~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/libxfs/xfs_alloc.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_format.h"
  9 #include "xfs_log_format.h"
 10 #include "xfs_shared.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_bit.h"
 13 #include "xfs_mount.h"
 14 #include "xfs_defer.h"
 15 #include "xfs_btree.h"
 16 #include "xfs_rmap.h"
 17 #include "xfs_alloc_btree.h"
 18 #include "xfs_alloc.h"
 19 #include "xfs_extent_busy.h"
 20 #include "xfs_errortag.h"
 21 #include "xfs_error.h"
 22 #include "xfs_trace.h"
 23 #include "xfs_trans.h"
 24 #include "xfs_buf_item.h"
 25 #include "xfs_log.h"
 26 #include "xfs_ag.h"
 27 #include "xfs_ag_resv.h"
 28 #include "xfs_bmap.h"
 29 #include "xfs_health.h"
 30 #include "xfs_extfree_item.h"
 31 
 32 struct kmem_cache       *xfs_extfree_item_cache;
 33 
 34 struct workqueue_struct *xfs_alloc_wq;
 35 
 36 #define XFS_ABSDIFF(a,b)        (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
 37 
 38 #define XFSA_FIXUP_BNO_OK       1
 39 #define XFSA_FIXUP_CNT_OK       2
 40 
 41 /*
 42  * Size of the AGFL.  For CRC-enabled filesystes we steal a couple of slots in
 43  * the beginning of the block for a proper header with the location information
 44  * and CRC.
 45  */
 46 unsigned int
 47 xfs_agfl_size(
 48         struct xfs_mount        *mp)
 49 {
 50         unsigned int            size = mp->m_sb.sb_sectsize;
 51 
 52         if (xfs_has_crc(mp))
 53                 size -= sizeof(struct xfs_agfl);
 54 
 55         return size / sizeof(xfs_agblock_t);
 56 }
 57 
 58 unsigned int
 59 xfs_refc_block(
 60         struct xfs_mount        *mp)
 61 {
 62         if (xfs_has_rmapbt(mp))
 63                 return XFS_RMAP_BLOCK(mp) + 1;
 64         if (xfs_has_finobt(mp))
 65                 return XFS_FIBT_BLOCK(mp) + 1;
 66         return XFS_IBT_BLOCK(mp) + 1;
 67 }
 68 
 69 xfs_extlen_t
 70 xfs_prealloc_blocks(
 71         struct xfs_mount        *mp)
 72 {
 73         if (xfs_has_reflink(mp))
 74                 return xfs_refc_block(mp) + 1;
 75         if (xfs_has_rmapbt(mp))
 76                 return XFS_RMAP_BLOCK(mp) + 1;
 77         if (xfs_has_finobt(mp))
 78                 return XFS_FIBT_BLOCK(mp) + 1;
 79         return XFS_IBT_BLOCK(mp) + 1;
 80 }
 81 
 82 /*
 83  * The number of blocks per AG that we withhold from xfs_dec_fdblocks to
 84  * guarantee that we can refill the AGFL prior to allocating space in a nearly
 85  * full AG.  Although the space described by the free space btrees, the
 86  * blocks used by the freesp btrees themselves, and the blocks owned by the
 87  * AGFL are counted in the ondisk fdblocks, it's a mistake to let the ondisk
 88  * free space in the AG drop so low that the free space btrees cannot refill an
 89  * empty AGFL up to the minimum level.  Rather than grind through empty AGs
 90  * until the fs goes down, we subtract this many AG blocks from the incore
 91  * fdblocks to ensure user allocation does not overcommit the space the
 92  * filesystem needs for the AGFLs.  The rmap btree uses a per-AG reservation to
 93  * withhold space from xfs_dec_fdblocks, so we do not account for that here.
 94  */
 95 #define XFS_ALLOCBT_AGFL_RESERVE        4
 96 
 97 /*
 98  * Compute the number of blocks that we set aside to guarantee the ability to
 99  * refill the AGFL and handle a full bmap btree split.
100  *
101  * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
102  * AGF buffer (PV 947395), we place constraints on the relationship among
103  * actual allocations for data blocks, freelist blocks, and potential file data
104  * bmap btree blocks. However, these restrictions may result in no actual space
105  * allocated for a delayed extent, for example, a data block in a certain AG is
106  * allocated but there is no additional block for the additional bmap btree
107  * block due to a split of the bmap btree of the file. The result of this may
108  * lead to an infinite loop when the file gets flushed to disk and all delayed
109  * extents need to be actually allocated. To get around this, we explicitly set
110  * aside a few blocks which will not be reserved in delayed allocation.
111  *
112  * For each AG, we need to reserve enough blocks to replenish a totally empty
113  * AGFL and 4 more to handle a potential split of the file's bmap btree.
114  */
115 unsigned int
116 xfs_alloc_set_aside(
117         struct xfs_mount        *mp)
118 {
119         return mp->m_sb.sb_agcount * (XFS_ALLOCBT_AGFL_RESERVE + 4);
120 }
121 
122 /*
123  * When deciding how much space to allocate out of an AG, we limit the
124  * allocation maximum size to the size the AG. However, we cannot use all the
125  * blocks in the AG - some are permanently used by metadata. These
126  * blocks are generally:
127  *      - the AG superblock, AGF, AGI and AGFL
128  *      - the AGF (bno and cnt) and AGI btree root blocks, and optionally
129  *        the AGI free inode and rmap btree root blocks.
130  *      - blocks on the AGFL according to xfs_alloc_set_aside() limits
131  *      - the rmapbt root block
132  *
133  * The AG headers are sector sized, so the amount of space they take up is
134  * dependent on filesystem geometry. The others are all single blocks.
135  */
136 unsigned int
137 xfs_alloc_ag_max_usable(
138         struct xfs_mount        *mp)
139 {
140         unsigned int            blocks;
141 
142         blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
143         blocks += XFS_ALLOCBT_AGFL_RESERVE;
144         blocks += 3;                    /* AGF, AGI btree root blocks */
145         if (xfs_has_finobt(mp))
146                 blocks++;               /* finobt root block */
147         if (xfs_has_rmapbt(mp))
148                 blocks++;               /* rmap root block */
149         if (xfs_has_reflink(mp))
150                 blocks++;               /* refcount root block */
151 
152         return mp->m_sb.sb_agblocks - blocks;
153 }
154 
155 
156 static int
157 xfs_alloc_lookup(
158         struct xfs_btree_cur    *cur,
159         xfs_lookup_t            dir,
160         xfs_agblock_t           bno,
161         xfs_extlen_t            len,
162         int                     *stat)
163 {
164         int                     error;
165 
166         cur->bc_rec.a.ar_startblock = bno;
167         cur->bc_rec.a.ar_blockcount = len;
168         error = xfs_btree_lookup(cur, dir, stat);
169         if (*stat == 1)
170                 cur->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
171         else
172                 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
173         return error;
174 }
175 
176 /*
177  * Lookup the record equal to [bno, len] in the btree given by cur.
178  */
179 static inline int                               /* error */
180 xfs_alloc_lookup_eq(
181         struct xfs_btree_cur    *cur,   /* btree cursor */
182         xfs_agblock_t           bno,    /* starting block of extent */
183         xfs_extlen_t            len,    /* length of extent */
184         int                     *stat)  /* success/failure */
185 {
186         return xfs_alloc_lookup(cur, XFS_LOOKUP_EQ, bno, len, stat);
187 }
188 
189 /*
190  * Lookup the first record greater than or equal to [bno, len]
191  * in the btree given by cur.
192  */
193 int                             /* error */
194 xfs_alloc_lookup_ge(
195         struct xfs_btree_cur    *cur,   /* btree cursor */
196         xfs_agblock_t           bno,    /* starting block of extent */
197         xfs_extlen_t            len,    /* length of extent */
198         int                     *stat)  /* success/failure */
199 {
200         return xfs_alloc_lookup(cur, XFS_LOOKUP_GE, bno, len, stat);
201 }
202 
203 /*
204  * Lookup the first record less than or equal to [bno, len]
205  * in the btree given by cur.
206  */
207 int                                     /* error */
208 xfs_alloc_lookup_le(
209         struct xfs_btree_cur    *cur,   /* btree cursor */
210         xfs_agblock_t           bno,    /* starting block of extent */
211         xfs_extlen_t            len,    /* length of extent */
212         int                     *stat)  /* success/failure */
213 {
214         return xfs_alloc_lookup(cur, XFS_LOOKUP_LE, bno, len, stat);
215 }
216 
217 static inline bool
218 xfs_alloc_cur_active(
219         struct xfs_btree_cur    *cur)
220 {
221         return cur && (cur->bc_flags & XFS_BTREE_ALLOCBT_ACTIVE);
222 }
223 
224 /*
225  * Update the record referred to by cur to the value given
226  * by [bno, len].
227  * This either works (return 0) or gets an EFSCORRUPTED error.
228  */
229 STATIC int                              /* error */
230 xfs_alloc_update(
231         struct xfs_btree_cur    *cur,   /* btree cursor */
232         xfs_agblock_t           bno,    /* starting block of extent */
233         xfs_extlen_t            len)    /* length of extent */
234 {
235         union xfs_btree_rec     rec;
236 
237         rec.alloc.ar_startblock = cpu_to_be32(bno);
238         rec.alloc.ar_blockcount = cpu_to_be32(len);
239         return xfs_btree_update(cur, &rec);
240 }
241 
242 /* Convert the ondisk btree record to its incore representation. */
243 void
244 xfs_alloc_btrec_to_irec(
245         const union xfs_btree_rec       *rec,
246         struct xfs_alloc_rec_incore     *irec)
247 {
248         irec->ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
249         irec->ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
250 }
251 
252 /* Simple checks for free space records. */
253 xfs_failaddr_t
254 xfs_alloc_check_irec(
255         struct xfs_perag                        *pag,
256         const struct xfs_alloc_rec_incore       *irec)
257 {
258         if (irec->ar_blockcount == 0)
259                 return __this_address;
260 
261         /* check for valid extent range, including overflow */
262         if (!xfs_verify_agbext(pag, irec->ar_startblock, irec->ar_blockcount))
263                 return __this_address;
264 
265         return NULL;
266 }
267 
268 static inline int
269 xfs_alloc_complain_bad_rec(
270         struct xfs_btree_cur            *cur,
271         xfs_failaddr_t                  fa,
272         const struct xfs_alloc_rec_incore *irec)
273 {
274         struct xfs_mount                *mp = cur->bc_mp;
275 
276         xfs_warn(mp,
277                 "%sbt record corruption in AG %d detected at %pS!",
278                 cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
279         xfs_warn(mp,
280                 "start block 0x%x block count 0x%x", irec->ar_startblock,
281                 irec->ar_blockcount);
282         xfs_btree_mark_sick(cur);
283         return -EFSCORRUPTED;
284 }
285 
286 /*
287  * Get the data from the pointed-to record.
288  */
289 int                                     /* error */
290 xfs_alloc_get_rec(
291         struct xfs_btree_cur    *cur,   /* btree cursor */
292         xfs_agblock_t           *bno,   /* output: starting block of extent */
293         xfs_extlen_t            *len,   /* output: length of extent */
294         int                     *stat)  /* output: success/failure */
295 {
296         struct xfs_alloc_rec_incore irec;
297         union xfs_btree_rec     *rec;
298         xfs_failaddr_t          fa;
299         int                     error;
300 
301         error = xfs_btree_get_rec(cur, &rec, stat);
302         if (error || !(*stat))
303                 return error;
304 
305         xfs_alloc_btrec_to_irec(rec, &irec);
306         fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
307         if (fa)
308                 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
309 
310         *bno = irec.ar_startblock;
311         *len = irec.ar_blockcount;
312         return 0;
313 }
314 
315 /*
316  * Compute aligned version of the found extent.
317  * Takes alignment and min length into account.
318  */
319 STATIC bool
320 xfs_alloc_compute_aligned(
321         xfs_alloc_arg_t *args,          /* allocation argument structure */
322         xfs_agblock_t   foundbno,       /* starting block in found extent */
323         xfs_extlen_t    foundlen,       /* length in found extent */
324         xfs_agblock_t   *resbno,        /* result block number */
325         xfs_extlen_t    *reslen,        /* result length */
326         unsigned        *busy_gen)
327 {
328         xfs_agblock_t   bno = foundbno;
329         xfs_extlen_t    len = foundlen;
330         xfs_extlen_t    diff;
331         bool            busy;
332 
333         /* Trim busy sections out of found extent */
334         busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
335 
336         /*
337          * If we have a largish extent that happens to start before min_agbno,
338          * see if we can shift it into range...
339          */
340         if (bno < args->min_agbno && bno + len > args->min_agbno) {
341                 diff = args->min_agbno - bno;
342                 if (len > diff) {
343                         bno += diff;
344                         len -= diff;
345                 }
346         }
347 
348         if (args->alignment > 1 && len >= args->minlen) {
349                 xfs_agblock_t   aligned_bno = roundup(bno, args->alignment);
350 
351                 diff = aligned_bno - bno;
352 
353                 *resbno = aligned_bno;
354                 *reslen = diff >= len ? 0 : len - diff;
355         } else {
356                 *resbno = bno;
357                 *reslen = len;
358         }
359 
360         return busy;
361 }
362 
363 /*
364  * Compute best start block and diff for "near" allocations.
365  * freelen >= wantlen already checked by caller.
366  */
367 STATIC xfs_extlen_t                     /* difference value (absolute) */
368 xfs_alloc_compute_diff(
369         xfs_agblock_t   wantbno,        /* target starting block */
370         xfs_extlen_t    wantlen,        /* target length */
371         xfs_extlen_t    alignment,      /* target alignment */
372         int             datatype,       /* are we allocating data? */
373         xfs_agblock_t   freebno,        /* freespace's starting block */
374         xfs_extlen_t    freelen,        /* freespace's length */
375         xfs_agblock_t   *newbnop)       /* result: best start block from free */
376 {
377         xfs_agblock_t   freeend;        /* end of freespace extent */
378         xfs_agblock_t   newbno1;        /* return block number */
379         xfs_agblock_t   newbno2;        /* other new block number */
380         xfs_extlen_t    newlen1=0;      /* length with newbno1 */
381         xfs_extlen_t    newlen2=0;      /* length with newbno2 */
382         xfs_agblock_t   wantend;        /* end of target extent */
383         bool            userdata = datatype & XFS_ALLOC_USERDATA;
384 
385         ASSERT(freelen >= wantlen);
386         freeend = freebno + freelen;
387         wantend = wantbno + wantlen;
388         /*
389          * We want to allocate from the start of a free extent if it is past
390          * the desired block or if we are allocating user data and the free
391          * extent is before desired block. The second case is there to allow
392          * for contiguous allocation from the remaining free space if the file
393          * grows in the short term.
394          */
395         if (freebno >= wantbno || (userdata && freeend < wantend)) {
396                 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
397                         newbno1 = NULLAGBLOCK;
398         } else if (freeend >= wantend && alignment > 1) {
399                 newbno1 = roundup(wantbno, alignment);
400                 newbno2 = newbno1 - alignment;
401                 if (newbno1 >= freeend)
402                         newbno1 = NULLAGBLOCK;
403                 else
404                         newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
405                 if (newbno2 < freebno)
406                         newbno2 = NULLAGBLOCK;
407                 else
408                         newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
409                 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
410                         if (newlen1 < newlen2 ||
411                             (newlen1 == newlen2 &&
412                              XFS_ABSDIFF(newbno1, wantbno) >
413                              XFS_ABSDIFF(newbno2, wantbno)))
414                                 newbno1 = newbno2;
415                 } else if (newbno2 != NULLAGBLOCK)
416                         newbno1 = newbno2;
417         } else if (freeend >= wantend) {
418                 newbno1 = wantbno;
419         } else if (alignment > 1) {
420                 newbno1 = roundup(freeend - wantlen, alignment);
421                 if (newbno1 > freeend - wantlen &&
422                     newbno1 - alignment >= freebno)
423                         newbno1 -= alignment;
424                 else if (newbno1 >= freeend)
425                         newbno1 = NULLAGBLOCK;
426         } else
427                 newbno1 = freeend - wantlen;
428         *newbnop = newbno1;
429         return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
430 }
431 
432 /*
433  * Fix up the length, based on mod and prod.
434  * len should be k * prod + mod for some k.
435  * If len is too small it is returned unchanged.
436  * If len hits maxlen it is left alone.
437  */
438 STATIC void
439 xfs_alloc_fix_len(
440         xfs_alloc_arg_t *args)          /* allocation argument structure */
441 {
442         xfs_extlen_t    k;
443         xfs_extlen_t    rlen;
444 
445         ASSERT(args->mod < args->prod);
446         rlen = args->len;
447         ASSERT(rlen >= args->minlen);
448         ASSERT(rlen <= args->maxlen);
449         if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
450             (args->mod == 0 && rlen < args->prod))
451                 return;
452         k = rlen % args->prod;
453         if (k == args->mod)
454                 return;
455         if (k > args->mod)
456                 rlen = rlen - (k - args->mod);
457         else
458                 rlen = rlen - args->prod + (args->mod - k);
459         /* casts to (int) catch length underflows */
460         if ((int)rlen < (int)args->minlen)
461                 return;
462         ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
463         ASSERT(rlen % args->prod == args->mod);
464         ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
465                 rlen + args->minleft);
466         args->len = rlen;
467 }
468 
469 /*
470  * Determine if the cursor points to the block that contains the right-most
471  * block of records in the by-count btree. This block contains the largest
472  * contiguous free extent in the AG, so if we modify a record in this block we
473  * need to call xfs_alloc_fixup_longest() once the modifications are done to
474  * ensure the agf->agf_longest field is kept up to date with the longest free
475  * extent tracked by the by-count btree.
476  */
477 static bool
478 xfs_alloc_cursor_at_lastrec(
479         struct xfs_btree_cur    *cnt_cur)
480 {
481         struct xfs_btree_block  *block;
482         union xfs_btree_ptr     ptr;
483         struct xfs_buf          *bp;
484 
485         block = xfs_btree_get_block(cnt_cur, 0, &bp);
486 
487         xfs_btree_get_sibling(cnt_cur, block, &ptr, XFS_BB_RIGHTSIB);
488         return xfs_btree_ptr_is_null(cnt_cur, &ptr);
489 }
490 
491 /*
492  * Find the rightmost record of the cntbt, and return the longest free space
493  * recorded in it. Simply set both the block number and the length to their
494  * maximum values before searching.
495  */
496 static int
497 xfs_cntbt_longest(
498         struct xfs_btree_cur    *cnt_cur,
499         xfs_extlen_t            *longest)
500 {
501         struct xfs_alloc_rec_incore irec;
502         union xfs_btree_rec         *rec;
503         int                         stat = 0;
504         int                         error;
505 
506         memset(&cnt_cur->bc_rec, 0xFF, sizeof(cnt_cur->bc_rec));
507         error = xfs_btree_lookup(cnt_cur, XFS_LOOKUP_LE, &stat);
508         if (error)
509                 return error;
510         if (!stat) {
511                 /* totally empty tree */
512                 *longest = 0;
513                 return 0;
514         }
515 
516         error = xfs_btree_get_rec(cnt_cur, &rec, &stat);
517         if (error)
518                 return error;
519         if (XFS_IS_CORRUPT(cnt_cur->bc_mp, !stat)) {
520                 xfs_btree_mark_sick(cnt_cur);
521                 return -EFSCORRUPTED;
522         }
523 
524         xfs_alloc_btrec_to_irec(rec, &irec);
525         *longest = irec.ar_blockcount;
526         return 0;
527 }
528 
529 /*
530  * Update the longest contiguous free extent in the AG from the by-count cursor
531  * that is passed to us. This should be done at the end of any allocation or
532  * freeing operation that touches the longest extent in the btree.
533  *
534  * Needing to update the longest extent can be determined by calling
535  * xfs_alloc_cursor_at_lastrec() after the cursor is positioned for record
536  * modification but before the modification begins.
537  */
538 static int
539 xfs_alloc_fixup_longest(
540         struct xfs_btree_cur    *cnt_cur)
541 {
542         struct xfs_perag        *pag = cnt_cur->bc_ag.pag;
543         struct xfs_buf          *bp = cnt_cur->bc_ag.agbp;
544         struct xfs_agf          *agf = bp->b_addr;
545         xfs_extlen_t            longest = 0;
546         int                     error;
547 
548         /* Lookup last rec in order to update AGF. */
549         error = xfs_cntbt_longest(cnt_cur, &longest);
550         if (error)
551                 return error;
552 
553         pag->pagf_longest = longest;
554         agf->agf_longest = cpu_to_be32(pag->pagf_longest);
555         xfs_alloc_log_agf(cnt_cur->bc_tp, bp, XFS_AGF_LONGEST);
556 
557         return 0;
558 }
559 
560 /*
561  * Update the two btrees, logically removing from freespace the extent
562  * starting at rbno, rlen blocks.  The extent is contained within the
563  * actual (current) free extent fbno for flen blocks.
564  * Flags are passed in indicating whether the cursors are set to the
565  * relevant records.
566  */
567 STATIC int                              /* error code */
568 xfs_alloc_fixup_trees(
569         struct xfs_btree_cur *cnt_cur,  /* cursor for by-size btree */
570         struct xfs_btree_cur *bno_cur,  /* cursor for by-block btree */
571         xfs_agblock_t   fbno,           /* starting block of free extent */
572         xfs_extlen_t    flen,           /* length of free extent */
573         xfs_agblock_t   rbno,           /* starting block of returned extent */
574         xfs_extlen_t    rlen,           /* length of returned extent */
575         int             flags)          /* flags, XFSA_FIXUP_... */
576 {
577         int             error;          /* error code */
578         int             i;              /* operation results */
579         xfs_agblock_t   nfbno1;         /* first new free startblock */
580         xfs_agblock_t   nfbno2;         /* second new free startblock */
581         xfs_extlen_t    nflen1=0;       /* first new free length */
582         xfs_extlen_t    nflen2=0;       /* second new free length */
583         struct xfs_mount *mp;
584         bool            fixup_longest = false;
585 
586         mp = cnt_cur->bc_mp;
587 
588         /*
589          * Look up the record in the by-size tree if necessary.
590          */
591         if (flags & XFSA_FIXUP_CNT_OK) {
592 #ifdef DEBUG
593                 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
594                         return error;
595                 if (XFS_IS_CORRUPT(mp,
596                                    i != 1 ||
597                                    nfbno1 != fbno ||
598                                    nflen1 != flen)) {
599                         xfs_btree_mark_sick(cnt_cur);
600                         return -EFSCORRUPTED;
601                 }
602 #endif
603         } else {
604                 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
605                         return error;
606                 if (XFS_IS_CORRUPT(mp, i != 1)) {
607                         xfs_btree_mark_sick(cnt_cur);
608                         return -EFSCORRUPTED;
609                 }
610         }
611         /*
612          * Look up the record in the by-block tree if necessary.
613          */
614         if (flags & XFSA_FIXUP_BNO_OK) {
615 #ifdef DEBUG
616                 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
617                         return error;
618                 if (XFS_IS_CORRUPT(mp,
619                                    i != 1 ||
620                                    nfbno1 != fbno ||
621                                    nflen1 != flen)) {
622                         xfs_btree_mark_sick(bno_cur);
623                         return -EFSCORRUPTED;
624                 }
625 #endif
626         } else {
627                 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
628                         return error;
629                 if (XFS_IS_CORRUPT(mp, i != 1)) {
630                         xfs_btree_mark_sick(bno_cur);
631                         return -EFSCORRUPTED;
632                 }
633         }
634 
635 #ifdef DEBUG
636         if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
637                 struct xfs_btree_block  *bnoblock;
638                 struct xfs_btree_block  *cntblock;
639 
640                 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
641                 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
642 
643                 if (XFS_IS_CORRUPT(mp,
644                                    bnoblock->bb_numrecs !=
645                                    cntblock->bb_numrecs)) {
646                         xfs_btree_mark_sick(bno_cur);
647                         return -EFSCORRUPTED;
648                 }
649         }
650 #endif
651 
652         /*
653          * Deal with all four cases: the allocated record is contained
654          * within the freespace record, so we can have new freespace
655          * at either (or both) end, or no freespace remaining.
656          */
657         if (rbno == fbno && rlen == flen)
658                 nfbno1 = nfbno2 = NULLAGBLOCK;
659         else if (rbno == fbno) {
660                 nfbno1 = rbno + rlen;
661                 nflen1 = flen - rlen;
662                 nfbno2 = NULLAGBLOCK;
663         } else if (rbno + rlen == fbno + flen) {
664                 nfbno1 = fbno;
665                 nflen1 = flen - rlen;
666                 nfbno2 = NULLAGBLOCK;
667         } else {
668                 nfbno1 = fbno;
669                 nflen1 = rbno - fbno;
670                 nfbno2 = rbno + rlen;
671                 nflen2 = (fbno + flen) - nfbno2;
672         }
673 
674         if (xfs_alloc_cursor_at_lastrec(cnt_cur))
675                 fixup_longest = true;
676 
677         /*
678          * Delete the entry from the by-size btree.
679          */
680         if ((error = xfs_btree_delete(cnt_cur, &i)))
681                 return error;
682         if (XFS_IS_CORRUPT(mp, i != 1)) {
683                 xfs_btree_mark_sick(cnt_cur);
684                 return -EFSCORRUPTED;
685         }
686         /*
687          * Add new by-size btree entry(s).
688          */
689         if (nfbno1 != NULLAGBLOCK) {
690                 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
691                         return error;
692                 if (XFS_IS_CORRUPT(mp, i != 0)) {
693                         xfs_btree_mark_sick(cnt_cur);
694                         return -EFSCORRUPTED;
695                 }
696                 if ((error = xfs_btree_insert(cnt_cur, &i)))
697                         return error;
698                 if (XFS_IS_CORRUPT(mp, i != 1)) {
699                         xfs_btree_mark_sick(cnt_cur);
700                         return -EFSCORRUPTED;
701                 }
702         }
703         if (nfbno2 != NULLAGBLOCK) {
704                 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
705                         return error;
706                 if (XFS_IS_CORRUPT(mp, i != 0)) {
707                         xfs_btree_mark_sick(cnt_cur);
708                         return -EFSCORRUPTED;
709                 }
710                 if ((error = xfs_btree_insert(cnt_cur, &i)))
711                         return error;
712                 if (XFS_IS_CORRUPT(mp, i != 1)) {
713                         xfs_btree_mark_sick(cnt_cur);
714                         return -EFSCORRUPTED;
715                 }
716         }
717         /*
718          * Fix up the by-block btree entry(s).
719          */
720         if (nfbno1 == NULLAGBLOCK) {
721                 /*
722                  * No remaining freespace, just delete the by-block tree entry.
723                  */
724                 if ((error = xfs_btree_delete(bno_cur, &i)))
725                         return error;
726                 if (XFS_IS_CORRUPT(mp, i != 1)) {
727                         xfs_btree_mark_sick(bno_cur);
728                         return -EFSCORRUPTED;
729                 }
730         } else {
731                 /*
732                  * Update the by-block entry to start later|be shorter.
733                  */
734                 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
735                         return error;
736         }
737         if (nfbno2 != NULLAGBLOCK) {
738                 /*
739                  * 2 resulting free entries, need to add one.
740                  */
741                 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
742                         return error;
743                 if (XFS_IS_CORRUPT(mp, i != 0)) {
744                         xfs_btree_mark_sick(bno_cur);
745                         return -EFSCORRUPTED;
746                 }
747                 if ((error = xfs_btree_insert(bno_cur, &i)))
748                         return error;
749                 if (XFS_IS_CORRUPT(mp, i != 1)) {
750                         xfs_btree_mark_sick(bno_cur);
751                         return -EFSCORRUPTED;
752                 }
753         }
754 
755         if (fixup_longest)
756                 return xfs_alloc_fixup_longest(cnt_cur);
757 
758         return 0;
759 }
760 
761 /*
762  * We do not verify the AGFL contents against AGF-based index counters here,
763  * even though we may have access to the perag that contains shadow copies. We
764  * don't know if the AGF based counters have been checked, and if they have they
765  * still may be inconsistent because they haven't yet been reset on the first
766  * allocation after the AGF has been read in.
767  *
768  * This means we can only check that all agfl entries contain valid or null
769  * values because we can't reliably determine the active range to exclude
770  * NULLAGBNO as a valid value.
771  *
772  * However, we can't even do that for v4 format filesystems because there are
773  * old versions of mkfs out there that does not initialise the AGFL to known,
774  * verifiable values. HEnce we can't tell the difference between a AGFL block
775  * allocated by mkfs and a corrupted AGFL block here on v4 filesystems.
776  *
777  * As a result, we can only fully validate AGFL block numbers when we pull them
778  * from the freelist in xfs_alloc_get_freelist().
779  */
780 static xfs_failaddr_t
781 xfs_agfl_verify(
782         struct xfs_buf  *bp)
783 {
784         struct xfs_mount *mp = bp->b_mount;
785         struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
786         __be32          *agfl_bno = xfs_buf_to_agfl_bno(bp);
787         int             i;
788 
789         if (!xfs_has_crc(mp))
790                 return NULL;
791 
792         if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
793                 return __this_address;
794         if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
795                 return __this_address;
796         /*
797          * during growfs operations, the perag is not fully initialised,
798          * so we can't use it for any useful checking. growfs ensures we can't
799          * use it by using uncached buffers that don't have the perag attached
800          * so we can detect and avoid this problem.
801          */
802         if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
803                 return __this_address;
804 
805         for (i = 0; i < xfs_agfl_size(mp); i++) {
806                 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
807                     be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
808                         return __this_address;
809         }
810 
811         if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
812                 return __this_address;
813         return NULL;
814 }
815 
816 static void
817 xfs_agfl_read_verify(
818         struct xfs_buf  *bp)
819 {
820         struct xfs_mount *mp = bp->b_mount;
821         xfs_failaddr_t  fa;
822 
823         /*
824          * There is no verification of non-crc AGFLs because mkfs does not
825          * initialise the AGFL to zero or NULL. Hence the only valid part of the
826          * AGFL is what the AGF says is active. We can't get to the AGF, so we
827          * can't verify just those entries are valid.
828          */
829         if (!xfs_has_crc(mp))
830                 return;
831 
832         if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
833                 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
834         else {
835                 fa = xfs_agfl_verify(bp);
836                 if (fa)
837                         xfs_verifier_error(bp, -EFSCORRUPTED, fa);
838         }
839 }
840 
841 static void
842 xfs_agfl_write_verify(
843         struct xfs_buf  *bp)
844 {
845         struct xfs_mount        *mp = bp->b_mount;
846         struct xfs_buf_log_item *bip = bp->b_log_item;
847         xfs_failaddr_t          fa;
848 
849         /* no verification of non-crc AGFLs */
850         if (!xfs_has_crc(mp))
851                 return;
852 
853         fa = xfs_agfl_verify(bp);
854         if (fa) {
855                 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
856                 return;
857         }
858 
859         if (bip)
860                 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
861 
862         xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
863 }
864 
865 const struct xfs_buf_ops xfs_agfl_buf_ops = {
866         .name = "xfs_agfl",
867         .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
868         .verify_read = xfs_agfl_read_verify,
869         .verify_write = xfs_agfl_write_verify,
870         .verify_struct = xfs_agfl_verify,
871 };
872 
873 /*
874  * Read in the allocation group free block array.
875  */
876 int
877 xfs_alloc_read_agfl(
878         struct xfs_perag        *pag,
879         struct xfs_trans        *tp,
880         struct xfs_buf          **bpp)
881 {
882         struct xfs_mount        *mp = pag->pag_mount;
883         struct xfs_buf          *bp;
884         int                     error;
885 
886         error = xfs_trans_read_buf(
887                         mp, tp, mp->m_ddev_targp,
888                         XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGFL_DADDR(mp)),
889                         XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
890         if (xfs_metadata_is_sick(error))
891                 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGFL);
892         if (error)
893                 return error;
894         xfs_buf_set_ref(bp, XFS_AGFL_REF);
895         *bpp = bp;
896         return 0;
897 }
898 
899 STATIC int
900 xfs_alloc_update_counters(
901         struct xfs_trans        *tp,
902         struct xfs_buf          *agbp,
903         long                    len)
904 {
905         struct xfs_agf          *agf = agbp->b_addr;
906 
907         agbp->b_pag->pagf_freeblks += len;
908         be32_add_cpu(&agf->agf_freeblks, len);
909 
910         if (unlikely(be32_to_cpu(agf->agf_freeblks) >
911                      be32_to_cpu(agf->agf_length))) {
912                 xfs_buf_mark_corrupt(agbp);
913                 xfs_ag_mark_sick(agbp->b_pag, XFS_SICK_AG_AGF);
914                 return -EFSCORRUPTED;
915         }
916 
917         xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
918         return 0;
919 }
920 
921 /*
922  * Block allocation algorithm and data structures.
923  */
924 struct xfs_alloc_cur {
925         struct xfs_btree_cur            *cnt;   /* btree cursors */
926         struct xfs_btree_cur            *bnolt;
927         struct xfs_btree_cur            *bnogt;
928         xfs_extlen_t                    cur_len;/* current search length */
929         xfs_agblock_t                   rec_bno;/* extent startblock */
930         xfs_extlen_t                    rec_len;/* extent length */
931         xfs_agblock_t                   bno;    /* alloc bno */
932         xfs_extlen_t                    len;    /* alloc len */
933         xfs_extlen_t                    diff;   /* diff from search bno */
934         unsigned int                    busy_gen;/* busy state */
935         bool                            busy;
936 };
937 
938 /*
939  * Set up cursors, etc. in the extent allocation cursor. This function can be
940  * called multiple times to reset an initialized structure without having to
941  * reallocate cursors.
942  */
943 static int
944 xfs_alloc_cur_setup(
945         struct xfs_alloc_arg    *args,
946         struct xfs_alloc_cur    *acur)
947 {
948         int                     error;
949         int                     i;
950 
951         acur->cur_len = args->maxlen;
952         acur->rec_bno = 0;
953         acur->rec_len = 0;
954         acur->bno = 0;
955         acur->len = 0;
956         acur->diff = -1;
957         acur->busy = false;
958         acur->busy_gen = 0;
959 
960         /*
961          * Perform an initial cntbt lookup to check for availability of maxlen
962          * extents. If this fails, we'll return -ENOSPC to signal the caller to
963          * attempt a small allocation.
964          */
965         if (!acur->cnt)
966                 acur->cnt = xfs_cntbt_init_cursor(args->mp, args->tp,
967                                         args->agbp, args->pag);
968         error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
969         if (error)
970                 return error;
971 
972         /*
973          * Allocate the bnobt left and right search cursors.
974          */
975         if (!acur->bnolt)
976                 acur->bnolt = xfs_bnobt_init_cursor(args->mp, args->tp,
977                                         args->agbp, args->pag);
978         if (!acur->bnogt)
979                 acur->bnogt = xfs_bnobt_init_cursor(args->mp, args->tp,
980                                         args->agbp, args->pag);
981         return i == 1 ? 0 : -ENOSPC;
982 }
983 
984 static void
985 xfs_alloc_cur_close(
986         struct xfs_alloc_cur    *acur,
987         bool                    error)
988 {
989         int                     cur_error = XFS_BTREE_NOERROR;
990 
991         if (error)
992                 cur_error = XFS_BTREE_ERROR;
993 
994         if (acur->cnt)
995                 xfs_btree_del_cursor(acur->cnt, cur_error);
996         if (acur->bnolt)
997                 xfs_btree_del_cursor(acur->bnolt, cur_error);
998         if (acur->bnogt)
999                 xfs_btree_del_cursor(acur->bnogt, cur_error);
1000         acur->cnt = acur->bnolt = acur->bnogt = NULL;
1001 }
1002 
1003 /*
1004  * Check an extent for allocation and track the best available candidate in the
1005  * allocation structure. The cursor is deactivated if it has entered an out of
1006  * range state based on allocation arguments. Optionally return the extent
1007  * extent geometry and allocation status if requested by the caller.
1008  */
1009 static int
1010 xfs_alloc_cur_check(
1011         struct xfs_alloc_arg    *args,
1012         struct xfs_alloc_cur    *acur,
1013         struct xfs_btree_cur    *cur,
1014         int                     *new)
1015 {
1016         int                     error, i;
1017         xfs_agblock_t           bno, bnoa, bnew;
1018         xfs_extlen_t            len, lena, diff = -1;
1019         bool                    busy;
1020         unsigned                busy_gen = 0;
1021         bool                    deactivate = false;
1022         bool                    isbnobt = xfs_btree_is_bno(cur->bc_ops);
1023 
1024         *new = 0;
1025 
1026         error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1027         if (error)
1028                 return error;
1029         if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1030                 xfs_btree_mark_sick(cur);
1031                 return -EFSCORRUPTED;
1032         }
1033 
1034         /*
1035          * Check minlen and deactivate a cntbt cursor if out of acceptable size
1036          * range (i.e., walking backwards looking for a minlen extent).
1037          */
1038         if (len < args->minlen) {
1039                 deactivate = !isbnobt;
1040                 goto out;
1041         }
1042 
1043         busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
1044                                          &busy_gen);
1045         acur->busy |= busy;
1046         if (busy)
1047                 acur->busy_gen = busy_gen;
1048         /* deactivate a bnobt cursor outside of locality range */
1049         if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
1050                 deactivate = isbnobt;
1051                 goto out;
1052         }
1053         if (lena < args->minlen)
1054                 goto out;
1055 
1056         args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
1057         xfs_alloc_fix_len(args);
1058         ASSERT(args->len >= args->minlen);
1059         if (args->len < acur->len)
1060                 goto out;
1061 
1062         /*
1063          * We have an aligned record that satisfies minlen and beats or matches
1064          * the candidate extent size. Compare locality for near allocation mode.
1065          */
1066         diff = xfs_alloc_compute_diff(args->agbno, args->len,
1067                                       args->alignment, args->datatype,
1068                                       bnoa, lena, &bnew);
1069         if (bnew == NULLAGBLOCK)
1070                 goto out;
1071 
1072         /*
1073          * Deactivate a bnobt cursor with worse locality than the current best.
1074          */
1075         if (diff > acur->diff) {
1076                 deactivate = isbnobt;
1077                 goto out;
1078         }
1079 
1080         ASSERT(args->len > acur->len ||
1081                (args->len == acur->len && diff <= acur->diff));
1082         acur->rec_bno = bno;
1083         acur->rec_len = len;
1084         acur->bno = bnew;
1085         acur->len = args->len;
1086         acur->diff = diff;
1087         *new = 1;
1088 
1089         /*
1090          * We're done if we found a perfect allocation. This only deactivates
1091          * the current cursor, but this is just an optimization to terminate a
1092          * cntbt search that otherwise runs to the edge of the tree.
1093          */
1094         if (acur->diff == 0 && acur->len == args->maxlen)
1095                 deactivate = true;
1096 out:
1097         if (deactivate)
1098                 cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1099         trace_xfs_alloc_cur_check(cur, bno, len, diff, *new);
1100         return 0;
1101 }
1102 
1103 /*
1104  * Complete an allocation of a candidate extent. Remove the extent from both
1105  * trees and update the args structure.
1106  */
1107 STATIC int
1108 xfs_alloc_cur_finish(
1109         struct xfs_alloc_arg    *args,
1110         struct xfs_alloc_cur    *acur)
1111 {
1112         int                     error;
1113 
1114         ASSERT(acur->cnt && acur->bnolt);
1115         ASSERT(acur->bno >= acur->rec_bno);
1116         ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
1117         ASSERT(xfs_verify_agbext(args->pag, acur->rec_bno, acur->rec_len));
1118 
1119         error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
1120                                       acur->rec_len, acur->bno, acur->len, 0);
1121         if (error)
1122                 return error;
1123 
1124         args->agbno = acur->bno;
1125         args->len = acur->len;
1126         args->wasfromfl = 0;
1127 
1128         trace_xfs_alloc_cur(args);
1129         return 0;
1130 }
1131 
1132 /*
1133  * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
1134  * bno optimized lookup to search for extents with ideal size and locality.
1135  */
1136 STATIC int
1137 xfs_alloc_cntbt_iter(
1138         struct xfs_alloc_arg            *args,
1139         struct xfs_alloc_cur            *acur)
1140 {
1141         struct xfs_btree_cur    *cur = acur->cnt;
1142         xfs_agblock_t           bno;
1143         xfs_extlen_t            len, cur_len;
1144         int                     error;
1145         int                     i;
1146 
1147         if (!xfs_alloc_cur_active(cur))
1148                 return 0;
1149 
1150         /* locality optimized lookup */
1151         cur_len = acur->cur_len;
1152         error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
1153         if (error)
1154                 return error;
1155         if (i == 0)
1156                 return 0;
1157         error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1158         if (error)
1159                 return error;
1160 
1161         /* check the current record and update search length from it */
1162         error = xfs_alloc_cur_check(args, acur, cur, &i);
1163         if (error)
1164                 return error;
1165         ASSERT(len >= acur->cur_len);
1166         acur->cur_len = len;
1167 
1168         /*
1169          * We looked up the first record >= [agbno, len] above. The agbno is a
1170          * secondary key and so the current record may lie just before or after
1171          * agbno. If it is past agbno, check the previous record too so long as
1172          * the length matches as it may be closer. Don't check a smaller record
1173          * because that could deactivate our cursor.
1174          */
1175         if (bno > args->agbno) {
1176                 error = xfs_btree_decrement(cur, 0, &i);
1177                 if (!error && i) {
1178                         error = xfs_alloc_get_rec(cur, &bno, &len, &i);
1179                         if (!error && i && len == acur->cur_len)
1180                                 error = xfs_alloc_cur_check(args, acur, cur,
1181                                                             &i);
1182                 }
1183                 if (error)
1184                         return error;
1185         }
1186 
1187         /*
1188          * Increment the search key until we find at least one allocation
1189          * candidate or if the extent we found was larger. Otherwise, double the
1190          * search key to optimize the search. Efficiency is more important here
1191          * than absolute best locality.
1192          */
1193         cur_len <<= 1;
1194         if (!acur->len || acur->cur_len >= cur_len)
1195                 acur->cur_len++;
1196         else
1197                 acur->cur_len = cur_len;
1198 
1199         return error;
1200 }
1201 
1202 /*
1203  * Deal with the case where only small freespaces remain. Either return the
1204  * contents of the last freespace record, or allocate space from the freelist if
1205  * there is nothing in the tree.
1206  */
1207 STATIC int                      /* error */
1208 xfs_alloc_ag_vextent_small(
1209         struct xfs_alloc_arg    *args,  /* allocation argument structure */
1210         struct xfs_btree_cur    *ccur,  /* optional by-size cursor */
1211         xfs_agblock_t           *fbnop, /* result block number */
1212         xfs_extlen_t            *flenp, /* result length */
1213         int                     *stat)  /* status: 0-freelist, 1-normal/none */
1214 {
1215         struct xfs_agf          *agf = args->agbp->b_addr;
1216         int                     error = 0;
1217         xfs_agblock_t           fbno = NULLAGBLOCK;
1218         xfs_extlen_t            flen = 0;
1219         int                     i = 0;
1220 
1221         /*
1222          * If a cntbt cursor is provided, try to allocate the largest record in
1223          * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1224          * allocation. Make sure to respect minleft even when pulling from the
1225          * freelist.
1226          */
1227         if (ccur)
1228                 error = xfs_btree_decrement(ccur, 0, &i);
1229         if (error)
1230                 goto error;
1231         if (i) {
1232                 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1233                 if (error)
1234                         goto error;
1235                 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1236                         xfs_btree_mark_sick(ccur);
1237                         error = -EFSCORRUPTED;
1238                         goto error;
1239                 }
1240                 goto out;
1241         }
1242 
1243         if (args->minlen != 1 || args->alignment != 1 ||
1244             args->resv == XFS_AG_RESV_AGFL ||
1245             be32_to_cpu(agf->agf_flcount) <= args->minleft)
1246                 goto out;
1247 
1248         error = xfs_alloc_get_freelist(args->pag, args->tp, args->agbp,
1249                         &fbno, 0);
1250         if (error)
1251                 goto error;
1252         if (fbno == NULLAGBLOCK)
1253                 goto out;
1254 
1255         xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1256                               (args->datatype & XFS_ALLOC_NOBUSY));
1257 
1258         if (args->datatype & XFS_ALLOC_USERDATA) {
1259                 struct xfs_buf  *bp;
1260 
1261                 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1262                                 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1263                                 args->mp->m_bsize, 0, &bp);
1264                 if (error)
1265                         goto error;
1266                 xfs_trans_binval(args->tp, bp);
1267         }
1268         *fbnop = args->agbno = fbno;
1269         *flenp = args->len = 1;
1270         if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1271                 xfs_btree_mark_sick(ccur);
1272                 error = -EFSCORRUPTED;
1273                 goto error;
1274         }
1275         args->wasfromfl = 1;
1276         trace_xfs_alloc_small_freelist(args);
1277 
1278         /*
1279          * If we're feeding an AGFL block to something that doesn't live in the
1280          * free space, we need to clear out the OWN_AG rmap.
1281          */
1282         error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1283                               &XFS_RMAP_OINFO_AG);
1284         if (error)
1285                 goto error;
1286 
1287         *stat = 0;
1288         return 0;
1289 
1290 out:
1291         /*
1292          * Can't do the allocation, give up.
1293          */
1294         if (flen < args->minlen) {
1295                 args->agbno = NULLAGBLOCK;
1296                 trace_xfs_alloc_small_notenough(args);
1297                 flen = 0;
1298         }
1299         *fbnop = fbno;
1300         *flenp = flen;
1301         *stat = 1;
1302         trace_xfs_alloc_small_done(args);
1303         return 0;
1304 
1305 error:
1306         trace_xfs_alloc_small_error(args);
1307         return error;
1308 }
1309 
1310 /*
1311  * Allocate a variable extent at exactly agno/bno.
1312  * Extent's length (returned in *len) will be between minlen and maxlen,
1313  * and of the form k * prod + mod unless there's nothing that large.
1314  * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1315  */
1316 STATIC int                      /* error */
1317 xfs_alloc_ag_vextent_exact(
1318         xfs_alloc_arg_t *args)  /* allocation argument structure */
1319 {
1320         struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1321         struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1322         int             error;
1323         xfs_agblock_t   fbno;   /* start block of found extent */
1324         xfs_extlen_t    flen;   /* length of found extent */
1325         xfs_agblock_t   tbno;   /* start block of busy extent */
1326         xfs_extlen_t    tlen;   /* length of busy extent */
1327         xfs_agblock_t   tend;   /* end block of busy extent */
1328         int             i;      /* success/failure of operation */
1329         unsigned        busy_gen;
1330 
1331         ASSERT(args->alignment == 1);
1332 
1333         /*
1334          * Allocate/initialize a cursor for the by-number freespace btree.
1335          */
1336         bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1337                                           args->pag);
1338 
1339         /*
1340          * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1341          * Look for the closest free block <= bno, it must contain bno
1342          * if any free block does.
1343          */
1344         error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1345         if (error)
1346                 goto error0;
1347         if (!i)
1348                 goto not_found;
1349 
1350         /*
1351          * Grab the freespace record.
1352          */
1353         error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1354         if (error)
1355                 goto error0;
1356         if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1357                 xfs_btree_mark_sick(bno_cur);
1358                 error = -EFSCORRUPTED;
1359                 goto error0;
1360         }
1361         ASSERT(fbno <= args->agbno);
1362 
1363         /*
1364          * Check for overlapping busy extents.
1365          */
1366         tbno = fbno;
1367         tlen = flen;
1368         xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1369 
1370         /*
1371          * Give up if the start of the extent is busy, or the freespace isn't
1372          * long enough for the minimum request.
1373          */
1374         if (tbno > args->agbno)
1375                 goto not_found;
1376         if (tlen < args->minlen)
1377                 goto not_found;
1378         tend = tbno + tlen;
1379         if (tend < args->agbno + args->minlen)
1380                 goto not_found;
1381 
1382         /*
1383          * End of extent will be smaller of the freespace end and the
1384          * maximal requested end.
1385          *
1386          * Fix the length according to mod and prod if given.
1387          */
1388         args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1389                                                 - args->agbno;
1390         xfs_alloc_fix_len(args);
1391         ASSERT(args->agbno + args->len <= tend);
1392 
1393         /*
1394          * We are allocating agbno for args->len
1395          * Allocate/initialize a cursor for the by-size btree.
1396          */
1397         cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1398                                         args->pag);
1399         ASSERT(xfs_verify_agbext(args->pag, args->agbno, args->len));
1400         error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1401                                       args->len, XFSA_FIXUP_BNO_OK);
1402         if (error) {
1403                 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1404                 goto error0;
1405         }
1406 
1407         xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1408         xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1409 
1410         args->wasfromfl = 0;
1411         trace_xfs_alloc_exact_done(args);
1412         return 0;
1413 
1414 not_found:
1415         /* Didn't find it, return null. */
1416         xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1417         args->agbno = NULLAGBLOCK;
1418         trace_xfs_alloc_exact_notfound(args);
1419         return 0;
1420 
1421 error0:
1422         xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1423         trace_xfs_alloc_exact_error(args);
1424         return error;
1425 }
1426 
1427 /*
1428  * Search a given number of btree records in a given direction. Check each
1429  * record against the good extent we've already found.
1430  */
1431 STATIC int
1432 xfs_alloc_walk_iter(
1433         struct xfs_alloc_arg    *args,
1434         struct xfs_alloc_cur    *acur,
1435         struct xfs_btree_cur    *cur,
1436         bool                    increment,
1437         bool                    find_one, /* quit on first candidate */
1438         int                     count,    /* rec count (-1 for infinite) */
1439         int                     *stat)
1440 {
1441         int                     error;
1442         int                     i;
1443 
1444         *stat = 0;
1445 
1446         /*
1447          * Search so long as the cursor is active or we find a better extent.
1448          * The cursor is deactivated if it extends beyond the range of the
1449          * current allocation candidate.
1450          */
1451         while (xfs_alloc_cur_active(cur) && count) {
1452                 error = xfs_alloc_cur_check(args, acur, cur, &i);
1453                 if (error)
1454                         return error;
1455                 if (i == 1) {
1456                         *stat = 1;
1457                         if (find_one)
1458                                 break;
1459                 }
1460                 if (!xfs_alloc_cur_active(cur))
1461                         break;
1462 
1463                 if (increment)
1464                         error = xfs_btree_increment(cur, 0, &i);
1465                 else
1466                         error = xfs_btree_decrement(cur, 0, &i);
1467                 if (error)
1468                         return error;
1469                 if (i == 0)
1470                         cur->bc_flags &= ~XFS_BTREE_ALLOCBT_ACTIVE;
1471 
1472                 if (count > 0)
1473                         count--;
1474         }
1475 
1476         return 0;
1477 }
1478 
1479 /*
1480  * Search the by-bno and by-size btrees in parallel in search of an extent with
1481  * ideal locality based on the NEAR mode ->agbno locality hint.
1482  */
1483 STATIC int
1484 xfs_alloc_ag_vextent_locality(
1485         struct xfs_alloc_arg    *args,
1486         struct xfs_alloc_cur    *acur,
1487         int                     *stat)
1488 {
1489         struct xfs_btree_cur    *fbcur = NULL;
1490         int                     error;
1491         int                     i;
1492         bool                    fbinc;
1493 
1494         ASSERT(acur->len == 0);
1495 
1496         *stat = 0;
1497 
1498         error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1499         if (error)
1500                 return error;
1501         error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1502         if (error)
1503                 return error;
1504         error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1505         if (error)
1506                 return error;
1507 
1508         /*
1509          * Search the bnobt and cntbt in parallel. Search the bnobt left and
1510          * right and lookup the closest extent to the locality hint for each
1511          * extent size key in the cntbt. The entire search terminates
1512          * immediately on a bnobt hit because that means we've found best case
1513          * locality. Otherwise the search continues until the cntbt cursor runs
1514          * off the end of the tree. If no allocation candidate is found at this
1515          * point, give up on locality, walk backwards from the end of the cntbt
1516          * and take the first available extent.
1517          *
1518          * The parallel tree searches balance each other out to provide fairly
1519          * consistent performance for various situations. The bnobt search can
1520          * have pathological behavior in the worst case scenario of larger
1521          * allocation requests and fragmented free space. On the other hand, the
1522          * bnobt is able to satisfy most smaller allocation requests much more
1523          * quickly than the cntbt. The cntbt search can sift through fragmented
1524          * free space and sets of free extents for larger allocation requests
1525          * more quickly than the bnobt. Since the locality hint is just a hint
1526          * and we don't want to scan the entire bnobt for perfect locality, the
1527          * cntbt search essentially bounds the bnobt search such that we can
1528          * find good enough locality at reasonable performance in most cases.
1529          */
1530         while (xfs_alloc_cur_active(acur->bnolt) ||
1531                xfs_alloc_cur_active(acur->bnogt) ||
1532                xfs_alloc_cur_active(acur->cnt)) {
1533 
1534                 trace_xfs_alloc_cur_lookup(args);
1535 
1536                 /*
1537                  * Search the bnobt left and right. In the case of a hit, finish
1538                  * the search in the opposite direction and we're done.
1539                  */
1540                 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1541                                             true, 1, &i);
1542                 if (error)
1543                         return error;
1544                 if (i == 1) {
1545                         trace_xfs_alloc_cur_left(args);
1546                         fbcur = acur->bnogt;
1547                         fbinc = true;
1548                         break;
1549                 }
1550                 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1551                                             1, &i);
1552                 if (error)
1553                         return error;
1554                 if (i == 1) {
1555                         trace_xfs_alloc_cur_right(args);
1556                         fbcur = acur->bnolt;
1557                         fbinc = false;
1558                         break;
1559                 }
1560 
1561                 /*
1562                  * Check the extent with best locality based on the current
1563                  * extent size search key and keep track of the best candidate.
1564                  */
1565                 error = xfs_alloc_cntbt_iter(args, acur);
1566                 if (error)
1567                         return error;
1568                 if (!xfs_alloc_cur_active(acur->cnt)) {
1569                         trace_xfs_alloc_cur_lookup_done(args);
1570                         break;
1571                 }
1572         }
1573 
1574         /*
1575          * If we failed to find anything due to busy extents, return empty
1576          * handed so the caller can flush and retry. If no busy extents were
1577          * found, walk backwards from the end of the cntbt as a last resort.
1578          */
1579         if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1580                 error = xfs_btree_decrement(acur->cnt, 0, &i);
1581                 if (error)
1582                         return error;
1583                 if (i) {
1584                         acur->cnt->bc_flags |= XFS_BTREE_ALLOCBT_ACTIVE;
1585                         fbcur = acur->cnt;
1586                         fbinc = false;
1587                 }
1588         }
1589 
1590         /*
1591          * Search in the opposite direction for a better entry in the case of
1592          * a bnobt hit or walk backwards from the end of the cntbt.
1593          */
1594         if (fbcur) {
1595                 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1596                                             &i);
1597                 if (error)
1598                         return error;
1599         }
1600 
1601         if (acur->len)
1602                 *stat = 1;
1603 
1604         return 0;
1605 }
1606 
1607 /* Check the last block of the cnt btree for allocations. */
1608 static int
1609 xfs_alloc_ag_vextent_lastblock(
1610         struct xfs_alloc_arg    *args,
1611         struct xfs_alloc_cur    *acur,
1612         xfs_agblock_t           *bno,
1613         xfs_extlen_t            *len,
1614         bool                    *allocated)
1615 {
1616         int                     error;
1617         int                     i;
1618 
1619 #ifdef DEBUG
1620         /* Randomly don't execute the first algorithm. */
1621         if (get_random_u32_below(2))
1622                 return 0;
1623 #endif
1624 
1625         /*
1626          * Start from the entry that lookup found, sequence through all larger
1627          * free blocks.  If we're actually pointing at a record smaller than
1628          * maxlen, go to the start of this block, and skip all those smaller
1629          * than minlen.
1630          */
1631         if (*len || args->alignment > 1) {
1632                 acur->cnt->bc_levels[0].ptr = 1;
1633                 do {
1634                         error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1635                         if (error)
1636                                 return error;
1637                         if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1638                                 xfs_btree_mark_sick(acur->cnt);
1639                                 return -EFSCORRUPTED;
1640                         }
1641                         if (*len >= args->minlen)
1642                                 break;
1643                         error = xfs_btree_increment(acur->cnt, 0, &i);
1644                         if (error)
1645                                 return error;
1646                 } while (i);
1647                 ASSERT(*len >= args->minlen);
1648                 if (!i)
1649                         return 0;
1650         }
1651 
1652         error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1653         if (error)
1654                 return error;
1655 
1656         /*
1657          * It didn't work.  We COULD be in a case where there's a good record
1658          * somewhere, so try again.
1659          */
1660         if (acur->len == 0)
1661                 return 0;
1662 
1663         trace_xfs_alloc_near_first(args);
1664         *allocated = true;
1665         return 0;
1666 }
1667 
1668 /*
1669  * Allocate a variable extent near bno in the allocation group agno.
1670  * Extent's length (returned in len) will be between minlen and maxlen,
1671  * and of the form k * prod + mod unless there's nothing that large.
1672  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1673  */
1674 STATIC int
1675 xfs_alloc_ag_vextent_near(
1676         struct xfs_alloc_arg    *args,
1677         uint32_t                alloc_flags)
1678 {
1679         struct xfs_alloc_cur    acur = {};
1680         int                     error;          /* error code */
1681         int                     i;              /* result code, temporary */
1682         xfs_agblock_t           bno;
1683         xfs_extlen_t            len;
1684 
1685         /* handle uninitialized agbno range so caller doesn't have to */
1686         if (!args->min_agbno && !args->max_agbno)
1687                 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1688         ASSERT(args->min_agbno <= args->max_agbno);
1689 
1690         /* clamp agbno to the range if it's outside */
1691         if (args->agbno < args->min_agbno)
1692                 args->agbno = args->min_agbno;
1693         if (args->agbno > args->max_agbno)
1694                 args->agbno = args->max_agbno;
1695 
1696         /* Retry once quickly if we find busy extents before blocking. */
1697         alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1698 restart:
1699         len = 0;
1700 
1701         /*
1702          * Set up cursors and see if there are any free extents as big as
1703          * maxlen. If not, pick the last entry in the tree unless the tree is
1704          * empty.
1705          */
1706         error = xfs_alloc_cur_setup(args, &acur);
1707         if (error == -ENOSPC) {
1708                 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1709                                 &len, &i);
1710                 if (error)
1711                         goto out;
1712                 if (i == 0 || len == 0) {
1713                         trace_xfs_alloc_near_noentry(args);
1714                         goto out;
1715                 }
1716                 ASSERT(i == 1);
1717         } else if (error) {
1718                 goto out;
1719         }
1720 
1721         /*
1722          * First algorithm.
1723          * If the requested extent is large wrt the freespaces available
1724          * in this a.g., then the cursor will be pointing to a btree entry
1725          * near the right edge of the tree.  If it's in the last btree leaf
1726          * block, then we just examine all the entries in that block
1727          * that are big enough, and pick the best one.
1728          */
1729         if (xfs_btree_islastblock(acur.cnt, 0)) {
1730                 bool            allocated = false;
1731 
1732                 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1733                                 &allocated);
1734                 if (error)
1735                         goto out;
1736                 if (allocated)
1737                         goto alloc_finish;
1738         }
1739 
1740         /*
1741          * Second algorithm. Combined cntbt and bnobt search to find ideal
1742          * locality.
1743          */
1744         error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1745         if (error)
1746                 goto out;
1747 
1748         /*
1749          * If we couldn't get anything, give up.
1750          */
1751         if (!acur.len) {
1752                 if (acur.busy) {
1753                         /*
1754                          * Our only valid extents must have been busy. Flush and
1755                          * retry the allocation again. If we get an -EAGAIN
1756                          * error, we're being told that a deadlock was avoided
1757                          * and the current transaction needs committing before
1758                          * the allocation can be retried.
1759                          */
1760                         trace_xfs_alloc_near_busy(args);
1761                         error = xfs_extent_busy_flush(args->tp, args->pag,
1762                                         acur.busy_gen, alloc_flags);
1763                         if (error)
1764                                 goto out;
1765 
1766                         alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1767                         goto restart;
1768                 }
1769                 trace_xfs_alloc_size_neither(args);
1770                 args->agbno = NULLAGBLOCK;
1771                 goto out;
1772         }
1773 
1774 alloc_finish:
1775         /* fix up btrees on a successful allocation */
1776         error = xfs_alloc_cur_finish(args, &acur);
1777 
1778 out:
1779         xfs_alloc_cur_close(&acur, error);
1780         return error;
1781 }
1782 
1783 /*
1784  * Allocate a variable extent anywhere in the allocation group agno.
1785  * Extent's length (returned in len) will be between minlen and maxlen,
1786  * and of the form k * prod + mod unless there's nothing that large.
1787  * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1788  */
1789 static int
1790 xfs_alloc_ag_vextent_size(
1791         struct xfs_alloc_arg    *args,
1792         uint32_t                alloc_flags)
1793 {
1794         struct xfs_agf          *agf = args->agbp->b_addr;
1795         struct xfs_btree_cur    *bno_cur;
1796         struct xfs_btree_cur    *cnt_cur;
1797         xfs_agblock_t           fbno;           /* start of found freespace */
1798         xfs_extlen_t            flen;           /* length of found freespace */
1799         xfs_agblock_t           rbno;           /* returned block number */
1800         xfs_extlen_t            rlen;           /* length of returned extent */
1801         bool                    busy;
1802         unsigned                busy_gen;
1803         int                     error;
1804         int                     i;
1805 
1806         /* Retry once quickly if we find busy extents before blocking. */
1807         alloc_flags |= XFS_ALLOC_FLAG_TRYFLUSH;
1808 restart:
1809         /*
1810          * Allocate and initialize a cursor for the by-size btree.
1811          */
1812         cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, args->agbp,
1813                                         args->pag);
1814         bno_cur = NULL;
1815 
1816         /*
1817          * Look for an entry >= maxlen+alignment-1 blocks.
1818          */
1819         if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1820                         args->maxlen + args->alignment - 1, &i)))
1821                 goto error0;
1822 
1823         /*
1824          * If none then we have to settle for a smaller extent. In the case that
1825          * there are no large extents, this will return the last entry in the
1826          * tree unless the tree is empty. In the case that there are only busy
1827          * large extents, this will return the largest small extent unless there
1828          * are no smaller extents available.
1829          */
1830         if (!i) {
1831                 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1832                                                    &fbno, &flen, &i);
1833                 if (error)
1834                         goto error0;
1835                 if (i == 0 || flen == 0) {
1836                         xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1837                         trace_xfs_alloc_size_noentry(args);
1838                         return 0;
1839                 }
1840                 ASSERT(i == 1);
1841                 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1842                                 &rlen, &busy_gen);
1843         } else {
1844                 /*
1845                  * Search for a non-busy extent that is large enough.
1846                  */
1847                 for (;;) {
1848                         error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1849                         if (error)
1850                                 goto error0;
1851                         if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1852                                 xfs_btree_mark_sick(cnt_cur);
1853                                 error = -EFSCORRUPTED;
1854                                 goto error0;
1855                         }
1856 
1857                         busy = xfs_alloc_compute_aligned(args, fbno, flen,
1858                                         &rbno, &rlen, &busy_gen);
1859 
1860                         if (rlen >= args->maxlen)
1861                                 break;
1862 
1863                         error = xfs_btree_increment(cnt_cur, 0, &i);
1864                         if (error)
1865                                 goto error0;
1866                         if (i)
1867                                 continue;
1868 
1869                         /*
1870                          * Our only valid extents must have been busy. Flush and
1871                          * retry the allocation again. If we get an -EAGAIN
1872                          * error, we're being told that a deadlock was avoided
1873                          * and the current transaction needs committing before
1874                          * the allocation can be retried.
1875                          */
1876                         trace_xfs_alloc_size_busy(args);
1877                         error = xfs_extent_busy_flush(args->tp, args->pag,
1878                                         busy_gen, alloc_flags);
1879                         if (error)
1880                                 goto error0;
1881 
1882                         alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1883                         xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1884                         goto restart;
1885                 }
1886         }
1887 
1888         /*
1889          * In the first case above, we got the last entry in the
1890          * by-size btree.  Now we check to see if the space hits maxlen
1891          * once aligned; if not, we search left for something better.
1892          * This can't happen in the second case above.
1893          */
1894         rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1895         if (XFS_IS_CORRUPT(args->mp,
1896                            rlen != 0 &&
1897                            (rlen > flen ||
1898                             rbno + rlen > fbno + flen))) {
1899                 xfs_btree_mark_sick(cnt_cur);
1900                 error = -EFSCORRUPTED;
1901                 goto error0;
1902         }
1903         if (rlen < args->maxlen) {
1904                 xfs_agblock_t   bestfbno;
1905                 xfs_extlen_t    bestflen;
1906                 xfs_agblock_t   bestrbno;
1907                 xfs_extlen_t    bestrlen;
1908 
1909                 bestrlen = rlen;
1910                 bestrbno = rbno;
1911                 bestflen = flen;
1912                 bestfbno = fbno;
1913                 for (;;) {
1914                         if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1915                                 goto error0;
1916                         if (i == 0)
1917                                 break;
1918                         if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1919                                         &i)))
1920                                 goto error0;
1921                         if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1922                                 xfs_btree_mark_sick(cnt_cur);
1923                                 error = -EFSCORRUPTED;
1924                                 goto error0;
1925                         }
1926                         if (flen < bestrlen)
1927                                 break;
1928                         busy = xfs_alloc_compute_aligned(args, fbno, flen,
1929                                         &rbno, &rlen, &busy_gen);
1930                         rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1931                         if (XFS_IS_CORRUPT(args->mp,
1932                                            rlen != 0 &&
1933                                            (rlen > flen ||
1934                                             rbno + rlen > fbno + flen))) {
1935                                 xfs_btree_mark_sick(cnt_cur);
1936                                 error = -EFSCORRUPTED;
1937                                 goto error0;
1938                         }
1939                         if (rlen > bestrlen) {
1940                                 bestrlen = rlen;
1941                                 bestrbno = rbno;
1942                                 bestflen = flen;
1943                                 bestfbno = fbno;
1944                                 if (rlen == args->maxlen)
1945                                         break;
1946                         }
1947                 }
1948                 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1949                                 &i)))
1950                         goto error0;
1951                 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1952                         xfs_btree_mark_sick(cnt_cur);
1953                         error = -EFSCORRUPTED;
1954                         goto error0;
1955                 }
1956                 rlen = bestrlen;
1957                 rbno = bestrbno;
1958                 flen = bestflen;
1959                 fbno = bestfbno;
1960         }
1961         args->wasfromfl = 0;
1962         /*
1963          * Fix up the length.
1964          */
1965         args->len = rlen;
1966         if (rlen < args->minlen) {
1967                 if (busy) {
1968                         /*
1969                          * Our only valid extents must have been busy. Flush and
1970                          * retry the allocation again. If we get an -EAGAIN
1971                          * error, we're being told that a deadlock was avoided
1972                          * and the current transaction needs committing before
1973                          * the allocation can be retried.
1974                          */
1975                         trace_xfs_alloc_size_busy(args);
1976                         error = xfs_extent_busy_flush(args->tp, args->pag,
1977                                         busy_gen, alloc_flags);
1978                         if (error)
1979                                 goto error0;
1980 
1981                         alloc_flags &= ~XFS_ALLOC_FLAG_TRYFLUSH;
1982                         xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1983                         goto restart;
1984                 }
1985                 goto out_nominleft;
1986         }
1987         xfs_alloc_fix_len(args);
1988 
1989         rlen = args->len;
1990         if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1991                 xfs_btree_mark_sick(cnt_cur);
1992                 error = -EFSCORRUPTED;
1993                 goto error0;
1994         }
1995         /*
1996          * Allocate and initialize a cursor for the by-block tree.
1997          */
1998         bno_cur = xfs_bnobt_init_cursor(args->mp, args->tp, args->agbp,
1999                                         args->pag);
2000         if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
2001                         rbno, rlen, XFSA_FIXUP_CNT_OK)))
2002                 goto error0;
2003         xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2004         xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2005         cnt_cur = bno_cur = NULL;
2006         args->len = rlen;
2007         args->agbno = rbno;
2008         if (XFS_IS_CORRUPT(args->mp,
2009                            args->agbno + args->len >
2010                            be32_to_cpu(agf->agf_length))) {
2011                 xfs_ag_mark_sick(args->pag, XFS_SICK_AG_BNOBT);
2012                 error = -EFSCORRUPTED;
2013                 goto error0;
2014         }
2015         trace_xfs_alloc_size_done(args);
2016         return 0;
2017 
2018 error0:
2019         trace_xfs_alloc_size_error(args);
2020         if (cnt_cur)
2021                 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2022         if (bno_cur)
2023                 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2024         return error;
2025 
2026 out_nominleft:
2027         xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2028         trace_xfs_alloc_size_nominleft(args);
2029         args->agbno = NULLAGBLOCK;
2030         return 0;
2031 }
2032 
2033 /*
2034  * Free the extent starting at agno/bno for length.
2035  */
2036 int
2037 xfs_free_ag_extent(
2038         struct xfs_trans                *tp,
2039         struct xfs_buf                  *agbp,
2040         xfs_agnumber_t                  agno,
2041         xfs_agblock_t                   bno,
2042         xfs_extlen_t                    len,
2043         const struct xfs_owner_info     *oinfo,
2044         enum xfs_ag_resv_type           type)
2045 {
2046         struct xfs_mount                *mp;
2047         struct xfs_btree_cur            *bno_cur;
2048         struct xfs_btree_cur            *cnt_cur;
2049         xfs_agblock_t                   gtbno; /* start of right neighbor */
2050         xfs_extlen_t                    gtlen; /* length of right neighbor */
2051         xfs_agblock_t                   ltbno; /* start of left neighbor */
2052         xfs_extlen_t                    ltlen; /* length of left neighbor */
2053         xfs_agblock_t                   nbno; /* new starting block of freesp */
2054         xfs_extlen_t                    nlen; /* new length of freespace */
2055         int                             haveleft; /* have a left neighbor */
2056         int                             haveright; /* have a right neighbor */
2057         int                             i;
2058         int                             error;
2059         struct xfs_perag                *pag = agbp->b_pag;
2060         bool                            fixup_longest = false;
2061 
2062         bno_cur = cnt_cur = NULL;
2063         mp = tp->t_mountp;
2064 
2065         if (!xfs_rmap_should_skip_owner_update(oinfo)) {
2066                 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
2067                 if (error)
2068                         goto error0;
2069         }
2070 
2071         /*
2072          * Allocate and initialize a cursor for the by-block btree.
2073          */
2074         bno_cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag);
2075         /*
2076          * Look for a neighboring block on the left (lower block numbers)
2077          * that is contiguous with this space.
2078          */
2079         if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
2080                 goto error0;
2081         if (haveleft) {
2082                 /*
2083                  * There is a block to our left.
2084                  */
2085                 if ((error = xfs_alloc_get_rec(bno_cur, &ltbno, &ltlen, &i)))
2086                         goto error0;
2087                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2088                         xfs_btree_mark_sick(bno_cur);
2089                         error = -EFSCORRUPTED;
2090                         goto error0;
2091                 }
2092                 /*
2093                  * It's not contiguous, though.
2094                  */
2095                 if (ltbno + ltlen < bno)
2096                         haveleft = 0;
2097                 else {
2098                         /*
2099                          * If this failure happens the request to free this
2100                          * space was invalid, it's (partly) already free.
2101                          * Very bad.
2102                          */
2103                         if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
2104                                 xfs_btree_mark_sick(bno_cur);
2105                                 error = -EFSCORRUPTED;
2106                                 goto error0;
2107                         }
2108                 }
2109         }
2110         /*
2111          * Look for a neighboring block on the right (higher block numbers)
2112          * that is contiguous with this space.
2113          */
2114         if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
2115                 goto error0;
2116         if (haveright) {
2117                 /*
2118                  * There is a block to our right.
2119                  */
2120                 if ((error = xfs_alloc_get_rec(bno_cur, &gtbno, &gtlen, &i)))
2121                         goto error0;
2122                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2123                         xfs_btree_mark_sick(bno_cur);
2124                         error = -EFSCORRUPTED;
2125                         goto error0;
2126                 }
2127                 /*
2128                  * It's not contiguous, though.
2129                  */
2130                 if (bno + len < gtbno)
2131                         haveright = 0;
2132                 else {
2133                         /*
2134                          * If this failure happens the request to free this
2135                          * space was invalid, it's (partly) already free.
2136                          * Very bad.
2137                          */
2138                         if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
2139                                 xfs_btree_mark_sick(bno_cur);
2140                                 error = -EFSCORRUPTED;
2141                                 goto error0;
2142                         }
2143                 }
2144         }
2145         /*
2146          * Now allocate and initialize a cursor for the by-size tree.
2147          */
2148         cnt_cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag);
2149         /*
2150          * Have both left and right contiguous neighbors.
2151          * Merge all three into a single free block.
2152          */
2153         if (haveleft && haveright) {
2154                 /*
2155                  * Delete the old by-size entry on the left.
2156                  */
2157                 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2158                         goto error0;
2159                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2160                         xfs_btree_mark_sick(cnt_cur);
2161                         error = -EFSCORRUPTED;
2162                         goto error0;
2163                 }
2164                 if ((error = xfs_btree_delete(cnt_cur, &i)))
2165                         goto error0;
2166                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2167                         xfs_btree_mark_sick(cnt_cur);
2168                         error = -EFSCORRUPTED;
2169                         goto error0;
2170                 }
2171                 /*
2172                  * Delete the old by-size entry on the right.
2173                  */
2174                 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2175                         goto error0;
2176                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2177                         xfs_btree_mark_sick(cnt_cur);
2178                         error = -EFSCORRUPTED;
2179                         goto error0;
2180                 }
2181                 if ((error = xfs_btree_delete(cnt_cur, &i)))
2182                         goto error0;
2183                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2184                         xfs_btree_mark_sick(cnt_cur);
2185                         error = -EFSCORRUPTED;
2186                         goto error0;
2187                 }
2188                 /*
2189                  * Delete the old by-block entry for the right block.
2190                  */
2191                 if ((error = xfs_btree_delete(bno_cur, &i)))
2192                         goto error0;
2193                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2194                         xfs_btree_mark_sick(bno_cur);
2195                         error = -EFSCORRUPTED;
2196                         goto error0;
2197                 }
2198                 /*
2199                  * Move the by-block cursor back to the left neighbor.
2200                  */
2201                 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2202                         goto error0;
2203                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2204                         xfs_btree_mark_sick(bno_cur);
2205                         error = -EFSCORRUPTED;
2206                         goto error0;
2207                 }
2208 #ifdef DEBUG
2209                 /*
2210                  * Check that this is the right record: delete didn't
2211                  * mangle the cursor.
2212                  */
2213                 {
2214                         xfs_agblock_t   xxbno;
2215                         xfs_extlen_t    xxlen;
2216 
2217                         if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2218                                         &i)))
2219                                 goto error0;
2220                         if (XFS_IS_CORRUPT(mp,
2221                                            i != 1 ||
2222                                            xxbno != ltbno ||
2223                                            xxlen != ltlen)) {
2224                                 xfs_btree_mark_sick(bno_cur);
2225                                 error = -EFSCORRUPTED;
2226                                 goto error0;
2227                         }
2228                 }
2229 #endif
2230                 /*
2231                  * Update remaining by-block entry to the new, joined block.
2232                  */
2233                 nbno = ltbno;
2234                 nlen = len + ltlen + gtlen;
2235                 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2236                         goto error0;
2237         }
2238         /*
2239          * Have only a left contiguous neighbor.
2240          * Merge it together with the new freespace.
2241          */
2242         else if (haveleft) {
2243                 /*
2244                  * Delete the old by-size entry on the left.
2245                  */
2246                 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2247                         goto error0;
2248                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2249                         xfs_btree_mark_sick(cnt_cur);
2250                         error = -EFSCORRUPTED;
2251                         goto error0;
2252                 }
2253                 if ((error = xfs_btree_delete(cnt_cur, &i)))
2254                         goto error0;
2255                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2256                         xfs_btree_mark_sick(cnt_cur);
2257                         error = -EFSCORRUPTED;
2258                         goto error0;
2259                 }
2260                 /*
2261                  * Back up the by-block cursor to the left neighbor, and
2262                  * update its length.
2263                  */
2264                 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2265                         goto error0;
2266                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2267                         xfs_btree_mark_sick(bno_cur);
2268                         error = -EFSCORRUPTED;
2269                         goto error0;
2270                 }
2271                 nbno = ltbno;
2272                 nlen = len + ltlen;
2273                 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2274                         goto error0;
2275         }
2276         /*
2277          * Have only a right contiguous neighbor.
2278          * Merge it together with the new freespace.
2279          */
2280         else if (haveright) {
2281                 /*
2282                  * Delete the old by-size entry on the right.
2283                  */
2284                 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2285                         goto error0;
2286                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2287                         xfs_btree_mark_sick(cnt_cur);
2288                         error = -EFSCORRUPTED;
2289                         goto error0;
2290                 }
2291                 if ((error = xfs_btree_delete(cnt_cur, &i)))
2292                         goto error0;
2293                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2294                         xfs_btree_mark_sick(cnt_cur);
2295                         error = -EFSCORRUPTED;
2296                         goto error0;
2297                 }
2298                 /*
2299                  * Update the starting block and length of the right
2300                  * neighbor in the by-block tree.
2301                  */
2302                 nbno = bno;
2303                 nlen = len + gtlen;
2304                 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2305                         goto error0;
2306         }
2307         /*
2308          * No contiguous neighbors.
2309          * Insert the new freespace into the by-block tree.
2310          */
2311         else {
2312                 nbno = bno;
2313                 nlen = len;
2314                 if ((error = xfs_btree_insert(bno_cur, &i)))
2315                         goto error0;
2316                 if (XFS_IS_CORRUPT(mp, i != 1)) {
2317                         xfs_btree_mark_sick(bno_cur);
2318                         error = -EFSCORRUPTED;
2319                         goto error0;
2320                 }
2321         }
2322         xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2323         bno_cur = NULL;
2324 
2325         /*
2326          * In all cases we need to insert the new freespace in the by-size tree.
2327          *
2328          * If this new freespace is being inserted in the block that contains
2329          * the largest free space in the btree, make sure we also fix up the
2330          * agf->agf-longest tracker field.
2331          */
2332         if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2333                 goto error0;
2334         if (XFS_IS_CORRUPT(mp, i != 0)) {
2335                 xfs_btree_mark_sick(cnt_cur);
2336                 error = -EFSCORRUPTED;
2337                 goto error0;
2338         }
2339         if (xfs_alloc_cursor_at_lastrec(cnt_cur))
2340                 fixup_longest = true;
2341         if ((error = xfs_btree_insert(cnt_cur, &i)))
2342                 goto error0;
2343         if (XFS_IS_CORRUPT(mp, i != 1)) {
2344                 xfs_btree_mark_sick(cnt_cur);
2345                 error = -EFSCORRUPTED;
2346                 goto error0;
2347         }
2348         if (fixup_longest) {
2349                 error = xfs_alloc_fixup_longest(cnt_cur);
2350                 if (error)
2351                         goto error0;
2352         }
2353 
2354         xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2355         cnt_cur = NULL;
2356 
2357         /*
2358          * Update the freespace totals in the ag and superblock.
2359          */
2360         error = xfs_alloc_update_counters(tp, agbp, len);
2361         xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2362         if (error)
2363                 goto error0;
2364 
2365         XFS_STATS_INC(mp, xs_freex);
2366         XFS_STATS_ADD(mp, xs_freeb, len);
2367 
2368         trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2369 
2370         return 0;
2371 
2372  error0:
2373         trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2374         if (bno_cur)
2375                 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2376         if (cnt_cur)
2377                 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2378         return error;
2379 }
2380 
2381 /*
2382  * Visible (exported) allocation/free functions.
2383  * Some of these are used just by xfs_alloc_btree.c and this file.
2384  */
2385 
2386 /*
2387  * Compute and fill in value of m_alloc_maxlevels.
2388  */
2389 void
2390 xfs_alloc_compute_maxlevels(
2391         xfs_mount_t     *mp)    /* file system mount structure */
2392 {
2393         mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2394                         (mp->m_sb.sb_agblocks + 1) / 2);
2395         ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2396 }
2397 
2398 /*
2399  * Find the length of the longest extent in an AG.  The 'need' parameter
2400  * specifies how much space we're going to need for the AGFL and the
2401  * 'reserved' parameter tells us how many blocks in this AG are reserved for
2402  * other callers.
2403  */
2404 xfs_extlen_t
2405 xfs_alloc_longest_free_extent(
2406         struct xfs_perag        *pag,
2407         xfs_extlen_t            need,
2408         xfs_extlen_t            reserved)
2409 {
2410         xfs_extlen_t            delta = 0;
2411 
2412         /*
2413          * If the AGFL needs a recharge, we'll have to subtract that from the
2414          * longest extent.
2415          */
2416         if (need > pag->pagf_flcount)
2417                 delta = need - pag->pagf_flcount;
2418 
2419         /*
2420          * If we cannot maintain others' reservations with space from the
2421          * not-longest freesp extents, we'll have to subtract /that/ from
2422          * the longest extent too.
2423          */
2424         if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2425                 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2426 
2427         /*
2428          * If the longest extent is long enough to satisfy all the
2429          * reservations and AGFL rules in place, we can return this extent.
2430          */
2431         if (pag->pagf_longest > delta)
2432                 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2433                                 pag->pagf_longest - delta);
2434 
2435         /* Otherwise, let the caller try for 1 block if there's space. */
2436         return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2437 }
2438 
2439 /*
2440  * Compute the minimum length of the AGFL in the given AG.  If @pag is NULL,
2441  * return the largest possible minimum length.
2442  */
2443 unsigned int
2444 xfs_alloc_min_freelist(
2445         struct xfs_mount        *mp,
2446         struct xfs_perag        *pag)
2447 {
2448         /* AG btrees have at least 1 level. */
2449         const unsigned int      bno_level = pag ? pag->pagf_bno_level : 1;
2450         const unsigned int      cnt_level = pag ? pag->pagf_cnt_level : 1;
2451         const unsigned int      rmap_level = pag ? pag->pagf_rmap_level : 1;
2452         unsigned int            min_free;
2453 
2454         ASSERT(mp->m_alloc_maxlevels > 0);
2455 
2456         /*
2457          * For a btree shorter than the maximum height, the worst case is that
2458          * every level gets split and a new level is added, then while inserting
2459          * another entry to refill the AGFL, every level under the old root gets
2460          * split again. This is:
2461          *
2462          *   (full height split reservation) + (AGFL refill split height)
2463          * = (current height + 1) + (current height - 1)
2464          * = (new height) + (new height - 2)
2465          * = 2 * new height - 2
2466          *
2467          * For a btree of maximum height, the worst case is that every level
2468          * under the root gets split, then while inserting another entry to
2469          * refill the AGFL, every level under the root gets split again. This is
2470          * also:
2471          *
2472          *   2 * (current height - 1)
2473          * = 2 * (new height - 1)
2474          * = 2 * new height - 2
2475          */
2476 
2477         /* space needed by-bno freespace btree */
2478         min_free = min(bno_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
2479         /* space needed by-size freespace btree */
2480         min_free += min(cnt_level + 1, mp->m_alloc_maxlevels) * 2 - 2;
2481         /* space needed reverse mapping used space btree */
2482         if (xfs_has_rmapbt(mp))
2483                 min_free += min(rmap_level + 1, mp->m_rmap_maxlevels) * 2 - 2;
2484         return min_free;
2485 }
2486 
2487 /*
2488  * Check if the operation we are fixing up the freelist for should go ahead or
2489  * not. If we are freeing blocks, we always allow it, otherwise the allocation
2490  * is dependent on whether the size and shape of free space available will
2491  * permit the requested allocation to take place.
2492  */
2493 static bool
2494 xfs_alloc_space_available(
2495         struct xfs_alloc_arg    *args,
2496         xfs_extlen_t            min_free,
2497         int                     flags)
2498 {
2499         struct xfs_perag        *pag = args->pag;
2500         xfs_extlen_t            alloc_len, longest;
2501         xfs_extlen_t            reservation; /* blocks that are still reserved */
2502         int                     available;
2503         xfs_extlen_t            agflcount;
2504 
2505         if (flags & XFS_ALLOC_FLAG_FREEING)
2506                 return true;
2507 
2508         reservation = xfs_ag_resv_needed(pag, args->resv);
2509 
2510         /* do we have enough contiguous free space for the allocation? */
2511         alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2512         longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2513         if (longest < alloc_len)
2514                 return false;
2515 
2516         /*
2517          * Do we have enough free space remaining for the allocation? Don't
2518          * account extra agfl blocks because we are about to defer free them,
2519          * making them unavailable until the current transaction commits.
2520          */
2521         agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2522         available = (int)(pag->pagf_freeblks + agflcount -
2523                           reservation - min_free - args->minleft);
2524         if (available < (int)max(args->total, alloc_len))
2525                 return false;
2526 
2527         /*
2528          * Clamp maxlen to the amount of free space available for the actual
2529          * extent allocation.
2530          */
2531         if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2532                 args->maxlen = available;
2533                 ASSERT(args->maxlen > 0);
2534                 ASSERT(args->maxlen >= args->minlen);
2535         }
2536 
2537         return true;
2538 }
2539 
2540 /*
2541  * Check the agfl fields of the agf for inconsistency or corruption.
2542  *
2543  * The original purpose was to detect an agfl header padding mismatch between
2544  * current and early v5 kernels. This problem manifests as a 1-slot size
2545  * difference between the on-disk flcount and the active [first, last] range of
2546  * a wrapped agfl.
2547  *
2548  * However, we need to use these same checks to catch agfl count corruptions
2549  * unrelated to padding. This could occur on any v4 or v5 filesystem, so either
2550  * way, we need to reset the agfl and warn the user.
2551  *
2552  * Return true if a reset is required before the agfl can be used, false
2553  * otherwise.
2554  */
2555 static bool
2556 xfs_agfl_needs_reset(
2557         struct xfs_mount        *mp,
2558         struct xfs_agf          *agf)
2559 {
2560         uint32_t                f = be32_to_cpu(agf->agf_flfirst);
2561         uint32_t                l = be32_to_cpu(agf->agf_fllast);
2562         uint32_t                c = be32_to_cpu(agf->agf_flcount);
2563         int                     agfl_size = xfs_agfl_size(mp);
2564         int                     active;
2565 
2566         /*
2567          * The agf read verifier catches severe corruption of these fields.
2568          * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2569          * the verifier allows it.
2570          */
2571         if (f >= agfl_size || l >= agfl_size)
2572                 return true;
2573         if (c > agfl_size)
2574                 return true;
2575 
2576         /*
2577          * Check consistency between the on-disk count and the active range. An
2578          * agfl padding mismatch manifests as an inconsistent flcount.
2579          */
2580         if (c && l >= f)
2581                 active = l - f + 1;
2582         else if (c)
2583                 active = agfl_size - f + l + 1;
2584         else
2585                 active = 0;
2586 
2587         return active != c;
2588 }
2589 
2590 /*
2591  * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2592  * agfl content cannot be trusted. Warn the user that a repair is required to
2593  * recover leaked blocks.
2594  *
2595  * The purpose of this mechanism is to handle filesystems affected by the agfl
2596  * header padding mismatch problem. A reset keeps the filesystem online with a
2597  * relatively minor free space accounting inconsistency rather than suffer the
2598  * inevitable crash from use of an invalid agfl block.
2599  */
2600 static void
2601 xfs_agfl_reset(
2602         struct xfs_trans        *tp,
2603         struct xfs_buf          *agbp,
2604         struct xfs_perag        *pag)
2605 {
2606         struct xfs_mount        *mp = tp->t_mountp;
2607         struct xfs_agf          *agf = agbp->b_addr;
2608 
2609         ASSERT(xfs_perag_agfl_needs_reset(pag));
2610         trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2611 
2612         xfs_warn(mp,
2613                "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2614                "Please unmount and run xfs_repair.",
2615                  pag->pag_agno, pag->pagf_flcount);
2616 
2617         agf->agf_flfirst = 0;
2618         agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2619         agf->agf_flcount = 0;
2620         xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2621                                     XFS_AGF_FLCOUNT);
2622 
2623         pag->pagf_flcount = 0;
2624         clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
2625 }
2626 
2627 /*
2628  * Add the extent to the list of extents to be free at transaction end.
2629  * The list is maintained sorted (by block number).
2630  */
2631 static int
2632 xfs_defer_extent_free(
2633         struct xfs_trans                *tp,
2634         xfs_fsblock_t                   bno,
2635         xfs_filblks_t                   len,
2636         const struct xfs_owner_info     *oinfo,
2637         enum xfs_ag_resv_type           type,
2638         unsigned int                    free_flags,
2639         struct xfs_defer_pending        **dfpp)
2640 {
2641         struct xfs_extent_free_item     *xefi;
2642         struct xfs_mount                *mp = tp->t_mountp;
2643 
2644         ASSERT(len <= XFS_MAX_BMBT_EXTLEN);
2645         ASSERT(!isnullstartblock(bno));
2646         ASSERT(!(free_flags & ~XFS_FREE_EXTENT_ALL_FLAGS));
2647 
2648         if (XFS_IS_CORRUPT(mp, !xfs_verify_fsbext(mp, bno, len)))
2649                 return -EFSCORRUPTED;
2650 
2651         xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
2652                                GFP_KERNEL | __GFP_NOFAIL);
2653         xefi->xefi_startblock = bno;
2654         xefi->xefi_blockcount = (xfs_extlen_t)len;
2655         xefi->xefi_agresv = type;
2656         if (free_flags & XFS_FREE_EXTENT_SKIP_DISCARD)
2657                 xefi->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2658         if (oinfo) {
2659                 ASSERT(oinfo->oi_offset == 0);
2660 
2661                 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2662                         xefi->xefi_flags |= XFS_EFI_ATTR_FORK;
2663                 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2664                         xefi->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2665                 xefi->xefi_owner = oinfo->oi_owner;
2666         } else {
2667                 xefi->xefi_owner = XFS_RMAP_OWN_NULL;
2668         }
2669 
2670         xfs_extent_free_defer_add(tp, xefi, dfpp);
2671         return 0;
2672 }
2673 
2674 int
2675 xfs_free_extent_later(
2676         struct xfs_trans                *tp,
2677         xfs_fsblock_t                   bno,
2678         xfs_filblks_t                   len,
2679         const struct xfs_owner_info     *oinfo,
2680         enum xfs_ag_resv_type           type,
2681         unsigned int                    free_flags)
2682 {
2683         struct xfs_defer_pending        *dontcare = NULL;
2684 
2685         return xfs_defer_extent_free(tp, bno, len, oinfo, type, free_flags,
2686                         &dontcare);
2687 }
2688 
2689 /*
2690  * Set up automatic freeing of unwritten space in the filesystem.
2691  *
2692  * This function attached a paused deferred extent free item to the
2693  * transaction.  Pausing means that the EFI will be logged in the next
2694  * transaction commit, but the pending EFI will not be finished until the
2695  * pending item is unpaused.
2696  *
2697  * If the system goes down after the EFI has been persisted to the log but
2698  * before the pending item is unpaused, log recovery will find the EFI, fail to
2699  * find the EFD, and free the space.
2700  *
2701  * If the pending item is unpaused, the next transaction commit will log an EFD
2702  * without freeing the space.
2703  *
2704  * Caller must ensure that the tp, fsbno, len, oinfo, and resv flags of the
2705  * @args structure are set to the relevant values.
2706  */
2707 int
2708 xfs_alloc_schedule_autoreap(
2709         const struct xfs_alloc_arg      *args,
2710         unsigned int                    free_flags,
2711         struct xfs_alloc_autoreap       *aarp)
2712 {
2713         int                             error;
2714 
2715         error = xfs_defer_extent_free(args->tp, args->fsbno, args->len,
2716                         &args->oinfo, args->resv, free_flags, &aarp->dfp);
2717         if (error)
2718                 return error;
2719 
2720         xfs_defer_item_pause(args->tp, aarp->dfp);
2721         return 0;
2722 }
2723 
2724 /*
2725  * Cancel automatic freeing of unwritten space in the filesystem.
2726  *
2727  * Earlier, we created a paused deferred extent free item and attached it to
2728  * this transaction so that we could automatically roll back a new space
2729  * allocation if the system went down.  Now we want to cancel the paused work
2730  * item by marking the EFI stale so we don't actually free the space, unpausing
2731  * the pending item and logging an EFD.
2732  *
2733  * The caller generally should have already mapped the space into the ondisk
2734  * filesystem.  If the reserved space was partially used, the caller must call
2735  * xfs_free_extent_later to create a new EFI to free the unused space.
2736  */
2737 void
2738 xfs_alloc_cancel_autoreap(
2739         struct xfs_trans                *tp,
2740         struct xfs_alloc_autoreap       *aarp)
2741 {
2742         struct xfs_defer_pending        *dfp = aarp->dfp;
2743         struct xfs_extent_free_item     *xefi;
2744 
2745         if (!dfp)
2746                 return;
2747 
2748         list_for_each_entry(xefi, &dfp->dfp_work, xefi_list)
2749                 xefi->xefi_flags |= XFS_EFI_CANCELLED;
2750 
2751         xfs_defer_item_unpause(tp, dfp);
2752 }
2753 
2754 /*
2755  * Commit automatic freeing of unwritten space in the filesystem.
2756  *
2757  * This unpauses an earlier _schedule_autoreap and commits to freeing the
2758  * allocated space.  Call this if none of the reserved space was used.
2759  */
2760 void
2761 xfs_alloc_commit_autoreap(
2762         struct xfs_trans                *tp,
2763         struct xfs_alloc_autoreap       *aarp)
2764 {
2765         if (aarp->dfp)
2766                 xfs_defer_item_unpause(tp, aarp->dfp);
2767 }
2768 
2769 #ifdef DEBUG
2770 /*
2771  * Check if an AGF has a free extent record whose length is equal to
2772  * args->minlen.
2773  */
2774 STATIC int
2775 xfs_exact_minlen_extent_available(
2776         struct xfs_alloc_arg    *args,
2777         struct xfs_buf          *agbp,
2778         int                     *stat)
2779 {
2780         struct xfs_btree_cur    *cnt_cur;
2781         xfs_agblock_t           fbno;
2782         xfs_extlen_t            flen;
2783         int                     error = 0;
2784 
2785         cnt_cur = xfs_cntbt_init_cursor(args->mp, args->tp, agbp,
2786                                         args->pag);
2787         error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2788         if (error)
2789                 goto out;
2790 
2791         if (*stat == 0) {
2792                 xfs_btree_mark_sick(cnt_cur);
2793                 error = -EFSCORRUPTED;
2794                 goto out;
2795         }
2796 
2797         error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2798         if (error)
2799                 goto out;
2800 
2801         if (*stat == 1 && flen != args->minlen)
2802                 *stat = 0;
2803 
2804 out:
2805         xfs_btree_del_cursor(cnt_cur, error);
2806 
2807         return error;
2808 }
2809 #endif
2810 
2811 /*
2812  * Decide whether to use this allocation group for this allocation.
2813  * If so, fix up the btree freelist's size.
2814  */
2815 int                     /* error */
2816 xfs_alloc_fix_freelist(
2817         struct xfs_alloc_arg    *args,  /* allocation argument structure */
2818         uint32_t                alloc_flags)
2819 {
2820         struct xfs_mount        *mp = args->mp;
2821         struct xfs_perag        *pag = args->pag;
2822         struct xfs_trans        *tp = args->tp;
2823         struct xfs_buf          *agbp = NULL;
2824         struct xfs_buf          *agflbp = NULL;
2825         struct xfs_alloc_arg    targs;  /* local allocation arguments */
2826         xfs_agblock_t           bno;    /* freelist block */
2827         xfs_extlen_t            need;   /* total blocks needed in freelist */
2828         int                     error = 0;
2829 
2830         /* deferred ops (AGFL block frees) require permanent transactions */
2831         ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2832 
2833         if (!xfs_perag_initialised_agf(pag)) {
2834                 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2835                 if (error) {
2836                         /* Couldn't lock the AGF so skip this AG. */
2837                         if (error == -EAGAIN)
2838                                 error = 0;
2839                         goto out_no_agbp;
2840                 }
2841         }
2842 
2843         /*
2844          * If this is a metadata preferred pag and we are user data then try
2845          * somewhere else if we are not being asked to try harder at this
2846          * point
2847          */
2848         if (xfs_perag_prefers_metadata(pag) &&
2849             (args->datatype & XFS_ALLOC_USERDATA) &&
2850             (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2851                 ASSERT(!(alloc_flags & XFS_ALLOC_FLAG_FREEING));
2852                 goto out_agbp_relse;
2853         }
2854 
2855         need = xfs_alloc_min_freelist(mp, pag);
2856         if (!xfs_alloc_space_available(args, need, alloc_flags |
2857                         XFS_ALLOC_FLAG_CHECK))
2858                 goto out_agbp_relse;
2859 
2860         /*
2861          * Get the a.g. freespace buffer.
2862          * Can fail if we're not blocking on locks, and it's held.
2863          */
2864         if (!agbp) {
2865                 error = xfs_alloc_read_agf(pag, tp, alloc_flags, &agbp);
2866                 if (error) {
2867                         /* Couldn't lock the AGF so skip this AG. */
2868                         if (error == -EAGAIN)
2869                                 error = 0;
2870                         goto out_no_agbp;
2871                 }
2872         }
2873 
2874         /* reset a padding mismatched agfl before final free space check */
2875         if (xfs_perag_agfl_needs_reset(pag))
2876                 xfs_agfl_reset(tp, agbp, pag);
2877 
2878         /* If there isn't enough total space or single-extent, reject it. */
2879         need = xfs_alloc_min_freelist(mp, pag);
2880         if (!xfs_alloc_space_available(args, need, alloc_flags))
2881                 goto out_agbp_relse;
2882 
2883 #ifdef DEBUG
2884         if (args->alloc_minlen_only) {
2885                 int stat;
2886 
2887                 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2888                 if (error || !stat)
2889                         goto out_agbp_relse;
2890         }
2891 #endif
2892         /*
2893          * Make the freelist shorter if it's too long.
2894          *
2895          * Note that from this point onwards, we will always release the agf and
2896          * agfl buffers on error. This handles the case where we error out and
2897          * the buffers are clean or may not have been joined to the transaction
2898          * and hence need to be released manually. If they have been joined to
2899          * the transaction, then xfs_trans_brelse() will handle them
2900          * appropriately based on the recursion count and dirty state of the
2901          * buffer.
2902          *
2903          * XXX (dgc): When we have lots of free space, does this buy us
2904          * anything other than extra overhead when we need to put more blocks
2905          * back on the free list? Maybe we should only do this when space is
2906          * getting low or the AGFL is more than half full?
2907          *
2908          * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2909          * big; the NORMAP flag prevents AGFL expand/shrink operations from
2910          * updating the rmapbt.  Both flags are used in xfs_repair while we're
2911          * rebuilding the rmapbt, and neither are used by the kernel.  They're
2912          * both required to ensure that rmaps are correctly recorded for the
2913          * regenerated AGFL, bnobt, and cntbt.  See repair/phase5.c and
2914          * repair/rmap.c in xfsprogs for details.
2915          */
2916         memset(&targs, 0, sizeof(targs));
2917         /* struct copy below */
2918         if (alloc_flags & XFS_ALLOC_FLAG_NORMAP)
2919                 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2920         else
2921                 targs.oinfo = XFS_RMAP_OINFO_AG;
2922         while (!(alloc_flags & XFS_ALLOC_FLAG_NOSHRINK) &&
2923                         pag->pagf_flcount > need) {
2924                 error = xfs_alloc_get_freelist(pag, tp, agbp, &bno, 0);
2925                 if (error)
2926                         goto out_agbp_relse;
2927 
2928                 /*
2929                  * Defer the AGFL block free.
2930                  *
2931                  * This helps to prevent log reservation overruns due to too
2932                  * many allocation operations in a transaction. AGFL frees are
2933                  * prone to this problem because for one they are always freed
2934                  * one at a time.  Further, an immediate AGFL block free can
2935                  * cause a btree join and require another block free before the
2936                  * real allocation can proceed.
2937                  * Deferring the free disconnects freeing up the AGFL slot from
2938                  * freeing the block.
2939                  */
2940                 error = xfs_free_extent_later(tp,
2941                                 XFS_AGB_TO_FSB(mp, args->agno, bno), 1,
2942                                 &targs.oinfo, XFS_AG_RESV_AGFL, 0);
2943                 if (error)
2944                         goto out_agbp_relse;
2945         }
2946 
2947         targs.tp = tp;
2948         targs.mp = mp;
2949         targs.agbp = agbp;
2950         targs.agno = args->agno;
2951         targs.alignment = targs.minlen = targs.prod = 1;
2952         targs.pag = pag;
2953         error = xfs_alloc_read_agfl(pag, tp, &agflbp);
2954         if (error)
2955                 goto out_agbp_relse;
2956 
2957         /* Make the freelist longer if it's too short. */
2958         while (pag->pagf_flcount < need) {
2959                 targs.agbno = 0;
2960                 targs.maxlen = need - pag->pagf_flcount;
2961                 targs.resv = XFS_AG_RESV_AGFL;
2962 
2963                 /* Allocate as many blocks as possible at once. */
2964                 error = xfs_alloc_ag_vextent_size(&targs, alloc_flags);
2965                 if (error)
2966                         goto out_agflbp_relse;
2967 
2968                 /*
2969                  * Stop if we run out.  Won't happen if callers are obeying
2970                  * the restrictions correctly.  Can happen for free calls
2971                  * on a completely full ag.
2972                  */
2973                 if (targs.agbno == NULLAGBLOCK) {
2974                         if (alloc_flags & XFS_ALLOC_FLAG_FREEING)
2975                                 break;
2976                         goto out_agflbp_relse;
2977                 }
2978 
2979                 if (!xfs_rmap_should_skip_owner_update(&targs.oinfo)) {
2980                         error = xfs_rmap_alloc(tp, agbp, pag,
2981                                        targs.agbno, targs.len, &targs.oinfo);
2982                         if (error)
2983                                 goto out_agflbp_relse;
2984                 }
2985                 error = xfs_alloc_update_counters(tp, agbp,
2986                                                   -((long)(targs.len)));
2987                 if (error)
2988                         goto out_agflbp_relse;
2989 
2990                 /*
2991                  * Put each allocated block on the list.
2992                  */
2993                 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2994                         error = xfs_alloc_put_freelist(pag, tp, agbp,
2995                                                         agflbp, bno, 0);
2996                         if (error)
2997                                 goto out_agflbp_relse;
2998                 }
2999         }
3000         xfs_trans_brelse(tp, agflbp);
3001         args->agbp = agbp;
3002         return 0;
3003 
3004 out_agflbp_relse:
3005         xfs_trans_brelse(tp, agflbp);
3006 out_agbp_relse:
3007         if (agbp)
3008                 xfs_trans_brelse(tp, agbp);
3009 out_no_agbp:
3010         args->agbp = NULL;
3011         return error;
3012 }
3013 
3014 /*
3015  * Get a block from the freelist.
3016  * Returns with the buffer for the block gotten.
3017  */
3018 int
3019 xfs_alloc_get_freelist(
3020         struct xfs_perag        *pag,
3021         struct xfs_trans        *tp,
3022         struct xfs_buf          *agbp,
3023         xfs_agblock_t           *bnop,
3024         int                     btreeblk)
3025 {
3026         struct xfs_agf          *agf = agbp->b_addr;
3027         struct xfs_buf          *agflbp;
3028         xfs_agblock_t           bno;
3029         __be32                  *agfl_bno;
3030         int                     error;
3031         uint32_t                logflags;
3032         struct xfs_mount        *mp = tp->t_mountp;
3033 
3034         /*
3035          * Freelist is empty, give up.
3036          */
3037         if (!agf->agf_flcount) {
3038                 *bnop = NULLAGBLOCK;
3039                 return 0;
3040         }
3041         /*
3042          * Read the array of free blocks.
3043          */
3044         error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3045         if (error)
3046                 return error;
3047 
3048 
3049         /*
3050          * Get the block number and update the data structures.
3051          */
3052         agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3053         bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
3054         if (XFS_IS_CORRUPT(tp->t_mountp, !xfs_verify_agbno(pag, bno)))
3055                 return -EFSCORRUPTED;
3056 
3057         be32_add_cpu(&agf->agf_flfirst, 1);
3058         xfs_trans_brelse(tp, agflbp);
3059         if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
3060                 agf->agf_flfirst = 0;
3061 
3062         ASSERT(!xfs_perag_agfl_needs_reset(pag));
3063         be32_add_cpu(&agf->agf_flcount, -1);
3064         pag->pagf_flcount--;
3065 
3066         logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
3067         if (btreeblk) {
3068                 be32_add_cpu(&agf->agf_btreeblks, 1);
3069                 pag->pagf_btreeblks++;
3070                 logflags |= XFS_AGF_BTREEBLKS;
3071         }
3072 
3073         xfs_alloc_log_agf(tp, agbp, logflags);
3074         *bnop = bno;
3075 
3076         return 0;
3077 }
3078 
3079 /*
3080  * Log the given fields from the agf structure.
3081  */
3082 void
3083 xfs_alloc_log_agf(
3084         struct xfs_trans        *tp,
3085         struct xfs_buf          *bp,
3086         uint32_t                fields)
3087 {
3088         int     first;          /* first byte offset */
3089         int     last;           /* last byte offset */
3090         static const short      offsets[] = {
3091                 offsetof(xfs_agf_t, agf_magicnum),
3092                 offsetof(xfs_agf_t, agf_versionnum),
3093                 offsetof(xfs_agf_t, agf_seqno),
3094                 offsetof(xfs_agf_t, agf_length),
3095                 offsetof(xfs_agf_t, agf_bno_root),   /* also cnt/rmap root */
3096                 offsetof(xfs_agf_t, agf_bno_level),  /* also cnt/rmap levels */
3097                 offsetof(xfs_agf_t, agf_flfirst),
3098                 offsetof(xfs_agf_t, agf_fllast),
3099                 offsetof(xfs_agf_t, agf_flcount),
3100                 offsetof(xfs_agf_t, agf_freeblks),
3101                 offsetof(xfs_agf_t, agf_longest),
3102                 offsetof(xfs_agf_t, agf_btreeblks),
3103                 offsetof(xfs_agf_t, agf_uuid),
3104                 offsetof(xfs_agf_t, agf_rmap_blocks),
3105                 offsetof(xfs_agf_t, agf_refcount_blocks),
3106                 offsetof(xfs_agf_t, agf_refcount_root),
3107                 offsetof(xfs_agf_t, agf_refcount_level),
3108                 /* needed so that we don't log the whole rest of the structure: */
3109                 offsetof(xfs_agf_t, agf_spare64),
3110                 sizeof(xfs_agf_t)
3111         };
3112 
3113         trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
3114 
3115         xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
3116 
3117         xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
3118         xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
3119 }
3120 
3121 /*
3122  * Put the block on the freelist for the allocation group.
3123  */
3124 int
3125 xfs_alloc_put_freelist(
3126         struct xfs_perag        *pag,
3127         struct xfs_trans        *tp,
3128         struct xfs_buf          *agbp,
3129         struct xfs_buf          *agflbp,
3130         xfs_agblock_t           bno,
3131         int                     btreeblk)
3132 {
3133         struct xfs_mount        *mp = tp->t_mountp;
3134         struct xfs_agf          *agf = agbp->b_addr;
3135         __be32                  *blockp;
3136         int                     error;
3137         uint32_t                logflags;
3138         __be32                  *agfl_bno;
3139         int                     startoff;
3140 
3141         if (!agflbp) {
3142                 error = xfs_alloc_read_agfl(pag, tp, &agflbp);
3143                 if (error)
3144                         return error;
3145         }
3146 
3147         be32_add_cpu(&agf->agf_fllast, 1);
3148         if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
3149                 agf->agf_fllast = 0;
3150 
3151         ASSERT(!xfs_perag_agfl_needs_reset(pag));
3152         be32_add_cpu(&agf->agf_flcount, 1);
3153         pag->pagf_flcount++;
3154 
3155         logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
3156         if (btreeblk) {
3157                 be32_add_cpu(&agf->agf_btreeblks, -1);
3158                 pag->pagf_btreeblks--;
3159                 logflags |= XFS_AGF_BTREEBLKS;
3160         }
3161 
3162         xfs_alloc_log_agf(tp, agbp, logflags);
3163 
3164         ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
3165 
3166         agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3167         blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
3168         *blockp = cpu_to_be32(bno);
3169         startoff = (char *)blockp - (char *)agflbp->b_addr;
3170 
3171         xfs_alloc_log_agf(tp, agbp, logflags);
3172 
3173         xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
3174         xfs_trans_log_buf(tp, agflbp, startoff,
3175                           startoff + sizeof(xfs_agblock_t) - 1);
3176         return 0;
3177 }
3178 
3179 /*
3180  * Check that this AGF/AGI header's sequence number and length matches the AG
3181  * number and size in fsblocks.
3182  */
3183 xfs_failaddr_t
3184 xfs_validate_ag_length(
3185         struct xfs_buf          *bp,
3186         uint32_t                seqno,
3187         uint32_t                length)
3188 {
3189         struct xfs_mount        *mp = bp->b_mount;
3190         /*
3191          * During growfs operations, the perag is not fully initialised,
3192          * so we can't use it for any useful checking. growfs ensures we can't
3193          * use it by using uncached buffers that don't have the perag attached
3194          * so we can detect and avoid this problem.
3195          */
3196         if (bp->b_pag && seqno != bp->b_pag->pag_agno)
3197                 return __this_address;
3198 
3199         /*
3200          * Only the last AG in the filesystem is allowed to be shorter
3201          * than the AG size recorded in the superblock.
3202          */
3203         if (length != mp->m_sb.sb_agblocks) {
3204                 /*
3205                  * During growfs, the new last AG can get here before we
3206                  * have updated the superblock. Give it a pass on the seqno
3207                  * check.
3208                  */
3209                 if (bp->b_pag && seqno != mp->m_sb.sb_agcount - 1)
3210                         return __this_address;
3211                 if (length < XFS_MIN_AG_BLOCKS)
3212                         return __this_address;
3213                 if (length > mp->m_sb.sb_agblocks)
3214                         return __this_address;
3215         }
3216 
3217         return NULL;
3218 }
3219 
3220 /*
3221  * Verify the AGF is consistent.
3222  *
3223  * We do not verify the AGFL indexes in the AGF are fully consistent here
3224  * because of issues with variable on-disk structure sizes. Instead, we check
3225  * the agfl indexes for consistency when we initialise the perag from the AGF
3226  * information after a read completes.
3227  *
3228  * If the index is inconsistent, then we mark the perag as needing an AGFL
3229  * reset. The first AGFL update performed then resets the AGFL indexes and
3230  * refills the AGFL with known good free blocks, allowing the filesystem to
3231  * continue operating normally at the cost of a few leaked free space blocks.
3232  */
3233 static xfs_failaddr_t
3234 xfs_agf_verify(
3235         struct xfs_buf          *bp)
3236 {
3237         struct xfs_mount        *mp = bp->b_mount;
3238         struct xfs_agf          *agf = bp->b_addr;
3239         xfs_failaddr_t          fa;
3240         uint32_t                agf_seqno = be32_to_cpu(agf->agf_seqno);
3241         uint32_t                agf_length = be32_to_cpu(agf->agf_length);
3242 
3243         if (xfs_has_crc(mp)) {
3244                 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
3245                         return __this_address;
3246                 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
3247                         return __this_address;
3248         }
3249 
3250         if (!xfs_verify_magic(bp, agf->agf_magicnum))
3251                 return __this_address;
3252 
3253         if (!XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)))
3254                 return __this_address;
3255 
3256         /*
3257          * Both agf_seqno and agf_length need to validated before anything else
3258          * block number related in the AGF or AGFL can be checked.
3259          */
3260         fa = xfs_validate_ag_length(bp, agf_seqno, agf_length);
3261         if (fa)
3262                 return fa;
3263 
3264         if (be32_to_cpu(agf->agf_flfirst) >= xfs_agfl_size(mp))
3265                 return __this_address;
3266         if (be32_to_cpu(agf->agf_fllast) >= xfs_agfl_size(mp))
3267                 return __this_address;
3268         if (be32_to_cpu(agf->agf_flcount) > xfs_agfl_size(mp))
3269                 return __this_address;
3270 
3271         if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
3272             be32_to_cpu(agf->agf_freeblks) > agf_length)
3273                 return __this_address;
3274 
3275         if (be32_to_cpu(agf->agf_bno_level) < 1 ||
3276             be32_to_cpu(agf->agf_cnt_level) < 1 ||
3277             be32_to_cpu(agf->agf_bno_level) > mp->m_alloc_maxlevels ||
3278             be32_to_cpu(agf->agf_cnt_level) > mp->m_alloc_maxlevels)
3279                 return __this_address;
3280 
3281         if (xfs_has_lazysbcount(mp) &&
3282             be32_to_cpu(agf->agf_btreeblks) > agf_length)
3283                 return __this_address;
3284 
3285         if (xfs_has_rmapbt(mp)) {
3286                 if (be32_to_cpu(agf->agf_rmap_blocks) > agf_length)
3287                         return __this_address;
3288 
3289                 if (be32_to_cpu(agf->agf_rmap_level) < 1 ||
3290                     be32_to_cpu(agf->agf_rmap_level) > mp->m_rmap_maxlevels)
3291                         return __this_address;
3292         }
3293 
3294         if (xfs_has_reflink(mp)) {
3295                 if (be32_to_cpu(agf->agf_refcount_blocks) > agf_length)
3296                         return __this_address;
3297 
3298                 if (be32_to_cpu(agf->agf_refcount_level) < 1 ||
3299                     be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels)
3300                         return __this_address;
3301         }
3302 
3303         return NULL;
3304 }
3305 
3306 static void
3307 xfs_agf_read_verify(
3308         struct xfs_buf  *bp)
3309 {
3310         struct xfs_mount *mp = bp->b_mount;
3311         xfs_failaddr_t  fa;
3312 
3313         if (xfs_has_crc(mp) &&
3314             !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3315                 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3316         else {
3317                 fa = xfs_agf_verify(bp);
3318                 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3319                         xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3320         }
3321 }
3322 
3323 static void
3324 xfs_agf_write_verify(
3325         struct xfs_buf  *bp)
3326 {
3327         struct xfs_mount        *mp = bp->b_mount;
3328         struct xfs_buf_log_item *bip = bp->b_log_item;
3329         struct xfs_agf          *agf = bp->b_addr;
3330         xfs_failaddr_t          fa;
3331 
3332         fa = xfs_agf_verify(bp);
3333         if (fa) {
3334                 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3335                 return;
3336         }
3337 
3338         if (!xfs_has_crc(mp))
3339                 return;
3340 
3341         if (bip)
3342                 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3343 
3344         xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3345 }
3346 
3347 const struct xfs_buf_ops xfs_agf_buf_ops = {
3348         .name = "xfs_agf",
3349         .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3350         .verify_read = xfs_agf_read_verify,
3351         .verify_write = xfs_agf_write_verify,
3352         .verify_struct = xfs_agf_verify,
3353 };
3354 
3355 /*
3356  * Read in the allocation group header (free/alloc section).
3357  */
3358 int
3359 xfs_read_agf(
3360         struct xfs_perag        *pag,
3361         struct xfs_trans        *tp,
3362         int                     flags,
3363         struct xfs_buf          **agfbpp)
3364 {
3365         struct xfs_mount        *mp = pag->pag_mount;
3366         int                     error;
3367 
3368         trace_xfs_read_agf(pag->pag_mount, pag->pag_agno);
3369 
3370         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3371                         XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGF_DADDR(mp)),
3372                         XFS_FSS_TO_BB(mp, 1), flags, agfbpp, &xfs_agf_buf_ops);
3373         if (xfs_metadata_is_sick(error))
3374                 xfs_ag_mark_sick(pag, XFS_SICK_AG_AGF);
3375         if (error)
3376                 return error;
3377 
3378         xfs_buf_set_ref(*agfbpp, XFS_AGF_REF);
3379         return 0;
3380 }
3381 
3382 /*
3383  * Read in the allocation group header (free/alloc section) and initialise the
3384  * perag structure if necessary. If the caller provides @agfbpp, then return the
3385  * locked buffer to the caller, otherwise free it.
3386  */
3387 int
3388 xfs_alloc_read_agf(
3389         struct xfs_perag        *pag,
3390         struct xfs_trans        *tp,
3391         int                     flags,
3392         struct xfs_buf          **agfbpp)
3393 {
3394         struct xfs_buf          *agfbp;
3395         struct xfs_agf          *agf;
3396         int                     error;
3397         int                     allocbt_blks;
3398 
3399         trace_xfs_alloc_read_agf(pag->pag_mount, pag->pag_agno);
3400 
3401         /* We don't support trylock when freeing. */
3402         ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3403                         (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3404         error = xfs_read_agf(pag, tp,
3405                         (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3406                         &agfbp);
3407         if (error)
3408                 return error;
3409 
3410         agf = agfbp->b_addr;
3411         if (!xfs_perag_initialised_agf(pag)) {
3412                 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3413                 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3414                 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3415                 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3416                 pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level);
3417                 pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level);
3418                 pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level);
3419                 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3420                 if (xfs_agfl_needs_reset(pag->pag_mount, agf))
3421                         set_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3422                 else
3423                         clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, &pag->pag_opstate);
3424 
3425                 /*
3426                  * Update the in-core allocbt counter. Filter out the rmapbt
3427                  * subset of the btreeblks counter because the rmapbt is managed
3428                  * by perag reservation. Subtract one for the rmapbt root block
3429                  * because the rmap counter includes it while the btreeblks
3430                  * counter only tracks non-root blocks.
3431                  */
3432                 allocbt_blks = pag->pagf_btreeblks;
3433                 if (xfs_has_rmapbt(pag->pag_mount))
3434                         allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3435                 if (allocbt_blks > 0)
3436                         atomic64_add(allocbt_blks,
3437                                         &pag->pag_mount->m_allocbt_blks);
3438 
3439                 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
3440         }
3441 #ifdef DEBUG
3442         else if (!xfs_is_shutdown(pag->pag_mount)) {
3443                 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3444                 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3445                 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3446                 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3447                 ASSERT(pag->pagf_bno_level == be32_to_cpu(agf->agf_bno_level));
3448                 ASSERT(pag->pagf_cnt_level == be32_to_cpu(agf->agf_cnt_level));
3449         }
3450 #endif
3451         if (agfbpp)
3452                 *agfbpp = agfbp;
3453         else
3454                 xfs_trans_brelse(tp, agfbp);
3455         return 0;
3456 }
3457 
3458 /*
3459  * Pre-proces allocation arguments to set initial state that we don't require
3460  * callers to set up correctly, as well as bounds check the allocation args
3461  * that are set up.
3462  */
3463 static int
3464 xfs_alloc_vextent_check_args(
3465         struct xfs_alloc_arg    *args,
3466         xfs_fsblock_t           target,
3467         xfs_agnumber_t          *minimum_agno)
3468 {
3469         struct xfs_mount        *mp = args->mp;
3470         xfs_agblock_t           agsize;
3471 
3472         args->fsbno = NULLFSBLOCK;
3473 
3474         *minimum_agno = 0;
3475         if (args->tp->t_highest_agno != NULLAGNUMBER)
3476                 *minimum_agno = args->tp->t_highest_agno;
3477 
3478         /*
3479          * Just fix this up, for the case where the last a.g. is shorter
3480          * (or there's only one a.g.) and the caller couldn't easily figure
3481          * that out (xfs_bmap_alloc).
3482          */
3483         agsize = mp->m_sb.sb_agblocks;
3484         if (args->maxlen > agsize)
3485                 args->maxlen = agsize;
3486         if (args->alignment == 0)
3487                 args->alignment = 1;
3488 
3489         ASSERT(args->minlen > 0);
3490         ASSERT(args->maxlen > 0);
3491         ASSERT(args->alignment > 0);
3492         ASSERT(args->resv != XFS_AG_RESV_AGFL);
3493 
3494         ASSERT(XFS_FSB_TO_AGNO(mp, target) < mp->m_sb.sb_agcount);
3495         ASSERT(XFS_FSB_TO_AGBNO(mp, target) < agsize);
3496         ASSERT(args->minlen <= args->maxlen);
3497         ASSERT(args->minlen <= agsize);
3498         ASSERT(args->mod < args->prod);
3499 
3500         if (XFS_FSB_TO_AGNO(mp, target) >= mp->m_sb.sb_agcount ||
3501             XFS_FSB_TO_AGBNO(mp, target) >= agsize ||
3502             args->minlen > args->maxlen || args->minlen > agsize ||
3503             args->mod >= args->prod) {
3504                 trace_xfs_alloc_vextent_badargs(args);
3505                 return -ENOSPC;
3506         }
3507 
3508         if (args->agno != NULLAGNUMBER && *minimum_agno > args->agno) {
3509                 trace_xfs_alloc_vextent_skip_deadlock(args);
3510                 return -ENOSPC;
3511         }
3512         return 0;
3513 
3514 }
3515 
3516 /*
3517  * Prepare an AG for allocation. If the AG is not prepared to accept the
3518  * allocation, return failure.
3519  *
3520  * XXX(dgc): The complexity of "need_pag" will go away as all caller paths are
3521  * modified to hold their own perag references.
3522  */
3523 static int
3524 xfs_alloc_vextent_prepare_ag(
3525         struct xfs_alloc_arg    *args,
3526         uint32_t                alloc_flags)
3527 {
3528         bool                    need_pag = !args->pag;
3529         int                     error;
3530 
3531         if (need_pag)
3532                 args->pag = xfs_perag_get(args->mp, args->agno);
3533 
3534         args->agbp = NULL;
3535         error = xfs_alloc_fix_freelist(args, alloc_flags);
3536         if (error) {
3537                 trace_xfs_alloc_vextent_nofix(args);
3538                 if (need_pag)
3539                         xfs_perag_put(args->pag);
3540                 args->agbno = NULLAGBLOCK;
3541                 return error;
3542         }
3543         if (!args->agbp) {
3544                 /* cannot allocate in this AG at all */
3545                 trace_xfs_alloc_vextent_noagbp(args);
3546                 args->agbno = NULLAGBLOCK;
3547                 return 0;
3548         }
3549         args->wasfromfl = 0;
3550         return 0;
3551 }
3552 
3553 /*
3554  * Post-process allocation results to account for the allocation if it succeed
3555  * and set the allocated block number correctly for the caller.
3556  *
3557  * XXX: we should really be returning ENOSPC for ENOSPC, not
3558  * hiding it behind a "successful" NULLFSBLOCK allocation.
3559  */
3560 static int
3561 xfs_alloc_vextent_finish(
3562         struct xfs_alloc_arg    *args,
3563         xfs_agnumber_t          minimum_agno,
3564         int                     alloc_error,
3565         bool                    drop_perag)
3566 {
3567         struct xfs_mount        *mp = args->mp;
3568         int                     error = 0;
3569 
3570         /*
3571          * We can end up here with a locked AGF. If we failed, the caller is
3572          * likely going to try to allocate again with different parameters, and
3573          * that can widen the AGs that are searched for free space. If we have
3574          * to do BMBT block allocation, we have to do a new allocation.
3575          *
3576          * Hence leaving this function with the AGF locked opens up potential
3577          * ABBA AGF deadlocks because a future allocation attempt in this
3578          * transaction may attempt to lock a lower number AGF.
3579          *
3580          * We can't release the AGF until the transaction is commited, so at
3581          * this point we must update the "first allocation" tracker to point at
3582          * this AG if the tracker is empty or points to a lower AG. This allows
3583          * the next allocation attempt to be modified appropriately to avoid
3584          * deadlocks.
3585          */
3586         if (args->agbp &&
3587             (args->tp->t_highest_agno == NULLAGNUMBER ||
3588              args->agno > minimum_agno))
3589                 args->tp->t_highest_agno = args->agno;
3590 
3591         /*
3592          * If the allocation failed with an error or we had an ENOSPC result,
3593          * preserve the returned error whilst also marking the allocation result
3594          * as "no extent allocated". This ensures that callers that fail to
3595          * capture the error will still treat it as a failed allocation.
3596          */
3597         if (alloc_error || args->agbno == NULLAGBLOCK) {
3598                 args->fsbno = NULLFSBLOCK;
3599                 error = alloc_error;
3600                 goto out_drop_perag;
3601         }
3602 
3603         args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3604 
3605         ASSERT(args->len >= args->minlen);
3606         ASSERT(args->len <= args->maxlen);
3607         ASSERT(args->agbno % args->alignment == 0);
3608         XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno), args->len);
3609 
3610         /* if not file data, insert new block into the reverse map btree */
3611         if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
3612                 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
3613                                        args->agbno, args->len, &args->oinfo);
3614                 if (error)
3615                         goto out_drop_perag;
3616         }
3617 
3618         if (!args->wasfromfl) {
3619                 error = xfs_alloc_update_counters(args->tp, args->agbp,
3620                                                   -((long)(args->len)));
3621                 if (error)
3622                         goto out_drop_perag;
3623 
3624                 ASSERT(!xfs_extent_busy_search(mp, args->pag, args->agbno,
3625                                 args->len));
3626         }
3627 
3628         xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
3629 
3630         XFS_STATS_INC(mp, xs_allocx);
3631         XFS_STATS_ADD(mp, xs_allocb, args->len);
3632 
3633         trace_xfs_alloc_vextent_finish(args);
3634 
3635 out_drop_perag:
3636         if (drop_perag && args->pag) {
3637                 xfs_perag_rele(args->pag);
3638                 args->pag = NULL;
3639         }
3640         return error;
3641 }
3642 
3643 /*
3644  * Allocate within a single AG only. This uses a best-fit length algorithm so if
3645  * you need an exact sized allocation without locality constraints, this is the
3646  * fastest way to do it.
3647  *
3648  * Caller is expected to hold a perag reference in args->pag.
3649  */
3650 int
3651 xfs_alloc_vextent_this_ag(
3652         struct xfs_alloc_arg    *args,
3653         xfs_agnumber_t          agno)
3654 {
3655         struct xfs_mount        *mp = args->mp;
3656         xfs_agnumber_t          minimum_agno;
3657         uint32_t                alloc_flags = 0;
3658         int                     error;
3659 
3660         ASSERT(args->pag != NULL);
3661         ASSERT(args->pag->pag_agno == agno);
3662 
3663         args->agno = agno;
3664         args->agbno = 0;
3665 
3666         trace_xfs_alloc_vextent_this_ag(args);
3667 
3668         error = xfs_alloc_vextent_check_args(args, XFS_AGB_TO_FSB(mp, agno, 0),
3669                         &minimum_agno);
3670         if (error) {
3671                 if (error == -ENOSPC)
3672                         return 0;
3673                 return error;
3674         }
3675 
3676         error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3677         if (!error && args->agbp)
3678                 error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3679 
3680         return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3681 }
3682 
3683 /*
3684  * Iterate all AGs trying to allocate an extent starting from @start_ag.
3685  *
3686  * If the incoming allocation type is XFS_ALLOCTYPE_NEAR_BNO, it means the
3687  * allocation attempts in @start_agno have locality information. If we fail to
3688  * allocate in that AG, then we revert to anywhere-in-AG for all the other AGs
3689  * we attempt to allocation in as there is no locality optimisation possible for
3690  * those allocations.
3691  *
3692  * On return, args->pag may be left referenced if we finish before the "all
3693  * failed" return point. The allocation finish still needs the perag, and
3694  * so the caller will release it once they've finished the allocation.
3695  *
3696  * When we wrap the AG iteration at the end of the filesystem, we have to be
3697  * careful not to wrap into AGs below ones we already have locked in the
3698  * transaction if we are doing a blocking iteration. This will result in an
3699  * out-of-order locking of AGFs and hence can cause deadlocks.
3700  */
3701 static int
3702 xfs_alloc_vextent_iterate_ags(
3703         struct xfs_alloc_arg    *args,
3704         xfs_agnumber_t          minimum_agno,
3705         xfs_agnumber_t          start_agno,
3706         xfs_agblock_t           target_agbno,
3707         uint32_t                alloc_flags)
3708 {
3709         struct xfs_mount        *mp = args->mp;
3710         xfs_agnumber_t          restart_agno = minimum_agno;
3711         xfs_agnumber_t          agno;
3712         int                     error = 0;
3713 
3714         if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK)
3715                 restart_agno = 0;
3716 restart:
3717         for_each_perag_wrap_range(mp, start_agno, restart_agno,
3718                         mp->m_sb.sb_agcount, agno, args->pag) {
3719                 args->agno = agno;
3720                 error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3721                 if (error)
3722                         break;
3723                 if (!args->agbp) {
3724                         trace_xfs_alloc_vextent_loopfailed(args);
3725                         continue;
3726                 }
3727 
3728                 /*
3729                  * Allocation is supposed to succeed now, so break out of the
3730                  * loop regardless of whether we succeed or not.
3731                  */
3732                 if (args->agno == start_agno && target_agbno) {
3733                         args->agbno = target_agbno;
3734                         error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3735                 } else {
3736                         args->agbno = 0;
3737                         error = xfs_alloc_ag_vextent_size(args, alloc_flags);
3738                 }
3739                 break;
3740         }
3741         if (error) {
3742                 xfs_perag_rele(args->pag);
3743                 args->pag = NULL;
3744                 return error;
3745         }
3746         if (args->agbp)
3747                 return 0;
3748 
3749         /*
3750          * We didn't find an AG we can alloation from. If we were given
3751          * constraining flags by the caller, drop them and retry the allocation
3752          * without any constraints being set.
3753          */
3754         if (alloc_flags & XFS_ALLOC_FLAG_TRYLOCK) {
3755                 alloc_flags &= ~XFS_ALLOC_FLAG_TRYLOCK;
3756                 restart_agno = minimum_agno;
3757                 goto restart;
3758         }
3759 
3760         ASSERT(args->pag == NULL);
3761         trace_xfs_alloc_vextent_allfailed(args);
3762         return 0;
3763 }
3764 
3765 /*
3766  * Iterate from the AGs from the start AG to the end of the filesystem, trying
3767  * to allocate blocks. It starts with a near allocation attempt in the initial
3768  * AG, then falls back to anywhere-in-ag after the first AG fails. It will wrap
3769  * back to zero if allowed by previous allocations in this transaction,
3770  * otherwise will wrap back to the start AG and run a second blocking pass to
3771  * the end of the filesystem.
3772  */
3773 int
3774 xfs_alloc_vextent_start_ag(
3775         struct xfs_alloc_arg    *args,
3776         xfs_fsblock_t           target)
3777 {
3778         struct xfs_mount        *mp = args->mp;
3779         xfs_agnumber_t          minimum_agno;
3780         xfs_agnumber_t          start_agno;
3781         xfs_agnumber_t          rotorstep = xfs_rotorstep;
3782         bool                    bump_rotor = false;
3783         uint32_t                alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3784         int                     error;
3785 
3786         ASSERT(args->pag == NULL);
3787 
3788         args->agno = NULLAGNUMBER;
3789         args->agbno = NULLAGBLOCK;
3790 
3791         trace_xfs_alloc_vextent_start_ag(args);
3792 
3793         error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3794         if (error) {
3795                 if (error == -ENOSPC)
3796                         return 0;
3797                 return error;
3798         }
3799 
3800         if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3801             xfs_is_inode32(mp)) {
3802                 target = XFS_AGB_TO_FSB(mp,
3803                                 ((mp->m_agfrotor / rotorstep) %
3804                                 mp->m_sb.sb_agcount), 0);
3805                 bump_rotor = 1;
3806         }
3807 
3808         start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3809         error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3810                         XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3811 
3812         if (bump_rotor) {
3813                 if (args->agno == start_agno)
3814                         mp->m_agfrotor = (mp->m_agfrotor + 1) %
3815                                 (mp->m_sb.sb_agcount * rotorstep);
3816                 else
3817                         mp->m_agfrotor = (args->agno * rotorstep + 1) %
3818                                 (mp->m_sb.sb_agcount * rotorstep);
3819         }
3820 
3821         return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3822 }
3823 
3824 /*
3825  * Iterate from the agno indicated via @target through to the end of the
3826  * filesystem attempting blocking allocation. This does not wrap or try a second
3827  * pass, so will not recurse into AGs lower than indicated by the target.
3828  */
3829 int
3830 xfs_alloc_vextent_first_ag(
3831         struct xfs_alloc_arg    *args,
3832         xfs_fsblock_t           target)
3833  {
3834         struct xfs_mount        *mp = args->mp;
3835         xfs_agnumber_t          minimum_agno;
3836         xfs_agnumber_t          start_agno;
3837         uint32_t                alloc_flags = XFS_ALLOC_FLAG_TRYLOCK;
3838         int                     error;
3839 
3840         ASSERT(args->pag == NULL);
3841 
3842         args->agno = NULLAGNUMBER;
3843         args->agbno = NULLAGBLOCK;
3844 
3845         trace_xfs_alloc_vextent_first_ag(args);
3846 
3847         error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3848         if (error) {
3849                 if (error == -ENOSPC)
3850                         return 0;
3851                 return error;
3852         }
3853 
3854         start_agno = max(minimum_agno, XFS_FSB_TO_AGNO(mp, target));
3855         error = xfs_alloc_vextent_iterate_ags(args, minimum_agno, start_agno,
3856                         XFS_FSB_TO_AGBNO(mp, target), alloc_flags);
3857         return xfs_alloc_vextent_finish(args, minimum_agno, error, true);
3858 }
3859 
3860 /*
3861  * Allocate at the exact block target or fail. Caller is expected to hold a
3862  * perag reference in args->pag.
3863  */
3864 int
3865 xfs_alloc_vextent_exact_bno(
3866         struct xfs_alloc_arg    *args,
3867         xfs_fsblock_t           target)
3868 {
3869         struct xfs_mount        *mp = args->mp;
3870         xfs_agnumber_t          minimum_agno;
3871         int                     error;
3872 
3873         ASSERT(args->pag != NULL);
3874         ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3875 
3876         args->agno = XFS_FSB_TO_AGNO(mp, target);
3877         args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3878 
3879         trace_xfs_alloc_vextent_exact_bno(args);
3880 
3881         error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3882         if (error) {
3883                 if (error == -ENOSPC)
3884                         return 0;
3885                 return error;
3886         }
3887 
3888         error = xfs_alloc_vextent_prepare_ag(args, 0);
3889         if (!error && args->agbp)
3890                 error = xfs_alloc_ag_vextent_exact(args);
3891 
3892         return xfs_alloc_vextent_finish(args, minimum_agno, error, false);
3893 }
3894 
3895 /*
3896  * Allocate an extent as close to the target as possible. If there are not
3897  * viable candidates in the AG, then fail the allocation.
3898  *
3899  * Caller may or may not have a per-ag reference in args->pag.
3900  */
3901 int
3902 xfs_alloc_vextent_near_bno(
3903         struct xfs_alloc_arg    *args,
3904         xfs_fsblock_t           target)
3905 {
3906         struct xfs_mount        *mp = args->mp;
3907         xfs_agnumber_t          minimum_agno;
3908         bool                    needs_perag = args->pag == NULL;
3909         uint32_t                alloc_flags = 0;
3910         int                     error;
3911 
3912         if (!needs_perag)
3913                 ASSERT(args->pag->pag_agno == XFS_FSB_TO_AGNO(mp, target));
3914 
3915         args->agno = XFS_FSB_TO_AGNO(mp, target);
3916         args->agbno = XFS_FSB_TO_AGBNO(mp, target);
3917 
3918         trace_xfs_alloc_vextent_near_bno(args);
3919 
3920         error = xfs_alloc_vextent_check_args(args, target, &minimum_agno);
3921         if (error) {
3922                 if (error == -ENOSPC)
3923                         return 0;
3924                 return error;
3925         }
3926 
3927         if (needs_perag)
3928                 args->pag = xfs_perag_grab(mp, args->agno);
3929 
3930         error = xfs_alloc_vextent_prepare_ag(args, alloc_flags);
3931         if (!error && args->agbp)
3932                 error = xfs_alloc_ag_vextent_near(args, alloc_flags);
3933 
3934         return xfs_alloc_vextent_finish(args, minimum_agno, error, needs_perag);
3935 }
3936 
3937 /* Ensure that the freelist is at full capacity. */
3938 int
3939 xfs_free_extent_fix_freelist(
3940         struct xfs_trans        *tp,
3941         struct xfs_perag        *pag,
3942         struct xfs_buf          **agbp)
3943 {
3944         struct xfs_alloc_arg    args;
3945         int                     error;
3946 
3947         memset(&args, 0, sizeof(struct xfs_alloc_arg));
3948         args.tp = tp;
3949         args.mp = tp->t_mountp;
3950         args.agno = pag->pag_agno;
3951         args.pag = pag;
3952 
3953         /*
3954          * validate that the block number is legal - the enables us to detect
3955          * and handle a silent filesystem corruption rather than crashing.
3956          */
3957         if (args.agno >= args.mp->m_sb.sb_agcount)
3958                 return -EFSCORRUPTED;
3959 
3960         error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3961         if (error)
3962                 return error;
3963 
3964         *agbp = args.agbp;
3965         return 0;
3966 }
3967 
3968 /*
3969  * Free an extent.
3970  * Just break up the extent address and hand off to xfs_free_ag_extent
3971  * after fixing up the freelist.
3972  */
3973 int
3974 __xfs_free_extent(
3975         struct xfs_trans                *tp,
3976         struct xfs_perag                *pag,
3977         xfs_agblock_t                   agbno,
3978         xfs_extlen_t                    len,
3979         const struct xfs_owner_info     *oinfo,
3980         enum xfs_ag_resv_type           type,
3981         bool                            skip_discard)
3982 {
3983         struct xfs_mount                *mp = tp->t_mountp;
3984         struct xfs_buf                  *agbp;
3985         struct xfs_agf                  *agf;
3986         int                             error;
3987         unsigned int                    busy_flags = 0;
3988 
3989         ASSERT(len != 0);
3990         ASSERT(type != XFS_AG_RESV_AGFL);
3991 
3992         if (XFS_TEST_ERROR(false, mp,
3993                         XFS_ERRTAG_FREE_EXTENT))
3994                 return -EIO;
3995 
3996         error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3997         if (error) {
3998                 if (xfs_metadata_is_sick(error))
3999                         xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4000                 return error;
4001         }
4002 
4003         agf = agbp->b_addr;
4004 
4005         if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
4006                 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4007                 error = -EFSCORRUPTED;
4008                 goto err_release;
4009         }
4010 
4011         /* validate the extent size is legal now we have the agf locked */
4012         if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
4013                 xfs_ag_mark_sick(pag, XFS_SICK_AG_BNOBT);
4014                 error = -EFSCORRUPTED;
4015                 goto err_release;
4016         }
4017 
4018         error = xfs_free_ag_extent(tp, agbp, pag->pag_agno, agbno, len, oinfo,
4019                         type);
4020         if (error)
4021                 goto err_release;
4022 
4023         if (skip_discard)
4024                 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
4025         xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
4026         return 0;
4027 
4028 err_release:
4029         xfs_trans_brelse(tp, agbp);
4030         return error;
4031 }
4032 
4033 struct xfs_alloc_query_range_info {
4034         xfs_alloc_query_range_fn        fn;
4035         void                            *priv;
4036 };
4037 
4038 /* Format btree record and pass to our callback. */
4039 STATIC int
4040 xfs_alloc_query_range_helper(
4041         struct xfs_btree_cur            *cur,
4042         const union xfs_btree_rec       *rec,
4043         void                            *priv)
4044 {
4045         struct xfs_alloc_query_range_info       *query = priv;
4046         struct xfs_alloc_rec_incore             irec;
4047         xfs_failaddr_t                          fa;
4048 
4049         xfs_alloc_btrec_to_irec(rec, &irec);
4050         fa = xfs_alloc_check_irec(cur->bc_ag.pag, &irec);
4051         if (fa)
4052                 return xfs_alloc_complain_bad_rec(cur, fa, &irec);
4053 
4054         return query->fn(cur, &irec, query->priv);
4055 }
4056 
4057 /* Find all free space within a given range of blocks. */
4058 int
4059 xfs_alloc_query_range(
4060         struct xfs_btree_cur                    *cur,
4061         const struct xfs_alloc_rec_incore       *low_rec,
4062         const struct xfs_alloc_rec_incore       *high_rec,
4063         xfs_alloc_query_range_fn                fn,
4064         void                                    *priv)
4065 {
4066         union xfs_btree_irec                    low_brec = { .a = *low_rec };
4067         union xfs_btree_irec                    high_brec = { .a = *high_rec };
4068         struct xfs_alloc_query_range_info       query = { .priv = priv, .fn = fn };
4069 
4070         ASSERT(xfs_btree_is_bno(cur->bc_ops));
4071         return xfs_btree_query_range(cur, &low_brec, &high_brec,
4072                         xfs_alloc_query_range_helper, &query);
4073 }
4074 
4075 /* Find all free space records. */
4076 int
4077 xfs_alloc_query_all(
4078         struct xfs_btree_cur                    *cur,
4079         xfs_alloc_query_range_fn                fn,
4080         void                                    *priv)
4081 {
4082         struct xfs_alloc_query_range_info       query;
4083 
4084         ASSERT(xfs_btree_is_bno(cur->bc_ops));
4085         query.priv = priv;
4086         query.fn = fn;
4087         return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
4088 }
4089 
4090 /*
4091  * Scan part of the keyspace of the free space and tell us if the area has no
4092  * records, is fully mapped by records, or is partially filled.
4093  */
4094 int
4095 xfs_alloc_has_records(
4096         struct xfs_btree_cur    *cur,
4097         xfs_agblock_t           bno,
4098         xfs_extlen_t            len,
4099         enum xbtree_recpacking  *outcome)
4100 {
4101         union xfs_btree_irec    low;
4102         union xfs_btree_irec    high;
4103 
4104         memset(&low, 0, sizeof(low));
4105         low.a.ar_startblock = bno;
4106         memset(&high, 0xFF, sizeof(high));
4107         high.a.ar_startblock = bno + len - 1;
4108 
4109         return xfs_btree_has_records(cur, &low, &high, NULL, outcome);
4110 }
4111 
4112 /*
4113  * Walk all the blocks in the AGFL.  The @walk_fn can return any negative
4114  * error code or XFS_ITER_*.
4115  */
4116 int
4117 xfs_agfl_walk(
4118         struct xfs_mount        *mp,
4119         struct xfs_agf          *agf,
4120         struct xfs_buf          *agflbp,
4121         xfs_agfl_walk_fn        walk_fn,
4122         void                    *priv)
4123 {
4124         __be32                  *agfl_bno;
4125         unsigned int            i;
4126         int                     error;
4127 
4128         agfl_bno = xfs_buf_to_agfl_bno(agflbp);
4129         i = be32_to_cpu(agf->agf_flfirst);
4130 
4131         /* Nothing to walk in an empty AGFL. */
4132         if (agf->agf_flcount == cpu_to_be32(0))
4133                 return 0;
4134 
4135         /* Otherwise, walk from first to last, wrapping as needed. */
4136         for (;;) {
4137                 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
4138                 if (error)
4139                         return error;
4140                 if (i == be32_to_cpu(agf->agf_fllast))
4141                         break;
4142                 if (++i == xfs_agfl_size(mp))
4143                         i = 0;
4144         }
4145 
4146         return 0;
4147 }
4148 
4149 int __init
4150 xfs_extfree_intent_init_cache(void)
4151 {
4152         xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
4153                         sizeof(struct xfs_extent_free_item),
4154                         0, 0, NULL);
4155 
4156         return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
4157 }
4158 
4159 void
4160 xfs_extfree_intent_destroy_cache(void)
4161 {
4162         kmem_cache_destroy(xfs_extfree_item_cache);
4163         xfs_extfree_item_cache = NULL;
4164 }
4165 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php