~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/ubifs/tnc_commit.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0-only
  2 /*
  3  * This file is part of UBIFS.
  4  *
  5  * Copyright (C) 2006-2008 Nokia Corporation.
  6  *
  7  * Authors: Adrian Hunter
  8  *          Artem Bityutskiy (Битюцкий Артём)
  9  */
 10 
 11 /* This file implements TNC functions for committing */
 12 
 13 #include <linux/random.h>
 14 #include "ubifs.h"
 15 
 16 /**
 17  * make_idx_node - make an index node for fill-the-gaps method of TNC commit.
 18  * @c: UBIFS file-system description object
 19  * @idx: buffer in which to place new index node
 20  * @znode: znode from which to make new index node
 21  * @lnum: LEB number where new index node will be written
 22  * @offs: offset where new index node will be written
 23  * @len: length of new index node
 24  */
 25 static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx,
 26                          struct ubifs_znode *znode, int lnum, int offs, int len)
 27 {
 28         struct ubifs_znode *zp;
 29         u8 hash[UBIFS_HASH_ARR_SZ];
 30         int i, err;
 31 
 32         /* Make index node */
 33         idx->ch.node_type = UBIFS_IDX_NODE;
 34         idx->child_cnt = cpu_to_le16(znode->child_cnt);
 35         idx->level = cpu_to_le16(znode->level);
 36         for (i = 0; i < znode->child_cnt; i++) {
 37                 struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
 38                 struct ubifs_zbranch *zbr = &znode->zbranch[i];
 39 
 40                 key_write_idx(c, &zbr->key, &br->key);
 41                 br->lnum = cpu_to_le32(zbr->lnum);
 42                 br->offs = cpu_to_le32(zbr->offs);
 43                 br->len = cpu_to_le32(zbr->len);
 44                 ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
 45                 if (!zbr->lnum || !zbr->len) {
 46                         ubifs_err(c, "bad ref in znode");
 47                         ubifs_dump_znode(c, znode);
 48                         if (zbr->znode)
 49                                 ubifs_dump_znode(c, zbr->znode);
 50 
 51                         return -EINVAL;
 52                 }
 53         }
 54         ubifs_prepare_node(c, idx, len, 0);
 55         ubifs_node_calc_hash(c, idx, hash);
 56 
 57         znode->lnum = lnum;
 58         znode->offs = offs;
 59         znode->len = len;
 60 
 61         err = insert_old_idx_znode(c, znode);
 62 
 63         /* Update the parent */
 64         zp = znode->parent;
 65         if (zp) {
 66                 struct ubifs_zbranch *zbr;
 67 
 68                 zbr = &zp->zbranch[znode->iip];
 69                 zbr->lnum = lnum;
 70                 zbr->offs = offs;
 71                 zbr->len = len;
 72                 ubifs_copy_hash(c, hash, zbr->hash);
 73         } else {
 74                 c->zroot.lnum = lnum;
 75                 c->zroot.offs = offs;
 76                 c->zroot.len = len;
 77                 ubifs_copy_hash(c, hash, c->zroot.hash);
 78         }
 79         c->calc_idx_sz += ALIGN(len, 8);
 80 
 81         atomic_long_dec(&c->dirty_zn_cnt);
 82 
 83         ubifs_assert(c, ubifs_zn_dirty(znode));
 84         ubifs_assert(c, ubifs_zn_cow(znode));
 85 
 86         /*
 87          * Note, unlike 'write_index()' we do not add memory barriers here
 88          * because this function is called with @c->tnc_mutex locked.
 89          */
 90         __clear_bit(DIRTY_ZNODE, &znode->flags);
 91         __clear_bit(COW_ZNODE, &znode->flags);
 92 
 93         return err;
 94 }
 95 
 96 /**
 97  * fill_gap - make index nodes in gaps in dirty index LEBs.
 98  * @c: UBIFS file-system description object
 99  * @lnum: LEB number that gap appears in
100  * @gap_start: offset of start of gap
101  * @gap_end: offset of end of gap
102  * @dirt: adds dirty space to this
103  *
104  * This function returns the number of index nodes written into the gap.
105  */
106 static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end,
107                     int *dirt)
108 {
109         int len, gap_remains, gap_pos, written, pad_len;
110 
111         ubifs_assert(c, (gap_start & 7) == 0);
112         ubifs_assert(c, (gap_end & 7) == 0);
113         ubifs_assert(c, gap_end >= gap_start);
114 
115         gap_remains = gap_end - gap_start;
116         if (!gap_remains)
117                 return 0;
118         gap_pos = gap_start;
119         written = 0;
120         while (c->enext) {
121                 len = ubifs_idx_node_sz(c, c->enext->child_cnt);
122                 if (len < gap_remains) {
123                         struct ubifs_znode *znode = c->enext;
124                         const int alen = ALIGN(len, 8);
125                         int err;
126 
127                         ubifs_assert(c, alen <= gap_remains);
128                         err = make_idx_node(c, c->ileb_buf + gap_pos, znode,
129                                             lnum, gap_pos, len);
130                         if (err)
131                                 return err;
132                         gap_remains -= alen;
133                         gap_pos += alen;
134                         c->enext = znode->cnext;
135                         if (c->enext == c->cnext)
136                                 c->enext = NULL;
137                         written += 1;
138                 } else
139                         break;
140         }
141         if (gap_end == c->leb_size) {
142                 c->ileb_len = ALIGN(gap_pos, c->min_io_size);
143                 /* Pad to end of min_io_size */
144                 pad_len = c->ileb_len - gap_pos;
145         } else
146                 /* Pad to end of gap */
147                 pad_len = gap_remains;
148         dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d",
149                lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len);
150         ubifs_pad(c, c->ileb_buf + gap_pos, pad_len);
151         *dirt += pad_len;
152         return written;
153 }
154 
155 /**
156  * find_old_idx - find an index node obsoleted since the last commit start.
157  * @c: UBIFS file-system description object
158  * @lnum: LEB number of obsoleted index node
159  * @offs: offset of obsoleted index node
160  *
161  * Returns %1 if found and %0 otherwise.
162  */
163 static int find_old_idx(struct ubifs_info *c, int lnum, int offs)
164 {
165         struct ubifs_old_idx *o;
166         struct rb_node *p;
167 
168         p = c->old_idx.rb_node;
169         while (p) {
170                 o = rb_entry(p, struct ubifs_old_idx, rb);
171                 if (lnum < o->lnum)
172                         p = p->rb_left;
173                 else if (lnum > o->lnum)
174                         p = p->rb_right;
175                 else if (offs < o->offs)
176                         p = p->rb_left;
177                 else if (offs > o->offs)
178                         p = p->rb_right;
179                 else
180                         return 1;
181         }
182         return 0;
183 }
184 
185 /**
186  * is_idx_node_in_use - determine if an index node can be overwritten.
187  * @c: UBIFS file-system description object
188  * @key: key of index node
189  * @level: index node level
190  * @lnum: LEB number of index node
191  * @offs: offset of index node
192  *
193  * If @key / @lnum / @offs identify an index node that was not part of the old
194  * index, then this function returns %0 (obsolete).  Else if the index node was
195  * part of the old index but is now dirty %1 is returned, else if it is clean %2
196  * is returned. A negative error code is returned on failure.
197  */
198 static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key,
199                               int level, int lnum, int offs)
200 {
201         int ret;
202 
203         ret = is_idx_node_in_tnc(c, key, level, lnum, offs);
204         if (ret < 0)
205                 return ret; /* Error code */
206         if (ret == 0)
207                 if (find_old_idx(c, lnum, offs))
208                         return 1;
209         return ret;
210 }
211 
212 /**
213  * layout_leb_in_gaps - layout index nodes using in-the-gaps method.
214  * @c: UBIFS file-system description object
215  * @p: return LEB number in @c->gap_lebs[p]
216  *
217  * This function lays out new index nodes for dirty znodes using in-the-gaps
218  * method of TNC commit.
219  * This function merely puts the next znode into the next gap, making no attempt
220  * to try to maximise the number of znodes that fit.
221  * This function returns the number of index nodes written into the gaps, or a
222  * negative error code on failure.
223  */
224 static int layout_leb_in_gaps(struct ubifs_info *c, int p)
225 {
226         struct ubifs_scan_leb *sleb;
227         struct ubifs_scan_node *snod;
228         int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written;
229 
230         tot_written = 0;
231         /* Get an index LEB with lots of obsolete index nodes */
232         lnum = ubifs_find_dirty_idx_leb(c);
233         if (lnum < 0)
234                 /*
235                  * There also may be dirt in the index head that could be
236                  * filled, however we do not check there at present.
237                  */
238                 return lnum; /* Error code */
239         c->gap_lebs[p] = lnum;
240         dbg_gc("LEB %d", lnum);
241         /*
242          * Scan the index LEB.  We use the generic scan for this even though
243          * it is more comprehensive and less efficient than is needed for this
244          * purpose.
245          */
246         sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0);
247         c->ileb_len = 0;
248         if (IS_ERR(sleb))
249                 return PTR_ERR(sleb);
250         gap_start = 0;
251         list_for_each_entry(snod, &sleb->nodes, list) {
252                 struct ubifs_idx_node *idx;
253                 int in_use, level;
254 
255                 ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
256                 idx = snod->node;
257                 key_read(c, ubifs_idx_key(c, idx), &snod->key);
258                 level = le16_to_cpu(idx->level);
259                 /* Determine if the index node is in use (not obsolete) */
260                 in_use = is_idx_node_in_use(c, &snod->key, level, lnum,
261                                             snod->offs);
262                 if (in_use < 0) {
263                         ubifs_scan_destroy(sleb);
264                         return in_use; /* Error code */
265                 }
266                 if (in_use) {
267                         if (in_use == 1)
268                                 dirt += ALIGN(snod->len, 8);
269                         /*
270                          * The obsolete index nodes form gaps that can be
271                          * overwritten.  This gap has ended because we have
272                          * found an index node that is still in use
273                          * i.e. not obsolete
274                          */
275                         gap_end = snod->offs;
276                         /* Try to fill gap */
277                         written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
278                         if (written < 0) {
279                                 ubifs_scan_destroy(sleb);
280                                 return written; /* Error code */
281                         }
282                         tot_written += written;
283                         gap_start = ALIGN(snod->offs + snod->len, 8);
284                 }
285         }
286         ubifs_scan_destroy(sleb);
287         c->ileb_len = c->leb_size;
288         gap_end = c->leb_size;
289         /* Try to fill gap */
290         written = fill_gap(c, lnum, gap_start, gap_end, &dirt);
291         if (written < 0)
292                 return written; /* Error code */
293         tot_written += written;
294         if (tot_written == 0) {
295                 struct ubifs_lprops lp;
296 
297                 dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
298                 err = ubifs_read_one_lp(c, lnum, &lp);
299                 if (err)
300                         return err;
301                 if (lp.free == c->leb_size) {
302                         /*
303                          * We must have snatched this LEB from the idx_gc list
304                          * so we need to correct the free and dirty space.
305                          */
306                         err = ubifs_change_one_lp(c, lnum,
307                                                   c->leb_size - c->ileb_len,
308                                                   dirt, 0, 0, 0);
309                         if (err)
310                                 return err;
311                 }
312                 return 0;
313         }
314         err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt,
315                                   0, 0, 0);
316         if (err)
317                 return err;
318         err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len);
319         if (err)
320                 return err;
321         dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written);
322         return tot_written;
323 }
324 
325 /**
326  * get_leb_cnt - calculate the number of empty LEBs needed to commit.
327  * @c: UBIFS file-system description object
328  * @cnt: number of znodes to commit
329  *
330  * This function returns the number of empty LEBs needed to commit @cnt znodes
331  * to the current index head.  The number is not exact and may be more than
332  * needed.
333  */
334 static int get_leb_cnt(struct ubifs_info *c, int cnt)
335 {
336         int d;
337 
338         /* Assume maximum index node size (i.e. overestimate space needed) */
339         cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz;
340         if (cnt < 0)
341                 cnt = 0;
342         d = c->leb_size / c->max_idx_node_sz;
343         return DIV_ROUND_UP(cnt, d);
344 }
345 
346 /**
347  * layout_in_gaps - in-the-gaps method of committing TNC.
348  * @c: UBIFS file-system description object
349  * @cnt: number of dirty znodes to commit.
350  *
351  * This function lays out new index nodes for dirty znodes using in-the-gaps
352  * method of TNC commit.
353  *
354  * This function returns %0 on success and a negative error code on failure.
355  */
356 static int layout_in_gaps(struct ubifs_info *c, int cnt)
357 {
358         int err, leb_needed_cnt, written, p = 0, old_idx_lebs, *gap_lebs;
359 
360         dbg_gc("%d znodes to write", cnt);
361 
362         c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int),
363                                     GFP_NOFS);
364         if (!c->gap_lebs)
365                 return -ENOMEM;
366 
367         old_idx_lebs = c->lst.idx_lebs;
368         do {
369                 ubifs_assert(c, p < c->lst.idx_lebs);
370                 written = layout_leb_in_gaps(c, p);
371                 if (written < 0) {
372                         err = written;
373                         if (err != -ENOSPC) {
374                                 kfree(c->gap_lebs);
375                                 c->gap_lebs = NULL;
376                                 return err;
377                         }
378                         if (!dbg_is_chk_index(c)) {
379                                 /*
380                                  * Do not print scary warnings if the debugging
381                                  * option which forces in-the-gaps is enabled.
382                                  */
383                                 ubifs_warn(c, "out of space");
384                                 ubifs_dump_budg(c, &c->bi);
385                                 ubifs_dump_lprops(c);
386                         }
387                         /* Try to commit anyway */
388                         break;
389                 }
390                 p++;
391                 cnt -= written;
392                 leb_needed_cnt = get_leb_cnt(c, cnt);
393                 dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt,
394                        leb_needed_cnt, c->ileb_cnt);
395                 /*
396                  * Dynamically change the size of @c->gap_lebs to prevent
397                  * oob, because @c->lst.idx_lebs could be increased by
398                  * function @get_idx_gc_leb (called by layout_leb_in_gaps->
399                  * ubifs_find_dirty_idx_leb) during loop. Only enlarge
400                  * @c->gap_lebs when needed.
401                  *
402                  */
403                 if (leb_needed_cnt > c->ileb_cnt && p >= old_idx_lebs &&
404                     old_idx_lebs < c->lst.idx_lebs) {
405                         old_idx_lebs = c->lst.idx_lebs;
406                         gap_lebs = krealloc(c->gap_lebs, sizeof(int) *
407                                                (old_idx_lebs + 1), GFP_NOFS);
408                         if (!gap_lebs) {
409                                 kfree(c->gap_lebs);
410                                 c->gap_lebs = NULL;
411                                 return -ENOMEM;
412                         }
413                         c->gap_lebs = gap_lebs;
414                 }
415         } while (leb_needed_cnt > c->ileb_cnt);
416 
417         c->gap_lebs[p] = -1;
418         return 0;
419 }
420 
421 /**
422  * layout_in_empty_space - layout index nodes in empty space.
423  * @c: UBIFS file-system description object
424  *
425  * This function lays out new index nodes for dirty znodes using empty LEBs.
426  *
427  * This function returns %0 on success and a negative error code on failure.
428  */
429 static int layout_in_empty_space(struct ubifs_info *c)
430 {
431         struct ubifs_znode *znode, *cnext, *zp;
432         int lnum, offs, len, next_len, buf_len, buf_offs, used, avail;
433         int wlen, blen, err;
434 
435         cnext = c->enext;
436         if (!cnext)
437                 return 0;
438 
439         lnum = c->ihead_lnum;
440         buf_offs = c->ihead_offs;
441 
442         buf_len = ubifs_idx_node_sz(c, c->fanout);
443         buf_len = ALIGN(buf_len, c->min_io_size);
444         used = 0;
445         avail = buf_len;
446 
447         /* Ensure there is enough room for first write */
448         next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
449         if (buf_offs + next_len > c->leb_size)
450                 lnum = -1;
451 
452         while (1) {
453                 znode = cnext;
454 
455                 len = ubifs_idx_node_sz(c, znode->child_cnt);
456 
457                 /* Determine the index node position */
458                 if (lnum == -1) {
459                         if (c->ileb_nxt >= c->ileb_cnt) {
460                                 ubifs_err(c, "out of space");
461                                 return -ENOSPC;
462                         }
463                         lnum = c->ilebs[c->ileb_nxt++];
464                         buf_offs = 0;
465                         used = 0;
466                         avail = buf_len;
467                 }
468 
469                 offs = buf_offs + used;
470 
471                 znode->lnum = lnum;
472                 znode->offs = offs;
473                 znode->len = len;
474 
475                 /* Update the parent */
476                 zp = znode->parent;
477                 if (zp) {
478                         struct ubifs_zbranch *zbr;
479                         int i;
480 
481                         i = znode->iip;
482                         zbr = &zp->zbranch[i];
483                         zbr->lnum = lnum;
484                         zbr->offs = offs;
485                         zbr->len = len;
486                 } else {
487                         c->zroot.lnum = lnum;
488                         c->zroot.offs = offs;
489                         c->zroot.len = len;
490                 }
491                 c->calc_idx_sz += ALIGN(len, 8);
492 
493                 /*
494                  * Once lprops is updated, we can decrease the dirty znode count
495                  * but it is easier to just do it here.
496                  */
497                 atomic_long_dec(&c->dirty_zn_cnt);
498 
499                 /*
500                  * Calculate the next index node length to see if there is
501                  * enough room for it
502                  */
503                 cnext = znode->cnext;
504                 if (cnext == c->cnext)
505                         next_len = 0;
506                 else
507                         next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
508 
509                 /* Update buffer positions */
510                 wlen = used + len;
511                 used += ALIGN(len, 8);
512                 avail -= ALIGN(len, 8);
513 
514                 if (next_len != 0 &&
515                     buf_offs + used + next_len <= c->leb_size &&
516                     avail > 0)
517                         continue;
518 
519                 if (avail <= 0 && next_len &&
520                     buf_offs + used + next_len <= c->leb_size)
521                         blen = buf_len;
522                 else
523                         blen = ALIGN(wlen, c->min_io_size);
524 
525                 /* The buffer is full or there are no more znodes to do */
526                 buf_offs += blen;
527                 if (next_len) {
528                         if (buf_offs + next_len > c->leb_size) {
529                                 err = ubifs_update_one_lp(c, lnum,
530                                         c->leb_size - buf_offs, blen - used,
531                                         0, 0);
532                                 if (err)
533                                         return err;
534                                 lnum = -1;
535                         }
536                         used -= blen;
537                         if (used < 0)
538                                 used = 0;
539                         avail = buf_len - used;
540                         continue;
541                 }
542                 err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs,
543                                           blen - used, 0, 0);
544                 if (err)
545                         return err;
546                 break;
547         }
548 
549         c->dbg->new_ihead_lnum = lnum;
550         c->dbg->new_ihead_offs = buf_offs;
551 
552         return 0;
553 }
554 
555 /**
556  * layout_commit - determine positions of index nodes to commit.
557  * @c: UBIFS file-system description object
558  * @no_space: indicates that insufficient empty LEBs were allocated
559  * @cnt: number of znodes to commit
560  *
561  * Calculate and update the positions of index nodes to commit.  If there were
562  * an insufficient number of empty LEBs allocated, then index nodes are placed
563  * into the gaps created by obsolete index nodes in non-empty index LEBs.  For
564  * this purpose, an obsolete index node is one that was not in the index as at
565  * the end of the last commit.  To write "in-the-gaps" requires that those index
566  * LEBs are updated atomically in-place.
567  */
568 static int layout_commit(struct ubifs_info *c, int no_space, int cnt)
569 {
570         int err;
571 
572         if (no_space) {
573                 err = layout_in_gaps(c, cnt);
574                 if (err)
575                         return err;
576         }
577         err = layout_in_empty_space(c);
578         return err;
579 }
580 
581 /**
582  * find_first_dirty - find first dirty znode.
583  * @znode: znode to begin searching from
584  */
585 static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode)
586 {
587         int i, cont;
588 
589         if (!znode)
590                 return NULL;
591 
592         while (1) {
593                 if (znode->level == 0) {
594                         if (ubifs_zn_dirty(znode))
595                                 return znode;
596                         return NULL;
597                 }
598                 cont = 0;
599                 for (i = 0; i < znode->child_cnt; i++) {
600                         struct ubifs_zbranch *zbr = &znode->zbranch[i];
601 
602                         if (zbr->znode && ubifs_zn_dirty(zbr->znode)) {
603                                 znode = zbr->znode;
604                                 cont = 1;
605                                 break;
606                         }
607                 }
608                 if (!cont) {
609                         if (ubifs_zn_dirty(znode))
610                                 return znode;
611                         return NULL;
612                 }
613         }
614 }
615 
616 /**
617  * find_next_dirty - find next dirty znode.
618  * @znode: znode to begin searching from
619  */
620 static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode)
621 {
622         int n = znode->iip + 1;
623 
624         znode = znode->parent;
625         if (!znode)
626                 return NULL;
627         for (; n < znode->child_cnt; n++) {
628                 struct ubifs_zbranch *zbr = &znode->zbranch[n];
629 
630                 if (zbr->znode && ubifs_zn_dirty(zbr->znode))
631                         return find_first_dirty(zbr->znode);
632         }
633         return znode;
634 }
635 
636 /**
637  * get_znodes_to_commit - create list of dirty znodes to commit.
638  * @c: UBIFS file-system description object
639  *
640  * This function returns the number of znodes to commit.
641  */
642 static int get_znodes_to_commit(struct ubifs_info *c)
643 {
644         struct ubifs_znode *znode, *cnext;
645         int cnt = 0;
646 
647         c->cnext = find_first_dirty(c->zroot.znode);
648         znode = c->enext = c->cnext;
649         if (!znode) {
650                 dbg_cmt("no znodes to commit");
651                 return 0;
652         }
653         cnt += 1;
654         while (1) {
655                 ubifs_assert(c, !ubifs_zn_cow(znode));
656                 __set_bit(COW_ZNODE, &znode->flags);
657                 znode->alt = 0;
658                 cnext = find_next_dirty(znode);
659                 if (!cnext) {
660                         znode->cnext = c->cnext;
661                         break;
662                 }
663                 znode->cparent = znode->parent;
664                 znode->ciip = znode->iip;
665                 znode->cnext = cnext;
666                 znode = cnext;
667                 cnt += 1;
668         }
669         dbg_cmt("committing %d znodes", cnt);
670         ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt));
671         return cnt;
672 }
673 
674 /**
675  * alloc_idx_lebs - allocate empty LEBs to be used to commit.
676  * @c: UBIFS file-system description object
677  * @cnt: number of znodes to commit
678  *
679  * This function returns %-ENOSPC if it cannot allocate a sufficient number of
680  * empty LEBs.  %0 is returned on success, otherwise a negative error code
681  * is returned.
682  */
683 static int alloc_idx_lebs(struct ubifs_info *c, int cnt)
684 {
685         int i, leb_cnt, lnum;
686 
687         c->ileb_cnt = 0;
688         c->ileb_nxt = 0;
689         leb_cnt = get_leb_cnt(c, cnt);
690         dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt);
691         if (!leb_cnt)
692                 return 0;
693         c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS);
694         if (!c->ilebs)
695                 return -ENOMEM;
696         for (i = 0; i < leb_cnt; i++) {
697                 lnum = ubifs_find_free_leb_for_idx(c);
698                 if (lnum < 0)
699                         return lnum;
700                 c->ilebs[c->ileb_cnt++] = lnum;
701                 dbg_cmt("LEB %d", lnum);
702         }
703         if (dbg_is_chk_index(c) && !get_random_u32_below(8))
704                 return -ENOSPC;
705         return 0;
706 }
707 
708 /**
709  * free_unused_idx_lebs - free unused LEBs that were allocated for the commit.
710  * @c: UBIFS file-system description object
711  *
712  * It is possible that we allocate more empty LEBs for the commit than we need.
713  * This functions frees the surplus.
714  *
715  * This function returns %0 on success and a negative error code on failure.
716  */
717 static int free_unused_idx_lebs(struct ubifs_info *c)
718 {
719         int i, err = 0, lnum, er;
720 
721         for (i = c->ileb_nxt; i < c->ileb_cnt; i++) {
722                 lnum = c->ilebs[i];
723                 dbg_cmt("LEB %d", lnum);
724                 er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
725                                          LPROPS_INDEX | LPROPS_TAKEN, 0);
726                 if (!err)
727                         err = er;
728         }
729         return err;
730 }
731 
732 /**
733  * free_idx_lebs - free unused LEBs after commit end.
734  * @c: UBIFS file-system description object
735  *
736  * This function returns %0 on success and a negative error code on failure.
737  */
738 static int free_idx_lebs(struct ubifs_info *c)
739 {
740         int err;
741 
742         err = free_unused_idx_lebs(c);
743         kfree(c->ilebs);
744         c->ilebs = NULL;
745         return err;
746 }
747 
748 /**
749  * ubifs_tnc_start_commit - start TNC commit.
750  * @c: UBIFS file-system description object
751  * @zroot: new index root position is returned here
752  *
753  * This function prepares the list of indexing nodes to commit and lays out
754  * their positions on flash. If there is not enough free space it uses the
755  * in-gap commit method. Returns zero in case of success and a negative error
756  * code in case of failure.
757  */
758 int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot)
759 {
760         int err = 0, cnt;
761 
762         mutex_lock(&c->tnc_mutex);
763         err = dbg_check_tnc(c, 1);
764         if (err)
765                 goto out;
766         cnt = get_znodes_to_commit(c);
767         if (cnt != 0) {
768                 int no_space = 0;
769 
770                 err = alloc_idx_lebs(c, cnt);
771                 if (err == -ENOSPC)
772                         no_space = 1;
773                 else if (err)
774                         goto out_free;
775                 err = layout_commit(c, no_space, cnt);
776                 if (err)
777                         goto out_free;
778                 ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
779                 err = free_unused_idx_lebs(c);
780                 if (err)
781                         goto out;
782         }
783         destroy_old_idx(c);
784         memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch));
785 
786         err = ubifs_save_dirty_idx_lnums(c);
787         if (err)
788                 goto out;
789 
790         spin_lock(&c->space_lock);
791         /*
792          * Although we have not finished committing yet, update size of the
793          * committed index ('c->bi.old_idx_sz') and zero out the index growth
794          * budget. It is OK to do this now, because we've reserved all the
795          * space which is needed to commit the index, and it is save for the
796          * budgeting subsystem to assume the index is already committed,
797          * even though it is not.
798          */
799         ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
800         c->bi.old_idx_sz = c->calc_idx_sz;
801         c->bi.uncommitted_idx = 0;
802         c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
803         spin_unlock(&c->space_lock);
804         mutex_unlock(&c->tnc_mutex);
805 
806         dbg_cmt("number of index LEBs %d", c->lst.idx_lebs);
807         dbg_cmt("size of index %llu", c->calc_idx_sz);
808         return err;
809 
810 out_free:
811         free_idx_lebs(c);
812 out:
813         mutex_unlock(&c->tnc_mutex);
814         return err;
815 }
816 
817 /**
818  * write_index - write index nodes.
819  * @c: UBIFS file-system description object
820  *
821  * This function writes the index nodes whose positions were laid out in the
822  * layout_in_empty_space function.
823  */
824 static int write_index(struct ubifs_info *c)
825 {
826         struct ubifs_idx_node *idx;
827         struct ubifs_znode *znode, *cnext;
828         int i, lnum, offs, len, next_len, buf_len, buf_offs, used;
829         int avail, wlen, err, lnum_pos = 0, blen, nxt_offs;
830 
831         cnext = c->enext;
832         if (!cnext)
833                 return 0;
834 
835         /*
836          * Always write index nodes to the index head so that index nodes and
837          * other types of nodes are never mixed in the same erase block.
838          */
839         lnum = c->ihead_lnum;
840         buf_offs = c->ihead_offs;
841 
842         /* Allocate commit buffer */
843         buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size);
844         used = 0;
845         avail = buf_len;
846 
847         /* Ensure there is enough room for first write */
848         next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
849         if (buf_offs + next_len > c->leb_size) {
850                 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0,
851                                           LPROPS_TAKEN);
852                 if (err)
853                         return err;
854                 lnum = -1;
855         }
856 
857         while (1) {
858                 u8 hash[UBIFS_HASH_ARR_SZ];
859 
860                 cond_resched();
861 
862                 znode = cnext;
863                 idx = c->cbuf + used;
864 
865                 /* Make index node */
866                 idx->ch.node_type = UBIFS_IDX_NODE;
867                 idx->child_cnt = cpu_to_le16(znode->child_cnt);
868                 idx->level = cpu_to_le16(znode->level);
869                 for (i = 0; i < znode->child_cnt; i++) {
870                         struct ubifs_branch *br = ubifs_idx_branch(c, idx, i);
871                         struct ubifs_zbranch *zbr = &znode->zbranch[i];
872 
873                         key_write_idx(c, &zbr->key, &br->key);
874                         br->lnum = cpu_to_le32(zbr->lnum);
875                         br->offs = cpu_to_le32(zbr->offs);
876                         br->len = cpu_to_le32(zbr->len);
877                         ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br));
878                         if (!zbr->lnum || !zbr->len) {
879                                 ubifs_err(c, "bad ref in znode");
880                                 ubifs_dump_znode(c, znode);
881                                 if (zbr->znode)
882                                         ubifs_dump_znode(c, zbr->znode);
883 
884                                 return -EINVAL;
885                         }
886                 }
887                 len = ubifs_idx_node_sz(c, znode->child_cnt);
888                 ubifs_prepare_node(c, idx, len, 0);
889                 ubifs_node_calc_hash(c, idx, hash);
890 
891                 mutex_lock(&c->tnc_mutex);
892 
893                 if (znode->cparent)
894                         ubifs_copy_hash(c, hash,
895                                         znode->cparent->zbranch[znode->ciip].hash);
896 
897                 if (znode->parent) {
898                         if (!ubifs_zn_obsolete(znode))
899                                 ubifs_copy_hash(c, hash,
900                                         znode->parent->zbranch[znode->iip].hash);
901                 } else {
902                         ubifs_copy_hash(c, hash, c->zroot.hash);
903                 }
904 
905                 mutex_unlock(&c->tnc_mutex);
906 
907                 /* Determine the index node position */
908                 if (lnum == -1) {
909                         lnum = c->ilebs[lnum_pos++];
910                         buf_offs = 0;
911                         used = 0;
912                         avail = buf_len;
913                 }
914                 offs = buf_offs + used;
915 
916                 if (lnum != znode->lnum || offs != znode->offs ||
917                     len != znode->len) {
918                         ubifs_err(c, "inconsistent znode posn");
919                         return -EINVAL;
920                 }
921 
922                 /* Grab some stuff from znode while we still can */
923                 cnext = znode->cnext;
924 
925                 ubifs_assert(c, ubifs_zn_dirty(znode));
926                 ubifs_assert(c, ubifs_zn_cow(znode));
927 
928                 /*
929                  * It is important that other threads should see %DIRTY_ZNODE
930                  * flag cleared before %COW_ZNODE. Specifically, it matters in
931                  * the 'dirty_cow_znode()' function. This is the reason for the
932                  * first barrier. Also, we want the bit changes to be seen to
933                  * other threads ASAP, to avoid unnecessary copying, which is
934                  * the reason for the second barrier.
935                  */
936                 clear_bit(DIRTY_ZNODE, &znode->flags);
937                 smp_mb__before_atomic();
938                 clear_bit(COW_ZNODE, &znode->flags);
939                 smp_mb__after_atomic();
940 
941                 /*
942                  * We have marked the znode as clean but have not updated the
943                  * @c->clean_zn_cnt counter. If this znode becomes dirty again
944                  * before 'free_obsolete_znodes()' is called, then
945                  * @c->clean_zn_cnt will be decremented before it gets
946                  * incremented (resulting in 2 decrements for the same znode).
947                  * This means that @c->clean_zn_cnt may become negative for a
948                  * while.
949                  *
950                  * Q: why we cannot increment @c->clean_zn_cnt?
951                  * A: because we do not have the @c->tnc_mutex locked, and the
952                  *    following code would be racy and buggy:
953                  *
954                  *    if (!ubifs_zn_obsolete(znode)) {
955                  *            atomic_long_inc(&c->clean_zn_cnt);
956                  *            atomic_long_inc(&ubifs_clean_zn_cnt);
957                  *    }
958                  *
959                  *    Thus, we just delay the @c->clean_zn_cnt update until we
960                  *    have the mutex locked.
961                  */
962 
963                 /* Do not access znode from this point on */
964 
965                 /* Update buffer positions */
966                 wlen = used + len;
967                 used += ALIGN(len, 8);
968                 avail -= ALIGN(len, 8);
969 
970                 /*
971                  * Calculate the next index node length to see if there is
972                  * enough room for it
973                  */
974                 if (cnext == c->cnext)
975                         next_len = 0;
976                 else
977                         next_len = ubifs_idx_node_sz(c, cnext->child_cnt);
978 
979                 nxt_offs = buf_offs + used + next_len;
980                 if (next_len && nxt_offs <= c->leb_size) {
981                         if (avail > 0)
982                                 continue;
983                         else
984                                 blen = buf_len;
985                 } else {
986                         wlen = ALIGN(wlen, 8);
987                         blen = ALIGN(wlen, c->min_io_size);
988                         ubifs_pad(c, c->cbuf + wlen, blen - wlen);
989                 }
990 
991                 /* The buffer is full or there are no more znodes to do */
992                 err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen);
993                 if (err)
994                         return err;
995                 buf_offs += blen;
996                 if (next_len) {
997                         if (nxt_offs > c->leb_size) {
998                                 err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0,
999                                                           0, LPROPS_TAKEN);
1000                                 if (err)
1001                                         return err;
1002                                 lnum = -1;
1003                         }
1004                         used -= blen;
1005                         if (used < 0)
1006                                 used = 0;
1007                         avail = buf_len - used;
1008                         memmove(c->cbuf, c->cbuf + blen, used);
1009                         continue;
1010                 }
1011                 break;
1012         }
1013 
1014         if (lnum != c->dbg->new_ihead_lnum ||
1015             buf_offs != c->dbg->new_ihead_offs) {
1016                 ubifs_err(c, "inconsistent ihead");
1017                 return -EINVAL;
1018         }
1019 
1020         c->ihead_lnum = lnum;
1021         c->ihead_offs = buf_offs;
1022 
1023         return 0;
1024 }
1025 
1026 /**
1027  * free_obsolete_znodes - free obsolete znodes.
1028  * @c: UBIFS file-system description object
1029  *
1030  * At the end of commit end, obsolete znodes are freed.
1031  */
1032 static void free_obsolete_znodes(struct ubifs_info *c)
1033 {
1034         struct ubifs_znode *znode, *cnext;
1035 
1036         cnext = c->cnext;
1037         do {
1038                 znode = cnext;
1039                 cnext = znode->cnext;
1040                 if (ubifs_zn_obsolete(znode))
1041                         kfree(znode);
1042                 else {
1043                         znode->cnext = NULL;
1044                         atomic_long_inc(&c->clean_zn_cnt);
1045                         atomic_long_inc(&ubifs_clean_zn_cnt);
1046                 }
1047         } while (cnext != c->cnext);
1048 }
1049 
1050 /**
1051  * return_gap_lebs - return LEBs used by the in-gap commit method.
1052  * @c: UBIFS file-system description object
1053  *
1054  * This function clears the "taken" flag for the LEBs which were used by the
1055  * "commit in-the-gaps" method.
1056  */
1057 static int return_gap_lebs(struct ubifs_info *c)
1058 {
1059         int *p, err;
1060 
1061         if (!c->gap_lebs)
1062                 return 0;
1063 
1064         dbg_cmt("");
1065         for (p = c->gap_lebs; *p != -1; p++) {
1066                 err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0,
1067                                           LPROPS_TAKEN, 0);
1068                 if (err)
1069                         return err;
1070         }
1071 
1072         kfree(c->gap_lebs);
1073         c->gap_lebs = NULL;
1074         return 0;
1075 }
1076 
1077 /**
1078  * ubifs_tnc_end_commit - update the TNC for commit end.
1079  * @c: UBIFS file-system description object
1080  *
1081  * Write the dirty znodes.
1082  */
1083 int ubifs_tnc_end_commit(struct ubifs_info *c)
1084 {
1085         int err;
1086 
1087         if (!c->cnext)
1088                 return 0;
1089 
1090         err = return_gap_lebs(c);
1091         if (err)
1092                 return err;
1093 
1094         err = write_index(c);
1095         if (err)
1096                 return err;
1097 
1098         mutex_lock(&c->tnc_mutex);
1099 
1100         dbg_cmt("TNC height is %d", c->zroot.znode->level + 1);
1101 
1102         free_obsolete_znodes(c);
1103 
1104         c->cnext = NULL;
1105         kfree(c->ilebs);
1106         c->ilebs = NULL;
1107 
1108         mutex_unlock(&c->tnc_mutex);
1109 
1110         return 0;
1111 }
1112 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php