960         highest_ino_key(c, &key2, inum);
2961 
2962         return ubifs_tnc_remove_range(c, &key1, &key2);
2963 }
2964 
2965 /**
2966  * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2967  * @c: UBIFS file-system description object
2968  * @key: key of last entry
2969  * @nm: name of last entry found or %NULL
2970  *
2971  * This function finds and reads the next directory or extended attribute entry
2972  * after the given key (@key) if there is one. @nm is used to resolve
2973  * collisions.
2974  *
2975  * If the name of the current entry is not known and only the key is known,
2976  * @nm->name has to be %NULL. In this case the semantics of this function is a
2977  * little bit different and it returns the entry corresponding to this key, not
2978  * the next one. If the key was not found, the closest "right" entry is
2979  * returned.
2980  *
2981  * If the fist entry has to be found, @key has to contain the lowest possible
2982  * key value for this inode and @name has to be %NULL.
2983  *
2984  * This function returns the found directory or extended attribute entry node
2985  * in case of success, %-ENOENT is returned if no entry was found, and a
2986  * negative error code is returned in case of failure.
2987  */
2988 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2989                                            union ubifs_key *key,
2990                                            const struct fscrypt_name *nm)
2991 {
2992         int n, err, type = key_type(c, key);
2993         struct ubifs_znode *znode;
2994         struct ubifs_dent_node *dent;
2995         struct ubifs_zbranch *zbr;
2996         union ubifs_key *dkey;
2997 
2998         dbg_tnck(key, "key ");
2999         ubifs_assert(c, is_hash_key(c, key));
3000 
3001         mutex_lock(&c->tnc_mutex);
3002         err = ubifs_lookup_level0(c, key, &znode, &n);
3003         if (unlikely(err < 0))
3004                 goto out_unlock;
3005 
3006         if (fname_len(nm) > 0) {
3007                 if (err) {
3008                         /* Handle collisions */
3009                         if (c->replaying)
3010                                 err = fallible_resolve_collision(c, key, &znode, &n,
3011                                                          nm, 0);
3012                         else
3013                                 err = resolve_collision(c, key, &znode, &n, nm);
3014                         dbg_tnc("rc returned %d, znode %p, n %d",
3015                                 err, znode, n);
3016                         if (unlikely(err < 0))
3017                                 goto out_unlock;
3018                 }
3019 
3020                 /* Now find next entry */
3021                 err = tnc_next(c, &znode, &n);
3022                 if (unlikely(err))
3023                         goto out_unlock;
3024         } else {
3025                 /*
3026                  * The full name of the entry was not given, in which case the
3027                  * behavior of this function is a little different and it
3028                  * returns current entry, not the next one.
3029                  */
3030                 if (!err) {
3031                         /*
3032                          * However, the given key does not exist in the TNC
3033                          * tree and @znode/@n variables contain the closest
3034                          * "preceding" element. Switch to the next one.
3035                          */
3036                         err = tnc_next(c, &znode, &n);
3037                         if (err)
3038                                 goto out_unlock;
3039                 }
3040         }
3041 
3042         zbr = &znode->zbranch[n];
3043         dent = kmalloc(zbr->len, GFP_NOFS);
3044         if (unlikely(!dent)) {
3045                 err = -ENOMEM;
3046                 goto out_unlock;
3047         }
3048 
3049         /*
3050          * The above 'tnc_next()' call could lead us to the next inode, check
3051          * this.
3052          */
3053         dkey = &zbr->key;
3054         if (key_inum(c, dkey) != key_inum(c, key) ||
3055             key_type(c, dkey) != type) {
3056                 err = -ENOENT;
3057                 goto out_free;
3058         }
3059 
3060         err = tnc_read_hashed_node(c, zbr, dent);
3061         if (unlikely(err))
3062                 goto out_free;
3063 
3064         mutex_unlock(&c->tnc_mutex);
3065         return dent;
3066 
3067 out_free:
3068         kfree(dent);
3069 out_unlock:
3070         mutex_unlock(&c->tnc_mutex);
3071         return ERR_PTR(err);
3072 }
3073 
3074 /**
3075  * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3076  * @c: UBIFS file-system description object
3077  *
3078  * Destroy left-over obsolete znodes from a failed commit.
3079  */
3080 static void tnc_destroy_cnext(struct ubifs_info *c)
3081 {
3082         struct ubifs_znode *cnext;
3083 
3084         if (!c->cnext)
3085                 return;
3086         ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3087         cnext = c->cnext;
3088         do {
3089                 struct ubifs_znode *znode = cnext;
3090 
3091                 cnext = cnext->cnext;
3092                 if (ubifs_zn_obsolete(znode))
3093                         kfree(znode);
3094                 else if (!ubifs_zn_cow(znode)) {
3095                         /*
3096                          * Don't forget to update clean znode count after
3097                          * committing failed, because ubifs will check this
3098                          * count while closing tnc. Non-obsolete znode could
3099                          * be re-dirtied during committing process, so dirty
3100                          * flag is untrustable. The flag 'COW_ZNODE' is set
3101                          * for each dirty znode before committing, and it is
3102                          * cleared as long as the znode become clean, so we
3103                          * can statistic clean znode count according to this
3104                          * flag.
3105                          */
3106                         atomic_long_inc(&c->clean_zn_cnt);
3107                         atomic_long_inc(&ubifs_clean_zn_cnt);
3108                 }
3109         } while (cnext && cnext != c->cnext);
3110 }
3111 
3112 /**
3113  * ubifs_tnc_close - close TNC subsystem and free all related resources.
3114  * @c: UBIFS file-system description object
3115  */
3116 void ubifs_tnc_close(struct ubifs_info *c)
3117 {
3118         tnc_destroy_cnext(c);
3119         ubifs_destroy_tnc_tree(c);
3120         kfree(c->gap_lebs);
3121         kfree(c->ilebs);
3122         destroy_old_idx(c);
3123 }
3124 
3125 /**
3126  * left_znode - get the znode to the left.
3127  * @c: UBIFS file-system description object
3128  * @znode: znode
3129  *
3130  * This function returns a pointer to the znode to the left of @znode or NULL if
3131  * there is not one. A negative error code is returned on failure.
3132  */
3133 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3134                                       struct ubifs_znode *znode)
3135 {
3136         int level = znode->level;
3137 
3138         while (1) {
3139                 int n = znode->iip - 1;
3140 
3141                 /* Go up until we can go left */
3142                 znode = znode->parent;
3143                 if (!znode)
3144                         return NULL;
3145                 if (n >= 0) {
3146                         /* Now go down the rightmost branch to 'level' */
3147                         znode = get_znode(c, znode, n);
3148                         if (IS_ERR(znode))
3149                                 return znode;
3150                         while (znode->level != level) {
3151                                 n = znode->child_cnt - 1;
3152                                 znode = get_znode(c, znode, n);
3153                                 if (IS_ERR(znode))
3154                                         return znode;
3155                         }
3156                         break;
3157                 }
3158         }
3159         return znode;
3160 }
3161 
3162 /**
3163  * right_znode - get the znode to the right.
3164  * @c: UBIFS file-system description object
3165  * @znode: znode
3166  *
3167  * This function returns a pointer to the znode to the right of @znode or NULL
3168  * if there is not one. A negative error code is returned on failure.
3169  */
3170 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3171                                        struct ubifs_znode *znode)
3172 {
3173         int level = znode->level;
3174 
3175         while (1) {
3176                 int n = znode->iip + 1;
3177 
3178                 /* Go up until we can go right */
3179                 znode = znode->parent;
3180                 if (!znode)
3181                         return NULL;
3182                 if (n < znode->child_cnt) {
3183                         /* Now go down the leftmost branch to 'level' */
3184                         znode = get_znode(c, znode, n);
3185                         if (IS_ERR(znode))
3186                                 return znode;
3187                         while (znode->level != level) {
3188                                 znode = get_znode(c, znode, 0);
3189                                 if (IS_ERR(znode))
3190                                         return znode;
3191                         }
3192                         break;
3193                 }
3194         }
3195         return znode;
3196 }
3197 
3198 /**
3199  * lookup_znode - find a particular indexing node from TNC.
3200  * @c: UBIFS file-system description object
3201  * @key: index node key to lookup
3202  * @level: index node level
3203  * @lnum: index node LEB number
3204  * @offs: index node offset
3205  *
3206  * This function searches an indexing node by its first key @key and its
3207  * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3208  * nodes it traverses to TNC. This function is called for indexing nodes which
3209  * were found on the media by scanning, for example when garbage-collecting or
3210  * when doing in-the-gaps commit. This means that the indexing node which is
3211  * looked for does not have to have exactly the same leftmost key @key, because
3212  * the leftmost key may have been changed, in which case TNC will contain a
3213  * dirty znode which still refers the same @lnum:@offs. This function is clever
3214  * enough to recognize such indexing nodes.
3215  *
3216  * Note, if a znode was deleted or changed too much, then this function will
3217  * not find it. For situations like this UBIFS has the old index RB-tree
3218  * (indexed by @lnum:@offs).
3219  *
3220  * This function returns a pointer to the znode found or %NULL if it is not
3221  * found. A negative error code is returned on failure.
3222  */
3223 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3224                                         union ubifs_key *key, int level,
3225                                         int lnum, int offs)
3226 {
3227         struct ubifs_znode *znode, *zn;
3228         int n, nn;
3229 
3230         ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3231 
3232         /*
3233          * The arguments have probably been read off flash, so don't assume
3234          * they are valid.
3235          */
3236         if (level < 0)
3237                 return ERR_PTR(-EINVAL);
3238 
3239         /* Get the root znode */
3240         znode = c->zroot.znode;
3241         if (!znode) {
3242                 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3243                 if (IS_ERR(znode))
3244                         return znode;
3245         }
3246         /* Check if it is the one we are looking for */
3247         if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3248                 return znode;
3249         /* Descend to the parent level i.e. (level + 1) */
3250         if (level >= znode->level)
3251                 return NULL;
3252         while (1) {
3253                 ubifs_search_zbranch(c, znode, key, &n);
3254                 if (n < 0) {
3255                         /*
3256                          * We reached a znode where the leftmost key is greater
3257                          * than the key we are searching for. This is the same
3258                          * situation as the one described in a huge comment at
3259                          * the end of the 'ubifs_lookup_level0()' function. And
3260                          * for exactly the same reasons we have to try to look
3261                          * left before giving up.
3262                          */
3263                         znode = left_znode(c, znode);
3264                         if (!znode)
3265                                 return NULL;
3266                         if (IS_ERR(znode))
3267                                 return znode;
3268                         ubifs_search_zbranch(c, znode, key, &n);
3269                         ubifs_assert(c, n >= 0);
3270                 }
3271                 if (znode->level == level + 1)
3272                         break;
3273                 znode = get_znode(c, znode, n);
3274                 if (IS_ERR(znode))
3275                         return znode;
3276         }
3277         /* Check if the child is the one we are looking for */
3278         if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3279                 return get_znode(c, znode, n);
3280         /* If the key is unique, there is nowhere else to look */
3281         if (!is_hash_key(c, key))
3282                 return NULL;
3283         /*
3284          * The key is not unique and so may be also in the znodes to either
3285          * side.
3286          */
3287         zn = znode;
3288         nn = n;
3289         /* Look left */
3290         while (1) {
3291                 /* Move one branch to the left */
3292                 if (n)
3293                         n -= 1;
3294                 else {
3295                         znode = left_znode(c, znode);
3296                         if (!znode)
3297                                 break;
3298                         if (IS_ERR(znode))
3299                                 return znode;
3300                         n = znode->child_cnt - 1;
3301                 }
3302                 /* Check it */
3303                 if (znode->zbranch[n].lnum == lnum &&
3304                     znode->zbranch[n].offs == offs)
3305                         return get_znode(c, znode, n);
3306                 /* Stop if the key is less than the one we are looking for */
3307                 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3308                         break;
3309         }
3310         /* Back to the middle */
3311         znode = zn;
3312         n = nn;
3313         /* Look right */
3314         while (1) {
3315                 /* Move one branch to the right */
3316                 if (++n >= znode->child_cnt) {
3317                         znode = right_znode(c, znode);
3318                         if (!znode)
3319                                 break;
3320                         if (IS_ERR(znode))
3321                                 return znode;
3322                         n = 0;
3323                 }
3324                 /* Check it */
3325                 if (znode->zbranch[n].lnum == lnum &&
3326                     znode->zbranch[n].offs == offs)
3327                         return get_znode(c, znode, n);
3328                 /* Stop if the key is greater than the one we are looking for */
3329                 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3330                         break;
3331         }
3332         return NULL;
3333 }
3334 
3335 /**
3336  * is_idx_node_in_tnc - determine if an index node is in the TNC.
3337  * @c: UBIFS file-system description object
3338  * @key: key of index node
3339  * @level: index node level
3340  * @lnum: LEB number of index node
3341  * @offs: offset of index node
3342  *
3343  * This function returns %0 if the index node is not referred to in the TNC, %1
3344  * if the index node is referred to in the TNC and the corresponding znode is
3345  * dirty, %2 if an index node is referred to in the TNC and the corresponding
3346  * znode is clean, and a negative error code in case of failure.
3347  *
3348  * Note, the @key argument has to be the key of the first child. Also note,
3349  * this function relies on the fact that 0:0 is never a valid LEB number and
3350  * offset for a main-area node.
3351  */
3352 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3353                        int lnum, int offs)
3354 {
3355         struct ubifs_znode *znode;
3356 
3357         znode = lookup_znode(c, key, level, lnum, offs);
3358         if (!znode)
3359                 return 0;
3360         if (IS_ERR(znode))
3361                 return PTR_ERR(znode);
3362 
3363         return ubifs_zn_dirty(znode) ? 1 : 2;
3364 }
3365 
3366 /**
3367  * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3368  * @c: UBIFS file-system description object
3369  * @key: node key
3370  * @lnum: node LEB number
3371  * @offs: node offset
3372  *
3373  * This function returns %1 if the node is referred to in the TNC, %0 if it is
3374  * not, and a negative error code in case of failure.
3375  *
3376  * Note, this function relies on the fact that 0:0 is never a valid LEB number
3377  * and offset for a main-area node.
3378  */
3379 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3380                                int lnum, int offs)
3381 {
3382         struct ubifs_zbranch *zbr;
3383         struct ubifs_znode *znode, *zn;
3384         int n, found, err, nn;
3385         const int unique = !is_hash_key(c, key);
3386 
3387         found = ubifs_lookup_level0(c, key, &znode, &n);
3388         if (found < 0)
3389                 return found; /* Error code */
3390         if (!found)
3391                 return 0;
3392         zbr = &znode->zbranch[n];
3393         if (lnum == zbr->lnum && offs == zbr->offs)
3394                 return 1; /* Found it */
3395         if (unique)
3396                 return 0;
3397         /*
3398          * Because the key is not unique, we have to look left
3399          * and right as well
3400          */
3401         zn = znode;
3402         nn = n;
3403         /* Look left */
3404         while (1) {
3405                 err = tnc_prev(c, &znode, &n);
3406                 if (err == -ENOENT)
3407                         break;
3408                 if (err)
3409                         return err;
3410                 if (keys_cmp(c, key, &znode->zbranch[n].key))
3411                         break;
3412                 zbr = &znode->zbranch[n];
3413                 if (lnum == zbr->lnum && offs == zbr->offs)
3414                         return 1; /* Found it */
3415         }
3416         /* Look right */
3417         znode = zn;
3418         n = nn;
3419         while (1) {
3420                 err = tnc_next(c, &znode, &n);
3421                 if (err) {
3422                         if (err == -ENOENT)
3423                                 return 0;
3424                         return err;
3425                 }
3426                 if (keys_cmp(c, key, &znode->zbranch[n].key))
3427                         break;
3428                 zbr = &znode->zbranch[n];
3429                 if (lnum == zbr->lnum && offs == zbr->offs)
3430                         return 1; /* Found it */
3431         }
3432         return 0;
3433 }
3434 
3435 /**
3436  * ubifs_tnc_has_node - determine whether a node is in the TNC.
3437  * @c: UBIFS file-system description object
3438  * @key: node key
3439  * @level: index node level (if it is an index node)
3440  * @lnum: node LEB number
3441  * @offs: node offset
3442  * @is_idx: non-zero if the node is an index node
3443  *
3444  * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3445  * negative error code in case of failure. For index nodes, @key has to be the
3446  * key of the first child. An index node is considered to be in the TNC only if
3447  * the corresponding znode is clean or has not been loaded.
3448  */
3449 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3450                        int lnum, int offs, int is_idx)
3451 {
3452         int err;
3453 
3454         mutex_lock(&c->tnc_mutex);
3455         if (is_idx) {
3456                 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3457                 if (err < 0)
3458                         goto out_unlock;
3459                 if (err == 1)
3460                         /* The index node was found but it was dirty */
3461                         err = 0;
3462                 else if (err == 2)
3463                         /* The index node was found and it was clean */
3464                         err = 1;
3465                 else
3466                         BUG_ON(err != 0);
3467         } else
3468                 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3469 
3470 out_unlock:
3471         mutex_unlock(&c->tnc_mutex);
3472         return err;
3473 }
3474 
3475 /**
3476  * ubifs_dirty_idx_node - dirty an index node.
3477  * @c: UBIFS file-system description object
3478  * @key: index node key
3479  * @level: index node level
3480  * @lnum: index node LEB number
3481  * @offs: index node offset
3482  *
3483  * This function loads and dirties an index node so that it can be garbage
3484  * collected. The @key argument has to be the key of the first child. This
3485  * function relies on the fact that 0:0 is never a valid LEB number and offset
3486  * for a main-area node. Returns %0 on success and a negative error code on
3487  * failure.
3488  */
3489 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3490                          int lnum, int offs)
3491 {
3492         struct ubifs_znode *znode;
3493         int err = 0;
3494 
3495         mutex_lock(&c->tnc_mutex);
3496         znode = lookup_znode(c, key, level, lnum, offs);
3497         if (!znode)
3498                 goto out_unlock;
3499         if (IS_ERR(znode)) {
3500                 err = PTR_ERR(znode);
3501                 goto out_unlock;
3502         }
3503         znode = dirty_cow_bottom_up(c, znode);
3504         if (IS_ERR(znode)) {
3505                 err = PTR_ERR(znode);
3506                 goto out_unlock;
3507         }
3508 
3509 out_unlock:
3510         mutex_unlock(&c->tnc_mutex);
3511         return err;
3512 }
3513 
3514 /**
3515  * dbg_check_inode_size - check if inode size is correct.
3516  * @c: UBIFS file-system description object
3517  * @inode: inode to check
3518  * @size: inode size
3519  *
3520  * This function makes sure that the inode size (@size) is correct and it does
3521  * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3522  * if it has a data page beyond @size, and other negative error code in case of
3523  * other errors.
3524  */
3525 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3526                          loff_t size)
3527 {
3528         int err, n;
3529         union ubifs_key from_key, to_key, *key;
3530         struct ubifs_znode *znode;
3531         unsigned int block;
3532 
3533         if (!S_ISREG(inode->i_mode))
3534                 return 0;
3535         if (!dbg_is_chk_gen(c))
3536                 return 0;
3537 
3538         block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3539         data_key_init(c, &from_key, inode->i_ino, block);
3540         highest_data_key(c, &to_key, inode->i_ino);
3541 
3542         mutex_lock(&c->tnc_mutex);
3543         err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3544         if (err < 0)
3545                 goto out_unlock;
3546 
3547         if (err) {
3548                 key = &from_key;
3549                 goto out_dump;
3550         }
3551 
3552         err = tnc_next(c, &znode, &n);
3553         if (err == -ENOENT) {
3554                 err = 0;
3555                 goto out_unlock;
3556         }
3557         if (err < 0)
3558                 goto out_unlock;
3559 
3560         ubifs_assert(c, err == 0);
3561         key = &znode->zbranch[n].key;
3562         if (!key_in_range(c, key, &from_key, &to_key))
3563                 goto out_unlock;
3564 
3565 out_dump:
3566         block = key_block(c, key);
3567         ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3568                   (unsigned long)inode->i_ino, size,
3569                   ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3570         mutex_unlock(&c->tnc_mutex);
3571         ubifs_dump_inode(c, inode);
3572         dump_stack();
3573         return -EINVAL;
3574 
3575 out_unlock:
3576         mutex_unlock(&c->tnc_mutex);
3577         return err;
3578 }
3579 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php