1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2018 Red Hat, Inc. 5 * All rights reserved. 6 */ 7 8 #include "xfs.h" 9 #include "xfs_fs.h" 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_bit.h" 14 #include "xfs_sb.h" 15 #include "xfs_mount.h" 16 #include "xfs_btree.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_rmap_btree.h" 19 #include "xfs_alloc.h" 20 #include "xfs_ialloc.h" 21 #include "xfs_rmap.h" 22 #include "xfs_ag.h" 23 #include "xfs_ag_resv.h" 24 #include "xfs_health.h" 25 #include "xfs_error.h" 26 #include "xfs_bmap.h" 27 #include "xfs_defer.h" 28 #include "xfs_log_format.h" 29 #include "xfs_trans.h" 30 #include "xfs_trace.h" 31 #include "xfs_inode.h" 32 #include "xfs_icache.h" 33 34 35 /* 36 * Passive reference counting access wrappers to the perag structures. If the 37 * per-ag structure is to be freed, the freeing code is responsible for cleaning 38 * up objects with passive references before freeing the structure. This is 39 * things like cached buffers. 40 */ 41 struct xfs_perag * 42 xfs_perag_get( 43 struct xfs_mount *mp, 44 xfs_agnumber_t agno) 45 { 46 struct xfs_perag *pag; 47 48 rcu_read_lock(); 49 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 50 if (pag) { 51 trace_xfs_perag_get(pag, _RET_IP_); 52 ASSERT(atomic_read(&pag->pag_ref) >= 0); 53 atomic_inc(&pag->pag_ref); 54 } 55 rcu_read_unlock(); 56 return pag; 57 } 58 59 /* 60 * search from @first to find the next perag with the given tag set. 61 */ 62 struct xfs_perag * 63 xfs_perag_get_tag( 64 struct xfs_mount *mp, 65 xfs_agnumber_t first, 66 unsigned int tag) 67 { 68 struct xfs_perag *pag; 69 int found; 70 71 rcu_read_lock(); 72 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 73 (void **)&pag, first, 1, tag); 74 if (found <= 0) { 75 rcu_read_unlock(); 76 return NULL; 77 } 78 trace_xfs_perag_get_tag(pag, _RET_IP_); 79 atomic_inc(&pag->pag_ref); 80 rcu_read_unlock(); 81 return pag; 82 } 83 84 /* Get a passive reference to the given perag. */ 85 struct xfs_perag * 86 xfs_perag_hold( 87 struct xfs_perag *pag) 88 { 89 ASSERT(atomic_read(&pag->pag_ref) > 0 || 90 atomic_read(&pag->pag_active_ref) > 0); 91 92 trace_xfs_perag_hold(pag, _RET_IP_); 93 atomic_inc(&pag->pag_ref); 94 return pag; 95 } 96 97 void 98 xfs_perag_put( 99 struct xfs_perag *pag) 100 { 101 trace_xfs_perag_put(pag, _RET_IP_); 102 ASSERT(atomic_read(&pag->pag_ref) > 0); 103 atomic_dec(&pag->pag_ref); 104 } 105 106 /* 107 * Active references for perag structures. This is for short term access to the 108 * per ag structures for walking trees or accessing state. If an AG is being 109 * shrunk or is offline, then this will fail to find that AG and return NULL 110 * instead. 111 */ 112 struct xfs_perag * 113 xfs_perag_grab( 114 struct xfs_mount *mp, 115 xfs_agnumber_t agno) 116 { 117 struct xfs_perag *pag; 118 119 rcu_read_lock(); 120 pag = radix_tree_lookup(&mp->m_perag_tree, agno); 121 if (pag) { 122 trace_xfs_perag_grab(pag, _RET_IP_); 123 if (!atomic_inc_not_zero(&pag->pag_active_ref)) 124 pag = NULL; 125 } 126 rcu_read_unlock(); 127 return pag; 128 } 129 130 /* 131 * search from @first to find the next perag with the given tag set. 132 */ 133 struct xfs_perag * 134 xfs_perag_grab_tag( 135 struct xfs_mount *mp, 136 xfs_agnumber_t first, 137 int tag) 138 { 139 struct xfs_perag *pag; 140 int found; 141 142 rcu_read_lock(); 143 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree, 144 (void **)&pag, first, 1, tag); 145 if (found <= 0) { 146 rcu_read_unlock(); 147 return NULL; 148 } 149 trace_xfs_perag_grab_tag(pag, _RET_IP_); 150 if (!atomic_inc_not_zero(&pag->pag_active_ref)) 151 pag = NULL; 152 rcu_read_unlock(); 153 return pag; 154 } 155 156 void 157 xfs_perag_rele( 158 struct xfs_perag *pag) 159 { 160 trace_xfs_perag_rele(pag, _RET_IP_); 161 if (atomic_dec_and_test(&pag->pag_active_ref)) 162 wake_up(&pag->pag_active_wq); 163 } 164 165 /* 166 * xfs_initialize_perag_data 167 * 168 * Read in each per-ag structure so we can count up the number of 169 * allocated inodes, free inodes and used filesystem blocks as this 170 * information is no longer persistent in the superblock. Once we have 171 * this information, write it into the in-core superblock structure. 172 */ 173 int 174 xfs_initialize_perag_data( 175 struct xfs_mount *mp, 176 xfs_agnumber_t agcount) 177 { 178 xfs_agnumber_t index; 179 struct xfs_perag *pag; 180 struct xfs_sb *sbp = &mp->m_sb; 181 uint64_t ifree = 0; 182 uint64_t ialloc = 0; 183 uint64_t bfree = 0; 184 uint64_t bfreelst = 0; 185 uint64_t btree = 0; 186 uint64_t fdblocks; 187 int error = 0; 188 189 for (index = 0; index < agcount; index++) { 190 /* 191 * Read the AGF and AGI buffers to populate the per-ag 192 * structures for us. 193 */ 194 pag = xfs_perag_get(mp, index); 195 error = xfs_alloc_read_agf(pag, NULL, 0, NULL); 196 if (!error) 197 error = xfs_ialloc_read_agi(pag, NULL, 0, NULL); 198 if (error) { 199 xfs_perag_put(pag); 200 return error; 201 } 202 203 ifree += pag->pagi_freecount; 204 ialloc += pag->pagi_count; 205 bfree += pag->pagf_freeblks; 206 bfreelst += pag->pagf_flcount; 207 btree += pag->pagf_btreeblks; 208 xfs_perag_put(pag); 209 } 210 fdblocks = bfree + bfreelst + btree; 211 212 /* 213 * If the new summary counts are obviously incorrect, fail the 214 * mount operation because that implies the AGFs are also corrupt. 215 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which 216 * will prevent xfs_repair from fixing anything. 217 */ 218 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) { 219 xfs_alert(mp, "AGF corruption. Please run xfs_repair."); 220 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 221 error = -EFSCORRUPTED; 222 goto out; 223 } 224 225 /* Overwrite incore superblock counters with just-read data */ 226 spin_lock(&mp->m_sb_lock); 227 sbp->sb_ifree = ifree; 228 sbp->sb_icount = ialloc; 229 sbp->sb_fdblocks = fdblocks; 230 spin_unlock(&mp->m_sb_lock); 231 232 xfs_reinit_percpu_counters(mp); 233 out: 234 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS); 235 return error; 236 } 237 238 STATIC void 239 __xfs_free_perag( 240 struct rcu_head *head) 241 { 242 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 243 244 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work)); 245 kfree(pag); 246 } 247 248 /* 249 * Free up the per-ag resources associated with the mount structure. 250 */ 251 void 252 xfs_free_perag( 253 struct xfs_mount *mp) 254 { 255 struct xfs_perag *pag; 256 xfs_agnumber_t agno; 257 258 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 259 spin_lock(&mp->m_perag_lock); 260 pag = radix_tree_delete(&mp->m_perag_tree, agno); 261 spin_unlock(&mp->m_perag_lock); 262 ASSERT(pag); 263 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0); 264 xfs_defer_drain_free(&pag->pag_intents_drain); 265 266 cancel_delayed_work_sync(&pag->pag_blockgc_work); 267 xfs_buf_cache_destroy(&pag->pag_bcache); 268 269 /* drop the mount's active reference */ 270 xfs_perag_rele(pag); 271 XFS_IS_CORRUPT(pag->pag_mount, 272 atomic_read(&pag->pag_active_ref) != 0); 273 call_rcu(&pag->rcu_head, __xfs_free_perag); 274 } 275 } 276 277 /* Find the size of the AG, in blocks. */ 278 static xfs_agblock_t 279 __xfs_ag_block_count( 280 struct xfs_mount *mp, 281 xfs_agnumber_t agno, 282 xfs_agnumber_t agcount, 283 xfs_rfsblock_t dblocks) 284 { 285 ASSERT(agno < agcount); 286 287 if (agno < agcount - 1) 288 return mp->m_sb.sb_agblocks; 289 return dblocks - (agno * mp->m_sb.sb_agblocks); 290 } 291 292 xfs_agblock_t 293 xfs_ag_block_count( 294 struct xfs_mount *mp, 295 xfs_agnumber_t agno) 296 { 297 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount, 298 mp->m_sb.sb_dblocks); 299 } 300 301 /* Calculate the first and last possible inode number in an AG. */ 302 static void 303 __xfs_agino_range( 304 struct xfs_mount *mp, 305 xfs_agblock_t eoag, 306 xfs_agino_t *first, 307 xfs_agino_t *last) 308 { 309 xfs_agblock_t bno; 310 311 /* 312 * Calculate the first inode, which will be in the first 313 * cluster-aligned block after the AGFL. 314 */ 315 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align); 316 *first = XFS_AGB_TO_AGINO(mp, bno); 317 318 /* 319 * Calculate the last inode, which will be at the end of the 320 * last (aligned) cluster that can be allocated in the AG. 321 */ 322 bno = round_down(eoag, M_IGEO(mp)->cluster_align); 323 *last = XFS_AGB_TO_AGINO(mp, bno) - 1; 324 } 325 326 void 327 xfs_agino_range( 328 struct xfs_mount *mp, 329 xfs_agnumber_t agno, 330 xfs_agino_t *first, 331 xfs_agino_t *last) 332 { 333 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last); 334 } 335 336 /* 337 * Free perag within the specified AG range, it is only used to free unused 338 * perags under the error handling path. 339 */ 340 void 341 xfs_free_unused_perag_range( 342 struct xfs_mount *mp, 343 xfs_agnumber_t agstart, 344 xfs_agnumber_t agend) 345 { 346 struct xfs_perag *pag; 347 xfs_agnumber_t index; 348 349 for (index = agstart; index < agend; index++) { 350 spin_lock(&mp->m_perag_lock); 351 pag = radix_tree_delete(&mp->m_perag_tree, index); 352 spin_unlock(&mp->m_perag_lock); 353 if (!pag) 354 break; 355 xfs_buf_cache_destroy(&pag->pag_bcache); 356 xfs_defer_drain_free(&pag->pag_intents_drain); 357 kfree(pag); 358 } 359 } 360 361 int 362 xfs_initialize_perag( 363 struct xfs_mount *mp, 364 xfs_agnumber_t agcount, 365 xfs_rfsblock_t dblocks, 366 xfs_agnumber_t *maxagi) 367 { 368 struct xfs_perag *pag; 369 xfs_agnumber_t index; 370 xfs_agnumber_t first_initialised = NULLAGNUMBER; 371 int error; 372 373 /* 374 * Walk the current per-ag tree so we don't try to initialise AGs 375 * that already exist (growfs case). Allocate and insert all the 376 * AGs we don't find ready for initialisation. 377 */ 378 for (index = 0; index < agcount; index++) { 379 pag = xfs_perag_get(mp, index); 380 if (pag) { 381 xfs_perag_put(pag); 382 continue; 383 } 384 385 pag = kzalloc(sizeof(*pag), GFP_KERNEL | __GFP_RETRY_MAYFAIL); 386 if (!pag) { 387 error = -ENOMEM; 388 goto out_unwind_new_pags; 389 } 390 pag->pag_agno = index; 391 pag->pag_mount = mp; 392 393 error = radix_tree_preload(GFP_KERNEL | __GFP_RETRY_MAYFAIL); 394 if (error) 395 goto out_free_pag; 396 397 spin_lock(&mp->m_perag_lock); 398 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 399 WARN_ON_ONCE(1); 400 spin_unlock(&mp->m_perag_lock); 401 radix_tree_preload_end(); 402 error = -EEXIST; 403 goto out_free_pag; 404 } 405 spin_unlock(&mp->m_perag_lock); 406 radix_tree_preload_end(); 407 408 #ifdef __KERNEL__ 409 /* Place kernel structure only init below this point. */ 410 spin_lock_init(&pag->pag_ici_lock); 411 spin_lock_init(&pag->pagb_lock); 412 spin_lock_init(&pag->pag_state_lock); 413 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker); 414 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 415 xfs_defer_drain_init(&pag->pag_intents_drain); 416 init_waitqueue_head(&pag->pagb_wait); 417 init_waitqueue_head(&pag->pag_active_wq); 418 pag->pagb_count = 0; 419 pag->pagb_tree = RB_ROOT; 420 xfs_hooks_init(&pag->pag_rmap_update_hooks); 421 #endif /* __KERNEL__ */ 422 423 error = xfs_buf_cache_init(&pag->pag_bcache); 424 if (error) 425 goto out_remove_pag; 426 427 /* Active ref owned by mount indicates AG is online. */ 428 atomic_set(&pag->pag_active_ref, 1); 429 430 /* first new pag is fully initialized */ 431 if (first_initialised == NULLAGNUMBER) 432 first_initialised = index; 433 434 /* 435 * Pre-calculated geometry 436 */ 437 pag->block_count = __xfs_ag_block_count(mp, index, agcount, 438 dblocks); 439 pag->min_block = XFS_AGFL_BLOCK(mp); 440 __xfs_agino_range(mp, pag->block_count, &pag->agino_min, 441 &pag->agino_max); 442 } 443 444 index = xfs_set_inode_alloc(mp, agcount); 445 446 if (maxagi) 447 *maxagi = index; 448 449 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 450 return 0; 451 452 out_remove_pag: 453 xfs_defer_drain_free(&pag->pag_intents_drain); 454 spin_lock(&mp->m_perag_lock); 455 radix_tree_delete(&mp->m_perag_tree, index); 456 spin_unlock(&mp->m_perag_lock); 457 out_free_pag: 458 kfree(pag); 459 out_unwind_new_pags: 460 /* unwind any prior newly initialized pags */ 461 xfs_free_unused_perag_range(mp, first_initialised, agcount); 462 return error; 463 } 464 465 static int 466 xfs_get_aghdr_buf( 467 struct xfs_mount *mp, 468 xfs_daddr_t blkno, 469 size_t numblks, 470 struct xfs_buf **bpp, 471 const struct xfs_buf_ops *ops) 472 { 473 struct xfs_buf *bp; 474 int error; 475 476 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp); 477 if (error) 478 return error; 479 480 bp->b_maps[0].bm_bn = blkno; 481 bp->b_ops = ops; 482 483 *bpp = bp; 484 return 0; 485 } 486 487 /* 488 * Generic btree root block init function 489 */ 490 static void 491 xfs_btroot_init( 492 struct xfs_mount *mp, 493 struct xfs_buf *bp, 494 struct aghdr_init_data *id) 495 { 496 xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno); 497 } 498 499 /* Finish initializing a free space btree. */ 500 static void 501 xfs_freesp_init_recs( 502 struct xfs_mount *mp, 503 struct xfs_buf *bp, 504 struct aghdr_init_data *id) 505 { 506 struct xfs_alloc_rec *arec; 507 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 508 509 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1); 510 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks); 511 512 if (xfs_ag_contains_log(mp, id->agno)) { 513 struct xfs_alloc_rec *nrec; 514 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp, 515 mp->m_sb.sb_logstart); 516 517 ASSERT(start >= mp->m_ag_prealloc_blocks); 518 if (start != mp->m_ag_prealloc_blocks) { 519 /* 520 * Modify first record to pad stripe align of log and 521 * bump the record count. 522 */ 523 arec->ar_blockcount = cpu_to_be32(start - 524 mp->m_ag_prealloc_blocks); 525 be16_add_cpu(&block->bb_numrecs, 1); 526 nrec = arec + 1; 527 528 /* 529 * Insert second record at start of internal log 530 * which then gets trimmed. 531 */ 532 nrec->ar_startblock = cpu_to_be32( 533 be32_to_cpu(arec->ar_startblock) + 534 be32_to_cpu(arec->ar_blockcount)); 535 arec = nrec; 536 } 537 /* 538 * Change record start to after the internal log 539 */ 540 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks); 541 } 542 543 /* 544 * Calculate the block count of this record; if it is nonzero, 545 * increment the record count. 546 */ 547 arec->ar_blockcount = cpu_to_be32(id->agsize - 548 be32_to_cpu(arec->ar_startblock)); 549 if (arec->ar_blockcount) 550 be16_add_cpu(&block->bb_numrecs, 1); 551 } 552 553 /* 554 * bnobt/cntbt btree root block init functions 555 */ 556 static void 557 xfs_bnoroot_init( 558 struct xfs_mount *mp, 559 struct xfs_buf *bp, 560 struct aghdr_init_data *id) 561 { 562 xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 0, id->agno); 563 xfs_freesp_init_recs(mp, bp, id); 564 } 565 566 /* 567 * Reverse map root block init 568 */ 569 static void 570 xfs_rmaproot_init( 571 struct xfs_mount *mp, 572 struct xfs_buf *bp, 573 struct aghdr_init_data *id) 574 { 575 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 576 struct xfs_rmap_rec *rrec; 577 578 xfs_btree_init_buf(mp, bp, id->bc_ops, 0, 4, id->agno); 579 580 /* 581 * mark the AG header regions as static metadata The BNO 582 * btree block is the first block after the headers, so 583 * it's location defines the size of region the static 584 * metadata consumes. 585 * 586 * Note: unlike mkfs, we never have to account for log 587 * space when growing the data regions 588 */ 589 rrec = XFS_RMAP_REC_ADDR(block, 1); 590 rrec->rm_startblock = 0; 591 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp)); 592 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS); 593 rrec->rm_offset = 0; 594 595 /* account freespace btree root blocks */ 596 rrec = XFS_RMAP_REC_ADDR(block, 2); 597 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp)); 598 rrec->rm_blockcount = cpu_to_be32(2); 599 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 600 rrec->rm_offset = 0; 601 602 /* account inode btree root blocks */ 603 rrec = XFS_RMAP_REC_ADDR(block, 3); 604 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp)); 605 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) - 606 XFS_IBT_BLOCK(mp)); 607 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT); 608 rrec->rm_offset = 0; 609 610 /* account for rmap btree root */ 611 rrec = XFS_RMAP_REC_ADDR(block, 4); 612 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 613 rrec->rm_blockcount = cpu_to_be32(1); 614 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG); 615 rrec->rm_offset = 0; 616 617 /* account for refc btree root */ 618 if (xfs_has_reflink(mp)) { 619 rrec = XFS_RMAP_REC_ADDR(block, 5); 620 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp)); 621 rrec->rm_blockcount = cpu_to_be32(1); 622 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC); 623 rrec->rm_offset = 0; 624 be16_add_cpu(&block->bb_numrecs, 1); 625 } 626 627 /* account for the log space */ 628 if (xfs_ag_contains_log(mp, id->agno)) { 629 rrec = XFS_RMAP_REC_ADDR(block, 630 be16_to_cpu(block->bb_numrecs) + 1); 631 rrec->rm_startblock = cpu_to_be32( 632 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart)); 633 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks); 634 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG); 635 rrec->rm_offset = 0; 636 be16_add_cpu(&block->bb_numrecs, 1); 637 } 638 } 639 640 /* 641 * Initialise new secondary superblocks with the pre-grow geometry, but mark 642 * them as "in progress" so we know they haven't yet been activated. This will 643 * get cleared when the update with the new geometry information is done after 644 * changes to the primary are committed. This isn't strictly necessary, but we 645 * get it for free with the delayed buffer write lists and it means we can tell 646 * if a grow operation didn't complete properly after the fact. 647 */ 648 static void 649 xfs_sbblock_init( 650 struct xfs_mount *mp, 651 struct xfs_buf *bp, 652 struct aghdr_init_data *id) 653 { 654 struct xfs_dsb *dsb = bp->b_addr; 655 656 xfs_sb_to_disk(dsb, &mp->m_sb); 657 dsb->sb_inprogress = 1; 658 } 659 660 static void 661 xfs_agfblock_init( 662 struct xfs_mount *mp, 663 struct xfs_buf *bp, 664 struct aghdr_init_data *id) 665 { 666 struct xfs_agf *agf = bp->b_addr; 667 xfs_extlen_t tmpsize; 668 669 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 670 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 671 agf->agf_seqno = cpu_to_be32(id->agno); 672 agf->agf_length = cpu_to_be32(id->agsize); 673 agf->agf_bno_root = cpu_to_be32(XFS_BNO_BLOCK(mp)); 674 agf->agf_cnt_root = cpu_to_be32(XFS_CNT_BLOCK(mp)); 675 agf->agf_bno_level = cpu_to_be32(1); 676 agf->agf_cnt_level = cpu_to_be32(1); 677 if (xfs_has_rmapbt(mp)) { 678 agf->agf_rmap_root = cpu_to_be32(XFS_RMAP_BLOCK(mp)); 679 agf->agf_rmap_level = cpu_to_be32(1); 680 agf->agf_rmap_blocks = cpu_to_be32(1); 681 } 682 683 agf->agf_flfirst = cpu_to_be32(1); 684 agf->agf_fllast = 0; 685 agf->agf_flcount = 0; 686 tmpsize = id->agsize - mp->m_ag_prealloc_blocks; 687 agf->agf_freeblks = cpu_to_be32(tmpsize); 688 agf->agf_longest = cpu_to_be32(tmpsize); 689 if (xfs_has_crc(mp)) 690 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 691 if (xfs_has_reflink(mp)) { 692 agf->agf_refcount_root = cpu_to_be32( 693 xfs_refc_block(mp)); 694 agf->agf_refcount_level = cpu_to_be32(1); 695 agf->agf_refcount_blocks = cpu_to_be32(1); 696 } 697 698 if (xfs_ag_contains_log(mp, id->agno)) { 699 int64_t logblocks = mp->m_sb.sb_logblocks; 700 701 be32_add_cpu(&agf->agf_freeblks, -logblocks); 702 agf->agf_longest = cpu_to_be32(id->agsize - 703 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks); 704 } 705 } 706 707 static void 708 xfs_agflblock_init( 709 struct xfs_mount *mp, 710 struct xfs_buf *bp, 711 struct aghdr_init_data *id) 712 { 713 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp); 714 __be32 *agfl_bno; 715 int bucket; 716 717 if (xfs_has_crc(mp)) { 718 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 719 agfl->agfl_seqno = cpu_to_be32(id->agno); 720 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 721 } 722 723 agfl_bno = xfs_buf_to_agfl_bno(bp); 724 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++) 725 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK); 726 } 727 728 static void 729 xfs_agiblock_init( 730 struct xfs_mount *mp, 731 struct xfs_buf *bp, 732 struct aghdr_init_data *id) 733 { 734 struct xfs_agi *agi = bp->b_addr; 735 int bucket; 736 737 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 738 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 739 agi->agi_seqno = cpu_to_be32(id->agno); 740 agi->agi_length = cpu_to_be32(id->agsize); 741 agi->agi_count = 0; 742 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp)); 743 agi->agi_level = cpu_to_be32(1); 744 agi->agi_freecount = 0; 745 agi->agi_newino = cpu_to_be32(NULLAGINO); 746 agi->agi_dirino = cpu_to_be32(NULLAGINO); 747 if (xfs_has_crc(mp)) 748 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 749 if (xfs_has_finobt(mp)) { 750 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp)); 751 agi->agi_free_level = cpu_to_be32(1); 752 } 753 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) 754 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); 755 if (xfs_has_inobtcounts(mp)) { 756 agi->agi_iblocks = cpu_to_be32(1); 757 if (xfs_has_finobt(mp)) 758 agi->agi_fblocks = cpu_to_be32(1); 759 } 760 } 761 762 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, 763 struct aghdr_init_data *id); 764 static int 765 xfs_ag_init_hdr( 766 struct xfs_mount *mp, 767 struct aghdr_init_data *id, 768 aghdr_init_work_f work, 769 const struct xfs_buf_ops *ops) 770 { 771 struct xfs_buf *bp; 772 int error; 773 774 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops); 775 if (error) 776 return error; 777 778 (*work)(mp, bp, id); 779 780 xfs_buf_delwri_queue(bp, &id->buffer_list); 781 xfs_buf_relse(bp); 782 return 0; 783 } 784 785 struct xfs_aghdr_grow_data { 786 xfs_daddr_t daddr; 787 size_t numblks; 788 const struct xfs_buf_ops *ops; 789 aghdr_init_work_f work; 790 const struct xfs_btree_ops *bc_ops; 791 bool need_init; 792 }; 793 794 /* 795 * Prepare new AG headers to be written to disk. We use uncached buffers here, 796 * as it is assumed these new AG headers are currently beyond the currently 797 * valid filesystem address space. Using cached buffers would trip over EOFS 798 * corruption detection alogrithms in the buffer cache lookup routines. 799 * 800 * This is a non-transactional function, but the prepared buffers are added to a 801 * delayed write buffer list supplied by the caller so they can submit them to 802 * disk and wait on them as required. 803 */ 804 int 805 xfs_ag_init_headers( 806 struct xfs_mount *mp, 807 struct aghdr_init_data *id) 808 809 { 810 struct xfs_aghdr_grow_data aghdr_data[] = { 811 { /* SB */ 812 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR), 813 .numblks = XFS_FSS_TO_BB(mp, 1), 814 .ops = &xfs_sb_buf_ops, 815 .work = &xfs_sbblock_init, 816 .need_init = true 817 }, 818 { /* AGF */ 819 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)), 820 .numblks = XFS_FSS_TO_BB(mp, 1), 821 .ops = &xfs_agf_buf_ops, 822 .work = &xfs_agfblock_init, 823 .need_init = true 824 }, 825 { /* AGFL */ 826 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)), 827 .numblks = XFS_FSS_TO_BB(mp, 1), 828 .ops = &xfs_agfl_buf_ops, 829 .work = &xfs_agflblock_init, 830 .need_init = true 831 }, 832 { /* AGI */ 833 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)), 834 .numblks = XFS_FSS_TO_BB(mp, 1), 835 .ops = &xfs_agi_buf_ops, 836 .work = &xfs_agiblock_init, 837 .need_init = true 838 }, 839 { /* BNO root block */ 840 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)), 841 .numblks = BTOBB(mp->m_sb.sb_blocksize), 842 .ops = &xfs_bnobt_buf_ops, 843 .work = &xfs_bnoroot_init, 844 .bc_ops = &xfs_bnobt_ops, 845 .need_init = true 846 }, 847 { /* CNT root block */ 848 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)), 849 .numblks = BTOBB(mp->m_sb.sb_blocksize), 850 .ops = &xfs_cntbt_buf_ops, 851 .work = &xfs_bnoroot_init, 852 .bc_ops = &xfs_cntbt_ops, 853 .need_init = true 854 }, 855 { /* INO root block */ 856 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)), 857 .numblks = BTOBB(mp->m_sb.sb_blocksize), 858 .ops = &xfs_inobt_buf_ops, 859 .work = &xfs_btroot_init, 860 .bc_ops = &xfs_inobt_ops, 861 .need_init = true 862 }, 863 { /* FINO root block */ 864 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)), 865 .numblks = BTOBB(mp->m_sb.sb_blocksize), 866 .ops = &xfs_finobt_buf_ops, 867 .work = &xfs_btroot_init, 868 .bc_ops = &xfs_finobt_ops, 869 .need_init = xfs_has_finobt(mp) 870 }, 871 { /* RMAP root block */ 872 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)), 873 .numblks = BTOBB(mp->m_sb.sb_blocksize), 874 .ops = &xfs_rmapbt_buf_ops, 875 .work = &xfs_rmaproot_init, 876 .bc_ops = &xfs_rmapbt_ops, 877 .need_init = xfs_has_rmapbt(mp) 878 }, 879 { /* REFC root block */ 880 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)), 881 .numblks = BTOBB(mp->m_sb.sb_blocksize), 882 .ops = &xfs_refcountbt_buf_ops, 883 .work = &xfs_btroot_init, 884 .bc_ops = &xfs_refcountbt_ops, 885 .need_init = xfs_has_reflink(mp) 886 }, 887 { /* NULL terminating block */ 888 .daddr = XFS_BUF_DADDR_NULL, 889 } 890 }; 891 struct xfs_aghdr_grow_data *dp; 892 int error = 0; 893 894 /* Account for AG free space in new AG */ 895 id->nfree += id->agsize - mp->m_ag_prealloc_blocks; 896 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) { 897 if (!dp->need_init) 898 continue; 899 900 id->daddr = dp->daddr; 901 id->numblks = dp->numblks; 902 id->bc_ops = dp->bc_ops; 903 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops); 904 if (error) 905 break; 906 } 907 return error; 908 } 909 910 int 911 xfs_ag_shrink_space( 912 struct xfs_perag *pag, 913 struct xfs_trans **tpp, 914 xfs_extlen_t delta) 915 { 916 struct xfs_mount *mp = pag->pag_mount; 917 struct xfs_alloc_arg args = { 918 .tp = *tpp, 919 .mp = mp, 920 .pag = pag, 921 .minlen = delta, 922 .maxlen = delta, 923 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE, 924 .resv = XFS_AG_RESV_NONE, 925 .prod = 1 926 }; 927 struct xfs_buf *agibp, *agfbp; 928 struct xfs_agi *agi; 929 struct xfs_agf *agf; 930 xfs_agblock_t aglen; 931 int error, err2; 932 933 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1); 934 error = xfs_ialloc_read_agi(pag, *tpp, 0, &agibp); 935 if (error) 936 return error; 937 938 agi = agibp->b_addr; 939 940 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp); 941 if (error) 942 return error; 943 944 agf = agfbp->b_addr; 945 aglen = be32_to_cpu(agi->agi_length); 946 /* some extra paranoid checks before we shrink the ag */ 947 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length)) { 948 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF); 949 return -EFSCORRUPTED; 950 } 951 if (delta >= aglen) 952 return -EINVAL; 953 954 /* 955 * Make sure that the last inode cluster cannot overlap with the new 956 * end of the AG, even if it's sparse. 957 */ 958 error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta); 959 if (error) 960 return error; 961 962 /* 963 * Disable perag reservations so it doesn't cause the allocation request 964 * to fail. We'll reestablish reservation before we return. 965 */ 966 xfs_ag_resv_free(pag); 967 968 /* internal log shouldn't also show up in the free space btrees */ 969 error = xfs_alloc_vextent_exact_bno(&args, 970 XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta)); 971 if (!error && args.agbno == NULLAGBLOCK) 972 error = -ENOSPC; 973 974 if (error) { 975 /* 976 * If extent allocation fails, need to roll the transaction to 977 * ensure that the AGFL fixup has been committed anyway. 978 * 979 * We need to hold the AGF across the roll to ensure nothing can 980 * access the AG for allocation until the shrink is fully 981 * cleaned up. And due to the resetting of the AG block 982 * reservation space needing to lock the AGI, we also have to 983 * hold that so we don't get AGI/AGF lock order inversions in 984 * the error handling path. 985 */ 986 xfs_trans_bhold(*tpp, agfbp); 987 xfs_trans_bhold(*tpp, agibp); 988 err2 = xfs_trans_roll(tpp); 989 if (err2) 990 return err2; 991 xfs_trans_bjoin(*tpp, agfbp); 992 xfs_trans_bjoin(*tpp, agibp); 993 goto resv_init_out; 994 } 995 996 /* 997 * if successfully deleted from freespace btrees, need to confirm 998 * per-AG reservation works as expected. 999 */ 1000 be32_add_cpu(&agi->agi_length, -delta); 1001 be32_add_cpu(&agf->agf_length, -delta); 1002 1003 err2 = xfs_ag_resv_init(pag, *tpp); 1004 if (err2) { 1005 be32_add_cpu(&agi->agi_length, delta); 1006 be32_add_cpu(&agf->agf_length, delta); 1007 if (err2 != -ENOSPC) 1008 goto resv_err; 1009 1010 err2 = xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, 1011 XFS_AG_RESV_NONE, XFS_FREE_EXTENT_SKIP_DISCARD); 1012 if (err2) 1013 goto resv_err; 1014 1015 /* 1016 * Roll the transaction before trying to re-init the per-ag 1017 * reservation. The new transaction is clean so it will cancel 1018 * without any side effects. 1019 */ 1020 error = xfs_defer_finish(tpp); 1021 if (error) 1022 return error; 1023 1024 error = -ENOSPC; 1025 goto resv_init_out; 1026 } 1027 1028 /* Update perag geometry */ 1029 pag->block_count -= delta; 1030 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min, 1031 &pag->agino_max); 1032 1033 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH); 1034 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH); 1035 return 0; 1036 1037 resv_init_out: 1038 err2 = xfs_ag_resv_init(pag, *tpp); 1039 if (!err2) 1040 return error; 1041 resv_err: 1042 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2); 1043 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1044 return err2; 1045 } 1046 1047 /* 1048 * Extent the AG indicated by the @id by the length passed in 1049 */ 1050 int 1051 xfs_ag_extend_space( 1052 struct xfs_perag *pag, 1053 struct xfs_trans *tp, 1054 xfs_extlen_t len) 1055 { 1056 struct xfs_buf *bp; 1057 struct xfs_agi *agi; 1058 struct xfs_agf *agf; 1059 int error; 1060 1061 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1); 1062 1063 error = xfs_ialloc_read_agi(pag, tp, 0, &bp); 1064 if (error) 1065 return error; 1066 1067 agi = bp->b_addr; 1068 be32_add_cpu(&agi->agi_length, len); 1069 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH); 1070 1071 /* 1072 * Change agf length. 1073 */ 1074 error = xfs_alloc_read_agf(pag, tp, 0, &bp); 1075 if (error) 1076 return error; 1077 1078 agf = bp->b_addr; 1079 be32_add_cpu(&agf->agf_length, len); 1080 ASSERT(agf->agf_length == agi->agi_length); 1081 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH); 1082 1083 /* 1084 * Free the new space. 1085 * 1086 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that 1087 * this doesn't actually exist in the rmap btree. 1088 */ 1089 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len, 1090 len, &XFS_RMAP_OINFO_SKIP_UPDATE); 1091 if (error) 1092 return error; 1093 1094 error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len, 1095 len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE); 1096 if (error) 1097 return error; 1098 1099 /* Update perag geometry */ 1100 pag->block_count = be32_to_cpu(agf->agf_length); 1101 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min, 1102 &pag->agino_max); 1103 return 0; 1104 } 1105 1106 /* Retrieve AG geometry. */ 1107 int 1108 xfs_ag_get_geometry( 1109 struct xfs_perag *pag, 1110 struct xfs_ag_geometry *ageo) 1111 { 1112 struct xfs_buf *agi_bp; 1113 struct xfs_buf *agf_bp; 1114 struct xfs_agi *agi; 1115 struct xfs_agf *agf; 1116 unsigned int freeblks; 1117 int error; 1118 1119 /* Lock the AG headers. */ 1120 error = xfs_ialloc_read_agi(pag, NULL, 0, &agi_bp); 1121 if (error) 1122 return error; 1123 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp); 1124 if (error) 1125 goto out_agi; 1126 1127 /* Fill out form. */ 1128 memset(ageo, 0, sizeof(*ageo)); 1129 ageo->ag_number = pag->pag_agno; 1130 1131 agi = agi_bp->b_addr; 1132 ageo->ag_icount = be32_to_cpu(agi->agi_count); 1133 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount); 1134 1135 agf = agf_bp->b_addr; 1136 ageo->ag_length = be32_to_cpu(agf->agf_length); 1137 freeblks = pag->pagf_freeblks + 1138 pag->pagf_flcount + 1139 pag->pagf_btreeblks - 1140 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE); 1141 ageo->ag_freeblks = freeblks; 1142 xfs_ag_geom_health(pag, ageo); 1143 1144 /* Release resources. */ 1145 xfs_buf_relse(agf_bp); 1146 out_agi: 1147 xfs_buf_relse(agi_bp); 1148 return error; 1149 } 1150
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.