1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * inode.c 4 * 5 * PURPOSE 6 * Inode handling routines for the OSTA-UDF(tm) filesystem. 7 * 8 * COPYRIGHT 9 * (C) 1998 Dave Boynton 10 * (C) 1998-2004 Ben Fennema 11 * (C) 1999-2000 Stelias Computing Inc 12 * 13 * HISTORY 14 * 15 * 10/04/98 dgb Added rudimentary directory functions 16 * 10/07/98 Fully working udf_block_map! It works! 17 * 11/25/98 bmap altered to better support extents 18 * 12/06/98 blf partition support in udf_iget, udf_block_map 19 * and udf_read_inode 20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 21 * block boundaries (which is not actually allowed) 22 * 12/20/98 added support for strategy 4096 23 * 03/07/99 rewrote udf_block_map (again) 24 * New funcs, inode_bmap, udf_next_aext 25 * 04/19/99 Support for writing device EA's for major/minor # 26 */ 27 28 #include "udfdecl.h" 29 #include <linux/mm.h> 30 #include <linux/module.h> 31 #include <linux/pagemap.h> 32 #include <linux/writeback.h> 33 #include <linux/slab.h> 34 #include <linux/crc-itu-t.h> 35 #include <linux/mpage.h> 36 #include <linux/uio.h> 37 #include <linux/bio.h> 38 39 #include "udf_i.h" 40 #include "udf_sb.h" 41 42 #define EXTENT_MERGE_SIZE 5 43 44 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 47 48 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 49 FE_PERM_O_DELETE) 50 51 struct udf_map_rq; 52 53 static umode_t udf_convert_permissions(struct fileEntry *); 54 static int udf_update_inode(struct inode *, int); 55 static int udf_sync_inode(struct inode *inode); 56 static int udf_alloc_i_data(struct inode *inode, size_t size); 57 static int inode_getblk(struct inode *inode, struct udf_map_rq *map); 58 static int udf_insert_aext(struct inode *, struct extent_position, 59 struct kernel_lb_addr, uint32_t); 60 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 61 struct kernel_long_ad *, int *); 62 static void udf_prealloc_extents(struct inode *, int, int, 63 struct kernel_long_ad *, int *); 64 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 65 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 66 int, struct extent_position *); 67 static int udf_get_block_wb(struct inode *inode, sector_t block, 68 struct buffer_head *bh_result, int create); 69 70 static void __udf_clear_extent_cache(struct inode *inode) 71 { 72 struct udf_inode_info *iinfo = UDF_I(inode); 73 74 if (iinfo->cached_extent.lstart != -1) { 75 brelse(iinfo->cached_extent.epos.bh); 76 iinfo->cached_extent.lstart = -1; 77 } 78 } 79 80 /* Invalidate extent cache */ 81 static void udf_clear_extent_cache(struct inode *inode) 82 { 83 struct udf_inode_info *iinfo = UDF_I(inode); 84 85 spin_lock(&iinfo->i_extent_cache_lock); 86 __udf_clear_extent_cache(inode); 87 spin_unlock(&iinfo->i_extent_cache_lock); 88 } 89 90 /* Return contents of extent cache */ 91 static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 92 loff_t *lbcount, struct extent_position *pos) 93 { 94 struct udf_inode_info *iinfo = UDF_I(inode); 95 int ret = 0; 96 97 spin_lock(&iinfo->i_extent_cache_lock); 98 if ((iinfo->cached_extent.lstart <= bcount) && 99 (iinfo->cached_extent.lstart != -1)) { 100 /* Cache hit */ 101 *lbcount = iinfo->cached_extent.lstart; 102 memcpy(pos, &iinfo->cached_extent.epos, 103 sizeof(struct extent_position)); 104 if (pos->bh) 105 get_bh(pos->bh); 106 ret = 1; 107 } 108 spin_unlock(&iinfo->i_extent_cache_lock); 109 return ret; 110 } 111 112 /* Add extent to extent cache */ 113 static void udf_update_extent_cache(struct inode *inode, loff_t estart, 114 struct extent_position *pos) 115 { 116 struct udf_inode_info *iinfo = UDF_I(inode); 117 118 spin_lock(&iinfo->i_extent_cache_lock); 119 /* Invalidate previously cached extent */ 120 __udf_clear_extent_cache(inode); 121 if (pos->bh) 122 get_bh(pos->bh); 123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 124 iinfo->cached_extent.lstart = estart; 125 switch (iinfo->i_alloc_type) { 126 case ICBTAG_FLAG_AD_SHORT: 127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 128 break; 129 case ICBTAG_FLAG_AD_LONG: 130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 131 break; 132 } 133 spin_unlock(&iinfo->i_extent_cache_lock); 134 } 135 136 void udf_evict_inode(struct inode *inode) 137 { 138 struct udf_inode_info *iinfo = UDF_I(inode); 139 int want_delete = 0; 140 141 if (!is_bad_inode(inode)) { 142 if (!inode->i_nlink) { 143 want_delete = 1; 144 udf_setsize(inode, 0); 145 udf_update_inode(inode, IS_SYNC(inode)); 146 } 147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 148 inode->i_size != iinfo->i_lenExtents) { 149 udf_warn(inode->i_sb, 150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 151 inode->i_ino, inode->i_mode, 152 (unsigned long long)inode->i_size, 153 (unsigned long long)iinfo->i_lenExtents); 154 } 155 } 156 truncate_inode_pages_final(&inode->i_data); 157 invalidate_inode_buffers(inode); 158 clear_inode(inode); 159 kfree(iinfo->i_data); 160 iinfo->i_data = NULL; 161 udf_clear_extent_cache(inode); 162 if (want_delete) { 163 udf_free_inode(inode); 164 } 165 } 166 167 static void udf_write_failed(struct address_space *mapping, loff_t to) 168 { 169 struct inode *inode = mapping->host; 170 struct udf_inode_info *iinfo = UDF_I(inode); 171 loff_t isize = inode->i_size; 172 173 if (to > isize) { 174 truncate_pagecache(inode, isize); 175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 176 down_write(&iinfo->i_data_sem); 177 udf_clear_extent_cache(inode); 178 udf_truncate_extents(inode); 179 up_write(&iinfo->i_data_sem); 180 } 181 } 182 } 183 184 static int udf_adinicb_writepage(struct folio *folio, 185 struct writeback_control *wbc, void *data) 186 { 187 struct inode *inode = folio->mapping->host; 188 struct udf_inode_info *iinfo = UDF_I(inode); 189 190 BUG_ON(!folio_test_locked(folio)); 191 BUG_ON(folio->index != 0); 192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0, 193 i_size_read(inode)); 194 folio_unlock(folio); 195 mark_inode_dirty(inode); 196 197 return 0; 198 } 199 200 static int udf_writepages(struct address_space *mapping, 201 struct writeback_control *wbc) 202 { 203 struct inode *inode = mapping->host; 204 struct udf_inode_info *iinfo = UDF_I(inode); 205 206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 207 return mpage_writepages(mapping, wbc, udf_get_block_wb); 208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL); 209 } 210 211 static void udf_adinicb_read_folio(struct folio *folio) 212 { 213 struct inode *inode = folio->mapping->host; 214 struct udf_inode_info *iinfo = UDF_I(inode); 215 loff_t isize = i_size_read(inode); 216 217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize); 218 folio_mark_uptodate(folio); 219 } 220 221 static int udf_read_folio(struct file *file, struct folio *folio) 222 { 223 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 224 225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 226 udf_adinicb_read_folio(folio); 227 folio_unlock(folio); 228 return 0; 229 } 230 return mpage_read_folio(folio, udf_get_block); 231 } 232 233 static void udf_readahead(struct readahead_control *rac) 234 { 235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host); 236 237 /* 238 * No readahead needed for in-ICB files and udf_get_block() would get 239 * confused for such file anyway. 240 */ 241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 242 return; 243 244 mpage_readahead(rac, udf_get_block); 245 } 246 247 static int udf_write_begin(struct file *file, struct address_space *mapping, 248 loff_t pos, unsigned len, 249 struct page **pagep, void **fsdata) 250 { 251 struct udf_inode_info *iinfo = UDF_I(file_inode(file)); 252 struct folio *folio; 253 int ret; 254 255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 256 ret = block_write_begin(mapping, pos, len, pagep, 257 udf_get_block); 258 if (unlikely(ret)) 259 udf_write_failed(mapping, pos + len); 260 return ret; 261 } 262 if (WARN_ON_ONCE(pos >= PAGE_SIZE)) 263 return -EIO; 264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN, 265 mapping_gfp_mask(mapping)); 266 if (IS_ERR(folio)) 267 return PTR_ERR(folio); 268 *pagep = &folio->page; 269 if (!folio_test_uptodate(folio)) 270 udf_adinicb_read_folio(folio); 271 return 0; 272 } 273 274 static int udf_write_end(struct file *file, struct address_space *mapping, 275 loff_t pos, unsigned len, unsigned copied, 276 struct page *page, void *fsdata) 277 { 278 struct inode *inode = file_inode(file); 279 struct folio *folio; 280 loff_t last_pos; 281 282 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) 283 return generic_write_end(file, mapping, pos, len, copied, page, 284 fsdata); 285 folio = page_folio(page); 286 last_pos = pos + copied; 287 if (last_pos > inode->i_size) 288 i_size_write(inode, last_pos); 289 folio_mark_dirty(folio); 290 folio_unlock(folio); 291 folio_put(folio); 292 293 return copied; 294 } 295 296 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 297 { 298 struct file *file = iocb->ki_filp; 299 struct address_space *mapping = file->f_mapping; 300 struct inode *inode = mapping->host; 301 size_t count = iov_iter_count(iter); 302 ssize_t ret; 303 304 /* Fallback to buffered IO for in-ICB files */ 305 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 306 return 0; 307 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 308 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 309 udf_write_failed(mapping, iocb->ki_pos + count); 310 return ret; 311 } 312 313 static sector_t udf_bmap(struct address_space *mapping, sector_t block) 314 { 315 struct udf_inode_info *iinfo = UDF_I(mapping->host); 316 317 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 318 return -EINVAL; 319 return generic_block_bmap(mapping, block, udf_get_block); 320 } 321 322 const struct address_space_operations udf_aops = { 323 .dirty_folio = block_dirty_folio, 324 .invalidate_folio = block_invalidate_folio, 325 .read_folio = udf_read_folio, 326 .readahead = udf_readahead, 327 .writepages = udf_writepages, 328 .write_begin = udf_write_begin, 329 .write_end = udf_write_end, 330 .direct_IO = udf_direct_IO, 331 .bmap = udf_bmap, 332 .migrate_folio = buffer_migrate_folio, 333 }; 334 335 /* 336 * Expand file stored in ICB to a normal one-block-file 337 * 338 * This function requires i_mutex held 339 */ 340 int udf_expand_file_adinicb(struct inode *inode) 341 { 342 struct folio *folio; 343 struct udf_inode_info *iinfo = UDF_I(inode); 344 int err; 345 346 WARN_ON_ONCE(!inode_is_locked(inode)); 347 if (!iinfo->i_lenAlloc) { 348 down_write(&iinfo->i_data_sem); 349 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 351 else 352 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 353 up_write(&iinfo->i_data_sem); 354 mark_inode_dirty(inode); 355 return 0; 356 } 357 358 folio = __filemap_get_folio(inode->i_mapping, 0, 359 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL); 360 if (IS_ERR(folio)) 361 return PTR_ERR(folio); 362 363 if (!folio_test_uptodate(folio)) 364 udf_adinicb_read_folio(folio); 365 down_write(&iinfo->i_data_sem); 366 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 367 iinfo->i_lenAlloc); 368 iinfo->i_lenAlloc = 0; 369 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 371 else 372 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 373 folio_mark_dirty(folio); 374 folio_unlock(folio); 375 up_write(&iinfo->i_data_sem); 376 err = filemap_fdatawrite(inode->i_mapping); 377 if (err) { 378 /* Restore everything back so that we don't lose data... */ 379 folio_lock(folio); 380 down_write(&iinfo->i_data_sem); 381 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr, 382 folio, 0, inode->i_size); 383 folio_unlock(folio); 384 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 385 iinfo->i_lenAlloc = inode->i_size; 386 up_write(&iinfo->i_data_sem); 387 } 388 folio_put(folio); 389 mark_inode_dirty(inode); 390 391 return err; 392 } 393 394 #define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */ 395 #define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */ 396 397 #define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */ 398 #define UDF_BLK_NEW 0x02 /* Block was freshly allocated */ 399 400 struct udf_map_rq { 401 sector_t lblk; 402 udf_pblk_t pblk; 403 int iflags; /* UDF_MAP_ flags determining behavior */ 404 int oflags; /* UDF_BLK_ flags reporting results */ 405 }; 406 407 static int udf_map_block(struct inode *inode, struct udf_map_rq *map) 408 { 409 int err; 410 struct udf_inode_info *iinfo = UDF_I(inode); 411 412 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)) 413 return -EFSCORRUPTED; 414 415 map->oflags = 0; 416 if (!(map->iflags & UDF_MAP_CREATE)) { 417 struct kernel_lb_addr eloc; 418 uint32_t elen; 419 sector_t offset; 420 struct extent_position epos = {}; 421 422 down_read(&iinfo->i_data_sem); 423 if (inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset) 424 == (EXT_RECORDED_ALLOCATED >> 30)) { 425 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, 426 offset); 427 map->oflags |= UDF_BLK_MAPPED; 428 } 429 up_read(&iinfo->i_data_sem); 430 brelse(epos.bh); 431 432 return 0; 433 } 434 435 down_write(&iinfo->i_data_sem); 436 /* 437 * Block beyond EOF and prealloc extents? Just discard preallocation 438 * as it is not useful and complicates things. 439 */ 440 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents) 441 udf_discard_prealloc(inode); 442 udf_clear_extent_cache(inode); 443 err = inode_getblk(inode, map); 444 up_write(&iinfo->i_data_sem); 445 return err; 446 } 447 448 static int __udf_get_block(struct inode *inode, sector_t block, 449 struct buffer_head *bh_result, int flags) 450 { 451 int err; 452 struct udf_map_rq map = { 453 .lblk = block, 454 .iflags = flags, 455 }; 456 457 err = udf_map_block(inode, &map); 458 if (err < 0) 459 return err; 460 if (map.oflags & UDF_BLK_MAPPED) { 461 map_bh(bh_result, inode->i_sb, map.pblk); 462 if (map.oflags & UDF_BLK_NEW) 463 set_buffer_new(bh_result); 464 } 465 return 0; 466 } 467 468 int udf_get_block(struct inode *inode, sector_t block, 469 struct buffer_head *bh_result, int create) 470 { 471 int flags = create ? UDF_MAP_CREATE : 0; 472 473 /* 474 * We preallocate blocks only for regular files. It also makes sense 475 * for directories but there's a problem when to drop the 476 * preallocation. We might use some delayed work for that but I feel 477 * it's overengineering for a filesystem like UDF. 478 */ 479 if (!S_ISREG(inode->i_mode)) 480 flags |= UDF_MAP_NOPREALLOC; 481 return __udf_get_block(inode, block, bh_result, flags); 482 } 483 484 /* 485 * We shouldn't be allocating blocks on page writeback since we allocate them 486 * on page fault. We can spot dirty buffers without allocated blocks though 487 * when truncate expands file. These however don't have valid data so we can 488 * safely ignore them. So never allocate blocks from page writeback. 489 */ 490 static int udf_get_block_wb(struct inode *inode, sector_t block, 491 struct buffer_head *bh_result, int create) 492 { 493 return __udf_get_block(inode, block, bh_result, 0); 494 } 495 496 /* Extend the file with new blocks totaling 'new_block_bytes', 497 * return the number of extents added 498 */ 499 static int udf_do_extend_file(struct inode *inode, 500 struct extent_position *last_pos, 501 struct kernel_long_ad *last_ext, 502 loff_t new_block_bytes) 503 { 504 uint32_t add; 505 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 506 struct super_block *sb = inode->i_sb; 507 struct udf_inode_info *iinfo; 508 int err; 509 510 /* The previous extent is fake and we should not extend by anything 511 * - there's nothing to do... */ 512 if (!new_block_bytes && fake) 513 return 0; 514 515 iinfo = UDF_I(inode); 516 /* Round the last extent up to a multiple of block size */ 517 if (last_ext->extLength & (sb->s_blocksize - 1)) { 518 last_ext->extLength = 519 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 520 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 521 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 522 iinfo->i_lenExtents = 523 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 524 ~(sb->s_blocksize - 1); 525 } 526 527 add = 0; 528 /* Can we merge with the previous extent? */ 529 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 530 EXT_NOT_RECORDED_NOT_ALLOCATED) { 531 add = (1 << 30) - sb->s_blocksize - 532 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 533 if (add > new_block_bytes) 534 add = new_block_bytes; 535 new_block_bytes -= add; 536 last_ext->extLength += add; 537 } 538 539 if (fake) { 540 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 541 last_ext->extLength, 1); 542 if (err < 0) 543 goto out_err; 544 count++; 545 } else { 546 struct kernel_lb_addr tmploc; 547 uint32_t tmplen; 548 549 udf_write_aext(inode, last_pos, &last_ext->extLocation, 550 last_ext->extLength, 1); 551 552 /* 553 * We've rewritten the last extent. If we are going to add 554 * more extents, we may need to enter possible following 555 * empty indirect extent. 556 */ 557 if (new_block_bytes) 558 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 559 } 560 iinfo->i_lenExtents += add; 561 562 /* Managed to do everything necessary? */ 563 if (!new_block_bytes) 564 goto out; 565 566 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 567 last_ext->extLocation.logicalBlockNum = 0; 568 last_ext->extLocation.partitionReferenceNum = 0; 569 add = (1 << 30) - sb->s_blocksize; 570 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 571 572 /* Create enough extents to cover the whole hole */ 573 while (new_block_bytes > add) { 574 new_block_bytes -= add; 575 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 576 last_ext->extLength, 1); 577 if (err) 578 goto out_err; 579 iinfo->i_lenExtents += add; 580 count++; 581 } 582 if (new_block_bytes) { 583 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 584 new_block_bytes; 585 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 586 last_ext->extLength, 1); 587 if (err) 588 goto out_err; 589 iinfo->i_lenExtents += new_block_bytes; 590 count++; 591 } 592 593 out: 594 /* last_pos should point to the last written extent... */ 595 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 596 last_pos->offset -= sizeof(struct short_ad); 597 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 598 last_pos->offset -= sizeof(struct long_ad); 599 else 600 return -EIO; 601 602 return count; 603 out_err: 604 /* Remove extents we've created so far */ 605 udf_clear_extent_cache(inode); 606 udf_truncate_extents(inode); 607 return err; 608 } 609 610 /* Extend the final block of the file to final_block_len bytes */ 611 static void udf_do_extend_final_block(struct inode *inode, 612 struct extent_position *last_pos, 613 struct kernel_long_ad *last_ext, 614 uint32_t new_elen) 615 { 616 uint32_t added_bytes; 617 618 /* 619 * Extent already large enough? It may be already rounded up to block 620 * size... 621 */ 622 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 623 return; 624 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 625 last_ext->extLength += added_bytes; 626 UDF_I(inode)->i_lenExtents += added_bytes; 627 628 udf_write_aext(inode, last_pos, &last_ext->extLocation, 629 last_ext->extLength, 1); 630 } 631 632 static int udf_extend_file(struct inode *inode, loff_t newsize) 633 { 634 635 struct extent_position epos; 636 struct kernel_lb_addr eloc; 637 uint32_t elen; 638 int8_t etype; 639 struct super_block *sb = inode->i_sb; 640 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 641 loff_t new_elen; 642 int adsize; 643 struct udf_inode_info *iinfo = UDF_I(inode); 644 struct kernel_long_ad extent; 645 int err = 0; 646 bool within_last_ext; 647 648 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 649 adsize = sizeof(struct short_ad); 650 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 651 adsize = sizeof(struct long_ad); 652 else 653 BUG(); 654 655 down_write(&iinfo->i_data_sem); 656 /* 657 * When creating hole in file, just don't bother with preserving 658 * preallocation. It likely won't be very useful anyway. 659 */ 660 udf_discard_prealloc(inode); 661 662 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 663 within_last_ext = (etype != -1); 664 /* We don't expect extents past EOF... */ 665 WARN_ON_ONCE(within_last_ext && 666 elen > ((loff_t)offset + 1) << inode->i_blkbits); 667 668 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 669 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 670 /* File has no extents at all or has empty last 671 * indirect extent! Create a fake extent... */ 672 extent.extLocation.logicalBlockNum = 0; 673 extent.extLocation.partitionReferenceNum = 0; 674 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 675 } else { 676 epos.offset -= adsize; 677 etype = udf_next_aext(inode, &epos, &extent.extLocation, 678 &extent.extLength, 0); 679 extent.extLength |= etype << 30; 680 } 681 682 new_elen = ((loff_t)offset << inode->i_blkbits) | 683 (newsize & (sb->s_blocksize - 1)); 684 685 /* File has extent covering the new size (could happen when extending 686 * inside a block)? 687 */ 688 if (within_last_ext) { 689 /* Extending file within the last file block */ 690 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 691 } else { 692 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 693 } 694 695 if (err < 0) 696 goto out; 697 err = 0; 698 out: 699 brelse(epos.bh); 700 up_write(&iinfo->i_data_sem); 701 return err; 702 } 703 704 static int inode_getblk(struct inode *inode, struct udf_map_rq *map) 705 { 706 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 707 struct extent_position prev_epos, cur_epos, next_epos; 708 int count = 0, startnum = 0, endnum = 0; 709 uint32_t elen = 0, tmpelen; 710 struct kernel_lb_addr eloc, tmpeloc; 711 int c = 1; 712 loff_t lbcount = 0, b_off = 0; 713 udf_pblk_t newblocknum; 714 sector_t offset = 0; 715 int8_t etype; 716 struct udf_inode_info *iinfo = UDF_I(inode); 717 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 718 int lastblock = 0; 719 bool isBeyondEOF; 720 int ret = 0; 721 722 prev_epos.offset = udf_file_entry_alloc_offset(inode); 723 prev_epos.block = iinfo->i_location; 724 prev_epos.bh = NULL; 725 cur_epos = next_epos = prev_epos; 726 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits; 727 728 /* find the extent which contains the block we are looking for. 729 alternate between laarr[0] and laarr[1] for locations of the 730 current extent, and the previous extent */ 731 do { 732 if (prev_epos.bh != cur_epos.bh) { 733 brelse(prev_epos.bh); 734 get_bh(cur_epos.bh); 735 prev_epos.bh = cur_epos.bh; 736 } 737 if (cur_epos.bh != next_epos.bh) { 738 brelse(cur_epos.bh); 739 get_bh(next_epos.bh); 740 cur_epos.bh = next_epos.bh; 741 } 742 743 lbcount += elen; 744 745 prev_epos.block = cur_epos.block; 746 cur_epos.block = next_epos.block; 747 748 prev_epos.offset = cur_epos.offset; 749 cur_epos.offset = next_epos.offset; 750 751 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 752 if (etype == -1) 753 break; 754 755 c = !c; 756 757 laarr[c].extLength = (etype << 30) | elen; 758 laarr[c].extLocation = eloc; 759 760 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 761 pgoal = eloc.logicalBlockNum + 762 ((elen + inode->i_sb->s_blocksize - 1) >> 763 inode->i_sb->s_blocksize_bits); 764 765 count++; 766 } while (lbcount + elen <= b_off); 767 768 b_off -= lbcount; 769 offset = b_off >> inode->i_sb->s_blocksize_bits; 770 /* 771 * Move prev_epos and cur_epos into indirect extent if we are at 772 * the pointer to it 773 */ 774 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 775 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 776 777 /* if the extent is allocated and recorded, return the block 778 if the extent is not a multiple of the blocksize, round up */ 779 780 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 781 if (elen & (inode->i_sb->s_blocksize - 1)) { 782 elen = EXT_RECORDED_ALLOCATED | 783 ((elen + inode->i_sb->s_blocksize - 1) & 784 ~(inode->i_sb->s_blocksize - 1)); 785 iinfo->i_lenExtents = 786 ALIGN(iinfo->i_lenExtents, 787 inode->i_sb->s_blocksize); 788 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 789 } 790 map->oflags = UDF_BLK_MAPPED; 791 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 792 goto out_free; 793 } 794 795 /* Are we beyond EOF and preallocated extent? */ 796 if (etype == -1) { 797 loff_t hole_len; 798 799 isBeyondEOF = true; 800 if (count) { 801 if (c) 802 laarr[0] = laarr[1]; 803 startnum = 1; 804 } else { 805 /* Create a fake extent when there's not one */ 806 memset(&laarr[0].extLocation, 0x00, 807 sizeof(struct kernel_lb_addr)); 808 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 809 /* Will udf_do_extend_file() create real extent from 810 a fake one? */ 811 startnum = (offset > 0); 812 } 813 /* Create extents for the hole between EOF and offset */ 814 hole_len = (loff_t)offset << inode->i_blkbits; 815 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 816 if (ret < 0) 817 goto out_free; 818 c = 0; 819 offset = 0; 820 count += ret; 821 /* 822 * Is there any real extent? - otherwise we overwrite the fake 823 * one... 824 */ 825 if (count) 826 c = !c; 827 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 828 inode->i_sb->s_blocksize; 829 memset(&laarr[c].extLocation, 0x00, 830 sizeof(struct kernel_lb_addr)); 831 count++; 832 endnum = c + 1; 833 lastblock = 1; 834 } else { 835 isBeyondEOF = false; 836 endnum = startnum = ((count > 2) ? 2 : count); 837 838 /* if the current extent is in position 0, 839 swap it with the previous */ 840 if (!c && count != 1) { 841 laarr[2] = laarr[0]; 842 laarr[0] = laarr[1]; 843 laarr[1] = laarr[2]; 844 c = 1; 845 } 846 847 /* if the current block is located in an extent, 848 read the next extent */ 849 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 850 if (etype != -1) { 851 laarr[c + 1].extLength = (etype << 30) | elen; 852 laarr[c + 1].extLocation = eloc; 853 count++; 854 startnum++; 855 endnum++; 856 } else 857 lastblock = 1; 858 } 859 860 /* if the current extent is not recorded but allocated, get the 861 * block in the extent corresponding to the requested block */ 862 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 863 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 864 else { /* otherwise, allocate a new block */ 865 if (iinfo->i_next_alloc_block == map->lblk) 866 goal = iinfo->i_next_alloc_goal; 867 868 if (!goal) { 869 if (!(goal = pgoal)) /* XXX: what was intended here? */ 870 goal = iinfo->i_location.logicalBlockNum + 1; 871 } 872 873 newblocknum = udf_new_block(inode->i_sb, inode, 874 iinfo->i_location.partitionReferenceNum, 875 goal, &ret); 876 if (!newblocknum) 877 goto out_free; 878 if (isBeyondEOF) 879 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 880 } 881 882 /* if the extent the requsted block is located in contains multiple 883 * blocks, split the extent into at most three extents. blocks prior 884 * to requested block, requested block, and blocks after requested 885 * block */ 886 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 887 888 if (!(map->iflags & UDF_MAP_NOPREALLOC)) 889 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 890 891 /* merge any continuous blocks in laarr */ 892 udf_merge_extents(inode, laarr, &endnum); 893 894 /* write back the new extents, inserting new extents if the new number 895 * of extents is greater than the old number, and deleting extents if 896 * the new number of extents is less than the old number */ 897 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 898 if (ret < 0) 899 goto out_free; 900 901 map->pblk = udf_get_pblock(inode->i_sb, newblocknum, 902 iinfo->i_location.partitionReferenceNum, 0); 903 if (!map->pblk) { 904 ret = -EFSCORRUPTED; 905 goto out_free; 906 } 907 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED; 908 iinfo->i_next_alloc_block = map->lblk + 1; 909 iinfo->i_next_alloc_goal = newblocknum + 1; 910 inode_set_ctime_current(inode); 911 912 if (IS_SYNC(inode)) 913 udf_sync_inode(inode); 914 else 915 mark_inode_dirty(inode); 916 ret = 0; 917 out_free: 918 brelse(prev_epos.bh); 919 brelse(cur_epos.bh); 920 brelse(next_epos.bh); 921 return ret; 922 } 923 924 static void udf_split_extents(struct inode *inode, int *c, int offset, 925 udf_pblk_t newblocknum, 926 struct kernel_long_ad *laarr, int *endnum) 927 { 928 unsigned long blocksize = inode->i_sb->s_blocksize; 929 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 930 931 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 932 (laarr[*c].extLength >> 30) == 933 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 934 int curr = *c; 935 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 936 blocksize - 1) >> blocksize_bits; 937 int8_t etype = (laarr[curr].extLength >> 30); 938 939 if (blen == 1) 940 ; 941 else if (!offset || blen == offset + 1) { 942 laarr[curr + 2] = laarr[curr + 1]; 943 laarr[curr + 1] = laarr[curr]; 944 } else { 945 laarr[curr + 3] = laarr[curr + 1]; 946 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 947 } 948 949 if (offset) { 950 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 951 udf_free_blocks(inode->i_sb, inode, 952 &laarr[curr].extLocation, 953 0, offset); 954 laarr[curr].extLength = 955 EXT_NOT_RECORDED_NOT_ALLOCATED | 956 (offset << blocksize_bits); 957 laarr[curr].extLocation.logicalBlockNum = 0; 958 laarr[curr].extLocation. 959 partitionReferenceNum = 0; 960 } else 961 laarr[curr].extLength = (etype << 30) | 962 (offset << blocksize_bits); 963 curr++; 964 (*c)++; 965 (*endnum)++; 966 } 967 968 laarr[curr].extLocation.logicalBlockNum = newblocknum; 969 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 970 laarr[curr].extLocation.partitionReferenceNum = 971 UDF_I(inode)->i_location.partitionReferenceNum; 972 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 973 blocksize; 974 curr++; 975 976 if (blen != offset + 1) { 977 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 978 laarr[curr].extLocation.logicalBlockNum += 979 offset + 1; 980 laarr[curr].extLength = (etype << 30) | 981 ((blen - (offset + 1)) << blocksize_bits); 982 curr++; 983 (*endnum)++; 984 } 985 } 986 } 987 988 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 989 struct kernel_long_ad *laarr, 990 int *endnum) 991 { 992 int start, length = 0, currlength = 0, i; 993 994 if (*endnum >= (c + 1)) { 995 if (!lastblock) 996 return; 997 else 998 start = c; 999 } else { 1000 if ((laarr[c + 1].extLength >> 30) == 1001 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1002 start = c + 1; 1003 length = currlength = 1004 (((laarr[c + 1].extLength & 1005 UDF_EXTENT_LENGTH_MASK) + 1006 inode->i_sb->s_blocksize - 1) >> 1007 inode->i_sb->s_blocksize_bits); 1008 } else 1009 start = c; 1010 } 1011 1012 for (i = start + 1; i <= *endnum; i++) { 1013 if (i == *endnum) { 1014 if (lastblock) 1015 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1016 } else if ((laarr[i].extLength >> 30) == 1017 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1018 length += (((laarr[i].extLength & 1019 UDF_EXTENT_LENGTH_MASK) + 1020 inode->i_sb->s_blocksize - 1) >> 1021 inode->i_sb->s_blocksize_bits); 1022 } else 1023 break; 1024 } 1025 1026 if (length) { 1027 int next = laarr[start].extLocation.logicalBlockNum + 1028 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1029 inode->i_sb->s_blocksize - 1) >> 1030 inode->i_sb->s_blocksize_bits); 1031 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1032 laarr[start].extLocation.partitionReferenceNum, 1033 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1034 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1035 currlength); 1036 if (numalloc) { 1037 if (start == (c + 1)) 1038 laarr[start].extLength += 1039 (numalloc << 1040 inode->i_sb->s_blocksize_bits); 1041 else { 1042 memmove(&laarr[c + 2], &laarr[c + 1], 1043 sizeof(struct long_ad) * (*endnum - (c + 1))); 1044 (*endnum)++; 1045 laarr[c + 1].extLocation.logicalBlockNum = next; 1046 laarr[c + 1].extLocation.partitionReferenceNum = 1047 laarr[c].extLocation. 1048 partitionReferenceNum; 1049 laarr[c + 1].extLength = 1050 EXT_NOT_RECORDED_ALLOCATED | 1051 (numalloc << 1052 inode->i_sb->s_blocksize_bits); 1053 start = c + 1; 1054 } 1055 1056 for (i = start + 1; numalloc && i < *endnum; i++) { 1057 int elen = ((laarr[i].extLength & 1058 UDF_EXTENT_LENGTH_MASK) + 1059 inode->i_sb->s_blocksize - 1) >> 1060 inode->i_sb->s_blocksize_bits; 1061 1062 if (elen > numalloc) { 1063 laarr[i].extLength -= 1064 (numalloc << 1065 inode->i_sb->s_blocksize_bits); 1066 numalloc = 0; 1067 } else { 1068 numalloc -= elen; 1069 if (*endnum > (i + 1)) 1070 memmove(&laarr[i], 1071 &laarr[i + 1], 1072 sizeof(struct long_ad) * 1073 (*endnum - (i + 1))); 1074 i--; 1075 (*endnum)--; 1076 } 1077 } 1078 UDF_I(inode)->i_lenExtents += 1079 numalloc << inode->i_sb->s_blocksize_bits; 1080 } 1081 } 1082 } 1083 1084 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1085 int *endnum) 1086 { 1087 int i; 1088 unsigned long blocksize = inode->i_sb->s_blocksize; 1089 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1090 1091 for (i = 0; i < (*endnum - 1); i++) { 1092 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1093 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1094 1095 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1096 (((li->extLength >> 30) == 1097 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1098 ((lip1->extLocation.logicalBlockNum - 1099 li->extLocation.logicalBlockNum) == 1100 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1101 blocksize - 1) >> blocksize_bits)))) { 1102 1103 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1104 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1105 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1106 li->extLength = lip1->extLength + 1107 (((li->extLength & 1108 UDF_EXTENT_LENGTH_MASK) + 1109 blocksize - 1) & ~(blocksize - 1)); 1110 if (*endnum > (i + 2)) 1111 memmove(&laarr[i + 1], &laarr[i + 2], 1112 sizeof(struct long_ad) * 1113 (*endnum - (i + 2))); 1114 i--; 1115 (*endnum)--; 1116 } 1117 } else if (((li->extLength >> 30) == 1118 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1119 ((lip1->extLength >> 30) == 1120 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1121 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1122 ((li->extLength & 1123 UDF_EXTENT_LENGTH_MASK) + 1124 blocksize - 1) >> blocksize_bits); 1125 li->extLocation.logicalBlockNum = 0; 1126 li->extLocation.partitionReferenceNum = 0; 1127 1128 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1129 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1130 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1131 lip1->extLength = (lip1->extLength - 1132 (li->extLength & 1133 UDF_EXTENT_LENGTH_MASK) + 1134 UDF_EXTENT_LENGTH_MASK) & 1135 ~(blocksize - 1); 1136 li->extLength = (li->extLength & 1137 UDF_EXTENT_FLAG_MASK) + 1138 (UDF_EXTENT_LENGTH_MASK + 1) - 1139 blocksize; 1140 } else { 1141 li->extLength = lip1->extLength + 1142 (((li->extLength & 1143 UDF_EXTENT_LENGTH_MASK) + 1144 blocksize - 1) & ~(blocksize - 1)); 1145 if (*endnum > (i + 2)) 1146 memmove(&laarr[i + 1], &laarr[i + 2], 1147 sizeof(struct long_ad) * 1148 (*endnum - (i + 2))); 1149 i--; 1150 (*endnum)--; 1151 } 1152 } else if ((li->extLength >> 30) == 1153 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1154 udf_free_blocks(inode->i_sb, inode, 1155 &li->extLocation, 0, 1156 ((li->extLength & 1157 UDF_EXTENT_LENGTH_MASK) + 1158 blocksize - 1) >> blocksize_bits); 1159 li->extLocation.logicalBlockNum = 0; 1160 li->extLocation.partitionReferenceNum = 0; 1161 li->extLength = (li->extLength & 1162 UDF_EXTENT_LENGTH_MASK) | 1163 EXT_NOT_RECORDED_NOT_ALLOCATED; 1164 } 1165 } 1166 } 1167 1168 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1169 int startnum, int endnum, 1170 struct extent_position *epos) 1171 { 1172 int start = 0, i; 1173 struct kernel_lb_addr tmploc; 1174 uint32_t tmplen; 1175 int err; 1176 1177 if (startnum > endnum) { 1178 for (i = 0; i < (startnum - endnum); i++) 1179 udf_delete_aext(inode, *epos); 1180 } else if (startnum < endnum) { 1181 for (i = 0; i < (endnum - startnum); i++) { 1182 err = udf_insert_aext(inode, *epos, 1183 laarr[i].extLocation, 1184 laarr[i].extLength); 1185 /* 1186 * If we fail here, we are likely corrupting the extent 1187 * list and leaking blocks. At least stop early to 1188 * limit the damage. 1189 */ 1190 if (err < 0) 1191 return err; 1192 udf_next_aext(inode, epos, &laarr[i].extLocation, 1193 &laarr[i].extLength, 1); 1194 start++; 1195 } 1196 } 1197 1198 for (i = start; i < endnum; i++) { 1199 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1200 udf_write_aext(inode, epos, &laarr[i].extLocation, 1201 laarr[i].extLength, 1); 1202 } 1203 return 0; 1204 } 1205 1206 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1207 int create, int *err) 1208 { 1209 struct buffer_head *bh = NULL; 1210 struct udf_map_rq map = { 1211 .lblk = block, 1212 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0), 1213 }; 1214 1215 *err = udf_map_block(inode, &map); 1216 if (*err || !(map.oflags & UDF_BLK_MAPPED)) 1217 return NULL; 1218 1219 bh = sb_getblk(inode->i_sb, map.pblk); 1220 if (!bh) { 1221 *err = -ENOMEM; 1222 return NULL; 1223 } 1224 if (map.oflags & UDF_BLK_NEW) { 1225 lock_buffer(bh); 1226 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 1227 set_buffer_uptodate(bh); 1228 unlock_buffer(bh); 1229 mark_buffer_dirty_inode(bh, inode); 1230 return bh; 1231 } 1232 1233 if (bh_read(bh, 0) >= 0) 1234 return bh; 1235 1236 brelse(bh); 1237 *err = -EIO; 1238 return NULL; 1239 } 1240 1241 int udf_setsize(struct inode *inode, loff_t newsize) 1242 { 1243 int err = 0; 1244 struct udf_inode_info *iinfo; 1245 unsigned int bsize = i_blocksize(inode); 1246 1247 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1248 S_ISLNK(inode->i_mode))) 1249 return -EINVAL; 1250 1251 iinfo = UDF_I(inode); 1252 if (newsize > inode->i_size) { 1253 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1254 if (bsize >= 1255 (udf_file_entry_alloc_offset(inode) + newsize)) { 1256 down_write(&iinfo->i_data_sem); 1257 iinfo->i_lenAlloc = newsize; 1258 up_write(&iinfo->i_data_sem); 1259 goto set_size; 1260 } 1261 err = udf_expand_file_adinicb(inode); 1262 if (err) 1263 return err; 1264 } 1265 err = udf_extend_file(inode, newsize); 1266 if (err) 1267 return err; 1268 set_size: 1269 truncate_setsize(inode, newsize); 1270 } else { 1271 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1272 down_write(&iinfo->i_data_sem); 1273 udf_clear_extent_cache(inode); 1274 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1275 0x00, bsize - newsize - 1276 udf_file_entry_alloc_offset(inode)); 1277 iinfo->i_lenAlloc = newsize; 1278 truncate_setsize(inode, newsize); 1279 up_write(&iinfo->i_data_sem); 1280 goto update_time; 1281 } 1282 err = block_truncate_page(inode->i_mapping, newsize, 1283 udf_get_block); 1284 if (err) 1285 return err; 1286 truncate_setsize(inode, newsize); 1287 down_write(&iinfo->i_data_sem); 1288 udf_clear_extent_cache(inode); 1289 err = udf_truncate_extents(inode); 1290 up_write(&iinfo->i_data_sem); 1291 if (err) 1292 return err; 1293 } 1294 update_time: 1295 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1296 if (IS_SYNC(inode)) 1297 udf_sync_inode(inode); 1298 else 1299 mark_inode_dirty(inode); 1300 return err; 1301 } 1302 1303 /* 1304 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1305 * arbitrary - just that we hopefully don't limit any real use of rewritten 1306 * inode on write-once media but avoid looping for too long on corrupted media. 1307 */ 1308 #define UDF_MAX_ICB_NESTING 1024 1309 1310 static int udf_read_inode(struct inode *inode, bool hidden_inode) 1311 { 1312 struct buffer_head *bh = NULL; 1313 struct fileEntry *fe; 1314 struct extendedFileEntry *efe; 1315 uint16_t ident; 1316 struct udf_inode_info *iinfo = UDF_I(inode); 1317 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1318 struct kernel_lb_addr *iloc = &iinfo->i_location; 1319 unsigned int link_count; 1320 unsigned int indirections = 0; 1321 int bs = inode->i_sb->s_blocksize; 1322 int ret = -EIO; 1323 uint32_t uid, gid; 1324 struct timespec64 ts; 1325 1326 reread: 1327 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1328 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1329 iloc->partitionReferenceNum, sbi->s_partitions); 1330 return -EIO; 1331 } 1332 1333 if (iloc->logicalBlockNum >= 1334 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1335 udf_debug("block=%u, partition=%u out of range\n", 1336 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1337 return -EIO; 1338 } 1339 1340 /* 1341 * Set defaults, but the inode is still incomplete! 1342 * Note: get_new_inode() sets the following on a new inode: 1343 * i_sb = sb 1344 * i_no = ino 1345 * i_flags = sb->s_flags 1346 * i_state = 0 1347 * clean_inode(): zero fills and sets 1348 * i_count = 1 1349 * i_nlink = 1 1350 * i_op = NULL; 1351 */ 1352 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1353 if (!bh) { 1354 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1355 return -EIO; 1356 } 1357 1358 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1359 ident != TAG_IDENT_USE) { 1360 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1361 inode->i_ino, ident); 1362 goto out; 1363 } 1364 1365 fe = (struct fileEntry *)bh->b_data; 1366 efe = (struct extendedFileEntry *)bh->b_data; 1367 1368 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1369 struct buffer_head *ibh; 1370 1371 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1372 if (ident == TAG_IDENT_IE && ibh) { 1373 struct kernel_lb_addr loc; 1374 struct indirectEntry *ie; 1375 1376 ie = (struct indirectEntry *)ibh->b_data; 1377 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1378 1379 if (ie->indirectICB.extLength) { 1380 brelse(ibh); 1381 memcpy(&iinfo->i_location, &loc, 1382 sizeof(struct kernel_lb_addr)); 1383 if (++indirections > UDF_MAX_ICB_NESTING) { 1384 udf_err(inode->i_sb, 1385 "too many ICBs in ICB hierarchy" 1386 " (max %d supported)\n", 1387 UDF_MAX_ICB_NESTING); 1388 goto out; 1389 } 1390 brelse(bh); 1391 goto reread; 1392 } 1393 } 1394 brelse(ibh); 1395 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1396 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1397 le16_to_cpu(fe->icbTag.strategyType)); 1398 goto out; 1399 } 1400 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1401 iinfo->i_strat4096 = 0; 1402 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1403 iinfo->i_strat4096 = 1; 1404 1405 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1406 ICBTAG_FLAG_AD_MASK; 1407 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1408 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1409 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1410 ret = -EIO; 1411 goto out; 1412 } 1413 iinfo->i_hidden = hidden_inode; 1414 iinfo->i_unique = 0; 1415 iinfo->i_lenEAttr = 0; 1416 iinfo->i_lenExtents = 0; 1417 iinfo->i_lenAlloc = 0; 1418 iinfo->i_next_alloc_block = 0; 1419 iinfo->i_next_alloc_goal = 0; 1420 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1421 iinfo->i_efe = 1; 1422 iinfo->i_use = 0; 1423 ret = udf_alloc_i_data(inode, bs - 1424 sizeof(struct extendedFileEntry)); 1425 if (ret) 1426 goto out; 1427 memcpy(iinfo->i_data, 1428 bh->b_data + sizeof(struct extendedFileEntry), 1429 bs - sizeof(struct extendedFileEntry)); 1430 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1431 iinfo->i_efe = 0; 1432 iinfo->i_use = 0; 1433 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1434 if (ret) 1435 goto out; 1436 memcpy(iinfo->i_data, 1437 bh->b_data + sizeof(struct fileEntry), 1438 bs - sizeof(struct fileEntry)); 1439 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1440 iinfo->i_efe = 0; 1441 iinfo->i_use = 1; 1442 iinfo->i_lenAlloc = le32_to_cpu( 1443 ((struct unallocSpaceEntry *)bh->b_data)-> 1444 lengthAllocDescs); 1445 ret = udf_alloc_i_data(inode, bs - 1446 sizeof(struct unallocSpaceEntry)); 1447 if (ret) 1448 goto out; 1449 memcpy(iinfo->i_data, 1450 bh->b_data + sizeof(struct unallocSpaceEntry), 1451 bs - sizeof(struct unallocSpaceEntry)); 1452 return 0; 1453 } 1454 1455 ret = -EIO; 1456 read_lock(&sbi->s_cred_lock); 1457 uid = le32_to_cpu(fe->uid); 1458 if (uid == UDF_INVALID_ID || 1459 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1460 inode->i_uid = sbi->s_uid; 1461 else 1462 i_uid_write(inode, uid); 1463 1464 gid = le32_to_cpu(fe->gid); 1465 if (gid == UDF_INVALID_ID || 1466 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1467 inode->i_gid = sbi->s_gid; 1468 else 1469 i_gid_write(inode, gid); 1470 1471 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1472 sbi->s_fmode != UDF_INVALID_MODE) 1473 inode->i_mode = sbi->s_fmode; 1474 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1475 sbi->s_dmode != UDF_INVALID_MODE) 1476 inode->i_mode = sbi->s_dmode; 1477 else 1478 inode->i_mode = udf_convert_permissions(fe); 1479 inode->i_mode &= ~sbi->s_umask; 1480 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1481 1482 read_unlock(&sbi->s_cred_lock); 1483 1484 link_count = le16_to_cpu(fe->fileLinkCount); 1485 if (!link_count) { 1486 if (!hidden_inode) { 1487 ret = -ESTALE; 1488 goto out; 1489 } 1490 link_count = 1; 1491 } 1492 set_nlink(inode, link_count); 1493 1494 inode->i_size = le64_to_cpu(fe->informationLength); 1495 iinfo->i_lenExtents = inode->i_size; 1496 1497 if (iinfo->i_efe == 0) { 1498 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1499 (inode->i_sb->s_blocksize_bits - 9); 1500 1501 udf_disk_stamp_to_time(&ts, fe->accessTime); 1502 inode_set_atime_to_ts(inode, ts); 1503 udf_disk_stamp_to_time(&ts, fe->modificationTime); 1504 inode_set_mtime_to_ts(inode, ts); 1505 udf_disk_stamp_to_time(&ts, fe->attrTime); 1506 inode_set_ctime_to_ts(inode, ts); 1507 1508 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1509 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1510 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1511 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1512 iinfo->i_streamdir = 0; 1513 iinfo->i_lenStreams = 0; 1514 } else { 1515 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1516 (inode->i_sb->s_blocksize_bits - 9); 1517 1518 udf_disk_stamp_to_time(&ts, efe->accessTime); 1519 inode_set_atime_to_ts(inode, ts); 1520 udf_disk_stamp_to_time(&ts, efe->modificationTime); 1521 inode_set_mtime_to_ts(inode, ts); 1522 udf_disk_stamp_to_time(&ts, efe->attrTime); 1523 inode_set_ctime_to_ts(inode, ts); 1524 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1525 1526 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1527 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1528 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1529 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1530 1531 /* Named streams */ 1532 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1533 iinfo->i_locStreamdir = 1534 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1535 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1536 if (iinfo->i_lenStreams >= inode->i_size) 1537 iinfo->i_lenStreams -= inode->i_size; 1538 else 1539 iinfo->i_lenStreams = 0; 1540 } 1541 inode->i_generation = iinfo->i_unique; 1542 1543 /* 1544 * Sanity check length of allocation descriptors and extended attrs to 1545 * avoid integer overflows 1546 */ 1547 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1548 goto out; 1549 /* Now do exact checks */ 1550 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1551 goto out; 1552 /* Sanity checks for files in ICB so that we don't get confused later */ 1553 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1554 /* 1555 * For file in ICB data is stored in allocation descriptor 1556 * so sizes should match 1557 */ 1558 if (iinfo->i_lenAlloc != inode->i_size) 1559 goto out; 1560 /* File in ICB has to fit in there... */ 1561 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1562 goto out; 1563 } 1564 1565 switch (fe->icbTag.fileType) { 1566 case ICBTAG_FILE_TYPE_DIRECTORY: 1567 inode->i_op = &udf_dir_inode_operations; 1568 inode->i_fop = &udf_dir_operations; 1569 inode->i_mode |= S_IFDIR; 1570 inc_nlink(inode); 1571 break; 1572 case ICBTAG_FILE_TYPE_REALTIME: 1573 case ICBTAG_FILE_TYPE_REGULAR: 1574 case ICBTAG_FILE_TYPE_UNDEF: 1575 case ICBTAG_FILE_TYPE_VAT20: 1576 inode->i_data.a_ops = &udf_aops; 1577 inode->i_op = &udf_file_inode_operations; 1578 inode->i_fop = &udf_file_operations; 1579 inode->i_mode |= S_IFREG; 1580 break; 1581 case ICBTAG_FILE_TYPE_BLOCK: 1582 inode->i_mode |= S_IFBLK; 1583 break; 1584 case ICBTAG_FILE_TYPE_CHAR: 1585 inode->i_mode |= S_IFCHR; 1586 break; 1587 case ICBTAG_FILE_TYPE_FIFO: 1588 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1589 break; 1590 case ICBTAG_FILE_TYPE_SOCKET: 1591 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1592 break; 1593 case ICBTAG_FILE_TYPE_SYMLINK: 1594 inode->i_data.a_ops = &udf_symlink_aops; 1595 inode->i_op = &udf_symlink_inode_operations; 1596 inode_nohighmem(inode); 1597 inode->i_mode = S_IFLNK | 0777; 1598 break; 1599 case ICBTAG_FILE_TYPE_MAIN: 1600 udf_debug("METADATA FILE-----\n"); 1601 break; 1602 case ICBTAG_FILE_TYPE_MIRROR: 1603 udf_debug("METADATA MIRROR FILE-----\n"); 1604 break; 1605 case ICBTAG_FILE_TYPE_BITMAP: 1606 udf_debug("METADATA BITMAP FILE-----\n"); 1607 break; 1608 default: 1609 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1610 inode->i_ino, fe->icbTag.fileType); 1611 goto out; 1612 } 1613 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1614 struct deviceSpec *dsea = 1615 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1616 if (dsea) { 1617 init_special_inode(inode, inode->i_mode, 1618 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1619 le32_to_cpu(dsea->minorDeviceIdent))); 1620 /* Developer ID ??? */ 1621 } else 1622 goto out; 1623 } 1624 ret = 0; 1625 out: 1626 brelse(bh); 1627 return ret; 1628 } 1629 1630 static int udf_alloc_i_data(struct inode *inode, size_t size) 1631 { 1632 struct udf_inode_info *iinfo = UDF_I(inode); 1633 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1634 if (!iinfo->i_data) 1635 return -ENOMEM; 1636 return 0; 1637 } 1638 1639 static umode_t udf_convert_permissions(struct fileEntry *fe) 1640 { 1641 umode_t mode; 1642 uint32_t permissions; 1643 uint32_t flags; 1644 1645 permissions = le32_to_cpu(fe->permissions); 1646 flags = le16_to_cpu(fe->icbTag.flags); 1647 1648 mode = ((permissions) & 0007) | 1649 ((permissions >> 2) & 0070) | 1650 ((permissions >> 4) & 0700) | 1651 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1652 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1653 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1654 1655 return mode; 1656 } 1657 1658 void udf_update_extra_perms(struct inode *inode, umode_t mode) 1659 { 1660 struct udf_inode_info *iinfo = UDF_I(inode); 1661 1662 /* 1663 * UDF 2.01 sec. 3.3.3.3 Note 2: 1664 * In Unix, delete permission tracks write 1665 */ 1666 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1667 if (mode & 0200) 1668 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1669 if (mode & 0020) 1670 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1671 if (mode & 0002) 1672 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1673 } 1674 1675 int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1676 { 1677 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1678 } 1679 1680 static int udf_sync_inode(struct inode *inode) 1681 { 1682 return udf_update_inode(inode, 1); 1683 } 1684 1685 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1686 { 1687 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1688 (iinfo->i_crtime.tv_sec == time.tv_sec && 1689 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1690 iinfo->i_crtime = time; 1691 } 1692 1693 static int udf_update_inode(struct inode *inode, int do_sync) 1694 { 1695 struct buffer_head *bh = NULL; 1696 struct fileEntry *fe; 1697 struct extendedFileEntry *efe; 1698 uint64_t lb_recorded; 1699 uint32_t udfperms; 1700 uint16_t icbflags; 1701 uint16_t crclen; 1702 int err = 0; 1703 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1704 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1705 struct udf_inode_info *iinfo = UDF_I(inode); 1706 1707 bh = sb_getblk(inode->i_sb, 1708 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1709 if (!bh) { 1710 udf_debug("getblk failure\n"); 1711 return -EIO; 1712 } 1713 1714 lock_buffer(bh); 1715 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1716 fe = (struct fileEntry *)bh->b_data; 1717 efe = (struct extendedFileEntry *)bh->b_data; 1718 1719 if (iinfo->i_use) { 1720 struct unallocSpaceEntry *use = 1721 (struct unallocSpaceEntry *)bh->b_data; 1722 1723 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1724 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1725 iinfo->i_data, inode->i_sb->s_blocksize - 1726 sizeof(struct unallocSpaceEntry)); 1727 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1728 crclen = sizeof(struct unallocSpaceEntry); 1729 1730 goto finish; 1731 } 1732 1733 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1734 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1735 else 1736 fe->uid = cpu_to_le32(i_uid_read(inode)); 1737 1738 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1739 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1740 else 1741 fe->gid = cpu_to_le32(i_gid_read(inode)); 1742 1743 udfperms = ((inode->i_mode & 0007)) | 1744 ((inode->i_mode & 0070) << 2) | 1745 ((inode->i_mode & 0700) << 4); 1746 1747 udfperms |= iinfo->i_extraPerms; 1748 fe->permissions = cpu_to_le32(udfperms); 1749 1750 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1751 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1752 else { 1753 if (iinfo->i_hidden) 1754 fe->fileLinkCount = cpu_to_le16(0); 1755 else 1756 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1757 } 1758 1759 fe->informationLength = cpu_to_le64(inode->i_size); 1760 1761 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1762 struct regid *eid; 1763 struct deviceSpec *dsea = 1764 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1765 if (!dsea) { 1766 dsea = (struct deviceSpec *) 1767 udf_add_extendedattr(inode, 1768 sizeof(struct deviceSpec) + 1769 sizeof(struct regid), 12, 0x3); 1770 dsea->attrType = cpu_to_le32(12); 1771 dsea->attrSubtype = 1; 1772 dsea->attrLength = cpu_to_le32( 1773 sizeof(struct deviceSpec) + 1774 sizeof(struct regid)); 1775 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1776 } 1777 eid = (struct regid *)dsea->impUse; 1778 memset(eid, 0, sizeof(*eid)); 1779 strcpy(eid->ident, UDF_ID_DEVELOPER); 1780 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1781 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1782 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1783 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1784 } 1785 1786 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1787 lb_recorded = 0; /* No extents => no blocks! */ 1788 else 1789 lb_recorded = 1790 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1791 (blocksize_bits - 9); 1792 1793 if (iinfo->i_efe == 0) { 1794 memcpy(bh->b_data + sizeof(struct fileEntry), 1795 iinfo->i_data, 1796 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1797 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1798 1799 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode)); 1800 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode)); 1801 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode)); 1802 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1803 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1804 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1805 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1806 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1807 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1808 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1809 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1810 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1811 crclen = sizeof(struct fileEntry); 1812 } else { 1813 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1814 iinfo->i_data, 1815 inode->i_sb->s_blocksize - 1816 sizeof(struct extendedFileEntry)); 1817 efe->objectSize = 1818 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1819 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1820 1821 if (iinfo->i_streamdir) { 1822 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1823 1824 icb_lad->extLocation = 1825 cpu_to_lelb(iinfo->i_locStreamdir); 1826 icb_lad->extLength = 1827 cpu_to_le32(inode->i_sb->s_blocksize); 1828 } 1829 1830 udf_adjust_time(iinfo, inode_get_atime(inode)); 1831 udf_adjust_time(iinfo, inode_get_mtime(inode)); 1832 udf_adjust_time(iinfo, inode_get_ctime(inode)); 1833 1834 udf_time_to_disk_stamp(&efe->accessTime, 1835 inode_get_atime(inode)); 1836 udf_time_to_disk_stamp(&efe->modificationTime, 1837 inode_get_mtime(inode)); 1838 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1839 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode)); 1840 1841 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1842 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1843 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1844 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1845 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1846 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1847 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1848 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1849 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1850 crclen = sizeof(struct extendedFileEntry); 1851 } 1852 1853 finish: 1854 if (iinfo->i_strat4096) { 1855 fe->icbTag.strategyType = cpu_to_le16(4096); 1856 fe->icbTag.strategyParameter = cpu_to_le16(1); 1857 fe->icbTag.numEntries = cpu_to_le16(2); 1858 } else { 1859 fe->icbTag.strategyType = cpu_to_le16(4); 1860 fe->icbTag.numEntries = cpu_to_le16(1); 1861 } 1862 1863 if (iinfo->i_use) 1864 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1865 else if (S_ISDIR(inode->i_mode)) 1866 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1867 else if (S_ISREG(inode->i_mode)) 1868 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1869 else if (S_ISLNK(inode->i_mode)) 1870 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1871 else if (S_ISBLK(inode->i_mode)) 1872 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1873 else if (S_ISCHR(inode->i_mode)) 1874 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1875 else if (S_ISFIFO(inode->i_mode)) 1876 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1877 else if (S_ISSOCK(inode->i_mode)) 1878 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1879 1880 icbflags = iinfo->i_alloc_type | 1881 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1882 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1883 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1884 (le16_to_cpu(fe->icbTag.flags) & 1885 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1886 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1887 1888 fe->icbTag.flags = cpu_to_le16(icbflags); 1889 if (sbi->s_udfrev >= 0x0200) 1890 fe->descTag.descVersion = cpu_to_le16(3); 1891 else 1892 fe->descTag.descVersion = cpu_to_le16(2); 1893 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1894 fe->descTag.tagLocation = cpu_to_le32( 1895 iinfo->i_location.logicalBlockNum); 1896 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1897 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1898 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1899 crclen)); 1900 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1901 1902 set_buffer_uptodate(bh); 1903 unlock_buffer(bh); 1904 1905 /* write the data blocks */ 1906 mark_buffer_dirty(bh); 1907 if (do_sync) { 1908 sync_dirty_buffer(bh); 1909 if (buffer_write_io_error(bh)) { 1910 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1911 inode->i_ino); 1912 err = -EIO; 1913 } 1914 } 1915 brelse(bh); 1916 1917 return err; 1918 } 1919 1920 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1921 bool hidden_inode) 1922 { 1923 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1924 struct inode *inode = iget_locked(sb, block); 1925 int err; 1926 1927 if (!inode) 1928 return ERR_PTR(-ENOMEM); 1929 1930 if (!(inode->i_state & I_NEW)) { 1931 if (UDF_I(inode)->i_hidden != hidden_inode) { 1932 iput(inode); 1933 return ERR_PTR(-EFSCORRUPTED); 1934 } 1935 return inode; 1936 } 1937 1938 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1939 err = udf_read_inode(inode, hidden_inode); 1940 if (err < 0) { 1941 iget_failed(inode); 1942 return ERR_PTR(err); 1943 } 1944 unlock_new_inode(inode); 1945 1946 return inode; 1947 } 1948 1949 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1950 struct extent_position *epos) 1951 { 1952 struct super_block *sb = inode->i_sb; 1953 struct buffer_head *bh; 1954 struct allocExtDesc *aed; 1955 struct extent_position nepos; 1956 struct kernel_lb_addr neloc; 1957 int ver, adsize; 1958 1959 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1960 adsize = sizeof(struct short_ad); 1961 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1962 adsize = sizeof(struct long_ad); 1963 else 1964 return -EIO; 1965 1966 neloc.logicalBlockNum = block; 1967 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1968 1969 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1970 if (!bh) 1971 return -EIO; 1972 lock_buffer(bh); 1973 memset(bh->b_data, 0x00, sb->s_blocksize); 1974 set_buffer_uptodate(bh); 1975 unlock_buffer(bh); 1976 mark_buffer_dirty_inode(bh, inode); 1977 1978 aed = (struct allocExtDesc *)(bh->b_data); 1979 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1980 aed->previousAllocExtLocation = 1981 cpu_to_le32(epos->block.logicalBlockNum); 1982 } 1983 aed->lengthAllocDescs = cpu_to_le32(0); 1984 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1985 ver = 3; 1986 else 1987 ver = 2; 1988 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1989 sizeof(struct tag)); 1990 1991 nepos.block = neloc; 1992 nepos.offset = sizeof(struct allocExtDesc); 1993 nepos.bh = bh; 1994 1995 /* 1996 * Do we have to copy current last extent to make space for indirect 1997 * one? 1998 */ 1999 if (epos->offset + adsize > sb->s_blocksize) { 2000 struct kernel_lb_addr cp_loc; 2001 uint32_t cp_len; 2002 int cp_type; 2003 2004 epos->offset -= adsize; 2005 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 2006 cp_len |= ((uint32_t)cp_type) << 30; 2007 2008 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 2009 udf_write_aext(inode, epos, &nepos.block, 2010 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2011 } else { 2012 __udf_add_aext(inode, epos, &nepos.block, 2013 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 2014 } 2015 2016 brelse(epos->bh); 2017 *epos = nepos; 2018 2019 return 0; 2020 } 2021 2022 /* 2023 * Append extent at the given position - should be the first free one in inode 2024 * / indirect extent. This function assumes there is enough space in the inode 2025 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2026 */ 2027 int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2028 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2029 { 2030 struct udf_inode_info *iinfo = UDF_I(inode); 2031 struct allocExtDesc *aed; 2032 int adsize; 2033 2034 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2035 adsize = sizeof(struct short_ad); 2036 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2037 adsize = sizeof(struct long_ad); 2038 else 2039 return -EIO; 2040 2041 if (!epos->bh) { 2042 WARN_ON(iinfo->i_lenAlloc != 2043 epos->offset - udf_file_entry_alloc_offset(inode)); 2044 } else { 2045 aed = (struct allocExtDesc *)epos->bh->b_data; 2046 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2047 epos->offset - sizeof(struct allocExtDesc)); 2048 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2049 } 2050 2051 udf_write_aext(inode, epos, eloc, elen, inc); 2052 2053 if (!epos->bh) { 2054 iinfo->i_lenAlloc += adsize; 2055 mark_inode_dirty(inode); 2056 } else { 2057 aed = (struct allocExtDesc *)epos->bh->b_data; 2058 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2059 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2060 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2061 udf_update_tag(epos->bh->b_data, 2062 epos->offset + (inc ? 0 : adsize)); 2063 else 2064 udf_update_tag(epos->bh->b_data, 2065 sizeof(struct allocExtDesc)); 2066 mark_buffer_dirty_inode(epos->bh, inode); 2067 } 2068 2069 return 0; 2070 } 2071 2072 /* 2073 * Append extent at given position - should be the first free one in inode 2074 * / indirect extent. Takes care of allocating and linking indirect blocks. 2075 */ 2076 int udf_add_aext(struct inode *inode, struct extent_position *epos, 2077 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2078 { 2079 int adsize; 2080 struct super_block *sb = inode->i_sb; 2081 2082 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2083 adsize = sizeof(struct short_ad); 2084 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2085 adsize = sizeof(struct long_ad); 2086 else 2087 return -EIO; 2088 2089 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2090 int err; 2091 udf_pblk_t new_block; 2092 2093 new_block = udf_new_block(sb, NULL, 2094 epos->block.partitionReferenceNum, 2095 epos->block.logicalBlockNum, &err); 2096 if (!new_block) 2097 return -ENOSPC; 2098 2099 err = udf_setup_indirect_aext(inode, new_block, epos); 2100 if (err) 2101 return err; 2102 } 2103 2104 return __udf_add_aext(inode, epos, eloc, elen, inc); 2105 } 2106 2107 void udf_write_aext(struct inode *inode, struct extent_position *epos, 2108 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2109 { 2110 int adsize; 2111 uint8_t *ptr; 2112 struct short_ad *sad; 2113 struct long_ad *lad; 2114 struct udf_inode_info *iinfo = UDF_I(inode); 2115 2116 if (!epos->bh) 2117 ptr = iinfo->i_data + epos->offset - 2118 udf_file_entry_alloc_offset(inode) + 2119 iinfo->i_lenEAttr; 2120 else 2121 ptr = epos->bh->b_data + epos->offset; 2122 2123 switch (iinfo->i_alloc_type) { 2124 case ICBTAG_FLAG_AD_SHORT: 2125 sad = (struct short_ad *)ptr; 2126 sad->extLength = cpu_to_le32(elen); 2127 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2128 adsize = sizeof(struct short_ad); 2129 break; 2130 case ICBTAG_FLAG_AD_LONG: 2131 lad = (struct long_ad *)ptr; 2132 lad->extLength = cpu_to_le32(elen); 2133 lad->extLocation = cpu_to_lelb(*eloc); 2134 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2135 adsize = sizeof(struct long_ad); 2136 break; 2137 default: 2138 return; 2139 } 2140 2141 if (epos->bh) { 2142 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2143 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2144 struct allocExtDesc *aed = 2145 (struct allocExtDesc *)epos->bh->b_data; 2146 udf_update_tag(epos->bh->b_data, 2147 le32_to_cpu(aed->lengthAllocDescs) + 2148 sizeof(struct allocExtDesc)); 2149 } 2150 mark_buffer_dirty_inode(epos->bh, inode); 2151 } else { 2152 mark_inode_dirty(inode); 2153 } 2154 2155 if (inc) 2156 epos->offset += adsize; 2157 } 2158 2159 /* 2160 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2161 * someone does some weird stuff. 2162 */ 2163 #define UDF_MAX_INDIR_EXTS 16 2164 2165 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2166 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2167 { 2168 int8_t etype; 2169 unsigned int indirections = 0; 2170 2171 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2172 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2173 udf_pblk_t block; 2174 2175 if (++indirections > UDF_MAX_INDIR_EXTS) { 2176 udf_err(inode->i_sb, 2177 "too many indirect extents in inode %lu\n", 2178 inode->i_ino); 2179 return -1; 2180 } 2181 2182 epos->block = *eloc; 2183 epos->offset = sizeof(struct allocExtDesc); 2184 brelse(epos->bh); 2185 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2186 epos->bh = sb_bread(inode->i_sb, block); 2187 if (!epos->bh) { 2188 udf_debug("reading block %u failed!\n", block); 2189 return -1; 2190 } 2191 } 2192 2193 return etype; 2194 } 2195 2196 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2197 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2198 { 2199 int alen; 2200 int8_t etype; 2201 uint8_t *ptr; 2202 struct short_ad *sad; 2203 struct long_ad *lad; 2204 struct udf_inode_info *iinfo = UDF_I(inode); 2205 2206 if (!epos->bh) { 2207 if (!epos->offset) 2208 epos->offset = udf_file_entry_alloc_offset(inode); 2209 ptr = iinfo->i_data + epos->offset - 2210 udf_file_entry_alloc_offset(inode) + 2211 iinfo->i_lenEAttr; 2212 alen = udf_file_entry_alloc_offset(inode) + 2213 iinfo->i_lenAlloc; 2214 } else { 2215 if (!epos->offset) 2216 epos->offset = sizeof(struct allocExtDesc); 2217 ptr = epos->bh->b_data + epos->offset; 2218 alen = sizeof(struct allocExtDesc) + 2219 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2220 lengthAllocDescs); 2221 } 2222 2223 switch (iinfo->i_alloc_type) { 2224 case ICBTAG_FLAG_AD_SHORT: 2225 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2226 if (!sad) 2227 return -1; 2228 etype = le32_to_cpu(sad->extLength) >> 30; 2229 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2230 eloc->partitionReferenceNum = 2231 iinfo->i_location.partitionReferenceNum; 2232 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2233 break; 2234 case ICBTAG_FLAG_AD_LONG: 2235 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2236 if (!lad) 2237 return -1; 2238 etype = le32_to_cpu(lad->extLength) >> 30; 2239 *eloc = lelb_to_cpu(lad->extLocation); 2240 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2241 break; 2242 default: 2243 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2244 return -1; 2245 } 2246 2247 return etype; 2248 } 2249 2250 static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2251 struct kernel_lb_addr neloc, uint32_t nelen) 2252 { 2253 struct kernel_lb_addr oeloc; 2254 uint32_t oelen; 2255 int8_t etype; 2256 int err; 2257 2258 if (epos.bh) 2259 get_bh(epos.bh); 2260 2261 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2262 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2263 neloc = oeloc; 2264 nelen = (etype << 30) | oelen; 2265 } 2266 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2267 brelse(epos.bh); 2268 2269 return err; 2270 } 2271 2272 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2273 { 2274 struct extent_position oepos; 2275 int adsize; 2276 int8_t etype; 2277 struct allocExtDesc *aed; 2278 struct udf_inode_info *iinfo; 2279 struct kernel_lb_addr eloc; 2280 uint32_t elen; 2281 2282 if (epos.bh) { 2283 get_bh(epos.bh); 2284 get_bh(epos.bh); 2285 } 2286 2287 iinfo = UDF_I(inode); 2288 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2289 adsize = sizeof(struct short_ad); 2290 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2291 adsize = sizeof(struct long_ad); 2292 else 2293 adsize = 0; 2294 2295 oepos = epos; 2296 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2297 return -1; 2298 2299 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2300 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2301 if (oepos.bh != epos.bh) { 2302 oepos.block = epos.block; 2303 brelse(oepos.bh); 2304 get_bh(epos.bh); 2305 oepos.bh = epos.bh; 2306 oepos.offset = epos.offset - adsize; 2307 } 2308 } 2309 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2310 elen = 0; 2311 2312 if (epos.bh != oepos.bh) { 2313 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2314 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2315 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2316 if (!oepos.bh) { 2317 iinfo->i_lenAlloc -= (adsize * 2); 2318 mark_inode_dirty(inode); 2319 } else { 2320 aed = (struct allocExtDesc *)oepos.bh->b_data; 2321 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2322 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2323 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2324 udf_update_tag(oepos.bh->b_data, 2325 oepos.offset - (2 * adsize)); 2326 else 2327 udf_update_tag(oepos.bh->b_data, 2328 sizeof(struct allocExtDesc)); 2329 mark_buffer_dirty_inode(oepos.bh, inode); 2330 } 2331 } else { 2332 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2333 if (!oepos.bh) { 2334 iinfo->i_lenAlloc -= adsize; 2335 mark_inode_dirty(inode); 2336 } else { 2337 aed = (struct allocExtDesc *)oepos.bh->b_data; 2338 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2339 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2340 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2341 udf_update_tag(oepos.bh->b_data, 2342 epos.offset - adsize); 2343 else 2344 udf_update_tag(oepos.bh->b_data, 2345 sizeof(struct allocExtDesc)); 2346 mark_buffer_dirty_inode(oepos.bh, inode); 2347 } 2348 } 2349 2350 brelse(epos.bh); 2351 brelse(oepos.bh); 2352 2353 return (elen >> 30); 2354 } 2355 2356 int8_t inode_bmap(struct inode *inode, sector_t block, 2357 struct extent_position *pos, struct kernel_lb_addr *eloc, 2358 uint32_t *elen, sector_t *offset) 2359 { 2360 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2361 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2362 int8_t etype; 2363 struct udf_inode_info *iinfo; 2364 2365 iinfo = UDF_I(inode); 2366 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2367 pos->offset = 0; 2368 pos->block = iinfo->i_location; 2369 pos->bh = NULL; 2370 } 2371 *elen = 0; 2372 do { 2373 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2374 if (etype == -1) { 2375 *offset = (bcount - lbcount) >> blocksize_bits; 2376 iinfo->i_lenExtents = lbcount; 2377 return -1; 2378 } 2379 lbcount += *elen; 2380 } while (lbcount <= bcount); 2381 /* update extent cache */ 2382 udf_update_extent_cache(inode, lbcount - *elen, pos); 2383 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2384 2385 return etype; 2386 } 2387
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.