~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/libxfs/xfs_ialloc_btree.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_shared.h"
  9 #include "xfs_format.h"
 10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_bit.h"
 13 #include "xfs_mount.h"
 14 #include "xfs_btree.h"
 15 #include "xfs_btree_staging.h"
 16 #include "xfs_ialloc.h"
 17 #include "xfs_ialloc_btree.h"
 18 #include "xfs_alloc.h"
 19 #include "xfs_error.h"
 20 #include "xfs_health.h"
 21 #include "xfs_trace.h"
 22 #include "xfs_trans.h"
 23 #include "xfs_rmap.h"
 24 #include "xfs_ag.h"
 25 
 26 static struct kmem_cache        *xfs_inobt_cur_cache;
 27 
 28 STATIC int
 29 xfs_inobt_get_minrecs(
 30         struct xfs_btree_cur    *cur,
 31         int                     level)
 32 {
 33         return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
 34 }
 35 
 36 STATIC struct xfs_btree_cur *
 37 xfs_inobt_dup_cursor(
 38         struct xfs_btree_cur    *cur)
 39 {
 40         return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
 41                         cur->bc_ag.agbp);
 42 }
 43 
 44 STATIC struct xfs_btree_cur *
 45 xfs_finobt_dup_cursor(
 46         struct xfs_btree_cur    *cur)
 47 {
 48         return xfs_finobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
 49                         cur->bc_ag.agbp);
 50 }
 51 
 52 STATIC void
 53 xfs_inobt_set_root(
 54         struct xfs_btree_cur            *cur,
 55         const union xfs_btree_ptr       *nptr,
 56         int                             inc)    /* level change */
 57 {
 58         struct xfs_buf          *agbp = cur->bc_ag.agbp;
 59         struct xfs_agi          *agi = agbp->b_addr;
 60 
 61         agi->agi_root = nptr->s;
 62         be32_add_cpu(&agi->agi_level, inc);
 63         xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
 64 }
 65 
 66 STATIC void
 67 xfs_finobt_set_root(
 68         struct xfs_btree_cur            *cur,
 69         const union xfs_btree_ptr       *nptr,
 70         int                             inc)    /* level change */
 71 {
 72         struct xfs_buf          *agbp = cur->bc_ag.agbp;
 73         struct xfs_agi          *agi = agbp->b_addr;
 74 
 75         agi->agi_free_root = nptr->s;
 76         be32_add_cpu(&agi->agi_free_level, inc);
 77         xfs_ialloc_log_agi(cur->bc_tp, agbp,
 78                            XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
 79 }
 80 
 81 /* Update the inode btree block counter for this btree. */
 82 static inline void
 83 xfs_inobt_mod_blockcount(
 84         struct xfs_btree_cur    *cur,
 85         int                     howmuch)
 86 {
 87         struct xfs_buf          *agbp = cur->bc_ag.agbp;
 88         struct xfs_agi          *agi = agbp->b_addr;
 89 
 90         if (!xfs_has_inobtcounts(cur->bc_mp))
 91                 return;
 92 
 93         if (xfs_btree_is_fino(cur->bc_ops))
 94                 be32_add_cpu(&agi->agi_fblocks, howmuch);
 95         else
 96                 be32_add_cpu(&agi->agi_iblocks, howmuch);
 97         xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
 98 }
 99 
100 STATIC int
101 __xfs_inobt_alloc_block(
102         struct xfs_btree_cur            *cur,
103         const union xfs_btree_ptr       *start,
104         union xfs_btree_ptr             *new,
105         int                             *stat,
106         enum xfs_ag_resv_type           resv)
107 {
108         xfs_alloc_arg_t         args;           /* block allocation args */
109         int                     error;          /* error return value */
110         xfs_agblock_t           sbno = be32_to_cpu(start->s);
111 
112         memset(&args, 0, sizeof(args));
113         args.tp = cur->bc_tp;
114         args.mp = cur->bc_mp;
115         args.pag = cur->bc_ag.pag;
116         args.oinfo = XFS_RMAP_OINFO_INOBT;
117         args.minlen = 1;
118         args.maxlen = 1;
119         args.prod = 1;
120         args.resv = resv;
121 
122         error = xfs_alloc_vextent_near_bno(&args,
123                         XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
124         if (error)
125                 return error;
126 
127         if (args.fsbno == NULLFSBLOCK) {
128                 *stat = 0;
129                 return 0;
130         }
131         ASSERT(args.len == 1);
132 
133         new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
134         *stat = 1;
135         xfs_inobt_mod_blockcount(cur, 1);
136         return 0;
137 }
138 
139 STATIC int
140 xfs_inobt_alloc_block(
141         struct xfs_btree_cur            *cur,
142         const union xfs_btree_ptr       *start,
143         union xfs_btree_ptr             *new,
144         int                             *stat)
145 {
146         return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
147 }
148 
149 STATIC int
150 xfs_finobt_alloc_block(
151         struct xfs_btree_cur            *cur,
152         const union xfs_btree_ptr       *start,
153         union xfs_btree_ptr             *new,
154         int                             *stat)
155 {
156         if (cur->bc_mp->m_finobt_nores)
157                 return xfs_inobt_alloc_block(cur, start, new, stat);
158         return __xfs_inobt_alloc_block(cur, start, new, stat,
159                         XFS_AG_RESV_METADATA);
160 }
161 
162 STATIC int
163 __xfs_inobt_free_block(
164         struct xfs_btree_cur    *cur,
165         struct xfs_buf          *bp,
166         enum xfs_ag_resv_type   resv)
167 {
168         xfs_fsblock_t           fsbno;
169 
170         xfs_inobt_mod_blockcount(cur, -1);
171         fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
172         return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
173                         &XFS_RMAP_OINFO_INOBT, resv, 0);
174 }
175 
176 STATIC int
177 xfs_inobt_free_block(
178         struct xfs_btree_cur    *cur,
179         struct xfs_buf          *bp)
180 {
181         return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
182 }
183 
184 STATIC int
185 xfs_finobt_free_block(
186         struct xfs_btree_cur    *cur,
187         struct xfs_buf          *bp)
188 {
189         if (cur->bc_mp->m_finobt_nores)
190                 return xfs_inobt_free_block(cur, bp);
191         return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
192 }
193 
194 STATIC int
195 xfs_inobt_get_maxrecs(
196         struct xfs_btree_cur    *cur,
197         int                     level)
198 {
199         return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
200 }
201 
202 STATIC void
203 xfs_inobt_init_key_from_rec(
204         union xfs_btree_key             *key,
205         const union xfs_btree_rec       *rec)
206 {
207         key->inobt.ir_startino = rec->inobt.ir_startino;
208 }
209 
210 STATIC void
211 xfs_inobt_init_high_key_from_rec(
212         union xfs_btree_key             *key,
213         const union xfs_btree_rec       *rec)
214 {
215         __u32                           x;
216 
217         x = be32_to_cpu(rec->inobt.ir_startino);
218         x += XFS_INODES_PER_CHUNK - 1;
219         key->inobt.ir_startino = cpu_to_be32(x);
220 }
221 
222 STATIC void
223 xfs_inobt_init_rec_from_cur(
224         struct xfs_btree_cur    *cur,
225         union xfs_btree_rec     *rec)
226 {
227         rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
228         if (xfs_has_sparseinodes(cur->bc_mp)) {
229                 rec->inobt.ir_u.sp.ir_holemask =
230                                         cpu_to_be16(cur->bc_rec.i.ir_holemask);
231                 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
232                 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
233         } else {
234                 /* ir_holemask/ir_count not supported on-disk */
235                 rec->inobt.ir_u.f.ir_freecount =
236                                         cpu_to_be32(cur->bc_rec.i.ir_freecount);
237         }
238         rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
239 }
240 
241 /*
242  * initial value of ptr for lookup
243  */
244 STATIC void
245 xfs_inobt_init_ptr_from_cur(
246         struct xfs_btree_cur    *cur,
247         union xfs_btree_ptr     *ptr)
248 {
249         struct xfs_agi          *agi = cur->bc_ag.agbp->b_addr;
250 
251         ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
252 
253         ptr->s = agi->agi_root;
254 }
255 
256 STATIC void
257 xfs_finobt_init_ptr_from_cur(
258         struct xfs_btree_cur    *cur,
259         union xfs_btree_ptr     *ptr)
260 {
261         struct xfs_agi          *agi = cur->bc_ag.agbp->b_addr;
262 
263         ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
264         ptr->s = agi->agi_free_root;
265 }
266 
267 STATIC int64_t
268 xfs_inobt_key_diff(
269         struct xfs_btree_cur            *cur,
270         const union xfs_btree_key       *key)
271 {
272         return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
273                           cur->bc_rec.i.ir_startino;
274 }
275 
276 STATIC int64_t
277 xfs_inobt_diff_two_keys(
278         struct xfs_btree_cur            *cur,
279         const union xfs_btree_key       *k1,
280         const union xfs_btree_key       *k2,
281         const union xfs_btree_key       *mask)
282 {
283         ASSERT(!mask || mask->inobt.ir_startino);
284 
285         return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
286                         be32_to_cpu(k2->inobt.ir_startino);
287 }
288 
289 static xfs_failaddr_t
290 xfs_inobt_verify(
291         struct xfs_buf          *bp)
292 {
293         struct xfs_mount        *mp = bp->b_mount;
294         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
295         xfs_failaddr_t          fa;
296         unsigned int            level;
297 
298         if (!xfs_verify_magic(bp, block->bb_magic))
299                 return __this_address;
300 
301         /*
302          * During growfs operations, we can't verify the exact owner as the
303          * perag is not fully initialised and hence not attached to the buffer.
304          *
305          * Similarly, during log recovery we will have a perag structure
306          * attached, but the agi information will not yet have been initialised
307          * from the on disk AGI. We don't currently use any of this information,
308          * but beware of the landmine (i.e. need to check
309          * xfs_perag_initialised_agi(pag)) if we ever do.
310          */
311         if (xfs_has_crc(mp)) {
312                 fa = xfs_btree_agblock_v5hdr_verify(bp);
313                 if (fa)
314                         return fa;
315         }
316 
317         /* level verification */
318         level = be16_to_cpu(block->bb_level);
319         if (level >= M_IGEO(mp)->inobt_maxlevels)
320                 return __this_address;
321 
322         return xfs_btree_agblock_verify(bp,
323                         M_IGEO(mp)->inobt_mxr[level != 0]);
324 }
325 
326 static void
327 xfs_inobt_read_verify(
328         struct xfs_buf  *bp)
329 {
330         xfs_failaddr_t  fa;
331 
332         if (!xfs_btree_agblock_verify_crc(bp))
333                 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
334         else {
335                 fa = xfs_inobt_verify(bp);
336                 if (fa)
337                         xfs_verifier_error(bp, -EFSCORRUPTED, fa);
338         }
339 
340         if (bp->b_error)
341                 trace_xfs_btree_corrupt(bp, _RET_IP_);
342 }
343 
344 static void
345 xfs_inobt_write_verify(
346         struct xfs_buf  *bp)
347 {
348         xfs_failaddr_t  fa;
349 
350         fa = xfs_inobt_verify(bp);
351         if (fa) {
352                 trace_xfs_btree_corrupt(bp, _RET_IP_);
353                 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
354                 return;
355         }
356         xfs_btree_agblock_calc_crc(bp);
357 
358 }
359 
360 const struct xfs_buf_ops xfs_inobt_buf_ops = {
361         .name = "xfs_inobt",
362         .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
363         .verify_read = xfs_inobt_read_verify,
364         .verify_write = xfs_inobt_write_verify,
365         .verify_struct = xfs_inobt_verify,
366 };
367 
368 const struct xfs_buf_ops xfs_finobt_buf_ops = {
369         .name = "xfs_finobt",
370         .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
371                    cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
372         .verify_read = xfs_inobt_read_verify,
373         .verify_write = xfs_inobt_write_verify,
374         .verify_struct = xfs_inobt_verify,
375 };
376 
377 STATIC int
378 xfs_inobt_keys_inorder(
379         struct xfs_btree_cur            *cur,
380         const union xfs_btree_key       *k1,
381         const union xfs_btree_key       *k2)
382 {
383         return be32_to_cpu(k1->inobt.ir_startino) <
384                 be32_to_cpu(k2->inobt.ir_startino);
385 }
386 
387 STATIC int
388 xfs_inobt_recs_inorder(
389         struct xfs_btree_cur            *cur,
390         const union xfs_btree_rec       *r1,
391         const union xfs_btree_rec       *r2)
392 {
393         return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
394                 be32_to_cpu(r2->inobt.ir_startino);
395 }
396 
397 STATIC enum xbtree_key_contig
398 xfs_inobt_keys_contiguous(
399         struct xfs_btree_cur            *cur,
400         const union xfs_btree_key       *key1,
401         const union xfs_btree_key       *key2,
402         const union xfs_btree_key       *mask)
403 {
404         ASSERT(!mask || mask->inobt.ir_startino);
405 
406         return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
407                                  be32_to_cpu(key2->inobt.ir_startino));
408 }
409 
410 const struct xfs_btree_ops xfs_inobt_ops = {
411         .name                   = "ino",
412         .type                   = XFS_BTREE_TYPE_AG,
413 
414         .rec_len                = sizeof(xfs_inobt_rec_t),
415         .key_len                = sizeof(xfs_inobt_key_t),
416         .ptr_len                = XFS_BTREE_SHORT_PTR_LEN,
417 
418         .lru_refs               = XFS_INO_BTREE_REF,
419         .statoff                = XFS_STATS_CALC_INDEX(xs_ibt_2),
420         .sick_mask              = XFS_SICK_AG_INOBT,
421 
422         .dup_cursor             = xfs_inobt_dup_cursor,
423         .set_root               = xfs_inobt_set_root,
424         .alloc_block            = xfs_inobt_alloc_block,
425         .free_block             = xfs_inobt_free_block,
426         .get_minrecs            = xfs_inobt_get_minrecs,
427         .get_maxrecs            = xfs_inobt_get_maxrecs,
428         .init_key_from_rec      = xfs_inobt_init_key_from_rec,
429         .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
430         .init_rec_from_cur      = xfs_inobt_init_rec_from_cur,
431         .init_ptr_from_cur      = xfs_inobt_init_ptr_from_cur,
432         .key_diff               = xfs_inobt_key_diff,
433         .buf_ops                = &xfs_inobt_buf_ops,
434         .diff_two_keys          = xfs_inobt_diff_two_keys,
435         .keys_inorder           = xfs_inobt_keys_inorder,
436         .recs_inorder           = xfs_inobt_recs_inorder,
437         .keys_contiguous        = xfs_inobt_keys_contiguous,
438 };
439 
440 const struct xfs_btree_ops xfs_finobt_ops = {
441         .name                   = "fino",
442         .type                   = XFS_BTREE_TYPE_AG,
443 
444         .rec_len                = sizeof(xfs_inobt_rec_t),
445         .key_len                = sizeof(xfs_inobt_key_t),
446         .ptr_len                = XFS_BTREE_SHORT_PTR_LEN,
447 
448         .lru_refs               = XFS_INO_BTREE_REF,
449         .statoff                = XFS_STATS_CALC_INDEX(xs_fibt_2),
450         .sick_mask              = XFS_SICK_AG_FINOBT,
451 
452         .dup_cursor             = xfs_finobt_dup_cursor,
453         .set_root               = xfs_finobt_set_root,
454         .alloc_block            = xfs_finobt_alloc_block,
455         .free_block             = xfs_finobt_free_block,
456         .get_minrecs            = xfs_inobt_get_minrecs,
457         .get_maxrecs            = xfs_inobt_get_maxrecs,
458         .init_key_from_rec      = xfs_inobt_init_key_from_rec,
459         .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
460         .init_rec_from_cur      = xfs_inobt_init_rec_from_cur,
461         .init_ptr_from_cur      = xfs_finobt_init_ptr_from_cur,
462         .key_diff               = xfs_inobt_key_diff,
463         .buf_ops                = &xfs_finobt_buf_ops,
464         .diff_two_keys          = xfs_inobt_diff_two_keys,
465         .keys_inorder           = xfs_inobt_keys_inorder,
466         .recs_inorder           = xfs_inobt_recs_inorder,
467         .keys_contiguous        = xfs_inobt_keys_contiguous,
468 };
469 
470 /*
471  * Create an inode btree cursor.
472  *
473  * For staging cursors tp and agbp are NULL.
474  */
475 struct xfs_btree_cur *
476 xfs_inobt_init_cursor(
477         struct xfs_perag        *pag,
478         struct xfs_trans        *tp,
479         struct xfs_buf          *agbp)
480 {
481         struct xfs_mount        *mp = pag->pag_mount;
482         struct xfs_btree_cur    *cur;
483 
484         cur = xfs_btree_alloc_cursor(mp, tp, &xfs_inobt_ops,
485                         M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
486         cur->bc_ag.pag = xfs_perag_hold(pag);
487         cur->bc_ag.agbp = agbp;
488         if (agbp) {
489                 struct xfs_agi          *agi = agbp->b_addr;
490 
491                 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
492         }
493         return cur;
494 }
495 
496 /*
497  * Create a free inode btree cursor.
498  *
499  * For staging cursors tp and agbp are NULL.
500  */
501 struct xfs_btree_cur *
502 xfs_finobt_init_cursor(
503         struct xfs_perag        *pag,
504         struct xfs_trans        *tp,
505         struct xfs_buf          *agbp)
506 {
507         struct xfs_mount        *mp = pag->pag_mount;
508         struct xfs_btree_cur    *cur;
509 
510         cur = xfs_btree_alloc_cursor(mp, tp, &xfs_finobt_ops,
511                         M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
512         cur->bc_ag.pag = xfs_perag_hold(pag);
513         cur->bc_ag.agbp = agbp;
514         if (agbp) {
515                 struct xfs_agi          *agi = agbp->b_addr;
516 
517                 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
518         }
519         return cur;
520 }
521 
522 /*
523  * Install a new inobt btree root.  Caller is responsible for invalidating
524  * and freeing the old btree blocks.
525  */
526 void
527 xfs_inobt_commit_staged_btree(
528         struct xfs_btree_cur    *cur,
529         struct xfs_trans        *tp,
530         struct xfs_buf          *agbp)
531 {
532         struct xfs_agi          *agi = agbp->b_addr;
533         struct xbtree_afakeroot *afake = cur->bc_ag.afake;
534         int                     fields;
535 
536         ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
537 
538         if (xfs_btree_is_ino(cur->bc_ops)) {
539                 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
540                 agi->agi_root = cpu_to_be32(afake->af_root);
541                 agi->agi_level = cpu_to_be32(afake->af_levels);
542                 if (xfs_has_inobtcounts(cur->bc_mp)) {
543                         agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
544                         fields |= XFS_AGI_IBLOCKS;
545                 }
546                 xfs_ialloc_log_agi(tp, agbp, fields);
547                 xfs_btree_commit_afakeroot(cur, tp, agbp);
548         } else {
549                 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
550                 agi->agi_free_root = cpu_to_be32(afake->af_root);
551                 agi->agi_free_level = cpu_to_be32(afake->af_levels);
552                 if (xfs_has_inobtcounts(cur->bc_mp)) {
553                         agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
554                         fields |= XFS_AGI_IBLOCKS;
555                 }
556                 xfs_ialloc_log_agi(tp, agbp, fields);
557                 xfs_btree_commit_afakeroot(cur, tp, agbp);
558         }
559 }
560 
561 /* Calculate number of records in an inode btree block. */
562 static inline unsigned int
563 xfs_inobt_block_maxrecs(
564         unsigned int            blocklen,
565         bool                    leaf)
566 {
567         if (leaf)
568                 return blocklen / sizeof(xfs_inobt_rec_t);
569         return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
570 }
571 
572 /*
573  * Calculate number of records in an inobt btree block.
574  */
575 int
576 xfs_inobt_maxrecs(
577         struct xfs_mount        *mp,
578         int                     blocklen,
579         int                     leaf)
580 {
581         blocklen -= XFS_INOBT_BLOCK_LEN(mp);
582         return xfs_inobt_block_maxrecs(blocklen, leaf);
583 }
584 
585 /*
586  * Maximum number of inode btree records per AG.  Pretend that we can fill an
587  * entire AG completely full of inodes except for the AG headers.
588  */
589 #define XFS_MAX_INODE_RECORDS \
590         ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
591                         XFS_INODES_PER_CHUNK
592 
593 /* Compute the max possible height for the inode btree. */
594 static inline unsigned int
595 xfs_inobt_maxlevels_ondisk(void)
596 {
597         unsigned int            minrecs[2];
598         unsigned int            blocklen;
599 
600         blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
601                        XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
602 
603         minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
604         minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
605 
606         return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
607 }
608 
609 /* Compute the max possible height for the free inode btree. */
610 static inline unsigned int
611 xfs_finobt_maxlevels_ondisk(void)
612 {
613         unsigned int            minrecs[2];
614         unsigned int            blocklen;
615 
616         blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
617 
618         minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
619         minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
620 
621         return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
622 }
623 
624 /* Compute the max possible height for either inode btree. */
625 unsigned int
626 xfs_iallocbt_maxlevels_ondisk(void)
627 {
628         return max(xfs_inobt_maxlevels_ondisk(),
629                    xfs_finobt_maxlevels_ondisk());
630 }
631 
632 /*
633  * Convert the inode record holemask to an inode allocation bitmap. The inode
634  * allocation bitmap is inode granularity and specifies whether an inode is
635  * physically allocated on disk (not whether the inode is considered allocated
636  * or free by the fs).
637  *
638  * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
639  */
640 uint64_t
641 xfs_inobt_irec_to_allocmask(
642         const struct xfs_inobt_rec_incore       *rec)
643 {
644         uint64_t                        bitmap = 0;
645         uint64_t                        inodespbit;
646         int                             nextbit;
647         uint                            allocbitmap;
648 
649         /*
650          * The holemask has 16-bits for a 64 inode record. Therefore each
651          * holemask bit represents multiple inodes. Create a mask of bits to set
652          * in the allocmask for each holemask bit.
653          */
654         inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
655 
656         /*
657          * Allocated inodes are represented by 0 bits in holemask. Invert the 0
658          * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
659          * anything beyond the 16 holemask bits since this casts to a larger
660          * type.
661          */
662         allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
663 
664         /*
665          * allocbitmap is the inverted holemask so every set bit represents
666          * allocated inodes. To expand from 16-bit holemask granularity to
667          * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
668          * bitmap for every holemask bit.
669          */
670         nextbit = xfs_next_bit(&allocbitmap, 1, 0);
671         while (nextbit != -1) {
672                 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
673 
674                 bitmap |= (inodespbit <<
675                            (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
676 
677                 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
678         }
679 
680         return bitmap;
681 }
682 
683 #if defined(DEBUG) || defined(XFS_WARN)
684 /*
685  * Verify that an in-core inode record has a valid inode count.
686  */
687 int
688 xfs_inobt_rec_check_count(
689         struct xfs_mount                *mp,
690         struct xfs_inobt_rec_incore     *rec)
691 {
692         int                             inocount = 0;
693         int                             nextbit = 0;
694         uint64_t                        allocbmap;
695         int                             wordsz;
696 
697         wordsz = sizeof(allocbmap) / sizeof(unsigned int);
698         allocbmap = xfs_inobt_irec_to_allocmask(rec);
699 
700         nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
701         while (nextbit != -1) {
702                 inocount++;
703                 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
704                                        nextbit + 1);
705         }
706 
707         if (inocount != rec->ir_count)
708                 return -EFSCORRUPTED;
709 
710         return 0;
711 }
712 #endif  /* DEBUG */
713 
714 static xfs_extlen_t
715 xfs_inobt_max_size(
716         struct xfs_perag        *pag)
717 {
718         struct xfs_mount        *mp = pag->pag_mount;
719         xfs_agblock_t           agblocks = pag->block_count;
720 
721         /* Bail out if we're uninitialized, which can happen in mkfs. */
722         if (M_IGEO(mp)->inobt_mxr[0] == 0)
723                 return 0;
724 
725         /*
726          * The log is permanently allocated, so the space it occupies will
727          * never be available for the kinds of things that would require btree
728          * expansion.  We therefore can pretend the space isn't there.
729          */
730         if (xfs_ag_contains_log(mp, pag->pag_agno))
731                 agblocks -= mp->m_sb.sb_logblocks;
732 
733         return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
734                                 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
735                                         XFS_INODES_PER_CHUNK);
736 }
737 
738 static int
739 xfs_finobt_count_blocks(
740         struct xfs_perag        *pag,
741         struct xfs_trans        *tp,
742         xfs_extlen_t            *tree_blocks)
743 {
744         struct xfs_buf          *agbp = NULL;
745         struct xfs_btree_cur    *cur;
746         int                     error;
747 
748         error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
749         if (error)
750                 return error;
751 
752         cur = xfs_finobt_init_cursor(pag, tp, agbp);
753         error = xfs_btree_count_blocks(cur, tree_blocks);
754         xfs_btree_del_cursor(cur, error);
755         xfs_trans_brelse(tp, agbp);
756 
757         return error;
758 }
759 
760 /* Read finobt block count from AGI header. */
761 static int
762 xfs_finobt_read_blocks(
763         struct xfs_perag        *pag,
764         struct xfs_trans        *tp,
765         xfs_extlen_t            *tree_blocks)
766 {
767         struct xfs_buf          *agbp;
768         struct xfs_agi          *agi;
769         int                     error;
770 
771         error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
772         if (error)
773                 return error;
774 
775         agi = agbp->b_addr;
776         *tree_blocks = be32_to_cpu(agi->agi_fblocks);
777         xfs_trans_brelse(tp, agbp);
778         return 0;
779 }
780 
781 /*
782  * Figure out how many blocks to reserve and how many are used by this btree.
783  */
784 int
785 xfs_finobt_calc_reserves(
786         struct xfs_perag        *pag,
787         struct xfs_trans        *tp,
788         xfs_extlen_t            *ask,
789         xfs_extlen_t            *used)
790 {
791         xfs_extlen_t            tree_len = 0;
792         int                     error;
793 
794         if (!xfs_has_finobt(pag->pag_mount))
795                 return 0;
796 
797         if (xfs_has_inobtcounts(pag->pag_mount))
798                 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
799         else
800                 error = xfs_finobt_count_blocks(pag, tp, &tree_len);
801         if (error)
802                 return error;
803 
804         *ask += xfs_inobt_max_size(pag);
805         *used += tree_len;
806         return 0;
807 }
808 
809 /* Calculate the inobt btree size for some records. */
810 xfs_extlen_t
811 xfs_iallocbt_calc_size(
812         struct xfs_mount        *mp,
813         unsigned long long      len)
814 {
815         return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
816 }
817 
818 int __init
819 xfs_inobt_init_cur_cache(void)
820 {
821         xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
822                         xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
823                         0, 0, NULL);
824 
825         if (!xfs_inobt_cur_cache)
826                 return -ENOMEM;
827         return 0;
828 }
829 
830 void
831 xfs_inobt_destroy_cur_cache(void)
832 {
833         kmem_cache_destroy(xfs_inobt_cur_cache);
834         xfs_inobt_cur_cache = NULL;
835 }
836 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php