~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/libxfs/xfs_btree.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_shared.h"
  9 #include "xfs_format.h"
 10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_bit.h"
 13 #include "xfs_mount.h"
 14 #include "xfs_inode.h"
 15 #include "xfs_trans.h"
 16 #include "xfs_buf_item.h"
 17 #include "xfs_btree.h"
 18 #include "xfs_errortag.h"
 19 #include "xfs_error.h"
 20 #include "xfs_trace.h"
 21 #include "xfs_alloc.h"
 22 #include "xfs_log.h"
 23 #include "xfs_btree_staging.h"
 24 #include "xfs_ag.h"
 25 #include "xfs_alloc_btree.h"
 26 #include "xfs_ialloc_btree.h"
 27 #include "xfs_bmap_btree.h"
 28 #include "xfs_rmap_btree.h"
 29 #include "xfs_refcount_btree.h"
 30 #include "xfs_health.h"
 31 #include "xfs_buf_mem.h"
 32 #include "xfs_btree_mem.h"
 33 
 34 /*
 35  * Btree magic numbers.
 36  */
 37 uint32_t
 38 xfs_btree_magic(
 39         struct xfs_mount                *mp,
 40         const struct xfs_btree_ops      *ops)
 41 {
 42         int                             idx = xfs_has_crc(mp) ? 1 : 0;
 43         __be32                          magic = ops->buf_ops->magic[idx];
 44 
 45         /* Ensure we asked for crc for crc-only magics. */
 46         ASSERT(magic != 0);
 47         return be32_to_cpu(magic);
 48 }
 49 
 50 /*
 51  * These sibling pointer checks are optimised for null sibling pointers. This
 52  * happens a lot, and we don't need to byte swap at runtime if the sibling
 53  * pointer is NULL.
 54  *
 55  * These are explicitly marked at inline because the cost of calling them as
 56  * functions instead of inlining them is about 36 bytes extra code per call site
 57  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
 58  * two sibling check functions reduces the compiled code size by over 300
 59  * bytes.
 60  */
 61 static inline xfs_failaddr_t
 62 xfs_btree_check_fsblock_siblings(
 63         struct xfs_mount        *mp,
 64         xfs_fsblock_t           fsb,
 65         __be64                  dsibling)
 66 {
 67         xfs_fsblock_t           sibling;
 68 
 69         if (dsibling == cpu_to_be64(NULLFSBLOCK))
 70                 return NULL;
 71 
 72         sibling = be64_to_cpu(dsibling);
 73         if (sibling == fsb)
 74                 return __this_address;
 75         if (!xfs_verify_fsbno(mp, sibling))
 76                 return __this_address;
 77         return NULL;
 78 }
 79 
 80 static inline xfs_failaddr_t
 81 xfs_btree_check_memblock_siblings(
 82         struct xfs_buftarg      *btp,
 83         xfbno_t                 bno,
 84         __be64                  dsibling)
 85 {
 86         xfbno_t                 sibling;
 87 
 88         if (dsibling == cpu_to_be64(NULLFSBLOCK))
 89                 return NULL;
 90 
 91         sibling = be64_to_cpu(dsibling);
 92         if (sibling == bno)
 93                 return __this_address;
 94         if (!xmbuf_verify_daddr(btp, xfbno_to_daddr(sibling)))
 95                 return __this_address;
 96         return NULL;
 97 }
 98 
 99 static inline xfs_failaddr_t
100 xfs_btree_check_agblock_siblings(
101         struct xfs_perag        *pag,
102         xfs_agblock_t           agbno,
103         __be32                  dsibling)
104 {
105         xfs_agblock_t           sibling;
106 
107         if (dsibling == cpu_to_be32(NULLAGBLOCK))
108                 return NULL;
109 
110         sibling = be32_to_cpu(dsibling);
111         if (sibling == agbno)
112                 return __this_address;
113         if (!xfs_verify_agbno(pag, sibling))
114                 return __this_address;
115         return NULL;
116 }
117 
118 static xfs_failaddr_t
119 __xfs_btree_check_lblock_hdr(
120         struct xfs_btree_cur    *cur,
121         struct xfs_btree_block  *block,
122         int                     level,
123         struct xfs_buf          *bp)
124 {
125         struct xfs_mount        *mp = cur->bc_mp;
126 
127         if (xfs_has_crc(mp)) {
128                 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
129                         return __this_address;
130                 if (block->bb_u.l.bb_blkno !=
131                     cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
132                         return __this_address;
133                 if (block->bb_u.l.bb_pad != cpu_to_be32(0))
134                         return __this_address;
135         }
136 
137         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
138                 return __this_address;
139         if (be16_to_cpu(block->bb_level) != level)
140                 return __this_address;
141         if (be16_to_cpu(block->bb_numrecs) >
142             cur->bc_ops->get_maxrecs(cur, level))
143                 return __this_address;
144 
145         return NULL;
146 }
147 
148 /*
149  * Check a long btree block header.  Return the address of the failing check,
150  * or NULL if everything is ok.
151  */
152 static xfs_failaddr_t
153 __xfs_btree_check_fsblock(
154         struct xfs_btree_cur    *cur,
155         struct xfs_btree_block  *block,
156         int                     level,
157         struct xfs_buf          *bp)
158 {
159         struct xfs_mount        *mp = cur->bc_mp;
160         xfs_failaddr_t          fa;
161         xfs_fsblock_t           fsb;
162 
163         fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
164         if (fa)
165                 return fa;
166 
167         /*
168          * For inode-rooted btrees, the root block sits in the inode fork.  In
169          * that case bp is NULL, and the block must not have any siblings.
170          */
171         if (!bp) {
172                 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK))
173                         return __this_address;
174                 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK))
175                         return __this_address;
176                 return NULL;
177         }
178 
179         fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
180         fa = xfs_btree_check_fsblock_siblings(mp, fsb,
181                         block->bb_u.l.bb_leftsib);
182         if (!fa)
183                 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
184                                 block->bb_u.l.bb_rightsib);
185         return fa;
186 }
187 
188 /*
189  * Check an in-memory btree block header.  Return the address of the failing
190  * check, or NULL if everything is ok.
191  */
192 static xfs_failaddr_t
193 __xfs_btree_check_memblock(
194         struct xfs_btree_cur    *cur,
195         struct xfs_btree_block  *block,
196         int                     level,
197         struct xfs_buf          *bp)
198 {
199         struct xfs_buftarg      *btp = cur->bc_mem.xfbtree->target;
200         xfs_failaddr_t          fa;
201         xfbno_t                 bno;
202 
203         fa = __xfs_btree_check_lblock_hdr(cur, block, level, bp);
204         if (fa)
205                 return fa;
206 
207         bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
208         fa = xfs_btree_check_memblock_siblings(btp, bno,
209                         block->bb_u.l.bb_leftsib);
210         if (!fa)
211                 fa = xfs_btree_check_memblock_siblings(btp, bno,
212                                 block->bb_u.l.bb_rightsib);
213         return fa;
214 }
215 
216 /*
217  * Check a short btree block header.  Return the address of the failing check,
218  * or NULL if everything is ok.
219  */
220 static xfs_failaddr_t
221 __xfs_btree_check_agblock(
222         struct xfs_btree_cur    *cur,
223         struct xfs_btree_block  *block,
224         int                     level,
225         struct xfs_buf          *bp)
226 {
227         struct xfs_mount        *mp = cur->bc_mp;
228         struct xfs_perag        *pag = cur->bc_ag.pag;
229         xfs_failaddr_t          fa;
230         xfs_agblock_t           agbno;
231 
232         if (xfs_has_crc(mp)) {
233                 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
234                         return __this_address;
235                 if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
236                         return __this_address;
237         }
238 
239         if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(mp, cur->bc_ops))
240                 return __this_address;
241         if (be16_to_cpu(block->bb_level) != level)
242                 return __this_address;
243         if (be16_to_cpu(block->bb_numrecs) >
244             cur->bc_ops->get_maxrecs(cur, level))
245                 return __this_address;
246 
247         agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
248         fa = xfs_btree_check_agblock_siblings(pag, agbno,
249                         block->bb_u.s.bb_leftsib);
250         if (!fa)
251                 fa = xfs_btree_check_agblock_siblings(pag, agbno,
252                                 block->bb_u.s.bb_rightsib);
253         return fa;
254 }
255 
256 /*
257  * Internal btree block check.
258  *
259  * Return NULL if the block is ok or the address of the failed check otherwise.
260  */
261 xfs_failaddr_t
262 __xfs_btree_check_block(
263         struct xfs_btree_cur    *cur,
264         struct xfs_btree_block  *block,
265         int                     level,
266         struct xfs_buf          *bp)
267 {
268         switch (cur->bc_ops->type) {
269         case XFS_BTREE_TYPE_MEM:
270                 return __xfs_btree_check_memblock(cur, block, level, bp);
271         case XFS_BTREE_TYPE_AG:
272                 return __xfs_btree_check_agblock(cur, block, level, bp);
273         case XFS_BTREE_TYPE_INODE:
274                 return __xfs_btree_check_fsblock(cur, block, level, bp);
275         default:
276                 ASSERT(0);
277                 return __this_address;
278         }
279 }
280 
281 static inline unsigned int xfs_btree_block_errtag(struct xfs_btree_cur *cur)
282 {
283         if (cur->bc_ops->ptr_len == XFS_BTREE_SHORT_PTR_LEN)
284                 return XFS_ERRTAG_BTREE_CHECK_SBLOCK;
285         return XFS_ERRTAG_BTREE_CHECK_LBLOCK;
286 }
287 
288 /*
289  * Debug routine: check that block header is ok.
290  */
291 int
292 xfs_btree_check_block(
293         struct xfs_btree_cur    *cur,   /* btree cursor */
294         struct xfs_btree_block  *block, /* generic btree block pointer */
295         int                     level,  /* level of the btree block */
296         struct xfs_buf          *bp)    /* buffer containing block, if any */
297 {
298         struct xfs_mount        *mp = cur->bc_mp;
299         xfs_failaddr_t          fa;
300 
301         fa = __xfs_btree_check_block(cur, block, level, bp);
302         if (XFS_IS_CORRUPT(mp, fa != NULL) ||
303             XFS_TEST_ERROR(false, mp, xfs_btree_block_errtag(cur))) {
304                 if (bp)
305                         trace_xfs_btree_corrupt(bp, _RET_IP_);
306                 xfs_btree_mark_sick(cur);
307                 return -EFSCORRUPTED;
308         }
309         return 0;
310 }
311 
312 int
313 __xfs_btree_check_ptr(
314         struct xfs_btree_cur            *cur,
315         const union xfs_btree_ptr       *ptr,
316         int                             index,
317         int                             level)
318 {
319         if (level <= 0)
320                 return -EFSCORRUPTED;
321 
322         switch (cur->bc_ops->type) {
323         case XFS_BTREE_TYPE_MEM:
324                 if (!xfbtree_verify_bno(cur->bc_mem.xfbtree,
325                                 be64_to_cpu((&ptr->l)[index])))
326                         return -EFSCORRUPTED;
327                 break;
328         case XFS_BTREE_TYPE_INODE:
329                 if (!xfs_verify_fsbno(cur->bc_mp,
330                                 be64_to_cpu((&ptr->l)[index])))
331                         return -EFSCORRUPTED;
332                 break;
333         case XFS_BTREE_TYPE_AG:
334                 if (!xfs_verify_agbno(cur->bc_ag.pag,
335                                 be32_to_cpu((&ptr->s)[index])))
336                         return -EFSCORRUPTED;
337                 break;
338         }
339 
340         return 0;
341 }
342 
343 /*
344  * Check that a given (indexed) btree pointer at a certain level of a
345  * btree is valid and doesn't point past where it should.
346  */
347 static int
348 xfs_btree_check_ptr(
349         struct xfs_btree_cur            *cur,
350         const union xfs_btree_ptr       *ptr,
351         int                             index,
352         int                             level)
353 {
354         int                             error;
355 
356         error = __xfs_btree_check_ptr(cur, ptr, index, level);
357         if (error) {
358                 switch (cur->bc_ops->type) {
359                 case XFS_BTREE_TYPE_MEM:
360                         xfs_err(cur->bc_mp,
361 "In-memory: Corrupt %sbt flags 0x%x pointer at level %d index %d fa %pS.",
362                                 cur->bc_ops->name, cur->bc_flags, level, index,
363                                 __this_address);
364                         break;
365                 case XFS_BTREE_TYPE_INODE:
366                         xfs_err(cur->bc_mp,
367 "Inode %llu fork %d: Corrupt %sbt pointer at level %d index %d.",
368                                 cur->bc_ino.ip->i_ino,
369                                 cur->bc_ino.whichfork, cur->bc_ops->name,
370                                 level, index);
371                         break;
372                 case XFS_BTREE_TYPE_AG:
373                         xfs_err(cur->bc_mp,
374 "AG %u: Corrupt %sbt pointer at level %d index %d.",
375                                 cur->bc_ag.pag->pag_agno, cur->bc_ops->name,
376                                 level, index);
377                         break;
378                 }
379                 xfs_btree_mark_sick(cur);
380         }
381 
382         return error;
383 }
384 
385 #ifdef DEBUG
386 # define xfs_btree_debug_check_ptr      xfs_btree_check_ptr
387 #else
388 # define xfs_btree_debug_check_ptr(...) (0)
389 #endif
390 
391 /*
392  * Calculate CRC on the whole btree block and stuff it into the
393  * long-form btree header.
394  *
395  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
396  * it into the buffer so recovery knows what the last modification was that made
397  * it to disk.
398  */
399 void
400 xfs_btree_fsblock_calc_crc(
401         struct xfs_buf          *bp)
402 {
403         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
404         struct xfs_buf_log_item *bip = bp->b_log_item;
405 
406         if (!xfs_has_crc(bp->b_mount))
407                 return;
408         if (bip)
409                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
410         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
411 }
412 
413 bool
414 xfs_btree_fsblock_verify_crc(
415         struct xfs_buf          *bp)
416 {
417         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
418         struct xfs_mount        *mp = bp->b_mount;
419 
420         if (xfs_has_crc(mp)) {
421                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
422                         return false;
423                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
424         }
425 
426         return true;
427 }
428 
429 /*
430  * Calculate CRC on the whole btree block and stuff it into the
431  * short-form btree header.
432  *
433  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
434  * it into the buffer so recovery knows what the last modification was that made
435  * it to disk.
436  */
437 void
438 xfs_btree_agblock_calc_crc(
439         struct xfs_buf          *bp)
440 {
441         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
442         struct xfs_buf_log_item *bip = bp->b_log_item;
443 
444         if (!xfs_has_crc(bp->b_mount))
445                 return;
446         if (bip)
447                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
448         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
449 }
450 
451 bool
452 xfs_btree_agblock_verify_crc(
453         struct xfs_buf          *bp)
454 {
455         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
456         struct xfs_mount        *mp = bp->b_mount;
457 
458         if (xfs_has_crc(mp)) {
459                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
460                         return false;
461                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
462         }
463 
464         return true;
465 }
466 
467 static int
468 xfs_btree_free_block(
469         struct xfs_btree_cur    *cur,
470         struct xfs_buf          *bp)
471 {
472         int                     error;
473 
474         trace_xfs_btree_free_block(cur, bp);
475 
476         /*
477          * Don't allow block freeing for a staging cursor, because staging
478          * cursors do not support regular btree modifications.
479          */
480         if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
481                 ASSERT(0);
482                 return -EFSCORRUPTED;
483         }
484 
485         error = cur->bc_ops->free_block(cur, bp);
486         if (!error) {
487                 xfs_trans_binval(cur->bc_tp, bp);
488                 XFS_BTREE_STATS_INC(cur, free);
489         }
490         return error;
491 }
492 
493 /*
494  * Delete the btree cursor.
495  */
496 void
497 xfs_btree_del_cursor(
498         struct xfs_btree_cur    *cur,           /* btree cursor */
499         int                     error)          /* del because of error */
500 {
501         int                     i;              /* btree level */
502 
503         /*
504          * Clear the buffer pointers and release the buffers. If we're doing
505          * this because of an error, inspect all of the entries in the bc_bufs
506          * array for buffers to be unlocked. This is because some of the btree
507          * code works from level n down to 0, and if we get an error along the
508          * way we won't have initialized all the entries down to 0.
509          */
510         for (i = 0; i < cur->bc_nlevels; i++) {
511                 if (cur->bc_levels[i].bp)
512                         xfs_trans_brelse(cur->bc_tp, cur->bc_levels[i].bp);
513                 else if (!error)
514                         break;
515         }
516 
517         /*
518          * If we are doing a BMBT update, the number of unaccounted blocks
519          * allocated during this cursor life time should be zero. If it's not
520          * zero, then we should be shut down or on our way to shutdown due to
521          * cancelling a dirty transaction on error.
522          */
523         ASSERT(!xfs_btree_is_bmap(cur->bc_ops) || cur->bc_bmap.allocated == 0 ||
524                xfs_is_shutdown(cur->bc_mp) || error != 0);
525 
526         switch (cur->bc_ops->type) {
527         case XFS_BTREE_TYPE_AG:
528                 if (cur->bc_ag.pag)
529                         xfs_perag_put(cur->bc_ag.pag);
530                 break;
531         case XFS_BTREE_TYPE_INODE:
532                 /* nothing to do */
533                 break;
534         case XFS_BTREE_TYPE_MEM:
535                 if (cur->bc_mem.pag)
536                         xfs_perag_put(cur->bc_mem.pag);
537                 break;
538         }
539 
540         kmem_cache_free(cur->bc_cache, cur);
541 }
542 
543 /* Return the buffer target for this btree's buffer. */
544 static inline struct xfs_buftarg *
545 xfs_btree_buftarg(
546         struct xfs_btree_cur    *cur)
547 {
548         if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
549                 return cur->bc_mem.xfbtree->target;
550         return cur->bc_mp->m_ddev_targp;
551 }
552 
553 /* Return the block size (in units of 512b sectors) for this btree. */
554 static inline unsigned int
555 xfs_btree_bbsize(
556         struct xfs_btree_cur    *cur)
557 {
558         if (cur->bc_ops->type == XFS_BTREE_TYPE_MEM)
559                 return XFBNO_BBSIZE;
560         return cur->bc_mp->m_bsize;
561 }
562 
563 /*
564  * Duplicate the btree cursor.
565  * Allocate a new one, copy the record, re-get the buffers.
566  */
567 int                                             /* error */
568 xfs_btree_dup_cursor(
569         struct xfs_btree_cur    *cur,           /* input cursor */
570         struct xfs_btree_cur    **ncur)         /* output cursor */
571 {
572         struct xfs_mount        *mp = cur->bc_mp;
573         struct xfs_trans        *tp = cur->bc_tp;
574         struct xfs_buf          *bp;
575         struct xfs_btree_cur    *new;
576         int                     error;
577         int                     i;
578 
579         /*
580          * Don't allow staging cursors to be duplicated because they're supposed
581          * to be kept private to a single thread.
582          */
583         if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
584                 ASSERT(0);
585                 return -EFSCORRUPTED;
586         }
587 
588         /*
589          * Allocate a new cursor like the old one.
590          */
591         new = cur->bc_ops->dup_cursor(cur);
592 
593         /*
594          * Copy the record currently in the cursor.
595          */
596         new->bc_rec = cur->bc_rec;
597 
598         /*
599          * For each level current, re-get the buffer and copy the ptr value.
600          */
601         for (i = 0; i < new->bc_nlevels; i++) {
602                 new->bc_levels[i].ptr = cur->bc_levels[i].ptr;
603                 new->bc_levels[i].ra = cur->bc_levels[i].ra;
604                 bp = cur->bc_levels[i].bp;
605                 if (bp) {
606                         error = xfs_trans_read_buf(mp, tp,
607                                         xfs_btree_buftarg(cur),
608                                         xfs_buf_daddr(bp),
609                                         xfs_btree_bbsize(cur), 0, &bp,
610                                         cur->bc_ops->buf_ops);
611                         if (xfs_metadata_is_sick(error))
612                                 xfs_btree_mark_sick(new);
613                         if (error) {
614                                 xfs_btree_del_cursor(new, error);
615                                 *ncur = NULL;
616                                 return error;
617                         }
618                 }
619                 new->bc_levels[i].bp = bp;
620         }
621         *ncur = new;
622         return 0;
623 }
624 
625 /*
626  * XFS btree block layout and addressing:
627  *
628  * There are two types of blocks in the btree: leaf and non-leaf blocks.
629  *
630  * The leaf record start with a header then followed by records containing
631  * the values.  A non-leaf block also starts with the same header, and
632  * then first contains lookup keys followed by an equal number of pointers
633  * to the btree blocks at the previous level.
634  *
635  *              +--------+-------+-------+-------+-------+-------+-------+
636  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
637  *              +--------+-------+-------+-------+-------+-------+-------+
638  *
639  *              +--------+-------+-------+-------+-------+-------+-------+
640  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
641  *              +--------+-------+-------+-------+-------+-------+-------+
642  *
643  * The header is called struct xfs_btree_block for reasons better left unknown
644  * and comes in different versions for short (32bit) and long (64bit) block
645  * pointers.  The record and key structures are defined by the btree instances
646  * and opaque to the btree core.  The block pointers are simple disk endian
647  * integers, available in a short (32bit) and long (64bit) variant.
648  *
649  * The helpers below calculate the offset of a given record, key or pointer
650  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
651  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
652  * inside the btree block is done using indices starting at one, not zero!
653  *
654  * If XFS_BTGEO_OVERLAPPING is set, then this btree supports keys containing
655  * overlapping intervals.  In such a tree, records are still sorted lowest to
656  * highest and indexed by the smallest key value that refers to the record.
657  * However, nodes are different: each pointer has two associated keys -- one
658  * indexing the lowest key available in the block(s) below (the same behavior
659  * as the key in a regular btree) and another indexing the highest key
660  * available in the block(s) below.  Because records are /not/ sorted by the
661  * highest key, all leaf block updates require us to compute the highest key
662  * that matches any record in the leaf and to recursively update the high keys
663  * in the nodes going further up in the tree, if necessary.  Nodes look like
664  * this:
665  *
666  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
667  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
668  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
669  *
670  * To perform an interval query on an overlapped tree, perform the usual
671  * depth-first search and use the low and high keys to decide if we can skip
672  * that particular node.  If a leaf node is reached, return the records that
673  * intersect the interval.  Note that an interval query may return numerous
674  * entries.  For a non-overlapped tree, simply search for the record associated
675  * with the lowest key and iterate forward until a non-matching record is
676  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
677  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
678  * more detail.
679  *
680  * Why do we care about overlapping intervals?  Let's say you have a bunch of
681  * reverse mapping records on a reflink filesystem:
682  *
683  * 1: +- file A startblock B offset C length D -----------+
684  * 2:      +- file E startblock F offset G length H --------------+
685  * 3:      +- file I startblock F offset J length K --+
686  * 4:                                                        +- file L... --+
687  *
688  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
689  * we'd simply increment the length of record 1.  But how do we find the record
690  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
691  * record 3 because the keys are ordered first by startblock.  An interval
692  * query would return records 1 and 2 because they both overlap (B+D-1), and
693  * from that we can pick out record 1 as the appropriate left neighbor.
694  *
695  * In the non-overlapped case you can do a LE lookup and decrement the cursor
696  * because a record's interval must end before the next record.
697  */
698 
699 /*
700  * Return size of the btree block header for this btree instance.
701  */
702 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
703 {
704         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
705                 if (xfs_has_crc(cur->bc_mp))
706                         return XFS_BTREE_LBLOCK_CRC_LEN;
707                 return XFS_BTREE_LBLOCK_LEN;
708         }
709         if (xfs_has_crc(cur->bc_mp))
710                 return XFS_BTREE_SBLOCK_CRC_LEN;
711         return XFS_BTREE_SBLOCK_LEN;
712 }
713 
714 /*
715  * Calculate offset of the n-th record in a btree block.
716  */
717 STATIC size_t
718 xfs_btree_rec_offset(
719         struct xfs_btree_cur    *cur,
720         int                     n)
721 {
722         return xfs_btree_block_len(cur) +
723                 (n - 1) * cur->bc_ops->rec_len;
724 }
725 
726 /*
727  * Calculate offset of the n-th key in a btree block.
728  */
729 STATIC size_t
730 xfs_btree_key_offset(
731         struct xfs_btree_cur    *cur,
732         int                     n)
733 {
734         return xfs_btree_block_len(cur) +
735                 (n - 1) * cur->bc_ops->key_len;
736 }
737 
738 /*
739  * Calculate offset of the n-th high key in a btree block.
740  */
741 STATIC size_t
742 xfs_btree_high_key_offset(
743         struct xfs_btree_cur    *cur,
744         int                     n)
745 {
746         return xfs_btree_block_len(cur) +
747                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
748 }
749 
750 /*
751  * Calculate offset of the n-th block pointer in a btree block.
752  */
753 STATIC size_t
754 xfs_btree_ptr_offset(
755         struct xfs_btree_cur    *cur,
756         int                     n,
757         int                     level)
758 {
759         return xfs_btree_block_len(cur) +
760                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
761                 (n - 1) * cur->bc_ops->ptr_len;
762 }
763 
764 /*
765  * Return a pointer to the n-th record in the btree block.
766  */
767 union xfs_btree_rec *
768 xfs_btree_rec_addr(
769         struct xfs_btree_cur    *cur,
770         int                     n,
771         struct xfs_btree_block  *block)
772 {
773         return (union xfs_btree_rec *)
774                 ((char *)block + xfs_btree_rec_offset(cur, n));
775 }
776 
777 /*
778  * Return a pointer to the n-th key in the btree block.
779  */
780 union xfs_btree_key *
781 xfs_btree_key_addr(
782         struct xfs_btree_cur    *cur,
783         int                     n,
784         struct xfs_btree_block  *block)
785 {
786         return (union xfs_btree_key *)
787                 ((char *)block + xfs_btree_key_offset(cur, n));
788 }
789 
790 /*
791  * Return a pointer to the n-th high key in the btree block.
792  */
793 union xfs_btree_key *
794 xfs_btree_high_key_addr(
795         struct xfs_btree_cur    *cur,
796         int                     n,
797         struct xfs_btree_block  *block)
798 {
799         return (union xfs_btree_key *)
800                 ((char *)block + xfs_btree_high_key_offset(cur, n));
801 }
802 
803 /*
804  * Return a pointer to the n-th block pointer in the btree block.
805  */
806 union xfs_btree_ptr *
807 xfs_btree_ptr_addr(
808         struct xfs_btree_cur    *cur,
809         int                     n,
810         struct xfs_btree_block  *block)
811 {
812         int                     level = xfs_btree_get_level(block);
813 
814         ASSERT(block->bb_level != 0);
815 
816         return (union xfs_btree_ptr *)
817                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
818 }
819 
820 struct xfs_ifork *
821 xfs_btree_ifork_ptr(
822         struct xfs_btree_cur    *cur)
823 {
824         ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
825 
826         if (cur->bc_flags & XFS_BTREE_STAGING)
827                 return cur->bc_ino.ifake->if_fork;
828         return xfs_ifork_ptr(cur->bc_ino.ip, cur->bc_ino.whichfork);
829 }
830 
831 /*
832  * Get the root block which is stored in the inode.
833  *
834  * For now this btree implementation assumes the btree root is always
835  * stored in the if_broot field of an inode fork.
836  */
837 STATIC struct xfs_btree_block *
838 xfs_btree_get_iroot(
839         struct xfs_btree_cur    *cur)
840 {
841         struct xfs_ifork        *ifp = xfs_btree_ifork_ptr(cur);
842 
843         return (struct xfs_btree_block *)ifp->if_broot;
844 }
845 
846 /*
847  * Retrieve the block pointer from the cursor at the given level.
848  * This may be an inode btree root or from a buffer.
849  */
850 struct xfs_btree_block *                /* generic btree block pointer */
851 xfs_btree_get_block(
852         struct xfs_btree_cur    *cur,   /* btree cursor */
853         int                     level,  /* level in btree */
854         struct xfs_buf          **bpp)  /* buffer containing the block */
855 {
856         if (xfs_btree_at_iroot(cur, level)) {
857                 *bpp = NULL;
858                 return xfs_btree_get_iroot(cur);
859         }
860 
861         *bpp = cur->bc_levels[level].bp;
862         return XFS_BUF_TO_BLOCK(*bpp);
863 }
864 
865 /*
866  * Change the cursor to point to the first record at the given level.
867  * Other levels are unaffected.
868  */
869 STATIC int                              /* success=1, failure=0 */
870 xfs_btree_firstrec(
871         struct xfs_btree_cur    *cur,   /* btree cursor */
872         int                     level)  /* level to change */
873 {
874         struct xfs_btree_block  *block; /* generic btree block pointer */
875         struct xfs_buf          *bp;    /* buffer containing block */
876 
877         /*
878          * Get the block pointer for this level.
879          */
880         block = xfs_btree_get_block(cur, level, &bp);
881         if (xfs_btree_check_block(cur, block, level, bp))
882                 return 0;
883         /*
884          * It's empty, there is no such record.
885          */
886         if (!block->bb_numrecs)
887                 return 0;
888         /*
889          * Set the ptr value to 1, that's the first record/key.
890          */
891         cur->bc_levels[level].ptr = 1;
892         return 1;
893 }
894 
895 /*
896  * Change the cursor to point to the last record in the current block
897  * at the given level.  Other levels are unaffected.
898  */
899 STATIC int                              /* success=1, failure=0 */
900 xfs_btree_lastrec(
901         struct xfs_btree_cur    *cur,   /* btree cursor */
902         int                     level)  /* level to change */
903 {
904         struct xfs_btree_block  *block; /* generic btree block pointer */
905         struct xfs_buf          *bp;    /* buffer containing block */
906 
907         /*
908          * Get the block pointer for this level.
909          */
910         block = xfs_btree_get_block(cur, level, &bp);
911         if (xfs_btree_check_block(cur, block, level, bp))
912                 return 0;
913         /*
914          * It's empty, there is no such record.
915          */
916         if (!block->bb_numrecs)
917                 return 0;
918         /*
919          * Set the ptr value to numrecs, that's the last record/key.
920          */
921         cur->bc_levels[level].ptr = be16_to_cpu(block->bb_numrecs);
922         return 1;
923 }
924 
925 /*
926  * Compute first and last byte offsets for the fields given.
927  * Interprets the offsets table, which contains struct field offsets.
928  */
929 void
930 xfs_btree_offsets(
931         uint32_t        fields,         /* bitmask of fields */
932         const short     *offsets,       /* table of field offsets */
933         int             nbits,          /* number of bits to inspect */
934         int             *first,         /* output: first byte offset */
935         int             *last)          /* output: last byte offset */
936 {
937         int             i;              /* current bit number */
938         uint32_t        imask;          /* mask for current bit number */
939 
940         ASSERT(fields != 0);
941         /*
942          * Find the lowest bit, so the first byte offset.
943          */
944         for (i = 0, imask = 1u; ; i++, imask <<= 1) {
945                 if (imask & fields) {
946                         *first = offsets[i];
947                         break;
948                 }
949         }
950         /*
951          * Find the highest bit, so the last byte offset.
952          */
953         for (i = nbits - 1, imask = 1u << i; ; i--, imask >>= 1) {
954                 if (imask & fields) {
955                         *last = offsets[i + 1] - 1;
956                         break;
957                 }
958         }
959 }
960 
961 STATIC int
962 xfs_btree_readahead_fsblock(
963         struct xfs_btree_cur    *cur,
964         int                     lr,
965         struct xfs_btree_block  *block)
966 {
967         struct xfs_mount        *mp = cur->bc_mp;
968         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
969         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
970         int                     rval = 0;
971 
972         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
973                 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, left),
974                                 mp->m_bsize, cur->bc_ops->buf_ops);
975                 rval++;
976         }
977 
978         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
979                 xfs_buf_readahead(mp->m_ddev_targp, XFS_FSB_TO_DADDR(mp, right),
980                                 mp->m_bsize, cur->bc_ops->buf_ops);
981                 rval++;
982         }
983 
984         return rval;
985 }
986 
987 STATIC int
988 xfs_btree_readahead_memblock(
989         struct xfs_btree_cur    *cur,
990         int                     lr,
991         struct xfs_btree_block  *block)
992 {
993         struct xfs_buftarg      *btp = cur->bc_mem.xfbtree->target;
994         xfbno_t                 left = be64_to_cpu(block->bb_u.l.bb_leftsib);
995         xfbno_t                 right = be64_to_cpu(block->bb_u.l.bb_rightsib);
996         int                     rval = 0;
997 
998         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
999                 xfs_buf_readahead(btp, xfbno_to_daddr(left), XFBNO_BBSIZE,
1000                                 cur->bc_ops->buf_ops);
1001                 rval++;
1002         }
1003 
1004         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
1005                 xfs_buf_readahead(btp, xfbno_to_daddr(right), XFBNO_BBSIZE,
1006                                 cur->bc_ops->buf_ops);
1007                 rval++;
1008         }
1009 
1010         return rval;
1011 }
1012 
1013 STATIC int
1014 xfs_btree_readahead_agblock(
1015         struct xfs_btree_cur    *cur,
1016         int                     lr,
1017         struct xfs_btree_block  *block)
1018 {
1019         struct xfs_mount        *mp = cur->bc_mp;
1020         xfs_agnumber_t          agno = cur->bc_ag.pag->pag_agno;
1021         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
1022         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
1023         int                     rval = 0;
1024 
1025         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
1026                 xfs_buf_readahead(mp->m_ddev_targp,
1027                                 XFS_AGB_TO_DADDR(mp, agno, left),
1028                                 mp->m_bsize, cur->bc_ops->buf_ops);
1029                 rval++;
1030         }
1031 
1032         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
1033                 xfs_buf_readahead(mp->m_ddev_targp,
1034                                 XFS_AGB_TO_DADDR(mp, agno, right),
1035                                 mp->m_bsize, cur->bc_ops->buf_ops);
1036                 rval++;
1037         }
1038 
1039         return rval;
1040 }
1041 
1042 /*
1043  * Read-ahead btree blocks, at the given level.
1044  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
1045  */
1046 STATIC int
1047 xfs_btree_readahead(
1048         struct xfs_btree_cur    *cur,           /* btree cursor */
1049         int                     lev,            /* level in btree */
1050         int                     lr)             /* left/right bits */
1051 {
1052         struct xfs_btree_block  *block;
1053 
1054         /*
1055          * No readahead needed if we are at the root level and the
1056          * btree root is stored in the inode.
1057          */
1058         if (xfs_btree_at_iroot(cur, lev))
1059                 return 0;
1060 
1061         if ((cur->bc_levels[lev].ra | lr) == cur->bc_levels[lev].ra)
1062                 return 0;
1063 
1064         cur->bc_levels[lev].ra |= lr;
1065         block = XFS_BUF_TO_BLOCK(cur->bc_levels[lev].bp);
1066 
1067         switch (cur->bc_ops->type) {
1068         case XFS_BTREE_TYPE_AG:
1069                 return xfs_btree_readahead_agblock(cur, lr, block);
1070         case XFS_BTREE_TYPE_INODE:
1071                 return xfs_btree_readahead_fsblock(cur, lr, block);
1072         case XFS_BTREE_TYPE_MEM:
1073                 return xfs_btree_readahead_memblock(cur, lr, block);
1074         default:
1075                 ASSERT(0);
1076                 return 0;
1077         }
1078 }
1079 
1080 STATIC int
1081 xfs_btree_ptr_to_daddr(
1082         struct xfs_btree_cur            *cur,
1083         const union xfs_btree_ptr       *ptr,
1084         xfs_daddr_t                     *daddr)
1085 {
1086         int                     error;
1087 
1088         error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1089         if (error)
1090                 return error;
1091 
1092         switch (cur->bc_ops->type) {
1093         case XFS_BTREE_TYPE_AG:
1094                 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1095                                 be32_to_cpu(ptr->s));
1096                 break;
1097         case XFS_BTREE_TYPE_INODE:
1098                 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
1099                 break;
1100         case XFS_BTREE_TYPE_MEM:
1101                 *daddr = xfbno_to_daddr(be64_to_cpu(ptr->l));
1102                 break;
1103         }
1104         return 0;
1105 }
1106 
1107 /*
1108  * Readahead @count btree blocks at the given @ptr location.
1109  *
1110  * We don't need to care about long or short form btrees here as we have a
1111  * method of converting the ptr directly to a daddr available to us.
1112  */
1113 STATIC void
1114 xfs_btree_readahead_ptr(
1115         struct xfs_btree_cur    *cur,
1116         union xfs_btree_ptr     *ptr,
1117         xfs_extlen_t            count)
1118 {
1119         xfs_daddr_t             daddr;
1120 
1121         if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1122                 return;
1123         xfs_buf_readahead(xfs_btree_buftarg(cur), daddr,
1124                         xfs_btree_bbsize(cur) * count,
1125                         cur->bc_ops->buf_ops);
1126 }
1127 
1128 /*
1129  * Set the buffer for level "lev" in the cursor to bp, releasing
1130  * any previous buffer.
1131  */
1132 STATIC void
1133 xfs_btree_setbuf(
1134         struct xfs_btree_cur    *cur,   /* btree cursor */
1135         int                     lev,    /* level in btree */
1136         struct xfs_buf          *bp)    /* new buffer to set */
1137 {
1138         struct xfs_btree_block  *b;     /* btree block */
1139 
1140         if (cur->bc_levels[lev].bp)
1141                 xfs_trans_brelse(cur->bc_tp, cur->bc_levels[lev].bp);
1142         cur->bc_levels[lev].bp = bp;
1143         cur->bc_levels[lev].ra = 0;
1144 
1145         b = XFS_BUF_TO_BLOCK(bp);
1146         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1147                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1148                         cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1149                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1150                         cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1151         } else {
1152                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1153                         cur->bc_levels[lev].ra |= XFS_BTCUR_LEFTRA;
1154                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1155                         cur->bc_levels[lev].ra |= XFS_BTCUR_RIGHTRA;
1156         }
1157 }
1158 
1159 bool
1160 xfs_btree_ptr_is_null(
1161         struct xfs_btree_cur            *cur,
1162         const union xfs_btree_ptr       *ptr)
1163 {
1164         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1165                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1166         else
1167                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1168 }
1169 
1170 void
1171 xfs_btree_set_ptr_null(
1172         struct xfs_btree_cur    *cur,
1173         union xfs_btree_ptr     *ptr)
1174 {
1175         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1176                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1177         else
1178                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1179 }
1180 
1181 static inline bool
1182 xfs_btree_ptrs_equal(
1183         struct xfs_btree_cur            *cur,
1184         union xfs_btree_ptr             *ptr1,
1185         union xfs_btree_ptr             *ptr2)
1186 {
1187         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
1188                 return ptr1->l == ptr2->l;
1189         return ptr1->s == ptr2->s;
1190 }
1191 
1192 /*
1193  * Get/set/init sibling pointers
1194  */
1195 void
1196 xfs_btree_get_sibling(
1197         struct xfs_btree_cur    *cur,
1198         struct xfs_btree_block  *block,
1199         union xfs_btree_ptr     *ptr,
1200         int                     lr)
1201 {
1202         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1203 
1204         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1205                 if (lr == XFS_BB_RIGHTSIB)
1206                         ptr->l = block->bb_u.l.bb_rightsib;
1207                 else
1208                         ptr->l = block->bb_u.l.bb_leftsib;
1209         } else {
1210                 if (lr == XFS_BB_RIGHTSIB)
1211                         ptr->s = block->bb_u.s.bb_rightsib;
1212                 else
1213                         ptr->s = block->bb_u.s.bb_leftsib;
1214         }
1215 }
1216 
1217 void
1218 xfs_btree_set_sibling(
1219         struct xfs_btree_cur            *cur,
1220         struct xfs_btree_block          *block,
1221         const union xfs_btree_ptr       *ptr,
1222         int                             lr)
1223 {
1224         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1225 
1226         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1227                 if (lr == XFS_BB_RIGHTSIB)
1228                         block->bb_u.l.bb_rightsib = ptr->l;
1229                 else
1230                         block->bb_u.l.bb_leftsib = ptr->l;
1231         } else {
1232                 if (lr == XFS_BB_RIGHTSIB)
1233                         block->bb_u.s.bb_rightsib = ptr->s;
1234                 else
1235                         block->bb_u.s.bb_leftsib = ptr->s;
1236         }
1237 }
1238 
1239 static void
1240 __xfs_btree_init_block(
1241         struct xfs_mount        *mp,
1242         struct xfs_btree_block  *buf,
1243         const struct xfs_btree_ops *ops,
1244         xfs_daddr_t             blkno,
1245         __u16                   level,
1246         __u16                   numrecs,
1247         __u64                   owner)
1248 {
1249         bool                    crc = xfs_has_crc(mp);
1250         __u32                   magic = xfs_btree_magic(mp, ops);
1251 
1252         buf->bb_magic = cpu_to_be32(magic);
1253         buf->bb_level = cpu_to_be16(level);
1254         buf->bb_numrecs = cpu_to_be16(numrecs);
1255 
1256         if (ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1257                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1258                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1259                 if (crc) {
1260                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1261                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1262                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1263                         buf->bb_u.l.bb_pad = 0;
1264                         buf->bb_u.l.bb_lsn = 0;
1265                 }
1266         } else {
1267                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1268                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1269                 if (crc) {
1270                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1271                         /* owner is a 32 bit value on short blocks */
1272                         buf->bb_u.s.bb_owner = cpu_to_be32((__u32)owner);
1273                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1274                         buf->bb_u.s.bb_lsn = 0;
1275                 }
1276         }
1277 }
1278 
1279 void
1280 xfs_btree_init_block(
1281         struct xfs_mount        *mp,
1282         struct xfs_btree_block  *block,
1283         const struct xfs_btree_ops *ops,
1284         __u16                   level,
1285         __u16                   numrecs,
1286         __u64                   owner)
1287 {
1288         __xfs_btree_init_block(mp, block, ops, XFS_BUF_DADDR_NULL, level,
1289                         numrecs, owner);
1290 }
1291 
1292 void
1293 xfs_btree_init_buf(
1294         struct xfs_mount                *mp,
1295         struct xfs_buf                  *bp,
1296         const struct xfs_btree_ops      *ops,
1297         __u16                           level,
1298         __u16                           numrecs,
1299         __u64                           owner)
1300 {
1301         __xfs_btree_init_block(mp, XFS_BUF_TO_BLOCK(bp), ops,
1302                         xfs_buf_daddr(bp), level, numrecs, owner);
1303         bp->b_ops = ops->buf_ops;
1304 }
1305 
1306 static inline __u64
1307 xfs_btree_owner(
1308         struct xfs_btree_cur    *cur)
1309 {
1310         switch (cur->bc_ops->type) {
1311         case XFS_BTREE_TYPE_MEM:
1312                 return cur->bc_mem.xfbtree->owner;
1313         case XFS_BTREE_TYPE_INODE:
1314                 return cur->bc_ino.ip->i_ino;
1315         case XFS_BTREE_TYPE_AG:
1316                 return cur->bc_ag.pag->pag_agno;
1317         default:
1318                 ASSERT(0);
1319                 return 0;
1320         }
1321 }
1322 
1323 void
1324 xfs_btree_init_block_cur(
1325         struct xfs_btree_cur    *cur,
1326         struct xfs_buf          *bp,
1327         int                     level,
1328         int                     numrecs)
1329 {
1330         xfs_btree_init_buf(cur->bc_mp, bp, cur->bc_ops, level, numrecs,
1331                         xfs_btree_owner(cur));
1332 }
1333 
1334 STATIC void
1335 xfs_btree_buf_to_ptr(
1336         struct xfs_btree_cur    *cur,
1337         struct xfs_buf          *bp,
1338         union xfs_btree_ptr     *ptr)
1339 {
1340         switch (cur->bc_ops->type) {
1341         case XFS_BTREE_TYPE_AG:
1342                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1343                                         xfs_buf_daddr(bp)));
1344                 break;
1345         case XFS_BTREE_TYPE_INODE:
1346                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1347                                         xfs_buf_daddr(bp)));
1348                 break;
1349         case XFS_BTREE_TYPE_MEM:
1350                 ptr->l = cpu_to_be64(xfs_daddr_to_xfbno(xfs_buf_daddr(bp)));
1351                 break;
1352         }
1353 }
1354 
1355 static inline void
1356 xfs_btree_set_refs(
1357         struct xfs_btree_cur    *cur,
1358         struct xfs_buf          *bp)
1359 {
1360         xfs_buf_set_ref(bp, cur->bc_ops->lru_refs);
1361 }
1362 
1363 int
1364 xfs_btree_get_buf_block(
1365         struct xfs_btree_cur            *cur,
1366         const union xfs_btree_ptr       *ptr,
1367         struct xfs_btree_block          **block,
1368         struct xfs_buf                  **bpp)
1369 {
1370         xfs_daddr_t                     d;
1371         int                             error;
1372 
1373         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1374         if (error)
1375                 return error;
1376         error = xfs_trans_get_buf(cur->bc_tp, xfs_btree_buftarg(cur), d,
1377                         xfs_btree_bbsize(cur), 0, bpp);
1378         if (error)
1379                 return error;
1380 
1381         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1382         *block = XFS_BUF_TO_BLOCK(*bpp);
1383         return 0;
1384 }
1385 
1386 /*
1387  * Read in the buffer at the given ptr and return the buffer and
1388  * the block pointer within the buffer.
1389  */
1390 int
1391 xfs_btree_read_buf_block(
1392         struct xfs_btree_cur            *cur,
1393         const union xfs_btree_ptr       *ptr,
1394         int                             flags,
1395         struct xfs_btree_block          **block,
1396         struct xfs_buf                  **bpp)
1397 {
1398         struct xfs_mount        *mp = cur->bc_mp;
1399         xfs_daddr_t             d;
1400         int                     error;
1401 
1402         /* need to sort out how callers deal with failures first */
1403         ASSERT(!(flags & XBF_TRYLOCK));
1404 
1405         error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1406         if (error)
1407                 return error;
1408         error = xfs_trans_read_buf(mp, cur->bc_tp, xfs_btree_buftarg(cur), d,
1409                         xfs_btree_bbsize(cur), flags, bpp,
1410                         cur->bc_ops->buf_ops);
1411         if (xfs_metadata_is_sick(error))
1412                 xfs_btree_mark_sick(cur);
1413         if (error)
1414                 return error;
1415 
1416         xfs_btree_set_refs(cur, *bpp);
1417         *block = XFS_BUF_TO_BLOCK(*bpp);
1418         return 0;
1419 }
1420 
1421 /*
1422  * Copy keys from one btree block to another.
1423  */
1424 void
1425 xfs_btree_copy_keys(
1426         struct xfs_btree_cur            *cur,
1427         union xfs_btree_key             *dst_key,
1428         const union xfs_btree_key       *src_key,
1429         int                             numkeys)
1430 {
1431         ASSERT(numkeys >= 0);
1432         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1433 }
1434 
1435 /*
1436  * Copy records from one btree block to another.
1437  */
1438 STATIC void
1439 xfs_btree_copy_recs(
1440         struct xfs_btree_cur    *cur,
1441         union xfs_btree_rec     *dst_rec,
1442         union xfs_btree_rec     *src_rec,
1443         int                     numrecs)
1444 {
1445         ASSERT(numrecs >= 0);
1446         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1447 }
1448 
1449 /*
1450  * Copy block pointers from one btree block to another.
1451  */
1452 void
1453 xfs_btree_copy_ptrs(
1454         struct xfs_btree_cur    *cur,
1455         union xfs_btree_ptr     *dst_ptr,
1456         const union xfs_btree_ptr *src_ptr,
1457         int                     numptrs)
1458 {
1459         ASSERT(numptrs >= 0);
1460         memcpy(dst_ptr, src_ptr, numptrs * cur->bc_ops->ptr_len);
1461 }
1462 
1463 /*
1464  * Shift keys one index left/right inside a single btree block.
1465  */
1466 STATIC void
1467 xfs_btree_shift_keys(
1468         struct xfs_btree_cur    *cur,
1469         union xfs_btree_key     *key,
1470         int                     dir,
1471         int                     numkeys)
1472 {
1473         char                    *dst_key;
1474 
1475         ASSERT(numkeys >= 0);
1476         ASSERT(dir == 1 || dir == -1);
1477 
1478         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1479         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1480 }
1481 
1482 /*
1483  * Shift records one index left/right inside a single btree block.
1484  */
1485 STATIC void
1486 xfs_btree_shift_recs(
1487         struct xfs_btree_cur    *cur,
1488         union xfs_btree_rec     *rec,
1489         int                     dir,
1490         int                     numrecs)
1491 {
1492         char                    *dst_rec;
1493 
1494         ASSERT(numrecs >= 0);
1495         ASSERT(dir == 1 || dir == -1);
1496 
1497         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1498         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1499 }
1500 
1501 /*
1502  * Shift block pointers one index left/right inside a single btree block.
1503  */
1504 STATIC void
1505 xfs_btree_shift_ptrs(
1506         struct xfs_btree_cur    *cur,
1507         union xfs_btree_ptr     *ptr,
1508         int                     dir,
1509         int                     numptrs)
1510 {
1511         char                    *dst_ptr;
1512 
1513         ASSERT(numptrs >= 0);
1514         ASSERT(dir == 1 || dir == -1);
1515 
1516         dst_ptr = (char *)ptr + (dir * cur->bc_ops->ptr_len);
1517         memmove(dst_ptr, ptr, numptrs * cur->bc_ops->ptr_len);
1518 }
1519 
1520 /*
1521  * Log key values from the btree block.
1522  */
1523 STATIC void
1524 xfs_btree_log_keys(
1525         struct xfs_btree_cur    *cur,
1526         struct xfs_buf          *bp,
1527         int                     first,
1528         int                     last)
1529 {
1530 
1531         if (bp) {
1532                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1533                 xfs_trans_log_buf(cur->bc_tp, bp,
1534                                   xfs_btree_key_offset(cur, first),
1535                                   xfs_btree_key_offset(cur, last + 1) - 1);
1536         } else {
1537                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1538                                 xfs_ilog_fbroot(cur->bc_ino.whichfork));
1539         }
1540 }
1541 
1542 /*
1543  * Log record values from the btree block.
1544  */
1545 void
1546 xfs_btree_log_recs(
1547         struct xfs_btree_cur    *cur,
1548         struct xfs_buf          *bp,
1549         int                     first,
1550         int                     last)
1551 {
1552 
1553         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1554         xfs_trans_log_buf(cur->bc_tp, bp,
1555                           xfs_btree_rec_offset(cur, first),
1556                           xfs_btree_rec_offset(cur, last + 1) - 1);
1557 
1558 }
1559 
1560 /*
1561  * Log block pointer fields from a btree block (nonleaf).
1562  */
1563 STATIC void
1564 xfs_btree_log_ptrs(
1565         struct xfs_btree_cur    *cur,   /* btree cursor */
1566         struct xfs_buf          *bp,    /* buffer containing btree block */
1567         int                     first,  /* index of first pointer to log */
1568         int                     last)   /* index of last pointer to log */
1569 {
1570 
1571         if (bp) {
1572                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1573                 int                     level = xfs_btree_get_level(block);
1574 
1575                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1576                 xfs_trans_log_buf(cur->bc_tp, bp,
1577                                 xfs_btree_ptr_offset(cur, first, level),
1578                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1579         } else {
1580                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1581                         xfs_ilog_fbroot(cur->bc_ino.whichfork));
1582         }
1583 
1584 }
1585 
1586 /*
1587  * Log fields from a btree block header.
1588  */
1589 void
1590 xfs_btree_log_block(
1591         struct xfs_btree_cur    *cur,   /* btree cursor */
1592         struct xfs_buf          *bp,    /* buffer containing btree block */
1593         uint32_t                fields) /* mask of fields: XFS_BB_... */
1594 {
1595         int                     first;  /* first byte offset logged */
1596         int                     last;   /* last byte offset logged */
1597         static const short      soffsets[] = {  /* table of offsets (short) */
1598                 offsetof(struct xfs_btree_block, bb_magic),
1599                 offsetof(struct xfs_btree_block, bb_level),
1600                 offsetof(struct xfs_btree_block, bb_numrecs),
1601                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1602                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1603                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1604                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1605                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1606                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1607                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1608                 XFS_BTREE_SBLOCK_CRC_LEN
1609         };
1610         static const short      loffsets[] = {  /* table of offsets (long) */
1611                 offsetof(struct xfs_btree_block, bb_magic),
1612                 offsetof(struct xfs_btree_block, bb_level),
1613                 offsetof(struct xfs_btree_block, bb_numrecs),
1614                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1615                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1616                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1617                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1618                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1619                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1620                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1621                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1622                 XFS_BTREE_LBLOCK_CRC_LEN
1623         };
1624 
1625         if (bp) {
1626                 int nbits;
1627 
1628                 if (xfs_has_crc(cur->bc_mp)) {
1629                         /*
1630                          * We don't log the CRC when updating a btree
1631                          * block but instead recreate it during log
1632                          * recovery.  As the log buffers have checksums
1633                          * of their own this is safe and avoids logging a crc
1634                          * update in a lot of places.
1635                          */
1636                         if (fields == XFS_BB_ALL_BITS)
1637                                 fields = XFS_BB_ALL_BITS_CRC;
1638                         nbits = XFS_BB_NUM_BITS_CRC;
1639                 } else {
1640                         nbits = XFS_BB_NUM_BITS;
1641                 }
1642                 xfs_btree_offsets(fields,
1643                                   (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) ?
1644                                         loffsets : soffsets,
1645                                   nbits, &first, &last);
1646                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1647                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1648         } else {
1649                 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1650                         xfs_ilog_fbroot(cur->bc_ino.whichfork));
1651         }
1652 }
1653 
1654 /*
1655  * Increment cursor by one record at the level.
1656  * For nonzero levels the leaf-ward information is untouched.
1657  */
1658 int                                             /* error */
1659 xfs_btree_increment(
1660         struct xfs_btree_cur    *cur,
1661         int                     level,
1662         int                     *stat)          /* success/failure */
1663 {
1664         struct xfs_btree_block  *block;
1665         union xfs_btree_ptr     ptr;
1666         struct xfs_buf          *bp;
1667         int                     error;          /* error return value */
1668         int                     lev;
1669 
1670         ASSERT(level < cur->bc_nlevels);
1671 
1672         /* Read-ahead to the right at this level. */
1673         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1674 
1675         /* Get a pointer to the btree block. */
1676         block = xfs_btree_get_block(cur, level, &bp);
1677 
1678 #ifdef DEBUG
1679         error = xfs_btree_check_block(cur, block, level, bp);
1680         if (error)
1681                 goto error0;
1682 #endif
1683 
1684         /* We're done if we remain in the block after the increment. */
1685         if (++cur->bc_levels[level].ptr <= xfs_btree_get_numrecs(block))
1686                 goto out1;
1687 
1688         /* Fail if we just went off the right edge of the tree. */
1689         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1690         if (xfs_btree_ptr_is_null(cur, &ptr))
1691                 goto out0;
1692 
1693         XFS_BTREE_STATS_INC(cur, increment);
1694 
1695         /*
1696          * March up the tree incrementing pointers.
1697          * Stop when we don't go off the right edge of a block.
1698          */
1699         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1700                 block = xfs_btree_get_block(cur, lev, &bp);
1701 
1702 #ifdef DEBUG
1703                 error = xfs_btree_check_block(cur, block, lev, bp);
1704                 if (error)
1705                         goto error0;
1706 #endif
1707 
1708                 if (++cur->bc_levels[lev].ptr <= xfs_btree_get_numrecs(block))
1709                         break;
1710 
1711                 /* Read-ahead the right block for the next loop. */
1712                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1713         }
1714 
1715         /*
1716          * If we went off the root then we are either seriously
1717          * confused or have the tree root in an inode.
1718          */
1719         if (lev == cur->bc_nlevels) {
1720                 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1721                         goto out0;
1722                 ASSERT(0);
1723                 xfs_btree_mark_sick(cur);
1724                 error = -EFSCORRUPTED;
1725                 goto error0;
1726         }
1727         ASSERT(lev < cur->bc_nlevels);
1728 
1729         /*
1730          * Now walk back down the tree, fixing up the cursor's buffer
1731          * pointers and key numbers.
1732          */
1733         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1734                 union xfs_btree_ptr     *ptrp;
1735 
1736                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1737                 --lev;
1738                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1739                 if (error)
1740                         goto error0;
1741 
1742                 xfs_btree_setbuf(cur, lev, bp);
1743                 cur->bc_levels[lev].ptr = 1;
1744         }
1745 out1:
1746         *stat = 1;
1747         return 0;
1748 
1749 out0:
1750         *stat = 0;
1751         return 0;
1752 
1753 error0:
1754         return error;
1755 }
1756 
1757 /*
1758  * Decrement cursor by one record at the level.
1759  * For nonzero levels the leaf-ward information is untouched.
1760  */
1761 int                                             /* error */
1762 xfs_btree_decrement(
1763         struct xfs_btree_cur    *cur,
1764         int                     level,
1765         int                     *stat)          /* success/failure */
1766 {
1767         struct xfs_btree_block  *block;
1768         struct xfs_buf          *bp;
1769         int                     error;          /* error return value */
1770         int                     lev;
1771         union xfs_btree_ptr     ptr;
1772 
1773         ASSERT(level < cur->bc_nlevels);
1774 
1775         /* Read-ahead to the left at this level. */
1776         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1777 
1778         /* We're done if we remain in the block after the decrement. */
1779         if (--cur->bc_levels[level].ptr > 0)
1780                 goto out1;
1781 
1782         /* Get a pointer to the btree block. */
1783         block = xfs_btree_get_block(cur, level, &bp);
1784 
1785 #ifdef DEBUG
1786         error = xfs_btree_check_block(cur, block, level, bp);
1787         if (error)
1788                 goto error0;
1789 #endif
1790 
1791         /* Fail if we just went off the left edge of the tree. */
1792         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1793         if (xfs_btree_ptr_is_null(cur, &ptr))
1794                 goto out0;
1795 
1796         XFS_BTREE_STATS_INC(cur, decrement);
1797 
1798         /*
1799          * March up the tree decrementing pointers.
1800          * Stop when we don't go off the left edge of a block.
1801          */
1802         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1803                 if (--cur->bc_levels[lev].ptr > 0)
1804                         break;
1805                 /* Read-ahead the left block for the next loop. */
1806                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1807         }
1808 
1809         /*
1810          * If we went off the root then we are seriously confused.
1811          * or the root of the tree is in an inode.
1812          */
1813         if (lev == cur->bc_nlevels) {
1814                 if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE)
1815                         goto out0;
1816                 ASSERT(0);
1817                 xfs_btree_mark_sick(cur);
1818                 error = -EFSCORRUPTED;
1819                 goto error0;
1820         }
1821         ASSERT(lev < cur->bc_nlevels);
1822 
1823         /*
1824          * Now walk back down the tree, fixing up the cursor's buffer
1825          * pointers and key numbers.
1826          */
1827         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1828                 union xfs_btree_ptr     *ptrp;
1829 
1830                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_levels[lev].ptr, block);
1831                 --lev;
1832                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1833                 if (error)
1834                         goto error0;
1835                 xfs_btree_setbuf(cur, lev, bp);
1836                 cur->bc_levels[lev].ptr = xfs_btree_get_numrecs(block);
1837         }
1838 out1:
1839         *stat = 1;
1840         return 0;
1841 
1842 out0:
1843         *stat = 0;
1844         return 0;
1845 
1846 error0:
1847         return error;
1848 }
1849 
1850 /*
1851  * Check the btree block owner now that we have the context to know who the
1852  * real owner is.
1853  */
1854 static inline xfs_failaddr_t
1855 xfs_btree_check_block_owner(
1856         struct xfs_btree_cur    *cur,
1857         struct xfs_btree_block  *block)
1858 {
1859         __u64                   owner;
1860 
1861         if (!xfs_has_crc(cur->bc_mp) ||
1862             (cur->bc_flags & XFS_BTREE_BMBT_INVALID_OWNER))
1863                 return NULL;
1864 
1865         owner = xfs_btree_owner(cur);
1866         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
1867                 if (be64_to_cpu(block->bb_u.l.bb_owner) != owner)
1868                         return __this_address;
1869         } else {
1870                 if (be32_to_cpu(block->bb_u.s.bb_owner) != owner)
1871                         return __this_address;
1872         }
1873 
1874         return NULL;
1875 }
1876 
1877 int
1878 xfs_btree_lookup_get_block(
1879         struct xfs_btree_cur            *cur,   /* btree cursor */
1880         int                             level,  /* level in the btree */
1881         const union xfs_btree_ptr       *pp,    /* ptr to btree block */
1882         struct xfs_btree_block          **blkp) /* return btree block */
1883 {
1884         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1885         xfs_daddr_t             daddr;
1886         int                     error = 0;
1887 
1888         /* special case the root block if in an inode */
1889         if (xfs_btree_at_iroot(cur, level)) {
1890                 *blkp = xfs_btree_get_iroot(cur);
1891                 return 0;
1892         }
1893 
1894         /*
1895          * If the old buffer at this level for the disk address we are
1896          * looking for re-use it.
1897          *
1898          * Otherwise throw it away and get a new one.
1899          */
1900         bp = cur->bc_levels[level].bp;
1901         error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1902         if (error)
1903                 return error;
1904         if (bp && xfs_buf_daddr(bp) == daddr) {
1905                 *blkp = XFS_BUF_TO_BLOCK(bp);
1906                 return 0;
1907         }
1908 
1909         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1910         if (error)
1911                 return error;
1912 
1913         /* Check the inode owner since the verifiers don't. */
1914         if (xfs_btree_check_block_owner(cur, *blkp) != NULL)
1915                 goto out_bad;
1916 
1917         /* Did we get the level we were looking for? */
1918         if (be16_to_cpu((*blkp)->bb_level) != level)
1919                 goto out_bad;
1920 
1921         /* Check that internal nodes have at least one record. */
1922         if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1923                 goto out_bad;
1924 
1925         xfs_btree_setbuf(cur, level, bp);
1926         return 0;
1927 
1928 out_bad:
1929         *blkp = NULL;
1930         xfs_buf_mark_corrupt(bp);
1931         xfs_trans_brelse(cur->bc_tp, bp);
1932         xfs_btree_mark_sick(cur);
1933         return -EFSCORRUPTED;
1934 }
1935 
1936 /*
1937  * Get current search key.  For level 0 we don't actually have a key
1938  * structure so we make one up from the record.  For all other levels
1939  * we just return the right key.
1940  */
1941 STATIC union xfs_btree_key *
1942 xfs_lookup_get_search_key(
1943         struct xfs_btree_cur    *cur,
1944         int                     level,
1945         int                     keyno,
1946         struct xfs_btree_block  *block,
1947         union xfs_btree_key     *kp)
1948 {
1949         if (level == 0) {
1950                 cur->bc_ops->init_key_from_rec(kp,
1951                                 xfs_btree_rec_addr(cur, keyno, block));
1952                 return kp;
1953         }
1954 
1955         return xfs_btree_key_addr(cur, keyno, block);
1956 }
1957 
1958 /*
1959  * Initialize a pointer to the root block.
1960  */
1961 void
1962 xfs_btree_init_ptr_from_cur(
1963         struct xfs_btree_cur    *cur,
1964         union xfs_btree_ptr     *ptr)
1965 {
1966         if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
1967                 /*
1968                  * Inode-rooted btrees call xfs_btree_get_iroot to find the root
1969                  * in xfs_btree_lookup_get_block and don't need a pointer here.
1970                  */
1971                 ptr->l = 0;
1972         } else if (cur->bc_flags & XFS_BTREE_STAGING) {
1973                 ptr->s = cpu_to_be32(cur->bc_ag.afake->af_root);
1974         } else {
1975                 cur->bc_ops->init_ptr_from_cur(cur, ptr);
1976         }
1977 }
1978 
1979 /*
1980  * Lookup the record.  The cursor is made to point to it, based on dir.
1981  * stat is set to 0 if can't find any such record, 1 for success.
1982  */
1983 int                                     /* error */
1984 xfs_btree_lookup(
1985         struct xfs_btree_cur    *cur,   /* btree cursor */
1986         xfs_lookup_t            dir,    /* <=, ==, or >= */
1987         int                     *stat)  /* success/failure */
1988 {
1989         struct xfs_btree_block  *block; /* current btree block */
1990         int64_t                 diff;   /* difference for the current key */
1991         int                     error;  /* error return value */
1992         int                     keyno;  /* current key number */
1993         int                     level;  /* level in the btree */
1994         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1995         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1996 
1997         XFS_BTREE_STATS_INC(cur, lookup);
1998 
1999         /* No such thing as a zero-level tree. */
2000         if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) {
2001                 xfs_btree_mark_sick(cur);
2002                 return -EFSCORRUPTED;
2003         }
2004 
2005         block = NULL;
2006         keyno = 0;
2007 
2008         /* initialise start pointer from cursor */
2009         xfs_btree_init_ptr_from_cur(cur, &ptr);
2010         pp = &ptr;
2011 
2012         /*
2013          * Iterate over each level in the btree, starting at the root.
2014          * For each level above the leaves, find the key we need, based
2015          * on the lookup record, then follow the corresponding block
2016          * pointer down to the next level.
2017          */
2018         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
2019                 /* Get the block we need to do the lookup on. */
2020                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
2021                 if (error)
2022                         goto error0;
2023 
2024                 if (diff == 0) {
2025                         /*
2026                          * If we already had a key match at a higher level, we
2027                          * know we need to use the first entry in this block.
2028                          */
2029                         keyno = 1;
2030                 } else {
2031                         /* Otherwise search this block. Do a binary search. */
2032 
2033                         int     high;   /* high entry number */
2034                         int     low;    /* low entry number */
2035 
2036                         /* Set low and high entry numbers, 1-based. */
2037                         low = 1;
2038                         high = xfs_btree_get_numrecs(block);
2039                         if (!high) {
2040                                 /* Block is empty, must be an empty leaf. */
2041                                 if (level != 0 || cur->bc_nlevels != 1) {
2042                                         XFS_CORRUPTION_ERROR(__func__,
2043                                                         XFS_ERRLEVEL_LOW,
2044                                                         cur->bc_mp, block,
2045                                                         sizeof(*block));
2046                                         xfs_btree_mark_sick(cur);
2047                                         return -EFSCORRUPTED;
2048                                 }
2049 
2050                                 cur->bc_levels[0].ptr = dir != XFS_LOOKUP_LE;
2051                                 *stat = 0;
2052                                 return 0;
2053                         }
2054 
2055                         /* Binary search the block. */
2056                         while (low <= high) {
2057                                 union xfs_btree_key     key;
2058                                 union xfs_btree_key     *kp;
2059 
2060                                 XFS_BTREE_STATS_INC(cur, compare);
2061 
2062                                 /* keyno is average of low and high. */
2063                                 keyno = (low + high) >> 1;
2064 
2065                                 /* Get current search key */
2066                                 kp = xfs_lookup_get_search_key(cur, level,
2067                                                 keyno, block, &key);
2068 
2069                                 /*
2070                                  * Compute difference to get next direction:
2071                                  *  - less than, move right
2072                                  *  - greater than, move left
2073                                  *  - equal, we're done
2074                                  */
2075                                 diff = cur->bc_ops->key_diff(cur, kp);
2076                                 if (diff < 0)
2077                                         low = keyno + 1;
2078                                 else if (diff > 0)
2079                                         high = keyno - 1;
2080                                 else
2081                                         break;
2082                         }
2083                 }
2084 
2085                 /*
2086                  * If there are more levels, set up for the next level
2087                  * by getting the block number and filling in the cursor.
2088                  */
2089                 if (level > 0) {
2090                         /*
2091                          * If we moved left, need the previous key number,
2092                          * unless there isn't one.
2093                          */
2094                         if (diff > 0 && --keyno < 1)
2095                                 keyno = 1;
2096                         pp = xfs_btree_ptr_addr(cur, keyno, block);
2097 
2098                         error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
2099                         if (error)
2100                                 goto error0;
2101 
2102                         cur->bc_levels[level].ptr = keyno;
2103                 }
2104         }
2105 
2106         /* Done with the search. See if we need to adjust the results. */
2107         if (dir != XFS_LOOKUP_LE && diff < 0) {
2108                 keyno++;
2109                 /*
2110                  * If ge search and we went off the end of the block, but it's
2111                  * not the last block, we're in the wrong block.
2112                  */
2113                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2114                 if (dir == XFS_LOOKUP_GE &&
2115                     keyno > xfs_btree_get_numrecs(block) &&
2116                     !xfs_btree_ptr_is_null(cur, &ptr)) {
2117                         int     i;
2118 
2119                         cur->bc_levels[0].ptr = keyno;
2120                         error = xfs_btree_increment(cur, 0, &i);
2121                         if (error)
2122                                 goto error0;
2123                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
2124                                 xfs_btree_mark_sick(cur);
2125                                 return -EFSCORRUPTED;
2126                         }
2127                         *stat = 1;
2128                         return 0;
2129                 }
2130         } else if (dir == XFS_LOOKUP_LE && diff > 0)
2131                 keyno--;
2132         cur->bc_levels[0].ptr = keyno;
2133 
2134         /* Return if we succeeded or not. */
2135         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2136                 *stat = 0;
2137         else if (dir != XFS_LOOKUP_EQ || diff == 0)
2138                 *stat = 1;
2139         else
2140                 *stat = 0;
2141         return 0;
2142 
2143 error0:
2144         return error;
2145 }
2146 
2147 /* Find the high key storage area from a regular key. */
2148 union xfs_btree_key *
2149 xfs_btree_high_key_from_key(
2150         struct xfs_btree_cur    *cur,
2151         union xfs_btree_key     *key)
2152 {
2153         ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2154         return (union xfs_btree_key *)((char *)key +
2155                         (cur->bc_ops->key_len / 2));
2156 }
2157 
2158 /* Determine the low (and high if overlapped) keys of a leaf block */
2159 STATIC void
2160 xfs_btree_get_leaf_keys(
2161         struct xfs_btree_cur    *cur,
2162         struct xfs_btree_block  *block,
2163         union xfs_btree_key     *key)
2164 {
2165         union xfs_btree_key     max_hkey;
2166         union xfs_btree_key     hkey;
2167         union xfs_btree_rec     *rec;
2168         union xfs_btree_key     *high;
2169         int                     n;
2170 
2171         rec = xfs_btree_rec_addr(cur, 1, block);
2172         cur->bc_ops->init_key_from_rec(key, rec);
2173 
2174         if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2175 
2176                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2177                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2178                         rec = xfs_btree_rec_addr(cur, n, block);
2179                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2180                         if (xfs_btree_keycmp_gt(cur, &hkey, &max_hkey))
2181                                 max_hkey = hkey;
2182                 }
2183 
2184                 high = xfs_btree_high_key_from_key(cur, key);
2185                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2186         }
2187 }
2188 
2189 /* Determine the low (and high if overlapped) keys of a node block */
2190 STATIC void
2191 xfs_btree_get_node_keys(
2192         struct xfs_btree_cur    *cur,
2193         struct xfs_btree_block  *block,
2194         union xfs_btree_key     *key)
2195 {
2196         union xfs_btree_key     *hkey;
2197         union xfs_btree_key     *max_hkey;
2198         union xfs_btree_key     *high;
2199         int                     n;
2200 
2201         if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2202                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2203                                 cur->bc_ops->key_len / 2);
2204 
2205                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2206                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2207                         hkey = xfs_btree_high_key_addr(cur, n, block);
2208                         if (xfs_btree_keycmp_gt(cur, hkey, max_hkey))
2209                                 max_hkey = hkey;
2210                 }
2211 
2212                 high = xfs_btree_high_key_from_key(cur, key);
2213                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2214         } else {
2215                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2216                                 cur->bc_ops->key_len);
2217         }
2218 }
2219 
2220 /* Derive the keys for any btree block. */
2221 void
2222 xfs_btree_get_keys(
2223         struct xfs_btree_cur    *cur,
2224         struct xfs_btree_block  *block,
2225         union xfs_btree_key     *key)
2226 {
2227         if (be16_to_cpu(block->bb_level) == 0)
2228                 xfs_btree_get_leaf_keys(cur, block, key);
2229         else
2230                 xfs_btree_get_node_keys(cur, block, key);
2231 }
2232 
2233 /*
2234  * Decide if we need to update the parent keys of a btree block.  For
2235  * a standard btree this is only necessary if we're updating the first
2236  * record/key.  For an overlapping btree, we must always update the
2237  * keys because the highest key can be in any of the records or keys
2238  * in the block.
2239  */
2240 static inline bool
2241 xfs_btree_needs_key_update(
2242         struct xfs_btree_cur    *cur,
2243         int                     ptr)
2244 {
2245         return (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) || ptr == 1;
2246 }
2247 
2248 /*
2249  * Update the low and high parent keys of the given level, progressing
2250  * towards the root.  If force_all is false, stop if the keys for a given
2251  * level do not need updating.
2252  */
2253 STATIC int
2254 __xfs_btree_updkeys(
2255         struct xfs_btree_cur    *cur,
2256         int                     level,
2257         struct xfs_btree_block  *block,
2258         struct xfs_buf          *bp0,
2259         bool                    force_all)
2260 {
2261         union xfs_btree_key     key;    /* keys from current level */
2262         union xfs_btree_key     *lkey;  /* keys from the next level up */
2263         union xfs_btree_key     *hkey;
2264         union xfs_btree_key     *nlkey; /* keys from the next level up */
2265         union xfs_btree_key     *nhkey;
2266         struct xfs_buf          *bp;
2267         int                     ptr;
2268 
2269         ASSERT(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING);
2270 
2271         /* Exit if there aren't any parent levels to update. */
2272         if (level + 1 >= cur->bc_nlevels)
2273                 return 0;
2274 
2275         trace_xfs_btree_updkeys(cur, level, bp0);
2276 
2277         lkey = &key;
2278         hkey = xfs_btree_high_key_from_key(cur, lkey);
2279         xfs_btree_get_keys(cur, block, lkey);
2280         for (level++; level < cur->bc_nlevels; level++) {
2281 #ifdef DEBUG
2282                 int             error;
2283 #endif
2284                 block = xfs_btree_get_block(cur, level, &bp);
2285                 trace_xfs_btree_updkeys(cur, level, bp);
2286 #ifdef DEBUG
2287                 error = xfs_btree_check_block(cur, block, level, bp);
2288                 if (error)
2289                         return error;
2290 #endif
2291                 ptr = cur->bc_levels[level].ptr;
2292                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2293                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2294                 if (!force_all &&
2295                     xfs_btree_keycmp_eq(cur, nlkey, lkey) &&
2296                     xfs_btree_keycmp_eq(cur, nhkey, hkey))
2297                         break;
2298                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2299                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2300                 if (level + 1 >= cur->bc_nlevels)
2301                         break;
2302                 xfs_btree_get_node_keys(cur, block, lkey);
2303         }
2304 
2305         return 0;
2306 }
2307 
2308 /* Update all the keys from some level in cursor back to the root. */
2309 STATIC int
2310 xfs_btree_updkeys_force(
2311         struct xfs_btree_cur    *cur,
2312         int                     level)
2313 {
2314         struct xfs_buf          *bp;
2315         struct xfs_btree_block  *block;
2316 
2317         block = xfs_btree_get_block(cur, level, &bp);
2318         return __xfs_btree_updkeys(cur, level, block, bp, true);
2319 }
2320 
2321 /*
2322  * Update the parent keys of the given level, progressing towards the root.
2323  */
2324 STATIC int
2325 xfs_btree_update_keys(
2326         struct xfs_btree_cur    *cur,
2327         int                     level)
2328 {
2329         struct xfs_btree_block  *block;
2330         struct xfs_buf          *bp;
2331         union xfs_btree_key     *kp;
2332         union xfs_btree_key     key;
2333         int                     ptr;
2334 
2335         ASSERT(level >= 0);
2336 
2337         block = xfs_btree_get_block(cur, level, &bp);
2338         if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)
2339                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2340 
2341         /*
2342          * Go up the tree from this level toward the root.
2343          * At each level, update the key value to the value input.
2344          * Stop when we reach a level where the cursor isn't pointing
2345          * at the first entry in the block.
2346          */
2347         xfs_btree_get_keys(cur, block, &key);
2348         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2349 #ifdef DEBUG
2350                 int             error;
2351 #endif
2352                 block = xfs_btree_get_block(cur, level, &bp);
2353 #ifdef DEBUG
2354                 error = xfs_btree_check_block(cur, block, level, bp);
2355                 if (error)
2356                         return error;
2357 #endif
2358                 ptr = cur->bc_levels[level].ptr;
2359                 kp = xfs_btree_key_addr(cur, ptr, block);
2360                 xfs_btree_copy_keys(cur, kp, &key, 1);
2361                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2362         }
2363 
2364         return 0;
2365 }
2366 
2367 /*
2368  * Update the record referred to by cur to the value in the
2369  * given record. This either works (return 0) or gets an
2370  * EFSCORRUPTED error.
2371  */
2372 int
2373 xfs_btree_update(
2374         struct xfs_btree_cur    *cur,
2375         union xfs_btree_rec     *rec)
2376 {
2377         struct xfs_btree_block  *block;
2378         struct xfs_buf          *bp;
2379         int                     error;
2380         int                     ptr;
2381         union xfs_btree_rec     *rp;
2382 
2383         /* Pick up the current block. */
2384         block = xfs_btree_get_block(cur, 0, &bp);
2385 
2386 #ifdef DEBUG
2387         error = xfs_btree_check_block(cur, block, 0, bp);
2388         if (error)
2389                 goto error0;
2390 #endif
2391         /* Get the address of the rec to be updated. */
2392         ptr = cur->bc_levels[0].ptr;
2393         rp = xfs_btree_rec_addr(cur, ptr, block);
2394 
2395         /* Fill in the new contents and log them. */
2396         xfs_btree_copy_recs(cur, rp, rec, 1);
2397         xfs_btree_log_recs(cur, bp, ptr, ptr);
2398 
2399         /* Pass new key value up to our parent. */
2400         if (xfs_btree_needs_key_update(cur, ptr)) {
2401                 error = xfs_btree_update_keys(cur, 0);
2402                 if (error)
2403                         goto error0;
2404         }
2405 
2406         return 0;
2407 
2408 error0:
2409         return error;
2410 }
2411 
2412 /*
2413  * Move 1 record left from cur/level if possible.
2414  * Update cur to reflect the new path.
2415  */
2416 STATIC int                                      /* error */
2417 xfs_btree_lshift(
2418         struct xfs_btree_cur    *cur,
2419         int                     level,
2420         int                     *stat)          /* success/failure */
2421 {
2422         struct xfs_buf          *lbp;           /* left buffer pointer */
2423         struct xfs_btree_block  *left;          /* left btree block */
2424         int                     lrecs;          /* left record count */
2425         struct xfs_buf          *rbp;           /* right buffer pointer */
2426         struct xfs_btree_block  *right;         /* right btree block */
2427         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2428         int                     rrecs;          /* right record count */
2429         union xfs_btree_ptr     lptr;           /* left btree pointer */
2430         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2431         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2432         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2433         int                     error;          /* error return value */
2434         int                     i;
2435 
2436         if (xfs_btree_at_iroot(cur, level))
2437                 goto out0;
2438 
2439         /* Set up variables for this block as "right". */
2440         right = xfs_btree_get_block(cur, level, &rbp);
2441 
2442 #ifdef DEBUG
2443         error = xfs_btree_check_block(cur, right, level, rbp);
2444         if (error)
2445                 goto error0;
2446 #endif
2447 
2448         /* If we've got no left sibling then we can't shift an entry left. */
2449         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2450         if (xfs_btree_ptr_is_null(cur, &lptr))
2451                 goto out0;
2452 
2453         /*
2454          * If the cursor entry is the one that would be moved, don't
2455          * do it... it's too complicated.
2456          */
2457         if (cur->bc_levels[level].ptr <= 1)
2458                 goto out0;
2459 
2460         /* Set up the left neighbor as "left". */
2461         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2462         if (error)
2463                 goto error0;
2464 
2465         /* If it's full, it can't take another entry. */
2466         lrecs = xfs_btree_get_numrecs(left);
2467         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2468                 goto out0;
2469 
2470         rrecs = xfs_btree_get_numrecs(right);
2471 
2472         /*
2473          * We add one entry to the left side and remove one for the right side.
2474          * Account for it here, the changes will be updated on disk and logged
2475          * later.
2476          */
2477         lrecs++;
2478         rrecs--;
2479 
2480         XFS_BTREE_STATS_INC(cur, lshift);
2481         XFS_BTREE_STATS_ADD(cur, moves, 1);
2482 
2483         /*
2484          * If non-leaf, copy a key and a ptr to the left block.
2485          * Log the changes to the left block.
2486          */
2487         if (level > 0) {
2488                 /* It's a non-leaf.  Move keys and pointers. */
2489                 union xfs_btree_key     *lkp;   /* left btree key */
2490                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2491 
2492                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2493                 rkp = xfs_btree_key_addr(cur, 1, right);
2494 
2495                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2496                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2497 
2498                 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2499                 if (error)
2500                         goto error0;
2501 
2502                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2503                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2504 
2505                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2506                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2507 
2508                 ASSERT(cur->bc_ops->keys_inorder(cur,
2509                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2510         } else {
2511                 /* It's a leaf.  Move records.  */
2512                 union xfs_btree_rec     *lrp;   /* left record pointer */
2513 
2514                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2515                 rrp = xfs_btree_rec_addr(cur, 1, right);
2516 
2517                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2518                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2519 
2520                 ASSERT(cur->bc_ops->recs_inorder(cur,
2521                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2522         }
2523 
2524         xfs_btree_set_numrecs(left, lrecs);
2525         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2526 
2527         xfs_btree_set_numrecs(right, rrecs);
2528         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2529 
2530         /*
2531          * Slide the contents of right down one entry.
2532          */
2533         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2534         if (level > 0) {
2535                 /* It's a nonleaf. operate on keys and ptrs */
2536                 for (i = 0; i < rrecs; i++) {
2537                         error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2538                         if (error)
2539                                 goto error0;
2540                 }
2541 
2542                 xfs_btree_shift_keys(cur,
2543                                 xfs_btree_key_addr(cur, 2, right),
2544                                 -1, rrecs);
2545                 xfs_btree_shift_ptrs(cur,
2546                                 xfs_btree_ptr_addr(cur, 2, right),
2547                                 -1, rrecs);
2548 
2549                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2550                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2551         } else {
2552                 /* It's a leaf. operate on records */
2553                 xfs_btree_shift_recs(cur,
2554                         xfs_btree_rec_addr(cur, 2, right),
2555                         -1, rrecs);
2556                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2557         }
2558 
2559         /*
2560          * Using a temporary cursor, update the parent key values of the
2561          * block on the left.
2562          */
2563         if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2564                 error = xfs_btree_dup_cursor(cur, &tcur);
2565                 if (error)
2566                         goto error0;
2567                 i = xfs_btree_firstrec(tcur, level);
2568                 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2569                         xfs_btree_mark_sick(cur);
2570                         error = -EFSCORRUPTED;
2571                         goto error0;
2572                 }
2573 
2574                 error = xfs_btree_decrement(tcur, level, &i);
2575                 if (error)
2576                         goto error1;
2577 
2578                 /* Update the parent high keys of the left block, if needed. */
2579                 error = xfs_btree_update_keys(tcur, level);
2580                 if (error)
2581                         goto error1;
2582 
2583                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2584         }
2585 
2586         /* Update the parent keys of the right block. */
2587         error = xfs_btree_update_keys(cur, level);
2588         if (error)
2589                 goto error0;
2590 
2591         /* Slide the cursor value left one. */
2592         cur->bc_levels[level].ptr--;
2593 
2594         *stat = 1;
2595         return 0;
2596 
2597 out0:
2598         *stat = 0;
2599         return 0;
2600 
2601 error0:
2602         return error;
2603 
2604 error1:
2605         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2606         return error;
2607 }
2608 
2609 /*
2610  * Move 1 record right from cur/level if possible.
2611  * Update cur to reflect the new path.
2612  */
2613 STATIC int                                      /* error */
2614 xfs_btree_rshift(
2615         struct xfs_btree_cur    *cur,
2616         int                     level,
2617         int                     *stat)          /* success/failure */
2618 {
2619         struct xfs_buf          *lbp;           /* left buffer pointer */
2620         struct xfs_btree_block  *left;          /* left btree block */
2621         struct xfs_buf          *rbp;           /* right buffer pointer */
2622         struct xfs_btree_block  *right;         /* right btree block */
2623         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2624         union xfs_btree_ptr     rptr;           /* right block pointer */
2625         union xfs_btree_key     *rkp;           /* right btree key */
2626         int                     rrecs;          /* right record count */
2627         int                     lrecs;          /* left record count */
2628         int                     error;          /* error return value */
2629         int                     i;              /* loop counter */
2630 
2631         if (xfs_btree_at_iroot(cur, level))
2632                 goto out0;
2633 
2634         /* Set up variables for this block as "left". */
2635         left = xfs_btree_get_block(cur, level, &lbp);
2636 
2637 #ifdef DEBUG
2638         error = xfs_btree_check_block(cur, left, level, lbp);
2639         if (error)
2640                 goto error0;
2641 #endif
2642 
2643         /* If we've got no right sibling then we can't shift an entry right. */
2644         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2645         if (xfs_btree_ptr_is_null(cur, &rptr))
2646                 goto out0;
2647 
2648         /*
2649          * If the cursor entry is the one that would be moved, don't
2650          * do it... it's too complicated.
2651          */
2652         lrecs = xfs_btree_get_numrecs(left);
2653         if (cur->bc_levels[level].ptr >= lrecs)
2654                 goto out0;
2655 
2656         /* Set up the right neighbor as "right". */
2657         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2658         if (error)
2659                 goto error0;
2660 
2661         /* If it's full, it can't take another entry. */
2662         rrecs = xfs_btree_get_numrecs(right);
2663         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2664                 goto out0;
2665 
2666         XFS_BTREE_STATS_INC(cur, rshift);
2667         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2668 
2669         /*
2670          * Make a hole at the start of the right neighbor block, then
2671          * copy the last left block entry to the hole.
2672          */
2673         if (level > 0) {
2674                 /* It's a nonleaf. make a hole in the keys and ptrs */
2675                 union xfs_btree_key     *lkp;
2676                 union xfs_btree_ptr     *lpp;
2677                 union xfs_btree_ptr     *rpp;
2678 
2679                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2680                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2681                 rkp = xfs_btree_key_addr(cur, 1, right);
2682                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2683 
2684                 for (i = rrecs - 1; i >= 0; i--) {
2685                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2686                         if (error)
2687                                 goto error0;
2688                 }
2689 
2690                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2691                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2692 
2693                 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2694                 if (error)
2695                         goto error0;
2696 
2697                 /* Now put the new data in, and log it. */
2698                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2699                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2700 
2701                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2702                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2703 
2704                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2705                         xfs_btree_key_addr(cur, 2, right)));
2706         } else {
2707                 /* It's a leaf. make a hole in the records */
2708                 union xfs_btree_rec     *lrp;
2709                 union xfs_btree_rec     *rrp;
2710 
2711                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2712                 rrp = xfs_btree_rec_addr(cur, 1, right);
2713 
2714                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2715 
2716                 /* Now put the new data in, and log it. */
2717                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2718                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2719         }
2720 
2721         /*
2722          * Decrement and log left's numrecs, bump and log right's numrecs.
2723          */
2724         xfs_btree_set_numrecs(left, --lrecs);
2725         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2726 
2727         xfs_btree_set_numrecs(right, ++rrecs);
2728         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2729 
2730         /*
2731          * Using a temporary cursor, update the parent key values of the
2732          * block on the right.
2733          */
2734         error = xfs_btree_dup_cursor(cur, &tcur);
2735         if (error)
2736                 goto error0;
2737         i = xfs_btree_lastrec(tcur, level);
2738         if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2739                 xfs_btree_mark_sick(cur);
2740                 error = -EFSCORRUPTED;
2741                 goto error0;
2742         }
2743 
2744         error = xfs_btree_increment(tcur, level, &i);
2745         if (error)
2746                 goto error1;
2747 
2748         /* Update the parent high keys of the left block, if needed. */
2749         if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2750                 error = xfs_btree_update_keys(cur, level);
2751                 if (error)
2752                         goto error1;
2753         }
2754 
2755         /* Update the parent keys of the right block. */
2756         error = xfs_btree_update_keys(tcur, level);
2757         if (error)
2758                 goto error1;
2759 
2760         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2761 
2762         *stat = 1;
2763         return 0;
2764 
2765 out0:
2766         *stat = 0;
2767         return 0;
2768 
2769 error0:
2770         return error;
2771 
2772 error1:
2773         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2774         return error;
2775 }
2776 
2777 static inline int
2778 xfs_btree_alloc_block(
2779         struct xfs_btree_cur            *cur,
2780         const union xfs_btree_ptr       *hint_block,
2781         union xfs_btree_ptr             *new_block,
2782         int                             *stat)
2783 {
2784         int                             error;
2785 
2786         /*
2787          * Don't allow block allocation for a staging cursor, because staging
2788          * cursors do not support regular btree modifications.
2789          *
2790          * Bulk loading uses a separate callback to obtain new blocks from a
2791          * preallocated list, which prevents ENOSPC failures during loading.
2792          */
2793         if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) {
2794                 ASSERT(0);
2795                 return -EFSCORRUPTED;
2796         }
2797 
2798         error = cur->bc_ops->alloc_block(cur, hint_block, new_block, stat);
2799         trace_xfs_btree_alloc_block(cur, new_block, *stat, error);
2800         return error;
2801 }
2802 
2803 /*
2804  * Split cur/level block in half.
2805  * Return new block number and the key to its first
2806  * record (to be inserted into parent).
2807  */
2808 STATIC int                                      /* error */
2809 __xfs_btree_split(
2810         struct xfs_btree_cur    *cur,
2811         int                     level,
2812         union xfs_btree_ptr     *ptrp,
2813         union xfs_btree_key     *key,
2814         struct xfs_btree_cur    **curp,
2815         int                     *stat)          /* success/failure */
2816 {
2817         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2818         struct xfs_buf          *lbp;           /* left buffer pointer */
2819         struct xfs_btree_block  *left;          /* left btree block */
2820         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2821         struct xfs_buf          *rbp;           /* right buffer pointer */
2822         struct xfs_btree_block  *right;         /* right btree block */
2823         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2824         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2825         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2826         int                     lrecs;
2827         int                     rrecs;
2828         int                     src_index;
2829         int                     error;          /* error return value */
2830         int                     i;
2831 
2832         XFS_BTREE_STATS_INC(cur, split);
2833 
2834         /* Set up left block (current one). */
2835         left = xfs_btree_get_block(cur, level, &lbp);
2836 
2837 #ifdef DEBUG
2838         error = xfs_btree_check_block(cur, left, level, lbp);
2839         if (error)
2840                 goto error0;
2841 #endif
2842 
2843         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2844 
2845         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2846         error = xfs_btree_alloc_block(cur, &lptr, &rptr, stat);
2847         if (error)
2848                 goto error0;
2849         if (*stat == 0)
2850                 goto out0;
2851         XFS_BTREE_STATS_INC(cur, alloc);
2852 
2853         /* Set up the new block as "right". */
2854         error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2855         if (error)
2856                 goto error0;
2857 
2858         /* Fill in the btree header for the new right block. */
2859         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2860 
2861         /*
2862          * Split the entries between the old and the new block evenly.
2863          * Make sure that if there's an odd number of entries now, that
2864          * each new block will have the same number of entries.
2865          */
2866         lrecs = xfs_btree_get_numrecs(left);
2867         rrecs = lrecs / 2;
2868         if ((lrecs & 1) && cur->bc_levels[level].ptr <= rrecs + 1)
2869                 rrecs++;
2870         src_index = (lrecs - rrecs + 1);
2871 
2872         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2873 
2874         /* Adjust numrecs for the later get_*_keys() calls. */
2875         lrecs -= rrecs;
2876         xfs_btree_set_numrecs(left, lrecs);
2877         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2878 
2879         /*
2880          * Copy btree block entries from the left block over to the
2881          * new block, the right. Update the right block and log the
2882          * changes.
2883          */
2884         if (level > 0) {
2885                 /* It's a non-leaf.  Move keys and pointers. */
2886                 union xfs_btree_key     *lkp;   /* left btree key */
2887                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2888                 union xfs_btree_key     *rkp;   /* right btree key */
2889                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2890 
2891                 lkp = xfs_btree_key_addr(cur, src_index, left);
2892                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2893                 rkp = xfs_btree_key_addr(cur, 1, right);
2894                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2895 
2896                 for (i = src_index; i < rrecs; i++) {
2897                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2898                         if (error)
2899                                 goto error0;
2900                 }
2901 
2902                 /* Copy the keys & pointers to the new block. */
2903                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2904                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2905 
2906                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2907                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2908 
2909                 /* Stash the keys of the new block for later insertion. */
2910                 xfs_btree_get_node_keys(cur, right, key);
2911         } else {
2912                 /* It's a leaf.  Move records.  */
2913                 union xfs_btree_rec     *lrp;   /* left record pointer */
2914                 union xfs_btree_rec     *rrp;   /* right record pointer */
2915 
2916                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2917                 rrp = xfs_btree_rec_addr(cur, 1, right);
2918 
2919                 /* Copy records to the new block. */
2920                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2921                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2922 
2923                 /* Stash the keys of the new block for later insertion. */
2924                 xfs_btree_get_leaf_keys(cur, right, key);
2925         }
2926 
2927         /*
2928          * Find the left block number by looking in the buffer.
2929          * Adjust sibling pointers.
2930          */
2931         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2932         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2933         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2934         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2935 
2936         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2937         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2938 
2939         /*
2940          * If there's a block to the new block's right, make that block
2941          * point back to right instead of to left.
2942          */
2943         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2944                 error = xfs_btree_read_buf_block(cur, &rrptr,
2945                                                         0, &rrblock, &rrbp);
2946                 if (error)
2947                         goto error0;
2948                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2949                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2950         }
2951 
2952         /* Update the parent high keys of the left block, if needed. */
2953         if (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING) {
2954                 error = xfs_btree_update_keys(cur, level);
2955                 if (error)
2956                         goto error0;
2957         }
2958 
2959         /*
2960          * If the cursor is really in the right block, move it there.
2961          * If it's just pointing past the last entry in left, then we'll
2962          * insert there, so don't change anything in that case.
2963          */
2964         if (cur->bc_levels[level].ptr > lrecs + 1) {
2965                 xfs_btree_setbuf(cur, level, rbp);
2966                 cur->bc_levels[level].ptr -= lrecs;
2967         }
2968         /*
2969          * If there are more levels, we'll need another cursor which refers
2970          * the right block, no matter where this cursor was.
2971          */
2972         if (level + 1 < cur->bc_nlevels) {
2973                 error = xfs_btree_dup_cursor(cur, curp);
2974                 if (error)
2975                         goto error0;
2976                 (*curp)->bc_levels[level + 1].ptr++;
2977         }
2978         *ptrp = rptr;
2979         *stat = 1;
2980         return 0;
2981 out0:
2982         *stat = 0;
2983         return 0;
2984 
2985 error0:
2986         return error;
2987 }
2988 
2989 #ifdef __KERNEL__
2990 struct xfs_btree_split_args {
2991         struct xfs_btree_cur    *cur;
2992         int                     level;
2993         union xfs_btree_ptr     *ptrp;
2994         union xfs_btree_key     *key;
2995         struct xfs_btree_cur    **curp;
2996         int                     *stat;          /* success/failure */
2997         int                     result;
2998         bool                    kswapd; /* allocation in kswapd context */
2999         struct completion       *done;
3000         struct work_struct      work;
3001 };
3002 
3003 /*
3004  * Stack switching interfaces for allocation
3005  */
3006 static void
3007 xfs_btree_split_worker(
3008         struct work_struct      *work)
3009 {
3010         struct xfs_btree_split_args     *args = container_of(work,
3011                                                 struct xfs_btree_split_args, work);
3012         unsigned long           pflags;
3013         unsigned long           new_pflags = 0;
3014 
3015         /*
3016          * we are in a transaction context here, but may also be doing work
3017          * in kswapd context, and hence we may need to inherit that state
3018          * temporarily to ensure that we don't block waiting for memory reclaim
3019          * in any way.
3020          */
3021         if (args->kswapd)
3022                 new_pflags |= PF_MEMALLOC | PF_KSWAPD;
3023 
3024         current_set_flags_nested(&pflags, new_pflags);
3025         xfs_trans_set_context(args->cur->bc_tp);
3026 
3027         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
3028                                          args->key, args->curp, args->stat);
3029 
3030         xfs_trans_clear_context(args->cur->bc_tp);
3031         current_restore_flags_nested(&pflags, new_pflags);
3032 
3033         /*
3034          * Do not access args after complete() has run here. We don't own args
3035          * and the owner may run and free args before we return here.
3036          */
3037         complete(args->done);
3038 
3039 }
3040 
3041 /*
3042  * BMBT split requests often come in with little stack to work on so we push
3043  * them off to a worker thread so there is lots of stack to use. For the other
3044  * btree types, just call directly to avoid the context switch overhead here.
3045  *
3046  * Care must be taken here - the work queue rescuer thread introduces potential
3047  * AGF <> worker queue deadlocks if the BMBT block allocation has to lock new
3048  * AGFs to allocate blocks. A task being run by the rescuer could attempt to
3049  * lock an AGF that is already locked by a task queued to run by the rescuer,
3050  * resulting in an ABBA deadlock as the rescuer cannot run the lock holder to
3051  * release it until the current thread it is running gains the lock.
3052  *
3053  * To avoid this issue, we only ever queue BMBT splits that don't have an AGF
3054  * already locked to allocate from. The only place that doesn't hold an AGF
3055  * locked is unwritten extent conversion at IO completion, but that has already
3056  * been offloaded to a worker thread and hence has no stack consumption issues
3057  * we have to worry about.
3058  */
3059 STATIC int                                      /* error */
3060 xfs_btree_split(
3061         struct xfs_btree_cur    *cur,
3062         int                     level,
3063         union xfs_btree_ptr     *ptrp,
3064         union xfs_btree_key     *key,
3065         struct xfs_btree_cur    **curp,
3066         int                     *stat)          /* success/failure */
3067 {
3068         struct xfs_btree_split_args     args;
3069         DECLARE_COMPLETION_ONSTACK(done);
3070 
3071         if (!xfs_btree_is_bmap(cur->bc_ops) ||
3072             cur->bc_tp->t_highest_agno == NULLAGNUMBER)
3073                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
3074 
3075         args.cur = cur;
3076         args.level = level;
3077         args.ptrp = ptrp;
3078         args.key = key;
3079         args.curp = curp;
3080         args.stat = stat;
3081         args.done = &done;
3082         args.kswapd = current_is_kswapd();
3083         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
3084         queue_work(xfs_alloc_wq, &args.work);
3085         wait_for_completion(&done);
3086         destroy_work_on_stack(&args.work);
3087         return args.result;
3088 }
3089 #else
3090 #define xfs_btree_split __xfs_btree_split
3091 #endif /* __KERNEL__ */
3092 
3093 /*
3094  * Copy the old inode root contents into a real block and make the
3095  * broot point to it.
3096  */
3097 int                                             /* error */
3098 xfs_btree_new_iroot(
3099         struct xfs_btree_cur    *cur,           /* btree cursor */
3100         int                     *logflags,      /* logging flags for inode */
3101         int                     *stat)          /* return status - 0 fail */
3102 {
3103         struct xfs_buf          *cbp;           /* buffer for cblock */
3104         struct xfs_btree_block  *block;         /* btree block */
3105         struct xfs_btree_block  *cblock;        /* child btree block */
3106         union xfs_btree_key     *ckp;           /* child key pointer */
3107         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
3108         union xfs_btree_key     *kp;            /* pointer to btree key */
3109         union xfs_btree_ptr     *pp;            /* pointer to block addr */
3110         union xfs_btree_ptr     nptr;           /* new block addr */
3111         int                     level;          /* btree level */
3112         int                     error;          /* error return code */
3113         int                     i;              /* loop counter */
3114 
3115         XFS_BTREE_STATS_INC(cur, newroot);
3116 
3117         ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3118 
3119         level = cur->bc_nlevels - 1;
3120 
3121         block = xfs_btree_get_iroot(cur);
3122         pp = xfs_btree_ptr_addr(cur, 1, block);
3123 
3124         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3125         error = xfs_btree_alloc_block(cur, pp, &nptr, stat);
3126         if (error)
3127                 goto error0;
3128         if (*stat == 0)
3129                 return 0;
3130 
3131         XFS_BTREE_STATS_INC(cur, alloc);
3132 
3133         /* Copy the root into a real block. */
3134         error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
3135         if (error)
3136                 goto error0;
3137 
3138         /*
3139          * we can't just memcpy() the root in for CRC enabled btree blocks.
3140          * In that case have to also ensure the blkno remains correct
3141          */
3142         memcpy(cblock, block, xfs_btree_block_len(cur));
3143         if (xfs_has_crc(cur->bc_mp)) {
3144                 __be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3145                 if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
3146                         cblock->bb_u.l.bb_blkno = bno;
3147                 else
3148                         cblock->bb_u.s.bb_blkno = bno;
3149         }
3150 
3151         be16_add_cpu(&block->bb_level, 1);
3152         xfs_btree_set_numrecs(block, 1);
3153         cur->bc_nlevels++;
3154         ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3155         cur->bc_levels[level + 1].ptr = 1;
3156 
3157         kp = xfs_btree_key_addr(cur, 1, block);
3158         ckp = xfs_btree_key_addr(cur, 1, cblock);
3159         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3160 
3161         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3162         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3163                 error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3164                 if (error)
3165                         goto error0;
3166         }
3167 
3168         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3169 
3170         error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3171         if (error)
3172                 goto error0;
3173 
3174         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3175 
3176         xfs_iroot_realloc(cur->bc_ino.ip,
3177                           1 - xfs_btree_get_numrecs(cblock),
3178                           cur->bc_ino.whichfork);
3179 
3180         xfs_btree_setbuf(cur, level, cbp);
3181 
3182         /*
3183          * Do all this logging at the end so that
3184          * the root is at the right level.
3185          */
3186         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3187         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3188         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3189 
3190         *logflags |=
3191                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3192         *stat = 1;
3193         return 0;
3194 error0:
3195         return error;
3196 }
3197 
3198 static void
3199 xfs_btree_set_root(
3200         struct xfs_btree_cur            *cur,
3201         const union xfs_btree_ptr       *ptr,
3202         int                             inc)
3203 {
3204         if (cur->bc_flags & XFS_BTREE_STAGING) {
3205                 /* Update the btree root information for a per-AG fake root. */
3206                 cur->bc_ag.afake->af_root = be32_to_cpu(ptr->s);
3207                 cur->bc_ag.afake->af_levels += inc;
3208         } else {
3209                 cur->bc_ops->set_root(cur, ptr, inc);
3210         }
3211 }
3212 
3213 /*
3214  * Allocate a new root block, fill it in.
3215  */
3216 STATIC int                              /* error */
3217 xfs_btree_new_root(
3218         struct xfs_btree_cur    *cur,   /* btree cursor */
3219         int                     *stat)  /* success/failure */
3220 {
3221         struct xfs_btree_block  *block; /* one half of the old root block */
3222         struct xfs_buf          *bp;    /* buffer containing block */
3223         int                     error;  /* error return value */
3224         struct xfs_buf          *lbp;   /* left buffer pointer */
3225         struct xfs_btree_block  *left;  /* left btree block */
3226         struct xfs_buf          *nbp;   /* new (root) buffer */
3227         struct xfs_btree_block  *new;   /* new (root) btree block */
3228         int                     nptr;   /* new value for key index, 1 or 2 */
3229         struct xfs_buf          *rbp;   /* right buffer pointer */
3230         struct xfs_btree_block  *right; /* right btree block */
3231         union xfs_btree_ptr     rptr;
3232         union xfs_btree_ptr     lptr;
3233 
3234         XFS_BTREE_STATS_INC(cur, newroot);
3235 
3236         /* initialise our start point from the cursor */
3237         xfs_btree_init_ptr_from_cur(cur, &rptr);
3238 
3239         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3240         error = xfs_btree_alloc_block(cur, &rptr, &lptr, stat);
3241         if (error)
3242                 goto error0;
3243         if (*stat == 0)
3244                 goto out0;
3245         XFS_BTREE_STATS_INC(cur, alloc);
3246 
3247         /* Set up the new block. */
3248         error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3249         if (error)
3250                 goto error0;
3251 
3252         /* Set the root in the holding structure  increasing the level by 1. */
3253         xfs_btree_set_root(cur, &lptr, 1);
3254 
3255         /*
3256          * At the previous root level there are now two blocks: the old root,
3257          * and the new block generated when it was split.  We don't know which
3258          * one the cursor is pointing at, so we set up variables "left" and
3259          * "right" for each case.
3260          */
3261         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3262 
3263 #ifdef DEBUG
3264         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3265         if (error)
3266                 goto error0;
3267 #endif
3268 
3269         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3270         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3271                 /* Our block is left, pick up the right block. */
3272                 lbp = bp;
3273                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3274                 left = block;
3275                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3276                 if (error)
3277                         goto error0;
3278                 bp = rbp;
3279                 nptr = 1;
3280         } else {
3281                 /* Our block is right, pick up the left block. */
3282                 rbp = bp;
3283                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3284                 right = block;
3285                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3286                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3287                 if (error)
3288                         goto error0;
3289                 bp = lbp;
3290                 nptr = 2;
3291         }
3292 
3293         /* Fill in the new block's btree header and log it. */
3294         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3295         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3296         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3297                         !xfs_btree_ptr_is_null(cur, &rptr));
3298 
3299         /* Fill in the key data in the new root. */
3300         if (xfs_btree_get_level(left) > 0) {
3301                 /*
3302                  * Get the keys for the left block's keys and put them directly
3303                  * in the parent block.  Do the same for the right block.
3304                  */
3305                 xfs_btree_get_node_keys(cur, left,
3306                                 xfs_btree_key_addr(cur, 1, new));
3307                 xfs_btree_get_node_keys(cur, right,
3308                                 xfs_btree_key_addr(cur, 2, new));
3309         } else {
3310                 /*
3311                  * Get the keys for the left block's records and put them
3312                  * directly in the parent block.  Do the same for the right
3313                  * block.
3314                  */
3315                 xfs_btree_get_leaf_keys(cur, left,
3316                         xfs_btree_key_addr(cur, 1, new));
3317                 xfs_btree_get_leaf_keys(cur, right,
3318                         xfs_btree_key_addr(cur, 2, new));
3319         }
3320         xfs_btree_log_keys(cur, nbp, 1, 2);
3321 
3322         /* Fill in the pointer data in the new root. */
3323         xfs_btree_copy_ptrs(cur,
3324                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3325         xfs_btree_copy_ptrs(cur,
3326                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3327         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3328 
3329         /* Fix up the cursor. */
3330         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3331         cur->bc_levels[cur->bc_nlevels].ptr = nptr;
3332         cur->bc_nlevels++;
3333         ASSERT(cur->bc_nlevels <= cur->bc_maxlevels);
3334         *stat = 1;
3335         return 0;
3336 error0:
3337         return error;
3338 out0:
3339         *stat = 0;
3340         return 0;
3341 }
3342 
3343 STATIC int
3344 xfs_btree_make_block_unfull(
3345         struct xfs_btree_cur    *cur,   /* btree cursor */
3346         int                     level,  /* btree level */
3347         int                     numrecs,/* # of recs in block */
3348         int                     *oindex,/* old tree index */
3349         int                     *index, /* new tree index */
3350         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3351         struct xfs_btree_cur    **ncur, /* new btree cursor */
3352         union xfs_btree_key     *key,   /* key of new block */
3353         int                     *stat)
3354 {
3355         int                     error = 0;
3356 
3357         if (xfs_btree_at_iroot(cur, level)) {
3358                 struct xfs_inode *ip = cur->bc_ino.ip;
3359 
3360                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3361                         /* A root block that can be made bigger. */
3362                         xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3363                         *stat = 1;
3364                 } else {
3365                         /* A root block that needs replacing */
3366                         int     logflags = 0;
3367 
3368                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3369                         if (error || *stat == 0)
3370                                 return error;
3371 
3372                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3373                 }
3374 
3375                 return 0;
3376         }
3377 
3378         /* First, try shifting an entry to the right neighbor. */
3379         error = xfs_btree_rshift(cur, level, stat);
3380         if (error || *stat)
3381                 return error;
3382 
3383         /* Next, try shifting an entry to the left neighbor. */
3384         error = xfs_btree_lshift(cur, level, stat);
3385         if (error)
3386                 return error;
3387 
3388         if (*stat) {
3389                 *oindex = *index = cur->bc_levels[level].ptr;
3390                 return 0;
3391         }
3392 
3393         /*
3394          * Next, try splitting the current block in half.
3395          *
3396          * If this works we have to re-set our variables because we
3397          * could be in a different block now.
3398          */
3399         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3400         if (error || *stat == 0)
3401                 return error;
3402 
3403 
3404         *index = cur->bc_levels[level].ptr;
3405         return 0;
3406 }
3407 
3408 /*
3409  * Insert one record/level.  Return information to the caller
3410  * allowing the next level up to proceed if necessary.
3411  */
3412 STATIC int
3413 xfs_btree_insrec(
3414         struct xfs_btree_cur    *cur,   /* btree cursor */
3415         int                     level,  /* level to insert record at */
3416         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3417         union xfs_btree_rec     *rec,   /* record to insert */
3418         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3419         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3420         int                     *stat)  /* success/failure */
3421 {
3422         struct xfs_btree_block  *block; /* btree block */
3423         struct xfs_buf          *bp;    /* buffer for block */
3424         union xfs_btree_ptr     nptr;   /* new block ptr */
3425         struct xfs_btree_cur    *ncur = NULL;   /* new btree cursor */
3426         union xfs_btree_key     nkey;   /* new block key */
3427         union xfs_btree_key     *lkey;
3428         int                     optr;   /* old key/record index */
3429         int                     ptr;    /* key/record index */
3430         int                     numrecs;/* number of records */
3431         int                     error;  /* error return value */
3432         int                     i;
3433         xfs_daddr_t             old_bn;
3434 
3435         ncur = NULL;
3436         lkey = &nkey;
3437 
3438         /*
3439          * If we have an external root pointer, and we've made it to the
3440          * root level, allocate a new root block and we're done.
3441          */
3442         if (cur->bc_ops->type != XFS_BTREE_TYPE_INODE &&
3443             level >= cur->bc_nlevels) {
3444                 error = xfs_btree_new_root(cur, stat);
3445                 xfs_btree_set_ptr_null(cur, ptrp);
3446 
3447                 return error;
3448         }
3449 
3450         /* If we're off the left edge, return failure. */
3451         ptr = cur->bc_levels[level].ptr;
3452         if (ptr == 0) {
3453                 *stat = 0;
3454                 return 0;
3455         }
3456 
3457         optr = ptr;
3458 
3459         XFS_BTREE_STATS_INC(cur, insrec);
3460 
3461         /* Get pointers to the btree buffer and block. */
3462         block = xfs_btree_get_block(cur, level, &bp);
3463         old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3464         numrecs = xfs_btree_get_numrecs(block);
3465 
3466 #ifdef DEBUG
3467         error = xfs_btree_check_block(cur, block, level, bp);
3468         if (error)
3469                 goto error0;
3470 
3471         /* Check that the new entry is being inserted in the right place. */
3472         if (ptr <= numrecs) {
3473                 if (level == 0) {
3474                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3475                                 xfs_btree_rec_addr(cur, ptr, block)));
3476                 } else {
3477                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3478                                 xfs_btree_key_addr(cur, ptr, block)));
3479                 }
3480         }
3481 #endif
3482 
3483         /*
3484          * If the block is full, we can't insert the new entry until we
3485          * make the block un-full.
3486          */
3487         xfs_btree_set_ptr_null(cur, &nptr);
3488         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3489                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3490                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3491                 if (error || *stat == 0)
3492                         goto error0;
3493         }
3494 
3495         /*
3496          * The current block may have changed if the block was
3497          * previously full and we have just made space in it.
3498          */
3499         block = xfs_btree_get_block(cur, level, &bp);
3500         numrecs = xfs_btree_get_numrecs(block);
3501 
3502 #ifdef DEBUG
3503         error = xfs_btree_check_block(cur, block, level, bp);
3504         if (error)
3505                 goto error0;
3506 #endif
3507 
3508         /*
3509          * At this point we know there's room for our new entry in the block
3510          * we're pointing at.
3511          */
3512         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3513 
3514         if (level > 0) {
3515                 /* It's a nonleaf. make a hole in the keys and ptrs */
3516                 union xfs_btree_key     *kp;
3517                 union xfs_btree_ptr     *pp;
3518 
3519                 kp = xfs_btree_key_addr(cur, ptr, block);
3520                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3521 
3522                 for (i = numrecs - ptr; i >= 0; i--) {
3523                         error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3524                         if (error)
3525                                 goto error0;
3526                 }
3527 
3528                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3529                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3530 
3531                 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3532                 if (error)
3533                         goto error0;
3534 
3535                 /* Now put the new data in, bump numrecs and log it. */
3536                 xfs_btree_copy_keys(cur, kp, key, 1);
3537                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3538                 numrecs++;
3539                 xfs_btree_set_numrecs(block, numrecs);
3540                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3541                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3542 #ifdef DEBUG
3543                 if (ptr < numrecs) {
3544                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3545                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3546                 }
3547 #endif
3548         } else {
3549                 /* It's a leaf. make a hole in the records */
3550                 union xfs_btree_rec             *rp;
3551 
3552                 rp = xfs_btree_rec_addr(cur, ptr, block);
3553 
3554                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3555 
3556                 /* Now put the new data in, bump numrecs and log it. */
3557                 xfs_btree_copy_recs(cur, rp, rec, 1);
3558                 xfs_btree_set_numrecs(block, ++numrecs);
3559                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3560 #ifdef DEBUG
3561                 if (ptr < numrecs) {
3562                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3563                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3564                 }
3565 #endif
3566         }
3567 
3568         /* Log the new number of records in the btree header. */
3569         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3570 
3571         /*
3572          * If we just inserted into a new tree block, we have to
3573          * recalculate nkey here because nkey is out of date.
3574          *
3575          * Otherwise we're just updating an existing block (having shoved
3576          * some records into the new tree block), so use the regular key
3577          * update mechanism.
3578          */
3579         if (bp && xfs_buf_daddr(bp) != old_bn) {
3580                 xfs_btree_get_keys(cur, block, lkey);
3581         } else if (xfs_btree_needs_key_update(cur, optr)) {
3582                 error = xfs_btree_update_keys(cur, level);
3583                 if (error)
3584                         goto error0;
3585         }
3586 
3587         /*
3588          * Return the new block number, if any.
3589          * If there is one, give back a record value and a cursor too.
3590          */
3591         *ptrp = nptr;
3592         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3593                 xfs_btree_copy_keys(cur, key, lkey, 1);
3594                 *curp = ncur;
3595         }
3596 
3597         *stat = 1;
3598         return 0;
3599 
3600 error0:
3601         if (ncur)
3602                 xfs_btree_del_cursor(ncur, error);
3603         return error;
3604 }
3605 
3606 /*
3607  * Insert the record at the point referenced by cur.
3608  *
3609  * A multi-level split of the tree on insert will invalidate the original
3610  * cursor.  All callers of this function should assume that the cursor is
3611  * no longer valid and revalidate it.
3612  */
3613 int
3614 xfs_btree_insert(
3615         struct xfs_btree_cur    *cur,
3616         int                     *stat)
3617 {
3618         int                     error;  /* error return value */
3619         int                     i;      /* result value, 0 for failure */
3620         int                     level;  /* current level number in btree */
3621         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3622         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3623         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3624         union xfs_btree_key     bkey;   /* key of block to insert */
3625         union xfs_btree_key     *key;
3626         union xfs_btree_rec     rec;    /* record to insert */
3627 
3628         level = 0;
3629         ncur = NULL;
3630         pcur = cur;
3631         key = &bkey;
3632 
3633         xfs_btree_set_ptr_null(cur, &nptr);
3634 
3635         /* Make a key out of the record data to be inserted, and save it. */
3636         cur->bc_ops->init_rec_from_cur(cur, &rec);
3637         cur->bc_ops->init_key_from_rec(key, &rec);
3638 
3639         /*
3640          * Loop going up the tree, starting at the leaf level.
3641          * Stop when we don't get a split block, that must mean that
3642          * the insert is finished with this level.
3643          */
3644         do {
3645                 /*
3646                  * Insert nrec/nptr into this level of the tree.
3647                  * Note if we fail, nptr will be null.
3648                  */
3649                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3650                                 &ncur, &i);
3651                 if (error) {
3652                         if (pcur != cur)
3653                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3654                         goto error0;
3655                 }
3656 
3657                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3658                         xfs_btree_mark_sick(cur);
3659                         error = -EFSCORRUPTED;
3660                         goto error0;
3661                 }
3662                 level++;
3663 
3664                 /*
3665                  * See if the cursor we just used is trash.
3666                  * Can't trash the caller's cursor, but otherwise we should
3667                  * if ncur is a new cursor or we're about to be done.
3668                  */
3669                 if (pcur != cur &&
3670                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3671                         /* Save the state from the cursor before we trash it */
3672                         if (cur->bc_ops->update_cursor &&
3673                             !(cur->bc_flags & XFS_BTREE_STAGING))
3674                                 cur->bc_ops->update_cursor(pcur, cur);
3675                         cur->bc_nlevels = pcur->bc_nlevels;
3676                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3677                 }
3678                 /* If we got a new cursor, switch to it. */
3679                 if (ncur) {
3680                         pcur = ncur;
3681                         ncur = NULL;
3682                 }
3683         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3684 
3685         *stat = i;
3686         return 0;
3687 error0:
3688         return error;
3689 }
3690 
3691 /*
3692  * Try to merge a non-leaf block back into the inode root.
3693  *
3694  * Note: the killroot names comes from the fact that we're effectively
3695  * killing the old root block.  But because we can't just delete the
3696  * inode we have to copy the single block it was pointing to into the
3697  * inode.
3698  */
3699 STATIC int
3700 xfs_btree_kill_iroot(
3701         struct xfs_btree_cur    *cur)
3702 {
3703         int                     whichfork = cur->bc_ino.whichfork;
3704         struct xfs_inode        *ip = cur->bc_ino.ip;
3705         struct xfs_ifork        *ifp = xfs_ifork_ptr(ip, whichfork);
3706         struct xfs_btree_block  *block;
3707         struct xfs_btree_block  *cblock;
3708         union xfs_btree_key     *kp;
3709         union xfs_btree_key     *ckp;
3710         union xfs_btree_ptr     *pp;
3711         union xfs_btree_ptr     *cpp;
3712         struct xfs_buf          *cbp;
3713         int                     level;
3714         int                     index;
3715         int                     numrecs;
3716         int                     error;
3717 #ifdef DEBUG
3718         union xfs_btree_ptr     ptr;
3719 #endif
3720         int                     i;
3721 
3722         ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
3723         ASSERT(cur->bc_nlevels > 1);
3724 
3725         /*
3726          * Don't deal with the root block needs to be a leaf case.
3727          * We're just going to turn the thing back into extents anyway.
3728          */
3729         level = cur->bc_nlevels - 1;
3730         if (level == 1)
3731                 goto out0;
3732 
3733         /*
3734          * Give up if the root has multiple children.
3735          */
3736         block = xfs_btree_get_iroot(cur);
3737         if (xfs_btree_get_numrecs(block) != 1)
3738                 goto out0;
3739 
3740         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3741         numrecs = xfs_btree_get_numrecs(cblock);
3742 
3743         /*
3744          * Only do this if the next level will fit.
3745          * Then the data must be copied up to the inode,
3746          * instead of freeing the root you free the next level.
3747          */
3748         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3749                 goto out0;
3750 
3751         XFS_BTREE_STATS_INC(cur, killroot);
3752 
3753 #ifdef DEBUG
3754         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3755         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3756         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3757         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3758 #endif
3759 
3760         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3761         if (index) {
3762                 xfs_iroot_realloc(cur->bc_ino.ip, index,
3763                                   cur->bc_ino.whichfork);
3764                 block = ifp->if_broot;
3765         }
3766 
3767         be16_add_cpu(&block->bb_numrecs, index);
3768         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3769 
3770         kp = xfs_btree_key_addr(cur, 1, block);
3771         ckp = xfs_btree_key_addr(cur, 1, cblock);
3772         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3773 
3774         pp = xfs_btree_ptr_addr(cur, 1, block);
3775         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3776 
3777         for (i = 0; i < numrecs; i++) {
3778                 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3779                 if (error)
3780                         return error;
3781         }
3782 
3783         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3784 
3785         error = xfs_btree_free_block(cur, cbp);
3786         if (error)
3787                 return error;
3788 
3789         cur->bc_levels[level - 1].bp = NULL;
3790         be16_add_cpu(&block->bb_level, -1);
3791         xfs_trans_log_inode(cur->bc_tp, ip,
3792                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3793         cur->bc_nlevels--;
3794 out0:
3795         return 0;
3796 }
3797 
3798 /*
3799  * Kill the current root node, and replace it with it's only child node.
3800  */
3801 STATIC int
3802 xfs_btree_kill_root(
3803         struct xfs_btree_cur    *cur,
3804         struct xfs_buf          *bp,
3805         int                     level,
3806         union xfs_btree_ptr     *newroot)
3807 {
3808         int                     error;
3809 
3810         XFS_BTREE_STATS_INC(cur, killroot);
3811 
3812         /*
3813          * Update the root pointer, decreasing the level by 1 and then
3814          * free the old root.
3815          */
3816         xfs_btree_set_root(cur, newroot, -1);
3817 
3818         error = xfs_btree_free_block(cur, bp);
3819         if (error)
3820                 return error;
3821 
3822         cur->bc_levels[level].bp = NULL;
3823         cur->bc_levels[level].ra = 0;
3824         cur->bc_nlevels--;
3825 
3826         return 0;
3827 }
3828 
3829 STATIC int
3830 xfs_btree_dec_cursor(
3831         struct xfs_btree_cur    *cur,
3832         int                     level,
3833         int                     *stat)
3834 {
3835         int                     error;
3836         int                     i;
3837 
3838         if (level > 0) {
3839                 error = xfs_btree_decrement(cur, level, &i);
3840                 if (error)
3841                         return error;
3842         }
3843 
3844         *stat = 1;
3845         return 0;
3846 }
3847 
3848 /*
3849  * Single level of the btree record deletion routine.
3850  * Delete record pointed to by cur/level.
3851  * Remove the record from its block then rebalance the tree.
3852  * Return 0 for error, 1 for done, 2 to go on to the next level.
3853  */
3854 STATIC int                                      /* error */
3855 xfs_btree_delrec(
3856         struct xfs_btree_cur    *cur,           /* btree cursor */
3857         int                     level,          /* level removing record from */
3858         int                     *stat)          /* fail/done/go-on */
3859 {
3860         struct xfs_btree_block  *block;         /* btree block */
3861         union xfs_btree_ptr     cptr;           /* current block ptr */
3862         struct xfs_buf          *bp;            /* buffer for block */
3863         int                     error;          /* error return value */
3864         int                     i;              /* loop counter */
3865         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3866         struct xfs_buf          *lbp;           /* left buffer pointer */
3867         struct xfs_btree_block  *left;          /* left btree block */
3868         int                     lrecs = 0;      /* left record count */
3869         int                     ptr;            /* key/record index */
3870         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3871         struct xfs_buf          *rbp;           /* right buffer pointer */
3872         struct xfs_btree_block  *right;         /* right btree block */
3873         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3874         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3875         int                     rrecs = 0;      /* right record count */
3876         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3877         int                     numrecs;        /* temporary numrec count */
3878 
3879         tcur = NULL;
3880 
3881         /* Get the index of the entry being deleted, check for nothing there. */
3882         ptr = cur->bc_levels[level].ptr;
3883         if (ptr == 0) {
3884                 *stat = 0;
3885                 return 0;
3886         }
3887 
3888         /* Get the buffer & block containing the record or key/ptr. */
3889         block = xfs_btree_get_block(cur, level, &bp);
3890         numrecs = xfs_btree_get_numrecs(block);
3891 
3892 #ifdef DEBUG
3893         error = xfs_btree_check_block(cur, block, level, bp);
3894         if (error)
3895                 goto error0;
3896 #endif
3897 
3898         /* Fail if we're off the end of the block. */
3899         if (ptr > numrecs) {
3900                 *stat = 0;
3901                 return 0;
3902         }
3903 
3904         XFS_BTREE_STATS_INC(cur, delrec);
3905         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3906 
3907         /* Excise the entries being deleted. */
3908         if (level > 0) {
3909                 /* It's a nonleaf. operate on keys and ptrs */
3910                 union xfs_btree_key     *lkp;
3911                 union xfs_btree_ptr     *lpp;
3912 
3913                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3914                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3915 
3916                 for (i = 0; i < numrecs - ptr; i++) {
3917                         error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3918                         if (error)
3919                                 goto error0;
3920                 }
3921 
3922                 if (ptr < numrecs) {
3923                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3924                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3925                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3926                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3927                 }
3928         } else {
3929                 /* It's a leaf. operate on records */
3930                 if (ptr < numrecs) {
3931                         xfs_btree_shift_recs(cur,
3932                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3933                                 -1, numrecs - ptr);
3934                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3935                 }
3936         }
3937 
3938         /*
3939          * Decrement and log the number of entries in the block.
3940          */
3941         xfs_btree_set_numrecs(block, --numrecs);
3942         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3943 
3944         /*
3945          * We're at the root level.  First, shrink the root block in-memory.
3946          * Try to get rid of the next level down.  If we can't then there's
3947          * nothing left to do.
3948          */
3949         if (xfs_btree_at_iroot(cur, level)) {
3950                 xfs_iroot_realloc(cur->bc_ino.ip, -1, cur->bc_ino.whichfork);
3951 
3952                 error = xfs_btree_kill_iroot(cur);
3953                 if (error)
3954                         goto error0;
3955 
3956                 error = xfs_btree_dec_cursor(cur, level, stat);
3957                 if (error)
3958                         goto error0;
3959                 *stat = 1;
3960                 return 0;
3961         }
3962 
3963         /*
3964          * If this is the root level, and there's only one entry left, and it's
3965          * NOT the leaf level, then we can get rid of this level.
3966          */
3967         if (level == cur->bc_nlevels - 1) {
3968                 if (numrecs == 1 && level > 0) {
3969                         union xfs_btree_ptr     *pp;
3970                         /*
3971                          * pp is still set to the first pointer in the block.
3972                          * Make it the new root of the btree.
3973                          */
3974                         pp = xfs_btree_ptr_addr(cur, 1, block);
3975                         error = xfs_btree_kill_root(cur, bp, level, pp);
3976                         if (error)
3977                                 goto error0;
3978                 } else if (level > 0) {
3979                         error = xfs_btree_dec_cursor(cur, level, stat);
3980                         if (error)
3981                                 goto error0;
3982                 }
3983                 *stat = 1;
3984                 return 0;
3985         }
3986 
3987         /*
3988          * If we deleted the leftmost entry in the block, update the
3989          * key values above us in the tree.
3990          */
3991         if (xfs_btree_needs_key_update(cur, ptr)) {
3992                 error = xfs_btree_update_keys(cur, level);
3993                 if (error)
3994                         goto error0;
3995         }
3996 
3997         /*
3998          * If the number of records remaining in the block is at least
3999          * the minimum, we're done.
4000          */
4001         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
4002                 error = xfs_btree_dec_cursor(cur, level, stat);
4003                 if (error)
4004                         goto error0;
4005                 return 0;
4006         }
4007 
4008         /*
4009          * Otherwise, we have to move some records around to keep the
4010          * tree balanced.  Look at the left and right sibling blocks to
4011          * see if we can re-balance by moving only one record.
4012          */
4013         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4014         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
4015 
4016         if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE) {
4017                 /*
4018                  * One child of root, need to get a chance to copy its contents
4019                  * into the root and delete it. Can't go up to next level,
4020                  * there's nothing to delete there.
4021                  */
4022                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
4023                     xfs_btree_ptr_is_null(cur, &lptr) &&
4024                     level == cur->bc_nlevels - 2) {
4025                         error = xfs_btree_kill_iroot(cur);
4026                         if (!error)
4027                                 error = xfs_btree_dec_cursor(cur, level, stat);
4028                         if (error)
4029                                 goto error0;
4030                         return 0;
4031                 }
4032         }
4033 
4034         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
4035                !xfs_btree_ptr_is_null(cur, &lptr));
4036 
4037         /*
4038          * Duplicate the cursor so our btree manipulations here won't
4039          * disrupt the next level up.
4040          */
4041         error = xfs_btree_dup_cursor(cur, &tcur);
4042         if (error)
4043                 goto error0;
4044 
4045         /*
4046          * If there's a right sibling, see if it's ok to shift an entry
4047          * out of it.
4048          */
4049         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
4050                 /*
4051                  * Move the temp cursor to the last entry in the next block.
4052                  * Actually any entry but the first would suffice.
4053                  */
4054                 i = xfs_btree_lastrec(tcur, level);
4055                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4056                         xfs_btree_mark_sick(cur);
4057                         error = -EFSCORRUPTED;
4058                         goto error0;
4059                 }
4060 
4061                 error = xfs_btree_increment(tcur, level, &i);
4062                 if (error)
4063                         goto error0;
4064                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4065                         xfs_btree_mark_sick(cur);
4066                         error = -EFSCORRUPTED;
4067                         goto error0;
4068                 }
4069 
4070                 i = xfs_btree_lastrec(tcur, level);
4071                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4072                         xfs_btree_mark_sick(cur);
4073                         error = -EFSCORRUPTED;
4074                         goto error0;
4075                 }
4076 
4077                 /* Grab a pointer to the block. */
4078                 right = xfs_btree_get_block(tcur, level, &rbp);
4079 #ifdef DEBUG
4080                 error = xfs_btree_check_block(tcur, right, level, rbp);
4081                 if (error)
4082                         goto error0;
4083 #endif
4084                 /* Grab the current block number, for future use. */
4085                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
4086 
4087                 /*
4088                  * If right block is full enough so that removing one entry
4089                  * won't make it too empty, and left-shifting an entry out
4090                  * of right to us works, we're done.
4091                  */
4092                 if (xfs_btree_get_numrecs(right) - 1 >=
4093                     cur->bc_ops->get_minrecs(tcur, level)) {
4094                         error = xfs_btree_lshift(tcur, level, &i);
4095                         if (error)
4096                                 goto error0;
4097                         if (i) {
4098                                 ASSERT(xfs_btree_get_numrecs(block) >=
4099                                        cur->bc_ops->get_minrecs(tcur, level));
4100 
4101                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4102                                 tcur = NULL;
4103 
4104                                 error = xfs_btree_dec_cursor(cur, level, stat);
4105                                 if (error)
4106                                         goto error0;
4107                                 return 0;
4108                         }
4109                 }
4110 
4111                 /*
4112                  * Otherwise, grab the number of records in right for
4113                  * future reference, and fix up the temp cursor to point
4114                  * to our block again (last record).
4115                  */
4116                 rrecs = xfs_btree_get_numrecs(right);
4117                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4118                         i = xfs_btree_firstrec(tcur, level);
4119                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4120                                 xfs_btree_mark_sick(cur);
4121                                 error = -EFSCORRUPTED;
4122                                 goto error0;
4123                         }
4124 
4125                         error = xfs_btree_decrement(tcur, level, &i);
4126                         if (error)
4127                                 goto error0;
4128                         if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4129                                 xfs_btree_mark_sick(cur);
4130                                 error = -EFSCORRUPTED;
4131                                 goto error0;
4132                         }
4133                 }
4134         }
4135 
4136         /*
4137          * If there's a left sibling, see if it's ok to shift an entry
4138          * out of it.
4139          */
4140         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
4141                 /*
4142                  * Move the temp cursor to the first entry in the
4143                  * previous block.
4144                  */
4145                 i = xfs_btree_firstrec(tcur, level);
4146                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4147                         xfs_btree_mark_sick(cur);
4148                         error = -EFSCORRUPTED;
4149                         goto error0;
4150                 }
4151 
4152                 error = xfs_btree_decrement(tcur, level, &i);
4153                 if (error)
4154                         goto error0;
4155                 i = xfs_btree_firstrec(tcur, level);
4156                 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4157                         xfs_btree_mark_sick(cur);
4158                         error = -EFSCORRUPTED;
4159                         goto error0;
4160                 }
4161 
4162                 /* Grab a pointer to the block. */
4163                 left = xfs_btree_get_block(tcur, level, &lbp);
4164 #ifdef DEBUG
4165                 error = xfs_btree_check_block(cur, left, level, lbp);
4166                 if (error)
4167                         goto error0;
4168 #endif
4169                 /* Grab the current block number, for future use. */
4170                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4171 
4172                 /*
4173                  * If left block is full enough so that removing one entry
4174                  * won't make it too empty, and right-shifting an entry out
4175                  * of left to us works, we're done.
4176                  */
4177                 if (xfs_btree_get_numrecs(left) - 1 >=
4178                     cur->bc_ops->get_minrecs(tcur, level)) {
4179                         error = xfs_btree_rshift(tcur, level, &i);
4180                         if (error)
4181                                 goto error0;
4182                         if (i) {
4183                                 ASSERT(xfs_btree_get_numrecs(block) >=
4184                                        cur->bc_ops->get_minrecs(tcur, level));
4185                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4186                                 tcur = NULL;
4187                                 if (level == 0)
4188                                         cur->bc_levels[0].ptr++;
4189 
4190                                 *stat = 1;
4191                                 return 0;
4192                         }
4193                 }
4194 
4195                 /*
4196                  * Otherwise, grab the number of records in right for
4197                  * future reference.
4198                  */
4199                 lrecs = xfs_btree_get_numrecs(left);
4200         }
4201 
4202         /* Delete the temp cursor, we're done with it. */
4203         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4204         tcur = NULL;
4205 
4206         /* If here, we need to do a join to keep the tree balanced. */
4207         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4208 
4209         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4210             lrecs + xfs_btree_get_numrecs(block) <=
4211                         cur->bc_ops->get_maxrecs(cur, level)) {
4212                 /*
4213                  * Set "right" to be the starting block,
4214                  * "left" to be the left neighbor.
4215                  */
4216                 rptr = cptr;
4217                 right = block;
4218                 rbp = bp;
4219                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4220                 if (error)
4221                         goto error0;
4222 
4223         /*
4224          * If that won't work, see if we can join with the right neighbor block.
4225          */
4226         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4227                    rrecs + xfs_btree_get_numrecs(block) <=
4228                         cur->bc_ops->get_maxrecs(cur, level)) {
4229                 /*
4230                  * Set "left" to be the starting block,
4231                  * "right" to be the right neighbor.
4232                  */
4233                 lptr = cptr;
4234                 left = block;
4235                 lbp = bp;
4236                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4237                 if (error)
4238                         goto error0;
4239 
4240         /*
4241          * Otherwise, we can't fix the imbalance.
4242          * Just return.  This is probably a logic error, but it's not fatal.
4243          */
4244         } else {
4245                 error = xfs_btree_dec_cursor(cur, level, stat);
4246                 if (error)
4247                         goto error0;
4248                 return 0;
4249         }
4250 
4251         rrecs = xfs_btree_get_numrecs(right);
4252         lrecs = xfs_btree_get_numrecs(left);
4253 
4254         /*
4255          * We're now going to join "left" and "right" by moving all the stuff
4256          * in "right" to "left" and deleting "right".
4257          */
4258         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4259         if (level > 0) {
4260                 /* It's a non-leaf.  Move keys and pointers. */
4261                 union xfs_btree_key     *lkp;   /* left btree key */
4262                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4263                 union xfs_btree_key     *rkp;   /* right btree key */
4264                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4265 
4266                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4267                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4268                 rkp = xfs_btree_key_addr(cur, 1, right);
4269                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4270 
4271                 for (i = 1; i < rrecs; i++) {
4272                         error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4273                         if (error)
4274                                 goto error0;
4275                 }
4276 
4277                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4278                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4279 
4280                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4281                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4282         } else {
4283                 /* It's a leaf.  Move records.  */
4284                 union xfs_btree_rec     *lrp;   /* left record pointer */
4285                 union xfs_btree_rec     *rrp;   /* right record pointer */
4286 
4287                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4288                 rrp = xfs_btree_rec_addr(cur, 1, right);
4289 
4290                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4291                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4292         }
4293 
4294         XFS_BTREE_STATS_INC(cur, join);
4295 
4296         /*
4297          * Fix up the number of records and right block pointer in the
4298          * surviving block, and log it.
4299          */
4300         xfs_btree_set_numrecs(left, lrecs + rrecs);
4301         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4302         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4303         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4304 
4305         /* If there is a right sibling, point it to the remaining block. */
4306         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4307         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4308                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4309                 if (error)
4310                         goto error0;
4311                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4312                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4313         }
4314 
4315         /* Free the deleted block. */
4316         error = xfs_btree_free_block(cur, rbp);
4317         if (error)
4318                 goto error0;
4319 
4320         /*
4321          * If we joined with the left neighbor, set the buffer in the
4322          * cursor to the left block, and fix up the index.
4323          */
4324         if (bp != lbp) {
4325                 cur->bc_levels[level].bp = lbp;
4326                 cur->bc_levels[level].ptr += lrecs;
4327                 cur->bc_levels[level].ra = 0;
4328         }
4329         /*
4330          * If we joined with the right neighbor and there's a level above
4331          * us, increment the cursor at that level.
4332          */
4333         else if (cur->bc_ops->type == XFS_BTREE_TYPE_INODE ||
4334                  level + 1 < cur->bc_nlevels) {
4335                 error = xfs_btree_increment(cur, level + 1, &i);
4336                 if (error)
4337                         goto error0;
4338         }
4339 
4340         /*
4341          * Readjust the ptr at this level if it's not a leaf, since it's
4342          * still pointing at the deletion point, which makes the cursor
4343          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4344          * We can't use decrement because it would change the next level up.
4345          */
4346         if (level > 0)
4347                 cur->bc_levels[level].ptr--;
4348 
4349         /*
4350          * We combined blocks, so we have to update the parent keys if the
4351          * btree supports overlapped intervals.  However,
4352          * bc_levels[level + 1].ptr points to the old block so that the caller
4353          * knows which record to delete.  Therefore, the caller must be savvy
4354          * enough to call updkeys for us if we return stat == 2.  The other
4355          * exit points from this function don't require deletions further up
4356          * the tree, so they can call updkeys directly.
4357          */
4358 
4359         /* Return value means the next level up has something to do. */
4360         *stat = 2;
4361         return 0;
4362 
4363 error0:
4364         if (tcur)
4365                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4366         return error;
4367 }
4368 
4369 /*
4370  * Delete the record pointed to by cur.
4371  * The cursor refers to the place where the record was (could be inserted)
4372  * when the operation returns.
4373  */
4374 int                                     /* error */
4375 xfs_btree_delete(
4376         struct xfs_btree_cur    *cur,
4377         int                     *stat)  /* success/failure */
4378 {
4379         int                     error;  /* error return value */
4380         int                     level;
4381         int                     i;
4382         bool                    joined = false;
4383 
4384         /*
4385          * Go up the tree, starting at leaf level.
4386          *
4387          * If 2 is returned then a join was done; go to the next level.
4388          * Otherwise we are done.
4389          */
4390         for (level = 0, i = 2; i == 2; level++) {
4391                 error = xfs_btree_delrec(cur, level, &i);
4392                 if (error)
4393                         goto error0;
4394                 if (i == 2)
4395                         joined = true;
4396         }
4397 
4398         /*
4399          * If we combined blocks as part of deleting the record, delrec won't
4400          * have updated the parent high keys so we have to do that here.
4401          */
4402         if (joined && (cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING)) {
4403                 error = xfs_btree_updkeys_force(cur, 0);
4404                 if (error)
4405                         goto error0;
4406         }
4407 
4408         if (i == 0) {
4409                 for (level = 1; level < cur->bc_nlevels; level++) {
4410                         if (cur->bc_levels[level].ptr == 0) {
4411                                 error = xfs_btree_decrement(cur, level, &i);
4412                                 if (error)
4413                                         goto error0;
4414                                 break;
4415                         }
4416                 }
4417         }
4418 
4419         *stat = i;
4420         return 0;
4421 error0:
4422         return error;
4423 }
4424 
4425 /*
4426  * Get the data from the pointed-to record.
4427  */
4428 int                                     /* error */
4429 xfs_btree_get_rec(
4430         struct xfs_btree_cur    *cur,   /* btree cursor */
4431         union xfs_btree_rec     **recp, /* output: btree record */
4432         int                     *stat)  /* output: success/failure */
4433 {
4434         struct xfs_btree_block  *block; /* btree block */
4435         struct xfs_buf          *bp;    /* buffer pointer */
4436         int                     ptr;    /* record number */
4437 #ifdef DEBUG
4438         int                     error;  /* error return value */
4439 #endif
4440 
4441         ptr = cur->bc_levels[0].ptr;
4442         block = xfs_btree_get_block(cur, 0, &bp);
4443 
4444 #ifdef DEBUG
4445         error = xfs_btree_check_block(cur, block, 0, bp);
4446         if (error)
4447                 return error;
4448 #endif
4449 
4450         /*
4451          * Off the right end or left end, return failure.
4452          */
4453         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4454                 *stat = 0;
4455                 return 0;
4456         }
4457 
4458         /*
4459          * Point to the record and extract its data.
4460          */
4461         *recp = xfs_btree_rec_addr(cur, ptr, block);
4462         *stat = 1;
4463         return 0;
4464 }
4465 
4466 /* Visit a block in a btree. */
4467 STATIC int
4468 xfs_btree_visit_block(
4469         struct xfs_btree_cur            *cur,
4470         int                             level,
4471         xfs_btree_visit_blocks_fn       fn,
4472         void                            *data)
4473 {
4474         struct xfs_btree_block          *block;
4475         struct xfs_buf                  *bp;
4476         union xfs_btree_ptr             rptr, bufptr;
4477         int                             error;
4478 
4479         /* do right sibling readahead */
4480         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4481         block = xfs_btree_get_block(cur, level, &bp);
4482 
4483         /* process the block */
4484         error = fn(cur, level, data);
4485         if (error)
4486                 return error;
4487 
4488         /* now read rh sibling block for next iteration */
4489         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4490         if (xfs_btree_ptr_is_null(cur, &rptr))
4491                 return -ENOENT;
4492 
4493         /*
4494          * We only visit blocks once in this walk, so we have to avoid the
4495          * internal xfs_btree_lookup_get_block() optimisation where it will
4496          * return the same block without checking if the right sibling points
4497          * back to us and creates a cyclic reference in the btree.
4498          */
4499         xfs_btree_buf_to_ptr(cur, bp, &bufptr);
4500         if (xfs_btree_ptrs_equal(cur, &rptr, &bufptr)) {
4501                 xfs_btree_mark_sick(cur);
4502                 return -EFSCORRUPTED;
4503         }
4504 
4505         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4506 }
4507 
4508 
4509 /* Visit every block in a btree. */
4510 int
4511 xfs_btree_visit_blocks(
4512         struct xfs_btree_cur            *cur,
4513         xfs_btree_visit_blocks_fn       fn,
4514         unsigned int                    flags,
4515         void                            *data)
4516 {
4517         union xfs_btree_ptr             lptr;
4518         int                             level;
4519         struct xfs_btree_block          *block = NULL;
4520         int                             error = 0;
4521 
4522         xfs_btree_init_ptr_from_cur(cur, &lptr);
4523 
4524         /* for each level */
4525         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4526                 /* grab the left hand block */
4527                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4528                 if (error)
4529                         return error;
4530 
4531                 /* readahead the left most block for the next level down */
4532                 if (level > 0) {
4533                         union xfs_btree_ptr     *ptr;
4534 
4535                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4536                         xfs_btree_readahead_ptr(cur, ptr, 1);
4537 
4538                         /* save for the next iteration of the loop */
4539                         xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4540 
4541                         if (!(flags & XFS_BTREE_VISIT_LEAVES))
4542                                 continue;
4543                 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4544                         continue;
4545                 }
4546 
4547                 /* for each buffer in the level */
4548                 do {
4549                         error = xfs_btree_visit_block(cur, level, fn, data);
4550                 } while (!error);
4551 
4552                 if (error != -ENOENT)
4553                         return error;
4554         }
4555 
4556         return 0;
4557 }
4558 
4559 /*
4560  * Change the owner of a btree.
4561  *
4562  * The mechanism we use here is ordered buffer logging. Because we don't know
4563  * how many buffers were are going to need to modify, we don't really want to
4564  * have to make transaction reservations for the worst case of every buffer in a
4565  * full size btree as that may be more space that we can fit in the log....
4566  *
4567  * We do the btree walk in the most optimal manner possible - we have sibling
4568  * pointers so we can just walk all the blocks on each level from left to right
4569  * in a single pass, and then move to the next level and do the same. We can
4570  * also do readahead on the sibling pointers to get IO moving more quickly,
4571  * though for slow disks this is unlikely to make much difference to performance
4572  * as the amount of CPU work we have to do before moving to the next block is
4573  * relatively small.
4574  *
4575  * For each btree block that we load, modify the owner appropriately, set the
4576  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4577  * we mark the region we change dirty so that if the buffer is relogged in
4578  * a subsequent transaction the changes we make here as an ordered buffer are
4579  * correctly relogged in that transaction.  If we are in recovery context, then
4580  * just queue the modified buffer as delayed write buffer so the transaction
4581  * recovery completion writes the changes to disk.
4582  */
4583 struct xfs_btree_block_change_owner_info {
4584         uint64_t                new_owner;
4585         struct list_head        *buffer_list;
4586 };
4587 
4588 static int
4589 xfs_btree_block_change_owner(
4590         struct xfs_btree_cur    *cur,
4591         int                     level,
4592         void                    *data)
4593 {
4594         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4595         struct xfs_btree_block  *block;
4596         struct xfs_buf          *bp;
4597 
4598         /* modify the owner */
4599         block = xfs_btree_get_block(cur, level, &bp);
4600         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN) {
4601                 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4602                         return 0;
4603                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4604         } else {
4605                 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4606                         return 0;
4607                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4608         }
4609 
4610         /*
4611          * If the block is a root block hosted in an inode, we might not have a
4612          * buffer pointer here and we shouldn't attempt to log the change as the
4613          * information is already held in the inode and discarded when the root
4614          * block is formatted into the on-disk inode fork. We still change it,
4615          * though, so everything is consistent in memory.
4616          */
4617         if (!bp) {
4618                 ASSERT(cur->bc_ops->type == XFS_BTREE_TYPE_INODE);
4619                 ASSERT(level == cur->bc_nlevels - 1);
4620                 return 0;
4621         }
4622 
4623         if (cur->bc_tp) {
4624                 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4625                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4626                         return -EAGAIN;
4627                 }
4628         } else {
4629                 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4630         }
4631 
4632         return 0;
4633 }
4634 
4635 int
4636 xfs_btree_change_owner(
4637         struct xfs_btree_cur    *cur,
4638         uint64_t                new_owner,
4639         struct list_head        *buffer_list)
4640 {
4641         struct xfs_btree_block_change_owner_info        bbcoi;
4642 
4643         bbcoi.new_owner = new_owner;
4644         bbcoi.buffer_list = buffer_list;
4645 
4646         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4647                         XFS_BTREE_VISIT_ALL, &bbcoi);
4648 }
4649 
4650 /* Verify the v5 fields of a long-format btree block. */
4651 xfs_failaddr_t
4652 xfs_btree_fsblock_v5hdr_verify(
4653         struct xfs_buf          *bp,
4654         uint64_t                owner)
4655 {
4656         struct xfs_mount        *mp = bp->b_mount;
4657         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4658 
4659         if (!xfs_has_crc(mp))
4660                 return __this_address;
4661         if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4662                 return __this_address;
4663         if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4664                 return __this_address;
4665         if (owner != XFS_RMAP_OWN_UNKNOWN &&
4666             be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4667                 return __this_address;
4668         return NULL;
4669 }
4670 
4671 /* Verify a long-format btree block. */
4672 xfs_failaddr_t
4673 xfs_btree_fsblock_verify(
4674         struct xfs_buf          *bp,
4675         unsigned int            max_recs)
4676 {
4677         struct xfs_mount        *mp = bp->b_mount;
4678         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4679         xfs_fsblock_t           fsb;
4680         xfs_failaddr_t          fa;
4681 
4682         ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4683 
4684         /* numrecs verification */
4685         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4686                 return __this_address;
4687 
4688         /* sibling pointer verification */
4689         fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4690         fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4691                         block->bb_u.l.bb_leftsib);
4692         if (!fa)
4693                 fa = xfs_btree_check_fsblock_siblings(mp, fsb,
4694                                 block->bb_u.l.bb_rightsib);
4695         return fa;
4696 }
4697 
4698 /* Verify an in-memory btree block. */
4699 xfs_failaddr_t
4700 xfs_btree_memblock_verify(
4701         struct xfs_buf          *bp,
4702         unsigned int            max_recs)
4703 {
4704         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4705         struct xfs_buftarg      *btp = bp->b_target;
4706         xfs_failaddr_t          fa;
4707         xfbno_t                 bno;
4708 
4709         ASSERT(xfs_buftarg_is_mem(bp->b_target));
4710 
4711         /* numrecs verification */
4712         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4713                 return __this_address;
4714 
4715         /* sibling pointer verification */
4716         bno = xfs_daddr_to_xfbno(xfs_buf_daddr(bp));
4717         fa = xfs_btree_check_memblock_siblings(btp, bno,
4718                         block->bb_u.l.bb_leftsib);
4719         if (fa)
4720                 return fa;
4721         fa = xfs_btree_check_memblock_siblings(btp, bno,
4722                         block->bb_u.l.bb_rightsib);
4723         if (fa)
4724                 return fa;
4725 
4726         return NULL;
4727 }
4728 /**
4729  * xfs_btree_agblock_v5hdr_verify() -- verify the v5 fields of a short-format
4730  *                                    btree block
4731  *
4732  * @bp: buffer containing the btree block
4733  */
4734 xfs_failaddr_t
4735 xfs_btree_agblock_v5hdr_verify(
4736         struct xfs_buf          *bp)
4737 {
4738         struct xfs_mount        *mp = bp->b_mount;
4739         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4740         struct xfs_perag        *pag = bp->b_pag;
4741 
4742         if (!xfs_has_crc(mp))
4743                 return __this_address;
4744         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4745                 return __this_address;
4746         if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4747                 return __this_address;
4748         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4749                 return __this_address;
4750         return NULL;
4751 }
4752 
4753 /**
4754  * xfs_btree_agblock_verify() -- verify a short-format btree block
4755  *
4756  * @bp: buffer containing the btree block
4757  * @max_recs: maximum records allowed in this btree node
4758  */
4759 xfs_failaddr_t
4760 xfs_btree_agblock_verify(
4761         struct xfs_buf          *bp,
4762         unsigned int            max_recs)
4763 {
4764         struct xfs_mount        *mp = bp->b_mount;
4765         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4766         xfs_agblock_t           agbno;
4767         xfs_failaddr_t          fa;
4768 
4769         ASSERT(!xfs_buftarg_is_mem(bp->b_target));
4770 
4771         /* numrecs verification */
4772         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4773                 return __this_address;
4774 
4775         /* sibling pointer verification */
4776         agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4777         fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4778                         block->bb_u.s.bb_leftsib);
4779         if (!fa)
4780                 fa = xfs_btree_check_agblock_siblings(bp->b_pag, agbno,
4781                                 block->bb_u.s.bb_rightsib);
4782         return fa;
4783 }
4784 
4785 /*
4786  * For the given limits on leaf and keyptr records per block, calculate the
4787  * height of the tree needed to index the number of leaf records.
4788  */
4789 unsigned int
4790 xfs_btree_compute_maxlevels(
4791         const unsigned int      *limits,
4792         unsigned long long      records)
4793 {
4794         unsigned long long      level_blocks = howmany_64(records, limits[0]);
4795         unsigned int            height = 1;
4796 
4797         while (level_blocks > 1) {
4798                 level_blocks = howmany_64(level_blocks, limits[1]);
4799                 height++;
4800         }
4801 
4802         return height;
4803 }
4804 
4805 /*
4806  * For the given limits on leaf and keyptr records per block, calculate the
4807  * number of blocks needed to index the given number of leaf records.
4808  */
4809 unsigned long long
4810 xfs_btree_calc_size(
4811         const unsigned int      *limits,
4812         unsigned long long      records)
4813 {
4814         unsigned long long      level_blocks = howmany_64(records, limits[0]);
4815         unsigned long long      blocks = level_blocks;
4816 
4817         while (level_blocks > 1) {
4818                 level_blocks = howmany_64(level_blocks, limits[1]);
4819                 blocks += level_blocks;
4820         }
4821 
4822         return blocks;
4823 }
4824 
4825 /*
4826  * Given a number of available blocks for the btree to consume with records and
4827  * pointers, calculate the height of the tree needed to index all the records
4828  * that space can hold based on the number of pointers each interior node
4829  * holds.
4830  *
4831  * We start by assuming a single level tree consumes a single block, then track
4832  * the number of blocks each node level consumes until we no longer have space
4833  * to store the next node level. At this point, we are indexing all the leaf
4834  * blocks in the space, and there's no more free space to split the tree any
4835  * further. That's our maximum btree height.
4836  */
4837 unsigned int
4838 xfs_btree_space_to_height(
4839         const unsigned int      *limits,
4840         unsigned long long      leaf_blocks)
4841 {
4842         /*
4843          * The root btree block can have fewer than minrecs pointers in it
4844          * because the tree might not be big enough to require that amount of
4845          * fanout. Hence it has a minimum size of 2 pointers, not limits[1].
4846          */
4847         unsigned long long      node_blocks = 2;
4848         unsigned long long      blocks_left = leaf_blocks - 1;
4849         unsigned int            height = 1;
4850 
4851         if (leaf_blocks < 1)
4852                 return 0;
4853 
4854         while (node_blocks < blocks_left) {
4855                 blocks_left -= node_blocks;
4856                 node_blocks *= limits[1];
4857                 height++;
4858         }
4859 
4860         return height;
4861 }
4862 
4863 /*
4864  * Query a regular btree for all records overlapping a given interval.
4865  * Start with a LE lookup of the key of low_rec and return all records
4866  * until we find a record with a key greater than the key of high_rec.
4867  */
4868 STATIC int
4869 xfs_btree_simple_query_range(
4870         struct xfs_btree_cur            *cur,
4871         const union xfs_btree_key       *low_key,
4872         const union xfs_btree_key       *high_key,
4873         xfs_btree_query_range_fn        fn,
4874         void                            *priv)
4875 {
4876         union xfs_btree_rec             *recp;
4877         union xfs_btree_key             rec_key;
4878         int                             stat;
4879         bool                            firstrec = true;
4880         int                             error;
4881 
4882         ASSERT(cur->bc_ops->init_high_key_from_rec);
4883         ASSERT(cur->bc_ops->diff_two_keys);
4884 
4885         /*
4886          * Find the leftmost record.  The btree cursor must be set
4887          * to the low record used to generate low_key.
4888          */
4889         stat = 0;
4890         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4891         if (error)
4892                 goto out;
4893 
4894         /* Nothing?  See if there's anything to the right. */
4895         if (!stat) {
4896                 error = xfs_btree_increment(cur, 0, &stat);
4897                 if (error)
4898                         goto out;
4899         }
4900 
4901         while (stat) {
4902                 /* Find the record. */
4903                 error = xfs_btree_get_rec(cur, &recp, &stat);
4904                 if (error || !stat)
4905                         break;
4906 
4907                 /* Skip if low_key > high_key(rec). */
4908                 if (firstrec) {
4909                         cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4910                         firstrec = false;
4911                         if (xfs_btree_keycmp_gt(cur, low_key, &rec_key))
4912                                 goto advloop;
4913                 }
4914 
4915                 /* Stop if low_key(rec) > high_key. */
4916                 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4917                 if (xfs_btree_keycmp_gt(cur, &rec_key, high_key))
4918                         break;
4919 
4920                 /* Callback */
4921                 error = fn(cur, recp, priv);
4922                 if (error)
4923                         break;
4924 
4925 advloop:
4926                 /* Move on to the next record. */
4927                 error = xfs_btree_increment(cur, 0, &stat);
4928                 if (error)
4929                         break;
4930         }
4931 
4932 out:
4933         return error;
4934 }
4935 
4936 /*
4937  * Query an overlapped interval btree for all records overlapping a given
4938  * interval.  This function roughly follows the algorithm given in
4939  * "Interval Trees" of _Introduction to Algorithms_, which is section
4940  * 14.3 in the 2nd and 3rd editions.
4941  *
4942  * First, generate keys for the low and high records passed in.
4943  *
4944  * For any leaf node, generate the high and low keys for the record.
4945  * If the record keys overlap with the query low/high keys, pass the
4946  * record to the function iterator.
4947  *
4948  * For any internal node, compare the low and high keys of each
4949  * pointer against the query low/high keys.  If there's an overlap,
4950  * follow the pointer.
4951  *
4952  * As an optimization, we stop scanning a block when we find a low key
4953  * that is greater than the query's high key.
4954  */
4955 STATIC int
4956 xfs_btree_overlapped_query_range(
4957         struct xfs_btree_cur            *cur,
4958         const union xfs_btree_key       *low_key,
4959         const union xfs_btree_key       *high_key,
4960         xfs_btree_query_range_fn        fn,
4961         void                            *priv)
4962 {
4963         union xfs_btree_ptr             ptr;
4964         union xfs_btree_ptr             *pp;
4965         union xfs_btree_key             rec_key;
4966         union xfs_btree_key             rec_hkey;
4967         union xfs_btree_key             *lkp;
4968         union xfs_btree_key             *hkp;
4969         union xfs_btree_rec             *recp;
4970         struct xfs_btree_block          *block;
4971         int                             level;
4972         struct xfs_buf                  *bp;
4973         int                             i;
4974         int                             error;
4975 
4976         /* Load the root of the btree. */
4977         level = cur->bc_nlevels - 1;
4978         xfs_btree_init_ptr_from_cur(cur, &ptr);
4979         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4980         if (error)
4981                 return error;
4982         xfs_btree_get_block(cur, level, &bp);
4983         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4984 #ifdef DEBUG
4985         error = xfs_btree_check_block(cur, block, level, bp);
4986         if (error)
4987                 goto out;
4988 #endif
4989         cur->bc_levels[level].ptr = 1;
4990 
4991         while (level < cur->bc_nlevels) {
4992                 block = xfs_btree_get_block(cur, level, &bp);
4993 
4994                 /* End of node, pop back towards the root. */
4995                 if (cur->bc_levels[level].ptr >
4996                                         be16_to_cpu(block->bb_numrecs)) {
4997 pop_up:
4998                         if (level < cur->bc_nlevels - 1)
4999                                 cur->bc_levels[level + 1].ptr++;
5000                         level++;
5001                         continue;
5002                 }
5003 
5004                 if (level == 0) {
5005                         /* Handle a leaf node. */
5006                         recp = xfs_btree_rec_addr(cur, cur->bc_levels[0].ptr,
5007                                         block);
5008 
5009                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
5010                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
5011 
5012                         /*
5013                          * If (query's high key < record's low key), then there
5014                          * are no more interesting records in this block.  Pop
5015                          * up to the leaf level to find more record blocks.
5016                          *
5017                          * If (record's high key >= query's low key) and
5018                          *    (query's high key >= record's low key), then
5019                          * this record overlaps the query range; callback.
5020                          */
5021                         if (xfs_btree_keycmp_lt(cur, high_key, &rec_key))
5022                                 goto pop_up;
5023                         if (xfs_btree_keycmp_ge(cur, &rec_hkey, low_key)) {
5024                                 error = fn(cur, recp, priv);
5025                                 if (error)
5026                                         break;
5027                         }
5028                         cur->bc_levels[level].ptr++;
5029                         continue;
5030                 }
5031 
5032                 /* Handle an internal node. */
5033                 lkp = xfs_btree_key_addr(cur, cur->bc_levels[level].ptr, block);
5034                 hkp = xfs_btree_high_key_addr(cur, cur->bc_levels[level].ptr,
5035                                 block);
5036                 pp = xfs_btree_ptr_addr(cur, cur->bc_levels[level].ptr, block);
5037 
5038                 /*
5039                  * If (query's high key < pointer's low key), then there are no
5040                  * more interesting keys in this block.  Pop up one leaf level
5041                  * to continue looking for records.
5042                  *
5043                  * If (pointer's high key >= query's low key) and
5044                  *    (query's high key >= pointer's low key), then
5045                  * this record overlaps the query range; follow pointer.
5046                  */
5047                 if (xfs_btree_keycmp_lt(cur, high_key, lkp))
5048                         goto pop_up;
5049                 if (xfs_btree_keycmp_ge(cur, hkp, low_key)) {
5050                         level--;
5051                         error = xfs_btree_lookup_get_block(cur, level, pp,
5052                                         &block);
5053                         if (error)
5054                                 goto out;
5055                         xfs_btree_get_block(cur, level, &bp);
5056                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
5057 #ifdef DEBUG
5058                         error = xfs_btree_check_block(cur, block, level, bp);
5059                         if (error)
5060                                 goto out;
5061 #endif
5062                         cur->bc_levels[level].ptr = 1;
5063                         continue;
5064                 }
5065                 cur->bc_levels[level].ptr++;
5066         }
5067 
5068 out:
5069         /*
5070          * If we don't end this function with the cursor pointing at a record
5071          * block, a subsequent non-error cursor deletion will not release
5072          * node-level buffers, causing a buffer leak.  This is quite possible
5073          * with a zero-results range query, so release the buffers if we
5074          * failed to return any results.
5075          */
5076         if (cur->bc_levels[0].bp == NULL) {
5077                 for (i = 0; i < cur->bc_nlevels; i++) {
5078                         if (cur->bc_levels[i].bp) {
5079                                 xfs_trans_brelse(cur->bc_tp,
5080                                                 cur->bc_levels[i].bp);
5081                                 cur->bc_levels[i].bp = NULL;
5082                                 cur->bc_levels[i].ptr = 0;
5083                                 cur->bc_levels[i].ra = 0;
5084                         }
5085                 }
5086         }
5087 
5088         return error;
5089 }
5090 
5091 static inline void
5092 xfs_btree_key_from_irec(
5093         struct xfs_btree_cur            *cur,
5094         union xfs_btree_key             *key,
5095         const union xfs_btree_irec      *irec)
5096 {
5097         union xfs_btree_rec             rec;
5098 
5099         cur->bc_rec = *irec;
5100         cur->bc_ops->init_rec_from_cur(cur, &rec);
5101         cur->bc_ops->init_key_from_rec(key, &rec);
5102 }
5103 
5104 /*
5105  * Query a btree for all records overlapping a given interval of keys.  The
5106  * supplied function will be called with each record found; return one of the
5107  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
5108  * code.  This function returns -ECANCELED, zero, or a negative error code.
5109  */
5110 int
5111 xfs_btree_query_range(
5112         struct xfs_btree_cur            *cur,
5113         const union xfs_btree_irec      *low_rec,
5114         const union xfs_btree_irec      *high_rec,
5115         xfs_btree_query_range_fn        fn,
5116         void                            *priv)
5117 {
5118         union xfs_btree_key             low_key;
5119         union xfs_btree_key             high_key;
5120 
5121         /* Find the keys of both ends of the interval. */
5122         xfs_btree_key_from_irec(cur, &high_key, high_rec);
5123         xfs_btree_key_from_irec(cur, &low_key, low_rec);
5124 
5125         /* Enforce low key <= high key. */
5126         if (!xfs_btree_keycmp_le(cur, &low_key, &high_key))
5127                 return -EINVAL;
5128 
5129         if (!(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5130                 return xfs_btree_simple_query_range(cur, &low_key,
5131                                 &high_key, fn, priv);
5132         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
5133                         fn, priv);
5134 }
5135 
5136 /* Query a btree for all records. */
5137 int
5138 xfs_btree_query_all(
5139         struct xfs_btree_cur            *cur,
5140         xfs_btree_query_range_fn        fn,
5141         void                            *priv)
5142 {
5143         union xfs_btree_key             low_key;
5144         union xfs_btree_key             high_key;
5145 
5146         memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5147         memset(&low_key, 0, sizeof(low_key));
5148         memset(&high_key, 0xFF, sizeof(high_key));
5149 
5150         return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
5151 }
5152 
5153 static int
5154 xfs_btree_count_blocks_helper(
5155         struct xfs_btree_cur    *cur,
5156         int                     level,
5157         void                    *data)
5158 {
5159         xfs_extlen_t            *blocks = data;
5160         (*blocks)++;
5161 
5162         return 0;
5163 }
5164 
5165 /* Count the blocks in a btree and return the result in *blocks. */
5166 int
5167 xfs_btree_count_blocks(
5168         struct xfs_btree_cur    *cur,
5169         xfs_extlen_t            *blocks)
5170 {
5171         *blocks = 0;
5172         return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
5173                         XFS_BTREE_VISIT_ALL, blocks);
5174 }
5175 
5176 /* Compare two btree pointers. */
5177 int64_t
5178 xfs_btree_diff_two_ptrs(
5179         struct xfs_btree_cur            *cur,
5180         const union xfs_btree_ptr       *a,
5181         const union xfs_btree_ptr       *b)
5182 {
5183         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5184                 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
5185         return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
5186 }
5187 
5188 struct xfs_btree_has_records {
5189         /* Keys for the start and end of the range we want to know about. */
5190         union xfs_btree_key             start_key;
5191         union xfs_btree_key             end_key;
5192 
5193         /* Mask for key comparisons, if desired. */
5194         const union xfs_btree_key       *key_mask;
5195 
5196         /* Highest record key we've seen so far. */
5197         union xfs_btree_key             high_key;
5198 
5199         enum xbtree_recpacking          outcome;
5200 };
5201 
5202 STATIC int
5203 xfs_btree_has_records_helper(
5204         struct xfs_btree_cur            *cur,
5205         const union xfs_btree_rec       *rec,
5206         void                            *priv)
5207 {
5208         union xfs_btree_key             rec_key;
5209         union xfs_btree_key             rec_high_key;
5210         struct xfs_btree_has_records    *info = priv;
5211         enum xbtree_key_contig          key_contig;
5212 
5213         cur->bc_ops->init_key_from_rec(&rec_key, rec);
5214 
5215         if (info->outcome == XBTREE_RECPACKING_EMPTY) {
5216                 info->outcome = XBTREE_RECPACKING_SPARSE;
5217 
5218                 /*
5219                  * If the first record we find does not overlap the start key,
5220                  * then there is a hole at the start of the search range.
5221                  * Classify this as sparse and stop immediately.
5222                  */
5223                 if (xfs_btree_masked_keycmp_lt(cur, &info->start_key, &rec_key,
5224                                         info->key_mask))
5225                         return -ECANCELED;
5226         } else {
5227                 /*
5228                  * If a subsequent record does not overlap with the any record
5229                  * we've seen so far, there is a hole in the middle of the
5230                  * search range.  Classify this as sparse and stop.
5231                  * If the keys overlap and this btree does not allow overlap,
5232                  * signal corruption.
5233                  */
5234                 key_contig = cur->bc_ops->keys_contiguous(cur, &info->high_key,
5235                                         &rec_key, info->key_mask);
5236                 if (key_contig == XBTREE_KEY_OVERLAP &&
5237                                 !(cur->bc_ops->geom_flags & XFS_BTGEO_OVERLAPPING))
5238                         return -EFSCORRUPTED;
5239                 if (key_contig == XBTREE_KEY_GAP)
5240                         return -ECANCELED;
5241         }
5242 
5243         /*
5244          * If high_key(rec) is larger than any other high key we've seen,
5245          * remember it for later.
5246          */
5247         cur->bc_ops->init_high_key_from_rec(&rec_high_key, rec);
5248         if (xfs_btree_masked_keycmp_gt(cur, &rec_high_key, &info->high_key,
5249                                 info->key_mask))
5250                 info->high_key = rec_high_key; /* struct copy */
5251 
5252         return 0;
5253 }
5254 
5255 /*
5256  * Scan part of the keyspace of a btree and tell us if that keyspace does not
5257  * map to any records; is fully mapped to records; or is partially mapped to
5258  * records.  This is the btree record equivalent to determining if a file is
5259  * sparse.
5260  *
5261  * For most btree types, the record scan should use all available btree key
5262  * fields to compare the keys encountered.  These callers should pass NULL for
5263  * @mask.  However, some callers (e.g.  scanning physical space in the rmapbt)
5264  * want to ignore some part of the btree record keyspace when performing the
5265  * comparison.  These callers should pass in a union xfs_btree_key object with
5266  * the fields that *should* be a part of the comparison set to any nonzero
5267  * value, and the rest zeroed.
5268  */
5269 int
5270 xfs_btree_has_records(
5271         struct xfs_btree_cur            *cur,
5272         const union xfs_btree_irec      *low,
5273         const union xfs_btree_irec      *high,
5274         const union xfs_btree_key       *mask,
5275         enum xbtree_recpacking          *outcome)
5276 {
5277         struct xfs_btree_has_records    info = {
5278                 .outcome                = XBTREE_RECPACKING_EMPTY,
5279                 .key_mask               = mask,
5280         };
5281         int                             error;
5282 
5283         /* Not all btrees support this operation. */
5284         if (!cur->bc_ops->keys_contiguous) {
5285                 ASSERT(0);
5286                 return -EOPNOTSUPP;
5287         }
5288 
5289         xfs_btree_key_from_irec(cur, &info.start_key, low);
5290         xfs_btree_key_from_irec(cur, &info.end_key, high);
5291 
5292         error = xfs_btree_query_range(cur, low, high,
5293                         xfs_btree_has_records_helper, &info);
5294         if (error == -ECANCELED)
5295                 goto out;
5296         if (error)
5297                 return error;
5298 
5299         if (info.outcome == XBTREE_RECPACKING_EMPTY)
5300                 goto out;
5301 
5302         /*
5303          * If the largest high_key(rec) we saw during the walk is greater than
5304          * the end of the search range, classify this as full.  Otherwise,
5305          * there is a hole at the end of the search range.
5306          */
5307         if (xfs_btree_masked_keycmp_ge(cur, &info.high_key, &info.end_key,
5308                                 mask))
5309                 info.outcome = XBTREE_RECPACKING_FULL;
5310 
5311 out:
5312         *outcome = info.outcome;
5313         return 0;
5314 }
5315 
5316 /* Are there more records in this btree? */
5317 bool
5318 xfs_btree_has_more_records(
5319         struct xfs_btree_cur    *cur)
5320 {
5321         struct xfs_btree_block  *block;
5322         struct xfs_buf          *bp;
5323 
5324         block = xfs_btree_get_block(cur, 0, &bp);
5325 
5326         /* There are still records in this block. */
5327         if (cur->bc_levels[0].ptr < xfs_btree_get_numrecs(block))
5328                 return true;
5329 
5330         /* There are more record blocks. */
5331         if (cur->bc_ops->ptr_len == XFS_BTREE_LONG_PTR_LEN)
5332                 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5333         else
5334                 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5335 }
5336 
5337 /* Set up all the btree cursor caches. */
5338 int __init
5339 xfs_btree_init_cur_caches(void)
5340 {
5341         int             error;
5342 
5343         error = xfs_allocbt_init_cur_cache();
5344         if (error)
5345                 return error;
5346         error = xfs_inobt_init_cur_cache();
5347         if (error)
5348                 goto err;
5349         error = xfs_bmbt_init_cur_cache();
5350         if (error)
5351                 goto err;
5352         error = xfs_rmapbt_init_cur_cache();
5353         if (error)
5354                 goto err;
5355         error = xfs_refcountbt_init_cur_cache();
5356         if (error)
5357                 goto err;
5358 
5359         return 0;
5360 err:
5361         xfs_btree_destroy_cur_caches();
5362         return error;
5363 }
5364 
5365 /* Destroy all the btree cursor caches, if they've been allocated. */
5366 void
5367 xfs_btree_destroy_cur_caches(void)
5368 {
5369         xfs_allocbt_destroy_cur_cache();
5370         xfs_inobt_destroy_cur_cache();
5371         xfs_bmbt_destroy_cur_cache();
5372         xfs_rmapbt_destroy_cur_cache();
5373         xfs_refcountbt_destroy_cur_cache();
5374 }
5375 
5376 /* Move the btree cursor before the first record. */
5377 int
5378 xfs_btree_goto_left_edge(
5379         struct xfs_btree_cur    *cur)
5380 {
5381         int                     stat = 0;
5382         int                     error;
5383 
5384         memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
5385         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
5386         if (error)
5387                 return error;
5388         if (!stat)
5389                 return 0;
5390 
5391         error = xfs_btree_decrement(cur, 0, &stat);
5392         if (error)
5393                 return error;
5394         if (stat != 0) {
5395                 ASSERT(0);
5396                 xfs_btree_mark_sick(cur);
5397                 return -EFSCORRUPTED;
5398         }
5399 
5400         return 0;
5401 }
5402 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php