~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/libxfs/xfs_iext_tree.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2017 Christoph Hellwig.
  4  */
  5 
  6 #include "xfs.h"
  7 #include "xfs_shared.h"
  8 #include "xfs_format.h"
  9 #include "xfs_bit.h"
 10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_mount.h"
 13 #include "xfs_inode.h"
 14 #include "xfs_trace.h"
 15 
 16 /*
 17  * In-core extent record layout:
 18  *
 19  * +-------+----------------------------+
 20  * | 00:53 | all 54 bits of startoff    |
 21  * | 54:63 | low 10 bits of startblock  |
 22  * +-------+----------------------------+
 23  * | 00:20 | all 21 bits of length      |
 24  * |    21 | unwritten extent bit       |
 25  * | 22:63 | high 42 bits of startblock |
 26  * +-------+----------------------------+
 27  */
 28 #define XFS_IEXT_STARTOFF_MASK          xfs_mask64lo(BMBT_STARTOFF_BITLEN)
 29 #define XFS_IEXT_LENGTH_MASK            xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
 30 #define XFS_IEXT_STARTBLOCK_MASK        xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
 31 
 32 struct xfs_iext_rec {
 33         uint64_t                        lo;
 34         uint64_t                        hi;
 35 };
 36 
 37 /*
 38  * Given that the length can't be a zero, only an empty hi value indicates an
 39  * unused record.
 40  */
 41 static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
 42 {
 43         return rec->hi == 0;
 44 }
 45 
 46 static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
 47 {
 48         rec->lo = 0;
 49         rec->hi = 0;
 50 }
 51 
 52 static void
 53 xfs_iext_set(
 54         struct xfs_iext_rec     *rec,
 55         struct xfs_bmbt_irec    *irec)
 56 {
 57         ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
 58         ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
 59         ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
 60 
 61         rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
 62         rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
 63 
 64         rec->lo |= (irec->br_startblock << 54);
 65         rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
 66 
 67         if (irec->br_state == XFS_EXT_UNWRITTEN)
 68                 rec->hi |= (1 << 21);
 69 }
 70 
 71 static void
 72 xfs_iext_get(
 73         struct xfs_bmbt_irec    *irec,
 74         struct xfs_iext_rec     *rec)
 75 {
 76         irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
 77         irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
 78 
 79         irec->br_startblock = rec->lo >> 54;
 80         irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
 81 
 82         if (rec->hi & (1 << 21))
 83                 irec->br_state = XFS_EXT_UNWRITTEN;
 84         else
 85                 irec->br_state = XFS_EXT_NORM;
 86 }
 87 
 88 enum {
 89         NODE_SIZE       = 256,
 90         KEYS_PER_NODE   = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
 91         RECS_PER_LEAF   = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
 92                                 sizeof(struct xfs_iext_rec),
 93 };
 94 
 95 /*
 96  * In-core extent btree block layout:
 97  *
 98  * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
 99  *
100  * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
101  * contain the startoffset, blockcount, startblock and unwritten extent flag.
102  * See above for the exact format, followed by pointers to the previous and next
103  * leaf blocks (if there are any).
104  *
105  * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
106  * by an equal number of pointers to the btree blocks at the next lower level.
107  *
108  *              +-------+-------+-------+-------+-------+----------+----------+
109  * Leaf:        | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
110  *              +-------+-------+-------+-------+-------+----------+----------+
111  *
112  *              +-------+-------+-------+-------+-------+-------+------+-------+
113  * Inner:       | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
114  *              +-------+-------+-------+-------+-------+-------+------+-------+
115  */
116 struct xfs_iext_node {
117         uint64_t                keys[KEYS_PER_NODE];
118 #define XFS_IEXT_KEY_INVALID    (1ULL << 63)
119         void                    *ptrs[KEYS_PER_NODE];
120 };
121 
122 struct xfs_iext_leaf {
123         struct xfs_iext_rec     recs[RECS_PER_LEAF];
124         struct xfs_iext_leaf    *prev;
125         struct xfs_iext_leaf    *next;
126 };
127 
128 inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
129 {
130         return ifp->if_bytes / sizeof(struct xfs_iext_rec);
131 }
132 
133 static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
134 {
135         if (ifp->if_height == 1)
136                 return xfs_iext_count(ifp);
137         return RECS_PER_LEAF;
138 }
139 
140 static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
141 {
142         return &cur->leaf->recs[cur->pos];
143 }
144 
145 static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
146                 struct xfs_iext_cursor *cur)
147 {
148         if (!cur->leaf)
149                 return false;
150         if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
151                 return false;
152         if (xfs_iext_rec_is_empty(cur_rec(cur)))
153                 return false;
154         return true;
155 }
156 
157 static void *
158 xfs_iext_find_first_leaf(
159         struct xfs_ifork        *ifp)
160 {
161         struct xfs_iext_node    *node = ifp->if_data;
162         int                     height;
163 
164         if (!ifp->if_height)
165                 return NULL;
166 
167         for (height = ifp->if_height; height > 1; height--) {
168                 node = node->ptrs[0];
169                 ASSERT(node);
170         }
171 
172         return node;
173 }
174 
175 static void *
176 xfs_iext_find_last_leaf(
177         struct xfs_ifork        *ifp)
178 {
179         struct xfs_iext_node    *node = ifp->if_data;
180         int                     height, i;
181 
182         if (!ifp->if_height)
183                 return NULL;
184 
185         for (height = ifp->if_height; height > 1; height--) {
186                 for (i = 1; i < KEYS_PER_NODE; i++)
187                         if (!node->ptrs[i])
188                                 break;
189                 node = node->ptrs[i - 1];
190                 ASSERT(node);
191         }
192 
193         return node;
194 }
195 
196 void
197 xfs_iext_first(
198         struct xfs_ifork        *ifp,
199         struct xfs_iext_cursor  *cur)
200 {
201         cur->pos = 0;
202         cur->leaf = xfs_iext_find_first_leaf(ifp);
203 }
204 
205 void
206 xfs_iext_last(
207         struct xfs_ifork        *ifp,
208         struct xfs_iext_cursor  *cur)
209 {
210         int                     i;
211 
212         cur->leaf = xfs_iext_find_last_leaf(ifp);
213         if (!cur->leaf) {
214                 cur->pos = 0;
215                 return;
216         }
217 
218         for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
219                 if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
220                         break;
221         }
222         cur->pos = i - 1;
223 }
224 
225 void
226 xfs_iext_next(
227         struct xfs_ifork        *ifp,
228         struct xfs_iext_cursor  *cur)
229 {
230         if (!cur->leaf) {
231                 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
232                 xfs_iext_first(ifp, cur);
233                 return;
234         }
235 
236         ASSERT(cur->pos >= 0);
237         ASSERT(cur->pos < xfs_iext_max_recs(ifp));
238 
239         cur->pos++;
240         if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
241             cur->leaf->next) {
242                 cur->leaf = cur->leaf->next;
243                 cur->pos = 0;
244         }
245 }
246 
247 void
248 xfs_iext_prev(
249         struct xfs_ifork        *ifp,
250         struct xfs_iext_cursor  *cur)
251 {
252         if (!cur->leaf) {
253                 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
254                 xfs_iext_last(ifp, cur);
255                 return;
256         }
257 
258         ASSERT(cur->pos >= 0);
259         ASSERT(cur->pos <= RECS_PER_LEAF);
260 
261 recurse:
262         do {
263                 cur->pos--;
264                 if (xfs_iext_valid(ifp, cur))
265                         return;
266         } while (cur->pos > 0);
267 
268         if (ifp->if_height > 1 && cur->leaf->prev) {
269                 cur->leaf = cur->leaf->prev;
270                 cur->pos = RECS_PER_LEAF;
271                 goto recurse;
272         }
273 }
274 
275 static inline int
276 xfs_iext_key_cmp(
277         struct xfs_iext_node    *node,
278         int                     n,
279         xfs_fileoff_t           offset)
280 {
281         if (node->keys[n] > offset)
282                 return 1;
283         if (node->keys[n] < offset)
284                 return -1;
285         return 0;
286 }
287 
288 static inline int
289 xfs_iext_rec_cmp(
290         struct xfs_iext_rec     *rec,
291         xfs_fileoff_t           offset)
292 {
293         uint64_t                rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
294         uint32_t                rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
295 
296         if (rec_offset > offset)
297                 return 1;
298         if (rec_offset + rec_len <= offset)
299                 return -1;
300         return 0;
301 }
302 
303 static void *
304 xfs_iext_find_level(
305         struct xfs_ifork        *ifp,
306         xfs_fileoff_t           offset,
307         int                     level)
308 {
309         struct xfs_iext_node    *node = ifp->if_data;
310         int                     height, i;
311 
312         if (!ifp->if_height)
313                 return NULL;
314 
315         for (height = ifp->if_height; height > level; height--) {
316                 for (i = 1; i < KEYS_PER_NODE; i++)
317                         if (xfs_iext_key_cmp(node, i, offset) > 0)
318                                 break;
319 
320                 node = node->ptrs[i - 1];
321                 if (!node)
322                         break;
323         }
324 
325         return node;
326 }
327 
328 static int
329 xfs_iext_node_pos(
330         struct xfs_iext_node    *node,
331         xfs_fileoff_t           offset)
332 {
333         int                     i;
334 
335         for (i = 1; i < KEYS_PER_NODE; i++) {
336                 if (xfs_iext_key_cmp(node, i, offset) > 0)
337                         break;
338         }
339 
340         return i - 1;
341 }
342 
343 static int
344 xfs_iext_node_insert_pos(
345         struct xfs_iext_node    *node,
346         xfs_fileoff_t           offset)
347 {
348         int                     i;
349 
350         for (i = 0; i < KEYS_PER_NODE; i++) {
351                 if (xfs_iext_key_cmp(node, i, offset) > 0)
352                         return i;
353         }
354 
355         return KEYS_PER_NODE;
356 }
357 
358 static int
359 xfs_iext_node_nr_entries(
360         struct xfs_iext_node    *node,
361         int                     start)
362 {
363         int                     i;
364 
365         for (i = start; i < KEYS_PER_NODE; i++) {
366                 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
367                         break;
368         }
369 
370         return i;
371 }
372 
373 static int
374 xfs_iext_leaf_nr_entries(
375         struct xfs_ifork        *ifp,
376         struct xfs_iext_leaf    *leaf,
377         int                     start)
378 {
379         int                     i;
380 
381         for (i = start; i < xfs_iext_max_recs(ifp); i++) {
382                 if (xfs_iext_rec_is_empty(&leaf->recs[i]))
383                         break;
384         }
385 
386         return i;
387 }
388 
389 static inline uint64_t
390 xfs_iext_leaf_key(
391         struct xfs_iext_leaf    *leaf,
392         int                     n)
393 {
394         return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
395 }
396 
397 static inline void *
398 xfs_iext_alloc_node(
399         int     size)
400 {
401         return kzalloc(size, GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
402 }
403 
404 static void
405 xfs_iext_grow(
406         struct xfs_ifork        *ifp)
407 {
408         struct xfs_iext_node    *node = xfs_iext_alloc_node(NODE_SIZE);
409         int                     i;
410 
411         if (ifp->if_height == 1) {
412                 struct xfs_iext_leaf *prev = ifp->if_data;
413 
414                 node->keys[0] = xfs_iext_leaf_key(prev, 0);
415                 node->ptrs[0] = prev;
416         } else  {
417                 struct xfs_iext_node *prev = ifp->if_data;
418 
419                 ASSERT(ifp->if_height > 1);
420 
421                 node->keys[0] = prev->keys[0];
422                 node->ptrs[0] = prev;
423         }
424 
425         for (i = 1; i < KEYS_PER_NODE; i++)
426                 node->keys[i] = XFS_IEXT_KEY_INVALID;
427 
428         ifp->if_data = node;
429         ifp->if_height++;
430 }
431 
432 static void
433 xfs_iext_update_node(
434         struct xfs_ifork        *ifp,
435         xfs_fileoff_t           old_offset,
436         xfs_fileoff_t           new_offset,
437         int                     level,
438         void                    *ptr)
439 {
440         struct xfs_iext_node    *node = ifp->if_data;
441         int                     height, i;
442 
443         for (height = ifp->if_height; height > level; height--) {
444                 for (i = 0; i < KEYS_PER_NODE; i++) {
445                         if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
446                                 break;
447                         if (node->keys[i] == old_offset)
448                                 node->keys[i] = new_offset;
449                 }
450                 node = node->ptrs[i - 1];
451                 ASSERT(node);
452         }
453 
454         ASSERT(node == ptr);
455 }
456 
457 static struct xfs_iext_node *
458 xfs_iext_split_node(
459         struct xfs_iext_node    **nodep,
460         int                     *pos,
461         int                     *nr_entries)
462 {
463         struct xfs_iext_node    *node = *nodep;
464         struct xfs_iext_node    *new = xfs_iext_alloc_node(NODE_SIZE);
465         const int               nr_move = KEYS_PER_NODE / 2;
466         int                     nr_keep = nr_move + (KEYS_PER_NODE & 1);
467         int                     i = 0;
468 
469         /* for sequential append operations just spill over into the new node */
470         if (*pos == KEYS_PER_NODE) {
471                 *nodep = new;
472                 *pos = 0;
473                 *nr_entries = 0;
474                 goto done;
475         }
476 
477 
478         for (i = 0; i < nr_move; i++) {
479                 new->keys[i] = node->keys[nr_keep + i];
480                 new->ptrs[i] = node->ptrs[nr_keep + i];
481 
482                 node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
483                 node->ptrs[nr_keep + i] = NULL;
484         }
485 
486         if (*pos >= nr_keep) {
487                 *nodep = new;
488                 *pos -= nr_keep;
489                 *nr_entries = nr_move;
490         } else {
491                 *nr_entries = nr_keep;
492         }
493 done:
494         for (; i < KEYS_PER_NODE; i++)
495                 new->keys[i] = XFS_IEXT_KEY_INVALID;
496         return new;
497 }
498 
499 static void
500 xfs_iext_insert_node(
501         struct xfs_ifork        *ifp,
502         uint64_t                offset,
503         void                    *ptr,
504         int                     level)
505 {
506         struct xfs_iext_node    *node, *new;
507         int                     i, pos, nr_entries;
508 
509 again:
510         if (ifp->if_height < level)
511                 xfs_iext_grow(ifp);
512 
513         new = NULL;
514         node = xfs_iext_find_level(ifp, offset, level);
515         pos = xfs_iext_node_insert_pos(node, offset);
516         nr_entries = xfs_iext_node_nr_entries(node, pos);
517 
518         ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
519         ASSERT(nr_entries <= KEYS_PER_NODE);
520 
521         if (nr_entries == KEYS_PER_NODE)
522                 new = xfs_iext_split_node(&node, &pos, &nr_entries);
523 
524         /*
525          * Update the pointers in higher levels if the first entry changes
526          * in an existing node.
527          */
528         if (node != new && pos == 0 && nr_entries > 0)
529                 xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
530 
531         for (i = nr_entries; i > pos; i--) {
532                 node->keys[i] = node->keys[i - 1];
533                 node->ptrs[i] = node->ptrs[i - 1];
534         }
535         node->keys[pos] = offset;
536         node->ptrs[pos] = ptr;
537 
538         if (new) {
539                 offset = new->keys[0];
540                 ptr = new;
541                 level++;
542                 goto again;
543         }
544 }
545 
546 static struct xfs_iext_leaf *
547 xfs_iext_split_leaf(
548         struct xfs_iext_cursor  *cur,
549         int                     *nr_entries)
550 {
551         struct xfs_iext_leaf    *leaf = cur->leaf;
552         struct xfs_iext_leaf    *new = xfs_iext_alloc_node(NODE_SIZE);
553         const int               nr_move = RECS_PER_LEAF / 2;
554         int                     nr_keep = nr_move + (RECS_PER_LEAF & 1);
555         int                     i;
556 
557         /* for sequential append operations just spill over into the new node */
558         if (cur->pos == RECS_PER_LEAF) {
559                 cur->leaf = new;
560                 cur->pos = 0;
561                 *nr_entries = 0;
562                 goto done;
563         }
564 
565         for (i = 0; i < nr_move; i++) {
566                 new->recs[i] = leaf->recs[nr_keep + i];
567                 xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
568         }
569 
570         if (cur->pos >= nr_keep) {
571                 cur->leaf = new;
572                 cur->pos -= nr_keep;
573                 *nr_entries = nr_move;
574         } else {
575                 *nr_entries = nr_keep;
576         }
577 done:
578         if (leaf->next)
579                 leaf->next->prev = new;
580         new->next = leaf->next;
581         new->prev = leaf;
582         leaf->next = new;
583         return new;
584 }
585 
586 static void
587 xfs_iext_alloc_root(
588         struct xfs_ifork        *ifp,
589         struct xfs_iext_cursor  *cur)
590 {
591         ASSERT(ifp->if_bytes == 0);
592 
593         ifp->if_data = xfs_iext_alloc_node(sizeof(struct xfs_iext_rec));
594         ifp->if_height = 1;
595 
596         /* now that we have a node step into it */
597         cur->leaf = ifp->if_data;
598         cur->pos = 0;
599 }
600 
601 static void
602 xfs_iext_realloc_root(
603         struct xfs_ifork        *ifp,
604         struct xfs_iext_cursor  *cur)
605 {
606         int64_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
607         void *new;
608 
609         /* account for the prev/next pointers */
610         if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
611                 new_size = NODE_SIZE;
612 
613         new = krealloc(ifp->if_data, new_size,
614                         GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
615         memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
616         ifp->if_data = new;
617         cur->leaf = new;
618 }
619 
620 /*
621  * Increment the sequence counter on extent tree changes. If we are on a COW
622  * fork, this allows the writeback code to skip looking for a COW extent if the
623  * COW fork hasn't changed. We use WRITE_ONCE here to ensure the update to the
624  * sequence counter is seen before the modifications to the extent tree itself
625  * take effect.
626  */
627 static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp)
628 {
629         WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1);
630 }
631 
632 void
633 xfs_iext_insert_raw(
634         struct xfs_ifork        *ifp,
635         struct xfs_iext_cursor  *cur,
636         struct xfs_bmbt_irec    *irec)
637 {
638         xfs_fileoff_t           offset = irec->br_startoff;
639         struct xfs_iext_leaf    *new = NULL;
640         int                     nr_entries, i;
641 
642         xfs_iext_inc_seq(ifp);
643 
644         if (ifp->if_height == 0)
645                 xfs_iext_alloc_root(ifp, cur);
646         else if (ifp->if_height == 1)
647                 xfs_iext_realloc_root(ifp, cur);
648 
649         nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
650         ASSERT(nr_entries <= RECS_PER_LEAF);
651         ASSERT(cur->pos >= nr_entries ||
652                xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
653 
654         if (nr_entries == RECS_PER_LEAF)
655                 new = xfs_iext_split_leaf(cur, &nr_entries);
656 
657         /*
658          * Update the pointers in higher levels if the first entry changes
659          * in an existing node.
660          */
661         if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
662                 xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
663                                 offset, 1, cur->leaf);
664         }
665 
666         for (i = nr_entries; i > cur->pos; i--)
667                 cur->leaf->recs[i] = cur->leaf->recs[i - 1];
668         xfs_iext_set(cur_rec(cur), irec);
669         ifp->if_bytes += sizeof(struct xfs_iext_rec);
670 
671         if (new)
672                 xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
673 }
674 
675 void
676 xfs_iext_insert(
677         struct xfs_inode        *ip,
678         struct xfs_iext_cursor  *cur,
679         struct xfs_bmbt_irec    *irec,
680         int                     state)
681 {
682         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
683 
684         xfs_iext_insert_raw(ifp, cur, irec);
685         trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
686 }
687 
688 static struct xfs_iext_node *
689 xfs_iext_rebalance_node(
690         struct xfs_iext_node    *parent,
691         int                     *pos,
692         struct xfs_iext_node    *node,
693         int                     nr_entries)
694 {
695         /*
696          * If the neighbouring nodes are completely full, or have different
697          * parents, we might never be able to merge our node, and will only
698          * delete it once the number of entries hits zero.
699          */
700         if (nr_entries == 0)
701                 return node;
702 
703         if (*pos > 0) {
704                 struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
705                 int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
706 
707                 if (nr_prev + nr_entries <= KEYS_PER_NODE) {
708                         for (i = 0; i < nr_entries; i++) {
709                                 prev->keys[nr_prev + i] = node->keys[i];
710                                 prev->ptrs[nr_prev + i] = node->ptrs[i];
711                         }
712                         return node;
713                 }
714         }
715 
716         if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
717                 struct xfs_iext_node *next = parent->ptrs[*pos + 1];
718                 int nr_next = xfs_iext_node_nr_entries(next, 0), i;
719 
720                 if (nr_entries + nr_next <= KEYS_PER_NODE) {
721                         /*
722                          * Merge the next node into this node so that we don't
723                          * have to do an additional update of the keys in the
724                          * higher levels.
725                          */
726                         for (i = 0; i < nr_next; i++) {
727                                 node->keys[nr_entries + i] = next->keys[i];
728                                 node->ptrs[nr_entries + i] = next->ptrs[i];
729                         }
730 
731                         ++*pos;
732                         return next;
733                 }
734         }
735 
736         return NULL;
737 }
738 
739 static void
740 xfs_iext_remove_node(
741         struct xfs_ifork        *ifp,
742         xfs_fileoff_t           offset,
743         void                    *victim)
744 {
745         struct xfs_iext_node    *node, *parent;
746         int                     level = 2, pos, nr_entries, i;
747 
748         ASSERT(level <= ifp->if_height);
749         node = xfs_iext_find_level(ifp, offset, level);
750         pos = xfs_iext_node_pos(node, offset);
751 again:
752         ASSERT(node->ptrs[pos]);
753         ASSERT(node->ptrs[pos] == victim);
754         kfree(victim);
755 
756         nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
757         offset = node->keys[0];
758         for (i = pos; i < nr_entries; i++) {
759                 node->keys[i] = node->keys[i + 1];
760                 node->ptrs[i] = node->ptrs[i + 1];
761         }
762         node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
763         node->ptrs[nr_entries] = NULL;
764 
765         if (pos == 0 && nr_entries > 0) {
766                 xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
767                 offset = node->keys[0];
768         }
769 
770         if (nr_entries >= KEYS_PER_NODE / 2)
771                 return;
772 
773         if (level < ifp->if_height) {
774                 /*
775                  * If we aren't at the root yet try to find a neighbour node to
776                  * merge with (or delete the node if it is empty), and then
777                  * recurse up to the next level.
778                  */
779                 level++;
780                 parent = xfs_iext_find_level(ifp, offset, level);
781                 pos = xfs_iext_node_pos(parent, offset);
782 
783                 ASSERT(pos != KEYS_PER_NODE);
784                 ASSERT(parent->ptrs[pos] == node);
785 
786                 node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
787                 if (node) {
788                         victim = node;
789                         node = parent;
790                         goto again;
791                 }
792         } else if (nr_entries == 1) {
793                 /*
794                  * If we are at the root and only one entry is left we can just
795                  * free this node and update the root pointer.
796                  */
797                 ASSERT(node == ifp->if_data);
798                 ifp->if_data = node->ptrs[0];
799                 ifp->if_height--;
800                 kfree(node);
801         }
802 }
803 
804 static void
805 xfs_iext_rebalance_leaf(
806         struct xfs_ifork        *ifp,
807         struct xfs_iext_cursor  *cur,
808         struct xfs_iext_leaf    *leaf,
809         xfs_fileoff_t           offset,
810         int                     nr_entries)
811 {
812         /*
813          * If the neighbouring nodes are completely full we might never be able
814          * to merge our node, and will only delete it once the number of
815          * entries hits zero.
816          */
817         if (nr_entries == 0)
818                 goto remove_node;
819 
820         if (leaf->prev) {
821                 int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
822 
823                 if (nr_prev + nr_entries <= RECS_PER_LEAF) {
824                         for (i = 0; i < nr_entries; i++)
825                                 leaf->prev->recs[nr_prev + i] = leaf->recs[i];
826 
827                         if (cur->leaf == leaf) {
828                                 cur->leaf = leaf->prev;
829                                 cur->pos += nr_prev;
830                         }
831                         goto remove_node;
832                 }
833         }
834 
835         if (leaf->next) {
836                 int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
837 
838                 if (nr_entries + nr_next <= RECS_PER_LEAF) {
839                         /*
840                          * Merge the next node into this node so that we don't
841                          * have to do an additional update of the keys in the
842                          * higher levels.
843                          */
844                         for (i = 0; i < nr_next; i++) {
845                                 leaf->recs[nr_entries + i] =
846                                         leaf->next->recs[i];
847                         }
848 
849                         if (cur->leaf == leaf->next) {
850                                 cur->leaf = leaf;
851                                 cur->pos += nr_entries;
852                         }
853 
854                         offset = xfs_iext_leaf_key(leaf->next, 0);
855                         leaf = leaf->next;
856                         goto remove_node;
857                 }
858         }
859 
860         return;
861 remove_node:
862         if (leaf->prev)
863                 leaf->prev->next = leaf->next;
864         if (leaf->next)
865                 leaf->next->prev = leaf->prev;
866         xfs_iext_remove_node(ifp, offset, leaf);
867 }
868 
869 static void
870 xfs_iext_free_last_leaf(
871         struct xfs_ifork        *ifp)
872 {
873         ifp->if_height--;
874         kfree(ifp->if_data);
875         ifp->if_data = NULL;
876 }
877 
878 void
879 xfs_iext_remove(
880         struct xfs_inode        *ip,
881         struct xfs_iext_cursor  *cur,
882         int                     state)
883 {
884         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
885         struct xfs_iext_leaf    *leaf = cur->leaf;
886         xfs_fileoff_t           offset = xfs_iext_leaf_key(leaf, 0);
887         int                     i, nr_entries;
888 
889         trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
890 
891         ASSERT(ifp->if_height > 0);
892         ASSERT(ifp->if_data != NULL);
893         ASSERT(xfs_iext_valid(ifp, cur));
894 
895         xfs_iext_inc_seq(ifp);
896 
897         nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
898         for (i = cur->pos; i < nr_entries; i++)
899                 leaf->recs[i] = leaf->recs[i + 1];
900         xfs_iext_rec_clear(&leaf->recs[nr_entries]);
901         ifp->if_bytes -= sizeof(struct xfs_iext_rec);
902 
903         if (cur->pos == 0 && nr_entries > 0) {
904                 xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
905                                 leaf);
906                 offset = xfs_iext_leaf_key(leaf, 0);
907         } else if (cur->pos == nr_entries) {
908                 if (ifp->if_height > 1 && leaf->next)
909                         cur->leaf = leaf->next;
910                 else
911                         cur->leaf = NULL;
912                 cur->pos = 0;
913         }
914 
915         if (nr_entries >= RECS_PER_LEAF / 2)
916                 return;
917 
918         if (ifp->if_height > 1)
919                 xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
920         else if (nr_entries == 0)
921                 xfs_iext_free_last_leaf(ifp);
922 }
923 
924 /*
925  * Lookup the extent covering bno.
926  *
927  * If there is an extent covering bno return the extent index, and store the
928  * expanded extent structure in *gotp, and the extent cursor in *cur.
929  * If there is no extent covering bno, but there is an extent after it (e.g.
930  * it lies in a hole) return that extent in *gotp and its cursor in *cur
931  * instead.
932  * If bno is beyond the last extent return false, and return an invalid
933  * cursor value.
934  */
935 bool
936 xfs_iext_lookup_extent(
937         struct xfs_inode        *ip,
938         struct xfs_ifork        *ifp,
939         xfs_fileoff_t           offset,
940         struct xfs_iext_cursor  *cur,
941         struct xfs_bmbt_irec    *gotp)
942 {
943         XFS_STATS_INC(ip->i_mount, xs_look_exlist);
944 
945         cur->leaf = xfs_iext_find_level(ifp, offset, 1);
946         if (!cur->leaf) {
947                 cur->pos = 0;
948                 return false;
949         }
950 
951         for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
952                 struct xfs_iext_rec *rec = cur_rec(cur);
953 
954                 if (xfs_iext_rec_is_empty(rec))
955                         break;
956                 if (xfs_iext_rec_cmp(rec, offset) >= 0)
957                         goto found;
958         }
959 
960         /* Try looking in the next node for an entry > offset */
961         if (ifp->if_height == 1 || !cur->leaf->next)
962                 return false;
963         cur->leaf = cur->leaf->next;
964         cur->pos = 0;
965         if (!xfs_iext_valid(ifp, cur))
966                 return false;
967 found:
968         xfs_iext_get(gotp, cur_rec(cur));
969         return true;
970 }
971 
972 /*
973  * Returns the last extent before end, and if this extent doesn't cover
974  * end, update end to the end of the extent.
975  */
976 bool
977 xfs_iext_lookup_extent_before(
978         struct xfs_inode        *ip,
979         struct xfs_ifork        *ifp,
980         xfs_fileoff_t           *end,
981         struct xfs_iext_cursor  *cur,
982         struct xfs_bmbt_irec    *gotp)
983 {
984         /* could be optimized to not even look up the next on a match.. */
985         if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
986             gotp->br_startoff <= *end - 1)
987                 return true;
988         if (!xfs_iext_prev_extent(ifp, cur, gotp))
989                 return false;
990         *end = gotp->br_startoff + gotp->br_blockcount;
991         return true;
992 }
993 
994 void
995 xfs_iext_update_extent(
996         struct xfs_inode        *ip,
997         int                     state,
998         struct xfs_iext_cursor  *cur,
999         struct xfs_bmbt_irec    *new)
1000 {
1001         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
1002 
1003         xfs_iext_inc_seq(ifp);
1004 
1005         if (cur->pos == 0) {
1006                 struct xfs_bmbt_irec    old;
1007 
1008                 xfs_iext_get(&old, cur_rec(cur));
1009                 if (new->br_startoff != old.br_startoff) {
1010                         xfs_iext_update_node(ifp, old.br_startoff,
1011                                         new->br_startoff, 1, cur->leaf);
1012                 }
1013         }
1014 
1015         trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
1016         xfs_iext_set(cur_rec(cur), new);
1017         trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
1018 }
1019 
1020 /*
1021  * Return true if the cursor points at an extent and return the extent structure
1022  * in gotp.  Else return false.
1023  */
1024 bool
1025 xfs_iext_get_extent(
1026         struct xfs_ifork        *ifp,
1027         struct xfs_iext_cursor  *cur,
1028         struct xfs_bmbt_irec    *gotp)
1029 {
1030         if (!xfs_iext_valid(ifp, cur))
1031                 return false;
1032         xfs_iext_get(gotp, cur_rec(cur));
1033         return true;
1034 }
1035 
1036 /*
1037  * This is a recursive function, because of that we need to be extremely
1038  * careful with stack usage.
1039  */
1040 static void
1041 xfs_iext_destroy_node(
1042         struct xfs_iext_node    *node,
1043         int                     level)
1044 {
1045         int                     i;
1046 
1047         if (level > 1) {
1048                 for (i = 0; i < KEYS_PER_NODE; i++) {
1049                         if (node->keys[i] == XFS_IEXT_KEY_INVALID)
1050                                 break;
1051                         xfs_iext_destroy_node(node->ptrs[i], level - 1);
1052                 }
1053         }
1054 
1055         kfree(node);
1056 }
1057 
1058 void
1059 xfs_iext_destroy(
1060         struct xfs_ifork        *ifp)
1061 {
1062         xfs_iext_destroy_node(ifp->if_data, ifp->if_height);
1063 
1064         ifp->if_bytes = 0;
1065         ifp->if_height = 0;
1066         ifp->if_data = NULL;
1067 }
1068 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php