~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/verity/open.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Opening fs-verity files
  4  *
  5  * Copyright 2019 Google LLC
  6  */
  7 
  8 #include "fsverity_private.h"
  9 
 10 #include <linux/mm.h>
 11 #include <linux/slab.h>
 12 
 13 static struct kmem_cache *fsverity_info_cachep;
 14 
 15 /**
 16  * fsverity_init_merkle_tree_params() - initialize Merkle tree parameters
 17  * @params: the parameters struct to initialize
 18  * @inode: the inode for which the Merkle tree is being built
 19  * @hash_algorithm: number of hash algorithm to use
 20  * @log_blocksize: log base 2 of block size to use
 21  * @salt: pointer to salt (optional)
 22  * @salt_size: size of salt, possibly 0
 23  *
 24  * Validate the hash algorithm and block size, then compute the tree topology
 25  * (num levels, num blocks in each level, etc.) and initialize @params.
 26  *
 27  * Return: 0 on success, -errno on failure
 28  */
 29 int fsverity_init_merkle_tree_params(struct merkle_tree_params *params,
 30                                      const struct inode *inode,
 31                                      unsigned int hash_algorithm,
 32                                      unsigned int log_blocksize,
 33                                      const u8 *salt, size_t salt_size)
 34 {
 35         const struct fsverity_hash_alg *hash_alg;
 36         int err;
 37         u64 blocks;
 38         u64 blocks_in_level[FS_VERITY_MAX_LEVELS];
 39         u64 offset;
 40         int level;
 41 
 42         memset(params, 0, sizeof(*params));
 43 
 44         hash_alg = fsverity_get_hash_alg(inode, hash_algorithm);
 45         if (IS_ERR(hash_alg))
 46                 return PTR_ERR(hash_alg);
 47         params->hash_alg = hash_alg;
 48         params->digest_size = hash_alg->digest_size;
 49 
 50         params->hashstate = fsverity_prepare_hash_state(hash_alg, salt,
 51                                                         salt_size);
 52         if (IS_ERR(params->hashstate)) {
 53                 err = PTR_ERR(params->hashstate);
 54                 params->hashstate = NULL;
 55                 fsverity_err(inode, "Error %d preparing hash state", err);
 56                 goto out_err;
 57         }
 58 
 59         /*
 60          * fs/verity/ directly assumes that the Merkle tree block size is a
 61          * power of 2 less than or equal to PAGE_SIZE.  Another restriction
 62          * arises from the interaction between fs/verity/ and the filesystems
 63          * themselves: filesystems expect to be able to verify a single
 64          * filesystem block of data at a time.  Therefore, the Merkle tree block
 65          * size must also be less than or equal to the filesystem block size.
 66          *
 67          * The above are the only hard limitations, so in theory the Merkle tree
 68          * block size could be as small as twice the digest size.  However,
 69          * that's not useful, and it would result in some unusually deep and
 70          * large Merkle trees.  So we currently require that the Merkle tree
 71          * block size be at least 1024 bytes.  That's small enough to test the
 72          * sub-page block case on systems with 4K pages, but not too small.
 73          */
 74         if (log_blocksize < 10 || log_blocksize > PAGE_SHIFT ||
 75             log_blocksize > inode->i_blkbits) {
 76                 fsverity_warn(inode, "Unsupported log_blocksize: %u",
 77                               log_blocksize);
 78                 err = -EINVAL;
 79                 goto out_err;
 80         }
 81         params->log_blocksize = log_blocksize;
 82         params->block_size = 1 << log_blocksize;
 83         params->log_blocks_per_page = PAGE_SHIFT - log_blocksize;
 84         params->blocks_per_page = 1 << params->log_blocks_per_page;
 85 
 86         if (WARN_ON_ONCE(!is_power_of_2(params->digest_size))) {
 87                 err = -EINVAL;
 88                 goto out_err;
 89         }
 90         if (params->block_size < 2 * params->digest_size) {
 91                 fsverity_warn(inode,
 92                               "Merkle tree block size (%u) too small for hash algorithm \"%s\"",
 93                               params->block_size, hash_alg->name);
 94                 err = -EINVAL;
 95                 goto out_err;
 96         }
 97         params->log_digestsize = ilog2(params->digest_size);
 98         params->log_arity = log_blocksize - params->log_digestsize;
 99         params->hashes_per_block = 1 << params->log_arity;
100 
101         /*
102          * Compute the number of levels in the Merkle tree and create a map from
103          * level to the starting block of that level.  Level 'num_levels - 1' is
104          * the root and is stored first.  Level 0 is the level directly "above"
105          * the data blocks and is stored last.
106          */
107 
108         /* Compute number of levels and the number of blocks in each level */
109         blocks = ((u64)inode->i_size + params->block_size - 1) >> log_blocksize;
110         while (blocks > 1) {
111                 if (params->num_levels >= FS_VERITY_MAX_LEVELS) {
112                         fsverity_err(inode, "Too many levels in Merkle tree");
113                         err = -EFBIG;
114                         goto out_err;
115                 }
116                 blocks = (blocks + params->hashes_per_block - 1) >>
117                          params->log_arity;
118                 blocks_in_level[params->num_levels++] = blocks;
119         }
120 
121         /* Compute the starting block of each level */
122         offset = 0;
123         for (level = (int)params->num_levels - 1; level >= 0; level--) {
124                 params->level_start[level] = offset;
125                 offset += blocks_in_level[level];
126         }
127 
128         /*
129          * With block_size != PAGE_SIZE, an in-memory bitmap will need to be
130          * allocated to track the "verified" status of hash blocks.  Don't allow
131          * this bitmap to get too large.  For now, limit it to 1 MiB, which
132          * limits the file size to about 4.4 TB with SHA-256 and 4K blocks.
133          *
134          * Together with the fact that the data, and thus also the Merkle tree,
135          * cannot have more than ULONG_MAX pages, this implies that hash block
136          * indices can always fit in an 'unsigned long'.  But to be safe, we
137          * explicitly check for that too.  Note, this is only for hash block
138          * indices; data block indices might not fit in an 'unsigned long'.
139          */
140         if ((params->block_size != PAGE_SIZE && offset > 1 << 23) ||
141             offset > ULONG_MAX) {
142                 fsverity_err(inode, "Too many blocks in Merkle tree");
143                 err = -EFBIG;
144                 goto out_err;
145         }
146 
147         params->tree_size = offset << log_blocksize;
148         params->tree_pages = PAGE_ALIGN(params->tree_size) >> PAGE_SHIFT;
149         return 0;
150 
151 out_err:
152         kfree(params->hashstate);
153         memset(params, 0, sizeof(*params));
154         return err;
155 }
156 
157 /*
158  * Compute the file digest by hashing the fsverity_descriptor excluding the
159  * builtin signature and with the sig_size field set to 0.
160  */
161 static int compute_file_digest(const struct fsverity_hash_alg *hash_alg,
162                                struct fsverity_descriptor *desc,
163                                u8 *file_digest)
164 {
165         __le32 sig_size = desc->sig_size;
166         int err;
167 
168         desc->sig_size = 0;
169         err = fsverity_hash_buffer(hash_alg, desc, sizeof(*desc), file_digest);
170         desc->sig_size = sig_size;
171 
172         return err;
173 }
174 
175 /*
176  * Create a new fsverity_info from the given fsverity_descriptor (with optional
177  * appended builtin signature), and check the signature if present.  The
178  * fsverity_descriptor must have already undergone basic validation.
179  */
180 struct fsverity_info *fsverity_create_info(const struct inode *inode,
181                                            struct fsverity_descriptor *desc)
182 {
183         struct fsverity_info *vi;
184         int err;
185 
186         vi = kmem_cache_zalloc(fsverity_info_cachep, GFP_KERNEL);
187         if (!vi)
188                 return ERR_PTR(-ENOMEM);
189         vi->inode = inode;
190 
191         err = fsverity_init_merkle_tree_params(&vi->tree_params, inode,
192                                                desc->hash_algorithm,
193                                                desc->log_blocksize,
194                                                desc->salt, desc->salt_size);
195         if (err) {
196                 fsverity_err(inode,
197                              "Error %d initializing Merkle tree parameters",
198                              err);
199                 goto fail;
200         }
201 
202         memcpy(vi->root_hash, desc->root_hash, vi->tree_params.digest_size);
203 
204         err = compute_file_digest(vi->tree_params.hash_alg, desc,
205                                   vi->file_digest);
206         if (err) {
207                 fsverity_err(inode, "Error %d computing file digest", err);
208                 goto fail;
209         }
210 
211         err = fsverity_verify_signature(vi, desc->signature,
212                                         le32_to_cpu(desc->sig_size));
213         if (err)
214                 goto fail;
215 
216         if (vi->tree_params.block_size != PAGE_SIZE) {
217                 /*
218                  * When the Merkle tree block size and page size differ, we use
219                  * a bitmap to keep track of which hash blocks have been
220                  * verified.  This bitmap must contain one bit per hash block,
221                  * including alignment to a page boundary at the end.
222                  *
223                  * Eventually, to support extremely large files in an efficient
224                  * way, it might be necessary to make pages of this bitmap
225                  * reclaimable.  But for now, simply allocating the whole bitmap
226                  * is a simple solution that works well on the files on which
227                  * fsverity is realistically used.  E.g., with SHA-256 and 4K
228                  * blocks, a 100MB file only needs a 24-byte bitmap, and the
229                  * bitmap for any file under 17GB fits in a 4K page.
230                  */
231                 unsigned long num_bits =
232                         vi->tree_params.tree_pages <<
233                         vi->tree_params.log_blocks_per_page;
234 
235                 vi->hash_block_verified = kvcalloc(BITS_TO_LONGS(num_bits),
236                                                    sizeof(unsigned long),
237                                                    GFP_KERNEL);
238                 if (!vi->hash_block_verified) {
239                         err = -ENOMEM;
240                         goto fail;
241                 }
242         }
243 
244         return vi;
245 
246 fail:
247         fsverity_free_info(vi);
248         return ERR_PTR(err);
249 }
250 
251 void fsverity_set_info(struct inode *inode, struct fsverity_info *vi)
252 {
253         /*
254          * Multiple tasks may race to set ->i_verity_info, so use
255          * cmpxchg_release().  This pairs with the smp_load_acquire() in
256          * fsverity_get_info().  I.e., here we publish ->i_verity_info with a
257          * RELEASE barrier so that other tasks can ACQUIRE it.
258          */
259         if (cmpxchg_release(&inode->i_verity_info, NULL, vi) != NULL) {
260                 /* Lost the race, so free the fsverity_info we allocated. */
261                 fsverity_free_info(vi);
262                 /*
263                  * Afterwards, the caller may access ->i_verity_info directly,
264                  * so make sure to ACQUIRE the winning fsverity_info.
265                  */
266                 (void)fsverity_get_info(inode);
267         }
268 }
269 
270 void fsverity_free_info(struct fsverity_info *vi)
271 {
272         if (!vi)
273                 return;
274         kfree(vi->tree_params.hashstate);
275         kvfree(vi->hash_block_verified);
276         kmem_cache_free(fsverity_info_cachep, vi);
277 }
278 
279 static bool validate_fsverity_descriptor(struct inode *inode,
280                                          const struct fsverity_descriptor *desc,
281                                          size_t desc_size)
282 {
283         if (desc_size < sizeof(*desc)) {
284                 fsverity_err(inode, "Unrecognized descriptor size: %zu bytes",
285                              desc_size);
286                 return false;
287         }
288 
289         if (desc->version != 1) {
290                 fsverity_err(inode, "Unrecognized descriptor version: %u",
291                              desc->version);
292                 return false;
293         }
294 
295         if (memchr_inv(desc->__reserved, 0, sizeof(desc->__reserved))) {
296                 fsverity_err(inode, "Reserved bits set in descriptor");
297                 return false;
298         }
299 
300         if (desc->salt_size > sizeof(desc->salt)) {
301                 fsverity_err(inode, "Invalid salt_size: %u", desc->salt_size);
302                 return false;
303         }
304 
305         if (le64_to_cpu(desc->data_size) != inode->i_size) {
306                 fsverity_err(inode,
307                              "Wrong data_size: %llu (desc) != %lld (inode)",
308                              le64_to_cpu(desc->data_size), inode->i_size);
309                 return false;
310         }
311 
312         if (le32_to_cpu(desc->sig_size) > desc_size - sizeof(*desc)) {
313                 fsverity_err(inode, "Signature overflows verity descriptor");
314                 return false;
315         }
316 
317         return true;
318 }
319 
320 /*
321  * Read the inode's fsverity_descriptor (with optional appended builtin
322  * signature) from the filesystem, and do basic validation of it.
323  */
324 int fsverity_get_descriptor(struct inode *inode,
325                             struct fsverity_descriptor **desc_ret)
326 {
327         int res;
328         struct fsverity_descriptor *desc;
329 
330         res = inode->i_sb->s_vop->get_verity_descriptor(inode, NULL, 0);
331         if (res < 0) {
332                 fsverity_err(inode,
333                              "Error %d getting verity descriptor size", res);
334                 return res;
335         }
336         if (res > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
337                 fsverity_err(inode, "Verity descriptor is too large (%d bytes)",
338                              res);
339                 return -EMSGSIZE;
340         }
341         desc = kmalloc(res, GFP_KERNEL);
342         if (!desc)
343                 return -ENOMEM;
344         res = inode->i_sb->s_vop->get_verity_descriptor(inode, desc, res);
345         if (res < 0) {
346                 fsverity_err(inode, "Error %d reading verity descriptor", res);
347                 kfree(desc);
348                 return res;
349         }
350 
351         if (!validate_fsverity_descriptor(inode, desc, res)) {
352                 kfree(desc);
353                 return -EINVAL;
354         }
355 
356         *desc_ret = desc;
357         return 0;
358 }
359 
360 /* Ensure the inode has an ->i_verity_info */
361 static int ensure_verity_info(struct inode *inode)
362 {
363         struct fsverity_info *vi = fsverity_get_info(inode);
364         struct fsverity_descriptor *desc;
365         int err;
366 
367         if (vi)
368                 return 0;
369 
370         err = fsverity_get_descriptor(inode, &desc);
371         if (err)
372                 return err;
373 
374         vi = fsverity_create_info(inode, desc);
375         if (IS_ERR(vi)) {
376                 err = PTR_ERR(vi);
377                 goto out_free_desc;
378         }
379 
380         fsverity_set_info(inode, vi);
381         err = 0;
382 out_free_desc:
383         kfree(desc);
384         return err;
385 }
386 
387 int __fsverity_file_open(struct inode *inode, struct file *filp)
388 {
389         if (filp->f_mode & FMODE_WRITE)
390                 return -EPERM;
391         return ensure_verity_info(inode);
392 }
393 EXPORT_SYMBOL_GPL(__fsverity_file_open);
394 
395 int __fsverity_prepare_setattr(struct dentry *dentry, struct iattr *attr)
396 {
397         if (attr->ia_valid & ATTR_SIZE)
398                 return -EPERM;
399         return 0;
400 }
401 EXPORT_SYMBOL_GPL(__fsverity_prepare_setattr);
402 
403 void __fsverity_cleanup_inode(struct inode *inode)
404 {
405         fsverity_free_info(inode->i_verity_info);
406         inode->i_verity_info = NULL;
407 }
408 EXPORT_SYMBOL_GPL(__fsverity_cleanup_inode);
409 
410 void __init fsverity_init_info_cache(void)
411 {
412         fsverity_info_cachep = KMEM_CACHE_USERCOPY(
413                                         fsverity_info,
414                                         SLAB_RECLAIM_ACCOUNT | SLAB_PANIC,
415                                         file_digest);
416 }
417 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php