~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/verity/verify.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Data verification functions, i.e. hooks for ->readahead()
  4  *
  5  * Copyright 2019 Google LLC
  6  */
  7 
  8 #include "fsverity_private.h"
  9 
 10 #include <crypto/hash.h>
 11 #include <linux/bio.h>
 12 
 13 static struct workqueue_struct *fsverity_read_workqueue;
 14 
 15 /*
 16  * Returns true if the hash block with index @hblock_idx in the tree, located in
 17  * @hpage, has already been verified.
 18  */
 19 static bool is_hash_block_verified(struct fsverity_info *vi, struct page *hpage,
 20                                    unsigned long hblock_idx)
 21 {
 22         unsigned int blocks_per_page;
 23         unsigned int i;
 24 
 25         /*
 26          * When the Merkle tree block size and page size are the same, then the
 27          * ->hash_block_verified bitmap isn't allocated, and we use PG_checked
 28          * to directly indicate whether the page's block has been verified.
 29          *
 30          * Using PG_checked also guarantees that we re-verify hash pages that
 31          * get evicted and re-instantiated from the backing storage, as new
 32          * pages always start out with PG_checked cleared.
 33          */
 34         if (!vi->hash_block_verified)
 35                 return PageChecked(hpage);
 36 
 37         /*
 38          * When the Merkle tree block size and page size differ, we use a bitmap
 39          * to indicate whether each hash block has been verified.
 40          *
 41          * However, we still need to ensure that hash pages that get evicted and
 42          * re-instantiated from the backing storage are re-verified.  To do
 43          * this, we use PG_checked again, but now it doesn't really mean
 44          * "checked".  Instead, now it just serves as an indicator for whether
 45          * the hash page is newly instantiated or not.  If the page is new, as
 46          * indicated by PG_checked=0, we clear the bitmap bits for the page's
 47          * blocks since they are untrustworthy, then set PG_checked=1.
 48          * Otherwise we return the bitmap bit for the requested block.
 49          *
 50          * Multiple threads may execute this code concurrently on the same page.
 51          * This is safe because we use memory barriers to ensure that if a
 52          * thread sees PG_checked=1, then it also sees the associated bitmap
 53          * clearing to have occurred.  Also, all writes and their corresponding
 54          * reads are atomic, and all writes are safe to repeat in the event that
 55          * multiple threads get into the PG_checked=0 section.  (Clearing a
 56          * bitmap bit again at worst causes a hash block to be verified
 57          * redundantly.  That event should be very rare, so it's not worth using
 58          * a lock to avoid.  Setting PG_checked again has no effect.)
 59          */
 60         if (PageChecked(hpage)) {
 61                 /*
 62                  * A read memory barrier is needed here to give ACQUIRE
 63                  * semantics to the above PageChecked() test.
 64                  */
 65                 smp_rmb();
 66                 return test_bit(hblock_idx, vi->hash_block_verified);
 67         }
 68         blocks_per_page = vi->tree_params.blocks_per_page;
 69         hblock_idx = round_down(hblock_idx, blocks_per_page);
 70         for (i = 0; i < blocks_per_page; i++)
 71                 clear_bit(hblock_idx + i, vi->hash_block_verified);
 72         /*
 73          * A write memory barrier is needed here to give RELEASE semantics to
 74          * the below SetPageChecked() operation.
 75          */
 76         smp_wmb();
 77         SetPageChecked(hpage);
 78         return false;
 79 }
 80 
 81 /*
 82  * Verify a single data block against the file's Merkle tree.
 83  *
 84  * In principle, we need to verify the entire path to the root node.  However,
 85  * for efficiency the filesystem may cache the hash blocks.  Therefore we need
 86  * only ascend the tree until an already-verified hash block is seen, and then
 87  * verify the path to that block.
 88  *
 89  * Return: %true if the data block is valid, else %false.
 90  */
 91 static bool
 92 verify_data_block(struct inode *inode, struct fsverity_info *vi,
 93                   const void *data, u64 data_pos, unsigned long max_ra_pages)
 94 {
 95         const struct merkle_tree_params *params = &vi->tree_params;
 96         const unsigned int hsize = params->digest_size;
 97         int level;
 98         u8 _want_hash[FS_VERITY_MAX_DIGEST_SIZE];
 99         const u8 *want_hash;
100         u8 real_hash[FS_VERITY_MAX_DIGEST_SIZE];
101         /* The hash blocks that are traversed, indexed by level */
102         struct {
103                 /* Page containing the hash block */
104                 struct page *page;
105                 /* Mapped address of the hash block (will be within @page) */
106                 const void *addr;
107                 /* Index of the hash block in the tree overall */
108                 unsigned long index;
109                 /* Byte offset of the wanted hash relative to @addr */
110                 unsigned int hoffset;
111         } hblocks[FS_VERITY_MAX_LEVELS];
112         /*
113          * The index of the previous level's block within that level; also the
114          * index of that block's hash within the current level.
115          */
116         u64 hidx = data_pos >> params->log_blocksize;
117 
118         /* Up to 1 + FS_VERITY_MAX_LEVELS pages may be mapped at once */
119         BUILD_BUG_ON(1 + FS_VERITY_MAX_LEVELS > KM_MAX_IDX);
120 
121         if (unlikely(data_pos >= inode->i_size)) {
122                 /*
123                  * This can happen in the data page spanning EOF when the Merkle
124                  * tree block size is less than the page size.  The Merkle tree
125                  * doesn't cover data blocks fully past EOF.  But the entire
126                  * page spanning EOF can be visible to userspace via a mmap, and
127                  * any part past EOF should be all zeroes.  Therefore, we need
128                  * to verify that any data blocks fully past EOF are all zeroes.
129                  */
130                 if (memchr_inv(data, 0, params->block_size)) {
131                         fsverity_err(inode,
132                                      "FILE CORRUPTED!  Data past EOF is not zeroed");
133                         return false;
134                 }
135                 return true;
136         }
137 
138         /*
139          * Starting at the leaf level, ascend the tree saving hash blocks along
140          * the way until we find a hash block that has already been verified, or
141          * until we reach the root.
142          */
143         for (level = 0; level < params->num_levels; level++) {
144                 unsigned long next_hidx;
145                 unsigned long hblock_idx;
146                 pgoff_t hpage_idx;
147                 unsigned int hblock_offset_in_page;
148                 unsigned int hoffset;
149                 struct page *hpage;
150                 const void *haddr;
151 
152                 /*
153                  * The index of the block in the current level; also the index
154                  * of that block's hash within the next level.
155                  */
156                 next_hidx = hidx >> params->log_arity;
157 
158                 /* Index of the hash block in the tree overall */
159                 hblock_idx = params->level_start[level] + next_hidx;
160 
161                 /* Index of the hash page in the tree overall */
162                 hpage_idx = hblock_idx >> params->log_blocks_per_page;
163 
164                 /* Byte offset of the hash block within the page */
165                 hblock_offset_in_page =
166                         (hblock_idx << params->log_blocksize) & ~PAGE_MASK;
167 
168                 /* Byte offset of the hash within the block */
169                 hoffset = (hidx << params->log_digestsize) &
170                           (params->block_size - 1);
171 
172                 hpage = inode->i_sb->s_vop->read_merkle_tree_page(inode,
173                                 hpage_idx, level == 0 ? min(max_ra_pages,
174                                         params->tree_pages - hpage_idx) : 0);
175                 if (IS_ERR(hpage)) {
176                         fsverity_err(inode,
177                                      "Error %ld reading Merkle tree page %lu",
178                                      PTR_ERR(hpage), hpage_idx);
179                         goto error;
180                 }
181                 haddr = kmap_local_page(hpage) + hblock_offset_in_page;
182                 if (is_hash_block_verified(vi, hpage, hblock_idx)) {
183                         memcpy(_want_hash, haddr + hoffset, hsize);
184                         want_hash = _want_hash;
185                         kunmap_local(haddr);
186                         put_page(hpage);
187                         goto descend;
188                 }
189                 hblocks[level].page = hpage;
190                 hblocks[level].addr = haddr;
191                 hblocks[level].index = hblock_idx;
192                 hblocks[level].hoffset = hoffset;
193                 hidx = next_hidx;
194         }
195 
196         want_hash = vi->root_hash;
197 descend:
198         /* Descend the tree verifying hash blocks. */
199         for (; level > 0; level--) {
200                 struct page *hpage = hblocks[level - 1].page;
201                 const void *haddr = hblocks[level - 1].addr;
202                 unsigned long hblock_idx = hblocks[level - 1].index;
203                 unsigned int hoffset = hblocks[level - 1].hoffset;
204 
205                 if (fsverity_hash_block(params, inode, haddr, real_hash) != 0)
206                         goto error;
207                 if (memcmp(want_hash, real_hash, hsize) != 0)
208                         goto corrupted;
209                 /*
210                  * Mark the hash block as verified.  This must be atomic and
211                  * idempotent, as the same hash block might be verified by
212                  * multiple threads concurrently.
213                  */
214                 if (vi->hash_block_verified)
215                         set_bit(hblock_idx, vi->hash_block_verified);
216                 else
217                         SetPageChecked(hpage);
218                 memcpy(_want_hash, haddr + hoffset, hsize);
219                 want_hash = _want_hash;
220                 kunmap_local(haddr);
221                 put_page(hpage);
222         }
223 
224         /* Finally, verify the data block. */
225         if (fsverity_hash_block(params, inode, data, real_hash) != 0)
226                 goto error;
227         if (memcmp(want_hash, real_hash, hsize) != 0)
228                 goto corrupted;
229         return true;
230 
231 corrupted:
232         fsverity_err(inode,
233                      "FILE CORRUPTED! pos=%llu, level=%d, want_hash=%s:%*phN, real_hash=%s:%*phN",
234                      data_pos, level - 1,
235                      params->hash_alg->name, hsize, want_hash,
236                      params->hash_alg->name, hsize, real_hash);
237 error:
238         for (; level > 0; level--) {
239                 kunmap_local(hblocks[level - 1].addr);
240                 put_page(hblocks[level - 1].page);
241         }
242         return false;
243 }
244 
245 static bool
246 verify_data_blocks(struct folio *data_folio, size_t len, size_t offset,
247                    unsigned long max_ra_pages)
248 {
249         struct inode *inode = data_folio->mapping->host;
250         struct fsverity_info *vi = inode->i_verity_info;
251         const unsigned int block_size = vi->tree_params.block_size;
252         u64 pos = (u64)data_folio->index << PAGE_SHIFT;
253 
254         if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offset, block_size)))
255                 return false;
256         if (WARN_ON_ONCE(!folio_test_locked(data_folio) ||
257                          folio_test_uptodate(data_folio)))
258                 return false;
259         do {
260                 void *data;
261                 bool valid;
262 
263                 data = kmap_local_folio(data_folio, offset);
264                 valid = verify_data_block(inode, vi, data, pos + offset,
265                                           max_ra_pages);
266                 kunmap_local(data);
267                 if (!valid)
268                         return false;
269                 offset += block_size;
270                 len -= block_size;
271         } while (len);
272         return true;
273 }
274 
275 /**
276  * fsverity_verify_blocks() - verify data in a folio
277  * @folio: the folio containing the data to verify
278  * @len: the length of the data to verify in the folio
279  * @offset: the offset of the data to verify in the folio
280  *
281  * Verify data that has just been read from a verity file.  The data must be
282  * located in a pagecache folio that is still locked and not yet uptodate.  The
283  * length and offset of the data must be Merkle tree block size aligned.
284  *
285  * Return: %true if the data is valid, else %false.
286  */
287 bool fsverity_verify_blocks(struct folio *folio, size_t len, size_t offset)
288 {
289         return verify_data_blocks(folio, len, offset, 0);
290 }
291 EXPORT_SYMBOL_GPL(fsverity_verify_blocks);
292 
293 #ifdef CONFIG_BLOCK
294 /**
295  * fsverity_verify_bio() - verify a 'read' bio that has just completed
296  * @bio: the bio to verify
297  *
298  * Verify the bio's data against the file's Merkle tree.  All bio data segments
299  * must be aligned to the file's Merkle tree block size.  If any data fails
300  * verification, then bio->bi_status is set to an error status.
301  *
302  * This is a helper function for use by the ->readahead() method of filesystems
303  * that issue bios to read data directly into the page cache.  Filesystems that
304  * populate the page cache without issuing bios (e.g. non block-based
305  * filesystems) must instead call fsverity_verify_page() directly on each page.
306  * All filesystems must also call fsverity_verify_page() on holes.
307  */
308 void fsverity_verify_bio(struct bio *bio)
309 {
310         struct folio_iter fi;
311         unsigned long max_ra_pages = 0;
312 
313         if (bio->bi_opf & REQ_RAHEAD) {
314                 /*
315                  * If this bio is for data readahead, then we also do readahead
316                  * of the first (largest) level of the Merkle tree.  Namely,
317                  * when a Merkle tree page is read, we also try to piggy-back on
318                  * some additional pages -- up to 1/4 the number of data pages.
319                  *
320                  * This improves sequential read performance, as it greatly
321                  * reduces the number of I/O requests made to the Merkle tree.
322                  */
323                 max_ra_pages = bio->bi_iter.bi_size >> (PAGE_SHIFT + 2);
324         }
325 
326         bio_for_each_folio_all(fi, bio) {
327                 if (!verify_data_blocks(fi.folio, fi.length, fi.offset,
328                                         max_ra_pages)) {
329                         bio->bi_status = BLK_STS_IOERR;
330                         break;
331                 }
332         }
333 }
334 EXPORT_SYMBOL_GPL(fsverity_verify_bio);
335 #endif /* CONFIG_BLOCK */
336 
337 /**
338  * fsverity_enqueue_verify_work() - enqueue work on the fs-verity workqueue
339  * @work: the work to enqueue
340  *
341  * Enqueue verification work for asynchronous processing.
342  */
343 void fsverity_enqueue_verify_work(struct work_struct *work)
344 {
345         queue_work(fsverity_read_workqueue, work);
346 }
347 EXPORT_SYMBOL_GPL(fsverity_enqueue_verify_work);
348 
349 void __init fsverity_init_workqueue(void)
350 {
351         /*
352          * Use a high-priority workqueue to prioritize verification work, which
353          * blocks reads from completing, over regular application tasks.
354          *
355          * For performance reasons, don't use an unbound workqueue.  Using an
356          * unbound workqueue for crypto operations causes excessive scheduler
357          * latency on ARM64.
358          */
359         fsverity_read_workqueue = alloc_workqueue("fsverity_read_queue",
360                                                   WQ_HIGHPRI,
361                                                   num_online_cpus());
362         if (!fsverity_read_workqueue)
363                 panic("failed to allocate fsverity_read_queue");
364 }
365 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php