1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 7 #include "xfs.h" 8 #include "xfs_fs.h" 9 #include "xfs_shared.h" 10 #include "xfs_format.h" 11 #include "xfs_log_format.h" 12 #include "xfs_trans_resv.h" 13 #include "xfs_mount.h" 14 #include "xfs_inode.h" 15 #include "xfs_trans.h" 16 #include "xfs_inode_item.h" 17 #include "xfs_btree.h" 18 #include "xfs_bmap_btree.h" 19 #include "xfs_bmap.h" 20 #include "xfs_error.h" 21 #include "xfs_trace.h" 22 #include "xfs_da_format.h" 23 #include "xfs_da_btree.h" 24 #include "xfs_dir2_priv.h" 25 #include "xfs_attr_leaf.h" 26 #include "xfs_types.h" 27 #include "xfs_errortag.h" 28 #include "xfs_health.h" 29 #include "xfs_symlink_remote.h" 30 31 struct kmem_cache *xfs_ifork_cache; 32 33 void 34 xfs_init_local_fork( 35 struct xfs_inode *ip, 36 int whichfork, 37 const void *data, 38 int64_t size) 39 { 40 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 41 int mem_size = size; 42 bool zero_terminate; 43 44 /* 45 * If we are using the local fork to store a symlink body we need to 46 * zero-terminate it so that we can pass it back to the VFS directly. 47 * Overallocate the in-memory fork by one for that and add a zero 48 * to terminate it below. 49 */ 50 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode); 51 if (zero_terminate) 52 mem_size++; 53 54 if (size) { 55 char *new_data = kmalloc(mem_size, 56 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 57 58 memcpy(new_data, data, size); 59 if (zero_terminate) 60 new_data[size] = '\0'; 61 62 ifp->if_data = new_data; 63 } else { 64 ifp->if_data = NULL; 65 } 66 67 ifp->if_bytes = size; 68 } 69 70 /* 71 * The file is in-lined in the on-disk inode. 72 */ 73 STATIC int 74 xfs_iformat_local( 75 struct xfs_inode *ip, 76 struct xfs_dinode *dip, 77 int whichfork, 78 int size) 79 { 80 /* 81 * If the size is unreasonable, then something 82 * is wrong and we just bail out rather than crash in 83 * kmalloc() or memcpy() below. 84 */ 85 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) { 86 xfs_warn(ip->i_mount, 87 "corrupt inode %llu (bad size %d for local fork, size = %zd).", 88 (unsigned long long) ip->i_ino, size, 89 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)); 90 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 91 "xfs_iformat_local", dip, sizeof(*dip), 92 __this_address); 93 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 94 return -EFSCORRUPTED; 95 } 96 97 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size); 98 return 0; 99 } 100 101 /* 102 * The file consists of a set of extents all of which fit into the on-disk 103 * inode. 104 */ 105 STATIC int 106 xfs_iformat_extents( 107 struct xfs_inode *ip, 108 struct xfs_dinode *dip, 109 int whichfork) 110 { 111 struct xfs_mount *mp = ip->i_mount; 112 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 113 int state = xfs_bmap_fork_to_state(whichfork); 114 xfs_extnum_t nex = xfs_dfork_nextents(dip, whichfork); 115 int size = nex * sizeof(xfs_bmbt_rec_t); 116 struct xfs_iext_cursor icur; 117 struct xfs_bmbt_rec *dp; 118 struct xfs_bmbt_irec new; 119 int i; 120 121 /* 122 * If the number of extents is unreasonable, then something is wrong and 123 * we just bail out rather than crash in kmalloc() or memcpy() below. 124 */ 125 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) { 126 xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).", 127 ip->i_ino, nex); 128 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 129 "xfs_iformat_extents(1)", dip, sizeof(*dip), 130 __this_address); 131 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 132 return -EFSCORRUPTED; 133 } 134 135 ifp->if_bytes = 0; 136 ifp->if_data = NULL; 137 ifp->if_height = 0; 138 if (size) { 139 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork); 140 141 xfs_iext_first(ifp, &icur); 142 for (i = 0; i < nex; i++, dp++) { 143 xfs_failaddr_t fa; 144 145 xfs_bmbt_disk_get_all(dp, &new); 146 fa = xfs_bmap_validate_extent(ip, whichfork, &new); 147 if (fa) { 148 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 149 "xfs_iformat_extents(2)", 150 dp, sizeof(*dp), fa); 151 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 152 return xfs_bmap_complain_bad_rec(ip, whichfork, 153 fa, &new); 154 } 155 156 xfs_iext_insert(ip, &icur, &new, state); 157 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_); 158 xfs_iext_next(ifp, &icur); 159 } 160 } 161 return 0; 162 } 163 164 /* 165 * The file has too many extents to fit into 166 * the inode, so they are in B-tree format. 167 * Allocate a buffer for the root of the B-tree 168 * and copy the root into it. The i_extents 169 * field will remain NULL until all of the 170 * extents are read in (when they are needed). 171 */ 172 STATIC int 173 xfs_iformat_btree( 174 struct xfs_inode *ip, 175 struct xfs_dinode *dip, 176 int whichfork) 177 { 178 struct xfs_mount *mp = ip->i_mount; 179 xfs_bmdr_block_t *dfp; 180 struct xfs_ifork *ifp; 181 /* REFERENCED */ 182 int nrecs; 183 int size; 184 int level; 185 186 ifp = xfs_ifork_ptr(ip, whichfork); 187 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork); 188 size = XFS_BMAP_BROOT_SPACE(mp, dfp); 189 nrecs = be16_to_cpu(dfp->bb_numrecs); 190 level = be16_to_cpu(dfp->bb_level); 191 192 /* 193 * blow out if -- fork has less extents than can fit in 194 * fork (fork shouldn't be a btree format), root btree 195 * block has more records than can fit into the fork, 196 * or the number of extents is greater than the number of 197 * blocks. 198 */ 199 if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) || 200 nrecs == 0 || 201 XFS_BMDR_SPACE_CALC(nrecs) > 202 XFS_DFORK_SIZE(dip, mp, whichfork) || 203 ifp->if_nextents > ip->i_nblocks) || 204 level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) { 205 xfs_warn(mp, "corrupt inode %llu (btree).", 206 (unsigned long long) ip->i_ino); 207 xfs_inode_verifier_error(ip, -EFSCORRUPTED, 208 "xfs_iformat_btree", dfp, size, 209 __this_address); 210 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 211 return -EFSCORRUPTED; 212 } 213 214 ifp->if_broot_bytes = size; 215 ifp->if_broot = kmalloc(size, 216 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 217 ASSERT(ifp->if_broot != NULL); 218 /* 219 * Copy and convert from the on-disk structure 220 * to the in-memory structure. 221 */ 222 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork), 223 ifp->if_broot, size); 224 225 ifp->if_bytes = 0; 226 ifp->if_data = NULL; 227 ifp->if_height = 0; 228 return 0; 229 } 230 231 int 232 xfs_iformat_data_fork( 233 struct xfs_inode *ip, 234 struct xfs_dinode *dip) 235 { 236 struct inode *inode = VFS_I(ip); 237 int error; 238 239 /* 240 * Initialize the extent count early, as the per-format routines may 241 * depend on it. Use release semantics to set needextents /after/ we 242 * set the format. This ensures that we can use acquire semantics on 243 * needextents in xfs_need_iread_extents() and be guaranteed to see a 244 * valid format value after that load. 245 */ 246 ip->i_df.if_format = dip->di_format; 247 ip->i_df.if_nextents = xfs_dfork_data_extents(dip); 248 smp_store_release(&ip->i_df.if_needextents, 249 ip->i_df.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0); 250 251 switch (inode->i_mode & S_IFMT) { 252 case S_IFIFO: 253 case S_IFCHR: 254 case S_IFBLK: 255 case S_IFSOCK: 256 ip->i_disk_size = 0; 257 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip)); 258 return 0; 259 case S_IFREG: 260 case S_IFLNK: 261 case S_IFDIR: 262 switch (ip->i_df.if_format) { 263 case XFS_DINODE_FMT_LOCAL: 264 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, 265 be64_to_cpu(dip->di_size)); 266 if (!error) 267 error = xfs_ifork_verify_local_data(ip); 268 return error; 269 case XFS_DINODE_FMT_EXTENTS: 270 return xfs_iformat_extents(ip, dip, XFS_DATA_FORK); 271 case XFS_DINODE_FMT_BTREE: 272 return xfs_iformat_btree(ip, dip, XFS_DATA_FORK); 273 default: 274 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, 275 dip, sizeof(*dip), __this_address); 276 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 277 return -EFSCORRUPTED; 278 } 279 break; 280 default: 281 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip, 282 sizeof(*dip), __this_address); 283 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 284 return -EFSCORRUPTED; 285 } 286 } 287 288 static uint16_t 289 xfs_dfork_attr_shortform_size( 290 struct xfs_dinode *dip) 291 { 292 struct xfs_attr_sf_hdr *sf = XFS_DFORK_APTR(dip); 293 294 return be16_to_cpu(sf->totsize); 295 } 296 297 void 298 xfs_ifork_init_attr( 299 struct xfs_inode *ip, 300 enum xfs_dinode_fmt format, 301 xfs_extnum_t nextents) 302 { 303 /* 304 * Initialize the extent count early, as the per-format routines may 305 * depend on it. Use release semantics to set needextents /after/ we 306 * set the format. This ensures that we can use acquire semantics on 307 * needextents in xfs_need_iread_extents() and be guaranteed to see a 308 * valid format value after that load. 309 */ 310 ip->i_af.if_format = format; 311 ip->i_af.if_nextents = nextents; 312 smp_store_release(&ip->i_af.if_needextents, 313 ip->i_af.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0); 314 } 315 316 void 317 xfs_ifork_zap_attr( 318 struct xfs_inode *ip) 319 { 320 xfs_idestroy_fork(&ip->i_af); 321 memset(&ip->i_af, 0, sizeof(struct xfs_ifork)); 322 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS; 323 } 324 325 int 326 xfs_iformat_attr_fork( 327 struct xfs_inode *ip, 328 struct xfs_dinode *dip) 329 { 330 xfs_extnum_t naextents = xfs_dfork_attr_extents(dip); 331 int error = 0; 332 333 /* 334 * Initialize the extent count early, as the per-format routines may 335 * depend on it. 336 */ 337 xfs_ifork_init_attr(ip, dip->di_aformat, naextents); 338 339 switch (ip->i_af.if_format) { 340 case XFS_DINODE_FMT_LOCAL: 341 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, 342 xfs_dfork_attr_shortform_size(dip)); 343 if (!error) 344 error = xfs_ifork_verify_local_attr(ip); 345 break; 346 case XFS_DINODE_FMT_EXTENTS: 347 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK); 348 break; 349 case XFS_DINODE_FMT_BTREE: 350 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK); 351 break; 352 default: 353 xfs_inode_verifier_error(ip, error, __func__, dip, 354 sizeof(*dip), __this_address); 355 xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE); 356 error = -EFSCORRUPTED; 357 break; 358 } 359 360 if (error) 361 xfs_ifork_zap_attr(ip); 362 return error; 363 } 364 365 /* 366 * Reallocate the space for if_broot based on the number of records 367 * being added or deleted as indicated in rec_diff. Move the records 368 * and pointers in if_broot to fit the new size. When shrinking this 369 * will eliminate holes between the records and pointers created by 370 * the caller. When growing this will create holes to be filled in 371 * by the caller. 372 * 373 * The caller must not request to add more records than would fit in 374 * the on-disk inode root. If the if_broot is currently NULL, then 375 * if we are adding records, one will be allocated. The caller must also 376 * not request that the number of records go below zero, although 377 * it can go to zero. 378 * 379 * ip -- the inode whose if_broot area is changing 380 * ext_diff -- the change in the number of records, positive or negative, 381 * requested for the if_broot array. 382 */ 383 void 384 xfs_iroot_realloc( 385 xfs_inode_t *ip, 386 int rec_diff, 387 int whichfork) 388 { 389 struct xfs_mount *mp = ip->i_mount; 390 int cur_max; 391 struct xfs_ifork *ifp; 392 struct xfs_btree_block *new_broot; 393 int new_max; 394 size_t new_size; 395 char *np; 396 char *op; 397 398 /* 399 * Handle the degenerate case quietly. 400 */ 401 if (rec_diff == 0) { 402 return; 403 } 404 405 ifp = xfs_ifork_ptr(ip, whichfork); 406 if (rec_diff > 0) { 407 /* 408 * If there wasn't any memory allocated before, just 409 * allocate it now and get out. 410 */ 411 if (ifp->if_broot_bytes == 0) { 412 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff); 413 ifp->if_broot = kmalloc(new_size, 414 GFP_KERNEL | __GFP_NOFAIL); 415 ifp->if_broot_bytes = (int)new_size; 416 return; 417 } 418 419 /* 420 * If there is already an existing if_broot, then we need 421 * to realloc() it and shift the pointers to their new 422 * location. The records don't change location because 423 * they are kept butted up against the btree block header. 424 */ 425 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 426 new_max = cur_max + rec_diff; 427 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 428 ifp->if_broot = krealloc(ifp->if_broot, new_size, 429 GFP_KERNEL | __GFP_NOFAIL); 430 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 431 ifp->if_broot_bytes); 432 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 433 (int)new_size); 434 ifp->if_broot_bytes = (int)new_size; 435 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 436 xfs_inode_fork_size(ip, whichfork)); 437 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t)); 438 return; 439 } 440 441 /* 442 * rec_diff is less than 0. In this case, we are shrinking the 443 * if_broot buffer. It must already exist. If we go to zero 444 * records, just get rid of the root and clear the status bit. 445 */ 446 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0)); 447 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); 448 new_max = cur_max + rec_diff; 449 ASSERT(new_max >= 0); 450 if (new_max > 0) 451 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); 452 else 453 new_size = 0; 454 if (new_size > 0) { 455 new_broot = kmalloc(new_size, GFP_KERNEL | __GFP_NOFAIL); 456 /* 457 * First copy over the btree block header. 458 */ 459 memcpy(new_broot, ifp->if_broot, 460 XFS_BMBT_BLOCK_LEN(ip->i_mount)); 461 } else { 462 new_broot = NULL; 463 } 464 465 /* 466 * Only copy the records and pointers if there are any. 467 */ 468 if (new_max > 0) { 469 /* 470 * First copy the records. 471 */ 472 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1); 473 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1); 474 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t)); 475 476 /* 477 * Then copy the pointers. 478 */ 479 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, 480 ifp->if_broot_bytes); 481 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1, 482 (int)new_size); 483 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t)); 484 } 485 kfree(ifp->if_broot); 486 ifp->if_broot = new_broot; 487 ifp->if_broot_bytes = (int)new_size; 488 if (ifp->if_broot) 489 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 490 xfs_inode_fork_size(ip, whichfork)); 491 return; 492 } 493 494 495 /* 496 * This is called when the amount of space needed for if_data 497 * is increased or decreased. The change in size is indicated by 498 * the number of bytes that need to be added or deleted in the 499 * byte_diff parameter. 500 * 501 * If the amount of space needed has decreased below the size of the 502 * inline buffer, then switch to using the inline buffer. Otherwise, 503 * use krealloc() or kmalloc() to adjust the size of the buffer 504 * to what is needed. 505 * 506 * ip -- the inode whose if_data area is changing 507 * byte_diff -- the change in the number of bytes, positive or negative, 508 * requested for the if_data array. 509 */ 510 void * 511 xfs_idata_realloc( 512 struct xfs_inode *ip, 513 int64_t byte_diff, 514 int whichfork) 515 { 516 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 517 int64_t new_size = ifp->if_bytes + byte_diff; 518 519 ASSERT(new_size >= 0); 520 ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork)); 521 522 if (byte_diff) { 523 ifp->if_data = krealloc(ifp->if_data, new_size, 524 GFP_KERNEL | __GFP_NOFAIL); 525 if (new_size == 0) 526 ifp->if_data = NULL; 527 ifp->if_bytes = new_size; 528 } 529 530 return ifp->if_data; 531 } 532 533 /* Free all memory and reset a fork back to its initial state. */ 534 void 535 xfs_idestroy_fork( 536 struct xfs_ifork *ifp) 537 { 538 if (ifp->if_broot != NULL) { 539 kfree(ifp->if_broot); 540 ifp->if_broot = NULL; 541 } 542 543 switch (ifp->if_format) { 544 case XFS_DINODE_FMT_LOCAL: 545 kfree(ifp->if_data); 546 ifp->if_data = NULL; 547 break; 548 case XFS_DINODE_FMT_EXTENTS: 549 case XFS_DINODE_FMT_BTREE: 550 if (ifp->if_height) 551 xfs_iext_destroy(ifp); 552 break; 553 } 554 } 555 556 /* 557 * Convert in-core extents to on-disk form 558 * 559 * In the case of the data fork, the in-core and on-disk fork sizes can be 560 * different due to delayed allocation extents. We only copy on-disk extents 561 * here, so callers must always use the physical fork size to determine the 562 * size of the buffer passed to this routine. We will return the size actually 563 * used. 564 */ 565 int 566 xfs_iextents_copy( 567 struct xfs_inode *ip, 568 struct xfs_bmbt_rec *dp, 569 int whichfork) 570 { 571 int state = xfs_bmap_fork_to_state(whichfork); 572 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 573 struct xfs_iext_cursor icur; 574 struct xfs_bmbt_irec rec; 575 int64_t copied = 0; 576 577 xfs_assert_ilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED); 578 ASSERT(ifp->if_bytes > 0); 579 580 for_each_xfs_iext(ifp, &icur, &rec) { 581 if (isnullstartblock(rec.br_startblock)) 582 continue; 583 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL); 584 xfs_bmbt_disk_set_all(dp, &rec); 585 trace_xfs_write_extent(ip, &icur, state, _RET_IP_); 586 copied += sizeof(struct xfs_bmbt_rec); 587 dp++; 588 } 589 590 ASSERT(copied > 0); 591 ASSERT(copied <= ifp->if_bytes); 592 return copied; 593 } 594 595 /* 596 * Each of the following cases stores data into the same region 597 * of the on-disk inode, so only one of them can be valid at 598 * any given time. While it is possible to have conflicting formats 599 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is 600 * in EXTENTS format, this can only happen when the fork has 601 * changed formats after being modified but before being flushed. 602 * In these cases, the format always takes precedence, because the 603 * format indicates the current state of the fork. 604 */ 605 void 606 xfs_iflush_fork( 607 struct xfs_inode *ip, 608 struct xfs_dinode *dip, 609 struct xfs_inode_log_item *iip, 610 int whichfork) 611 { 612 char *cp; 613 struct xfs_ifork *ifp; 614 xfs_mount_t *mp; 615 static const short brootflag[2] = 616 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT }; 617 static const short dataflag[2] = 618 { XFS_ILOG_DDATA, XFS_ILOG_ADATA }; 619 static const short extflag[2] = 620 { XFS_ILOG_DEXT, XFS_ILOG_AEXT }; 621 622 if (!iip) 623 return; 624 ifp = xfs_ifork_ptr(ip, whichfork); 625 /* 626 * This can happen if we gave up in iformat in an error path, 627 * for the attribute fork. 628 */ 629 if (!ifp) { 630 ASSERT(whichfork == XFS_ATTR_FORK); 631 return; 632 } 633 cp = XFS_DFORK_PTR(dip, whichfork); 634 mp = ip->i_mount; 635 switch (ifp->if_format) { 636 case XFS_DINODE_FMT_LOCAL: 637 if ((iip->ili_fields & dataflag[whichfork]) && 638 (ifp->if_bytes > 0)) { 639 ASSERT(ifp->if_data != NULL); 640 ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork)); 641 memcpy(cp, ifp->if_data, ifp->if_bytes); 642 } 643 break; 644 645 case XFS_DINODE_FMT_EXTENTS: 646 if ((iip->ili_fields & extflag[whichfork]) && 647 (ifp->if_bytes > 0)) { 648 ASSERT(ifp->if_nextents > 0); 649 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp, 650 whichfork); 651 } 652 break; 653 654 case XFS_DINODE_FMT_BTREE: 655 if ((iip->ili_fields & brootflag[whichfork]) && 656 (ifp->if_broot_bytes > 0)) { 657 ASSERT(ifp->if_broot != NULL); 658 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <= 659 xfs_inode_fork_size(ip, whichfork)); 660 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes, 661 (xfs_bmdr_block_t *)cp, 662 XFS_DFORK_SIZE(dip, mp, whichfork)); 663 } 664 break; 665 666 case XFS_DINODE_FMT_DEV: 667 if (iip->ili_fields & XFS_ILOG_DEV) { 668 ASSERT(whichfork == XFS_DATA_FORK); 669 xfs_dinode_put_rdev(dip, 670 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev)); 671 } 672 break; 673 674 default: 675 ASSERT(0); 676 break; 677 } 678 } 679 680 /* Convert bmap state flags to an inode fork. */ 681 struct xfs_ifork * 682 xfs_iext_state_to_fork( 683 struct xfs_inode *ip, 684 int state) 685 { 686 if (state & BMAP_COWFORK) 687 return ip->i_cowfp; 688 else if (state & BMAP_ATTRFORK) 689 return &ip->i_af; 690 return &ip->i_df; 691 } 692 693 /* 694 * Initialize an inode's copy-on-write fork. 695 */ 696 void 697 xfs_ifork_init_cow( 698 struct xfs_inode *ip) 699 { 700 if (ip->i_cowfp) 701 return; 702 703 ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache, 704 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 705 ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS; 706 } 707 708 /* Verify the inline contents of the data fork of an inode. */ 709 int 710 xfs_ifork_verify_local_data( 711 struct xfs_inode *ip) 712 { 713 xfs_failaddr_t fa = NULL; 714 715 switch (VFS_I(ip)->i_mode & S_IFMT) { 716 case S_IFDIR: { 717 struct xfs_mount *mp = ip->i_mount; 718 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 719 struct xfs_dir2_sf_hdr *sfp = ifp->if_data; 720 721 fa = xfs_dir2_sf_verify(mp, sfp, ifp->if_bytes); 722 break; 723 } 724 case S_IFLNK: { 725 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK); 726 727 fa = xfs_symlink_shortform_verify(ifp->if_data, ifp->if_bytes); 728 break; 729 } 730 default: 731 break; 732 } 733 734 if (fa) { 735 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork", 736 ip->i_df.if_data, ip->i_df.if_bytes, fa); 737 return -EFSCORRUPTED; 738 } 739 740 return 0; 741 } 742 743 /* Verify the inline contents of the attr fork of an inode. */ 744 int 745 xfs_ifork_verify_local_attr( 746 struct xfs_inode *ip) 747 { 748 struct xfs_ifork *ifp = &ip->i_af; 749 xfs_failaddr_t fa; 750 751 if (!xfs_inode_has_attr_fork(ip)) { 752 fa = __this_address; 753 } else { 754 struct xfs_ifork *ifp = &ip->i_af; 755 756 ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL); 757 fa = xfs_attr_shortform_verify(ifp->if_data, ifp->if_bytes); 758 } 759 if (fa) { 760 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork", 761 ifp->if_data, ifp->if_bytes, fa); 762 return -EFSCORRUPTED; 763 } 764 765 return 0; 766 } 767 768 /* 769 * Check if the inode fork supports adding nr_to_add more extents. 770 * 771 * If it doesn't but we can upgrade it to large extent counters, do the upgrade. 772 * If we can't upgrade or are already using big counters but still can't fit the 773 * additional extents, return -EFBIG. 774 */ 775 int 776 xfs_iext_count_extend( 777 struct xfs_trans *tp, 778 struct xfs_inode *ip, 779 int whichfork, 780 uint nr_to_add) 781 { 782 struct xfs_mount *mp = ip->i_mount; 783 bool has_large = 784 xfs_inode_has_large_extent_counts(ip); 785 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork); 786 uint64_t nr_exts; 787 788 ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR); 789 790 if (whichfork == XFS_COW_FORK) 791 return 0; 792 793 /* no point in upgrading if if_nextents overflows */ 794 nr_exts = ifp->if_nextents + nr_to_add; 795 if (nr_exts < ifp->if_nextents) 796 return -EFBIG; 797 798 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_REDUCE_MAX_IEXTENTS) && 799 nr_exts > 10) 800 return -EFBIG; 801 802 if (nr_exts > xfs_iext_max_nextents(has_large, whichfork)) { 803 if (has_large || !xfs_has_large_extent_counts(mp)) 804 return -EFBIG; 805 ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; 806 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 807 } 808 return 0; 809 } 810 811 /* Decide if a file mapping is on the realtime device or not. */ 812 bool 813 xfs_ifork_is_realtime( 814 struct xfs_inode *ip, 815 int whichfork) 816 { 817 return XFS_IS_REALTIME_INODE(ip) && whichfork != XFS_ATTR_FORK; 818 } 819
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.