1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_alloc.h" 17 #include "xfs_alloc_btree.h" 18 #include "xfs_ialloc.h" 19 #include "xfs_ialloc_btree.h" 20 #include "xfs_rmap.h" 21 #include "xfs_rmap_btree.h" 22 #include "xfs_refcount_btree.h" 23 #include "xfs_ag.h" 24 #include "xfs_inode.h" 25 #include "xfs_iunlink_item.h" 26 #include "scrub/scrub.h" 27 #include "scrub/common.h" 28 #include "scrub/trace.h" 29 #include "scrub/repair.h" 30 #include "scrub/bitmap.h" 31 #include "scrub/agb_bitmap.h" 32 #include "scrub/agino_bitmap.h" 33 #include "scrub/reap.h" 34 #include "scrub/xfile.h" 35 #include "scrub/xfarray.h" 36 37 /* Superblock */ 38 39 /* Repair the superblock. */ 40 int 41 xrep_superblock( 42 struct xfs_scrub *sc) 43 { 44 struct xfs_mount *mp = sc->mp; 45 struct xfs_buf *bp; 46 xfs_agnumber_t agno; 47 int error; 48 49 /* Don't try to repair AG 0's sb; let xfs_repair deal with it. */ 50 agno = sc->sm->sm_agno; 51 if (agno == 0) 52 return -EOPNOTSUPP; 53 54 error = xfs_sb_get_secondary(mp, sc->tp, agno, &bp); 55 if (error) 56 return error; 57 58 /* Last chance to abort before we start committing fixes. */ 59 if (xchk_should_terminate(sc, &error)) 60 return error; 61 62 /* Copy AG 0's superblock to this one. */ 63 xfs_buf_zero(bp, 0, BBTOB(bp->b_length)); 64 xfs_sb_to_disk(bp->b_addr, &mp->m_sb); 65 66 /* 67 * Don't write out a secondary super with NEEDSREPAIR or log incompat 68 * features set, since both are ignored when set on a secondary. 69 */ 70 if (xfs_has_crc(mp)) { 71 struct xfs_dsb *sb = bp->b_addr; 72 73 sb->sb_features_incompat &= 74 ~cpu_to_be32(XFS_SB_FEAT_INCOMPAT_NEEDSREPAIR); 75 sb->sb_features_log_incompat = 0; 76 } 77 78 /* Write this to disk. */ 79 xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF); 80 xfs_trans_log_buf(sc->tp, bp, 0, BBTOB(bp->b_length) - 1); 81 return 0; 82 } 83 84 /* AGF */ 85 86 struct xrep_agf_allocbt { 87 struct xfs_scrub *sc; 88 xfs_agblock_t freeblks; 89 xfs_agblock_t longest; 90 }; 91 92 /* Record free space shape information. */ 93 STATIC int 94 xrep_agf_walk_allocbt( 95 struct xfs_btree_cur *cur, 96 const struct xfs_alloc_rec_incore *rec, 97 void *priv) 98 { 99 struct xrep_agf_allocbt *raa = priv; 100 int error = 0; 101 102 if (xchk_should_terminate(raa->sc, &error)) 103 return error; 104 105 raa->freeblks += rec->ar_blockcount; 106 if (rec->ar_blockcount > raa->longest) 107 raa->longest = rec->ar_blockcount; 108 return error; 109 } 110 111 /* Does this AGFL block look sane? */ 112 STATIC int 113 xrep_agf_check_agfl_block( 114 struct xfs_mount *mp, 115 xfs_agblock_t agbno, 116 void *priv) 117 { 118 struct xfs_scrub *sc = priv; 119 120 if (!xfs_verify_agbno(sc->sa.pag, agbno)) 121 return -EFSCORRUPTED; 122 return 0; 123 } 124 125 /* 126 * Offset within the xrep_find_ag_btree array for each btree type. Avoid the 127 * XFS_BTNUM_ names here to avoid creating a sparse array. 128 */ 129 enum { 130 XREP_AGF_BNOBT = 0, 131 XREP_AGF_CNTBT, 132 XREP_AGF_RMAPBT, 133 XREP_AGF_REFCOUNTBT, 134 XREP_AGF_END, 135 XREP_AGF_MAX 136 }; 137 138 /* Check a btree root candidate. */ 139 static inline bool 140 xrep_check_btree_root( 141 struct xfs_scrub *sc, 142 struct xrep_find_ag_btree *fab) 143 { 144 return xfs_verify_agbno(sc->sa.pag, fab->root) && 145 fab->height <= fab->maxlevels; 146 } 147 148 /* 149 * Given the btree roots described by *fab, find the roots, check them for 150 * sanity, and pass the root data back out via *fab. 151 * 152 * This is /also/ a chicken and egg problem because we have to use the rmapbt 153 * (rooted in the AGF) to find the btrees rooted in the AGF. We also have no 154 * idea if the btrees make any sense. If we hit obvious corruptions in those 155 * btrees we'll bail out. 156 */ 157 STATIC int 158 xrep_agf_find_btrees( 159 struct xfs_scrub *sc, 160 struct xfs_buf *agf_bp, 161 struct xrep_find_ag_btree *fab, 162 struct xfs_buf *agfl_bp) 163 { 164 struct xfs_agf *old_agf = agf_bp->b_addr; 165 int error; 166 167 /* Go find the root data. */ 168 error = xrep_find_ag_btree_roots(sc, agf_bp, fab, agfl_bp); 169 if (error) 170 return error; 171 172 /* We must find the bnobt, cntbt, and rmapbt roots. */ 173 if (!xrep_check_btree_root(sc, &fab[XREP_AGF_BNOBT]) || 174 !xrep_check_btree_root(sc, &fab[XREP_AGF_CNTBT]) || 175 !xrep_check_btree_root(sc, &fab[XREP_AGF_RMAPBT])) 176 return -EFSCORRUPTED; 177 178 /* 179 * We relied on the rmapbt to reconstruct the AGF. If we get a 180 * different root then something's seriously wrong. 181 */ 182 if (fab[XREP_AGF_RMAPBT].root != be32_to_cpu(old_agf->agf_rmap_root)) 183 return -EFSCORRUPTED; 184 185 /* We must find the refcountbt root if that feature is enabled. */ 186 if (xfs_has_reflink(sc->mp) && 187 !xrep_check_btree_root(sc, &fab[XREP_AGF_REFCOUNTBT])) 188 return -EFSCORRUPTED; 189 190 return 0; 191 } 192 193 /* 194 * Reinitialize the AGF header, making an in-core copy of the old contents so 195 * that we know which in-core state needs to be reinitialized. 196 */ 197 STATIC void 198 xrep_agf_init_header( 199 struct xfs_scrub *sc, 200 struct xfs_buf *agf_bp, 201 struct xfs_agf *old_agf) 202 { 203 struct xfs_mount *mp = sc->mp; 204 struct xfs_perag *pag = sc->sa.pag; 205 struct xfs_agf *agf = agf_bp->b_addr; 206 207 memcpy(old_agf, agf, sizeof(*old_agf)); 208 memset(agf, 0, BBTOB(agf_bp->b_length)); 209 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC); 210 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION); 211 agf->agf_seqno = cpu_to_be32(pag->pag_agno); 212 agf->agf_length = cpu_to_be32(pag->block_count); 213 agf->agf_flfirst = old_agf->agf_flfirst; 214 agf->agf_fllast = old_agf->agf_fllast; 215 agf->agf_flcount = old_agf->agf_flcount; 216 if (xfs_has_crc(mp)) 217 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid); 218 219 /* Mark the incore AGF data stale until we're done fixing things. */ 220 ASSERT(xfs_perag_initialised_agf(pag)); 221 clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 222 } 223 224 /* Set btree root information in an AGF. */ 225 STATIC void 226 xrep_agf_set_roots( 227 struct xfs_scrub *sc, 228 struct xfs_agf *agf, 229 struct xrep_find_ag_btree *fab) 230 { 231 agf->agf_bno_root = cpu_to_be32(fab[XREP_AGF_BNOBT].root); 232 agf->agf_bno_level = cpu_to_be32(fab[XREP_AGF_BNOBT].height); 233 234 agf->agf_cnt_root = cpu_to_be32(fab[XREP_AGF_CNTBT].root); 235 agf->agf_cnt_level = cpu_to_be32(fab[XREP_AGF_CNTBT].height); 236 237 agf->agf_rmap_root = cpu_to_be32(fab[XREP_AGF_RMAPBT].root); 238 agf->agf_rmap_level = cpu_to_be32(fab[XREP_AGF_RMAPBT].height); 239 240 if (xfs_has_reflink(sc->mp)) { 241 agf->agf_refcount_root = 242 cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].root); 243 agf->agf_refcount_level = 244 cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].height); 245 } 246 } 247 248 /* Update all AGF fields which derive from btree contents. */ 249 STATIC int 250 xrep_agf_calc_from_btrees( 251 struct xfs_scrub *sc, 252 struct xfs_buf *agf_bp) 253 { 254 struct xrep_agf_allocbt raa = { .sc = sc }; 255 struct xfs_btree_cur *cur = NULL; 256 struct xfs_agf *agf = agf_bp->b_addr; 257 struct xfs_mount *mp = sc->mp; 258 xfs_agblock_t btreeblks; 259 xfs_agblock_t blocks; 260 int error; 261 262 /* Update the AGF counters from the bnobt. */ 263 cur = xfs_bnobt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 264 error = xfs_alloc_query_all(cur, xrep_agf_walk_allocbt, &raa); 265 if (error) 266 goto err; 267 error = xfs_btree_count_blocks(cur, &blocks); 268 if (error) 269 goto err; 270 xfs_btree_del_cursor(cur, error); 271 btreeblks = blocks - 1; 272 agf->agf_freeblks = cpu_to_be32(raa.freeblks); 273 agf->agf_longest = cpu_to_be32(raa.longest); 274 275 /* Update the AGF counters from the cntbt. */ 276 cur = xfs_cntbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 277 error = xfs_btree_count_blocks(cur, &blocks); 278 if (error) 279 goto err; 280 xfs_btree_del_cursor(cur, error); 281 btreeblks += blocks - 1; 282 283 /* Update the AGF counters from the rmapbt. */ 284 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 285 error = xfs_btree_count_blocks(cur, &blocks); 286 if (error) 287 goto err; 288 xfs_btree_del_cursor(cur, error); 289 agf->agf_rmap_blocks = cpu_to_be32(blocks); 290 btreeblks += blocks - 1; 291 292 agf->agf_btreeblks = cpu_to_be32(btreeblks); 293 294 /* Update the AGF counters from the refcountbt. */ 295 if (xfs_has_reflink(mp)) { 296 cur = xfs_refcountbt_init_cursor(mp, sc->tp, agf_bp, 297 sc->sa.pag); 298 error = xfs_btree_count_blocks(cur, &blocks); 299 if (error) 300 goto err; 301 xfs_btree_del_cursor(cur, error); 302 agf->agf_refcount_blocks = cpu_to_be32(blocks); 303 } 304 305 return 0; 306 err: 307 xfs_btree_del_cursor(cur, error); 308 return error; 309 } 310 311 /* Commit the new AGF and reinitialize the incore state. */ 312 STATIC int 313 xrep_agf_commit_new( 314 struct xfs_scrub *sc, 315 struct xfs_buf *agf_bp) 316 { 317 struct xfs_perag *pag; 318 struct xfs_agf *agf = agf_bp->b_addr; 319 320 /* Trigger fdblocks recalculation */ 321 xfs_force_summary_recalc(sc->mp); 322 323 /* Write this to disk. */ 324 xfs_trans_buf_set_type(sc->tp, agf_bp, XFS_BLFT_AGF_BUF); 325 xfs_trans_log_buf(sc->tp, agf_bp, 0, BBTOB(agf_bp->b_length) - 1); 326 327 /* Now reinitialize the in-core counters we changed. */ 328 pag = sc->sa.pag; 329 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks); 330 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks); 331 pag->pagf_longest = be32_to_cpu(agf->agf_longest); 332 pag->pagf_bno_level = be32_to_cpu(agf->agf_bno_level); 333 pag->pagf_cnt_level = be32_to_cpu(agf->agf_cnt_level); 334 pag->pagf_rmap_level = be32_to_cpu(agf->agf_rmap_level); 335 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level); 336 set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 337 338 return xrep_roll_ag_trans(sc); 339 } 340 341 /* Repair the AGF. v5 filesystems only. */ 342 int 343 xrep_agf( 344 struct xfs_scrub *sc) 345 { 346 struct xrep_find_ag_btree fab[XREP_AGF_MAX] = { 347 [XREP_AGF_BNOBT] = { 348 .rmap_owner = XFS_RMAP_OWN_AG, 349 .buf_ops = &xfs_bnobt_buf_ops, 350 .maxlevels = sc->mp->m_alloc_maxlevels, 351 }, 352 [XREP_AGF_CNTBT] = { 353 .rmap_owner = XFS_RMAP_OWN_AG, 354 .buf_ops = &xfs_cntbt_buf_ops, 355 .maxlevels = sc->mp->m_alloc_maxlevels, 356 }, 357 [XREP_AGF_RMAPBT] = { 358 .rmap_owner = XFS_RMAP_OWN_AG, 359 .buf_ops = &xfs_rmapbt_buf_ops, 360 .maxlevels = sc->mp->m_rmap_maxlevels, 361 }, 362 [XREP_AGF_REFCOUNTBT] = { 363 .rmap_owner = XFS_RMAP_OWN_REFC, 364 .buf_ops = &xfs_refcountbt_buf_ops, 365 .maxlevels = sc->mp->m_refc_maxlevels, 366 }, 367 [XREP_AGF_END] = { 368 .buf_ops = NULL, 369 }, 370 }; 371 struct xfs_agf old_agf; 372 struct xfs_mount *mp = sc->mp; 373 struct xfs_buf *agf_bp; 374 struct xfs_buf *agfl_bp; 375 struct xfs_agf *agf; 376 int error; 377 378 /* We require the rmapbt to rebuild anything. */ 379 if (!xfs_has_rmapbt(mp)) 380 return -EOPNOTSUPP; 381 382 /* 383 * Make sure we have the AGF buffer, as scrub might have decided it 384 * was corrupt after xfs_alloc_read_agf failed with -EFSCORRUPTED. 385 */ 386 error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, 387 XFS_AG_DADDR(mp, sc->sa.pag->pag_agno, 388 XFS_AGF_DADDR(mp)), 389 XFS_FSS_TO_BB(mp, 1), 0, &agf_bp, NULL); 390 if (error) 391 return error; 392 agf_bp->b_ops = &xfs_agf_buf_ops; 393 agf = agf_bp->b_addr; 394 395 /* 396 * Load the AGFL so that we can screen out OWN_AG blocks that are on 397 * the AGFL now; these blocks might have once been part of the 398 * bno/cnt/rmap btrees but are not now. This is a chicken and egg 399 * problem: the AGF is corrupt, so we have to trust the AGFL contents 400 * because we can't do any serious cross-referencing with any of the 401 * btrees rooted in the AGF. If the AGFL contents are obviously bad 402 * then we'll bail out. 403 */ 404 error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp); 405 if (error) 406 return error; 407 408 /* 409 * Spot-check the AGFL blocks; if they're obviously corrupt then 410 * there's nothing we can do but bail out. 411 */ 412 error = xfs_agfl_walk(sc->mp, agf_bp->b_addr, agfl_bp, 413 xrep_agf_check_agfl_block, sc); 414 if (error) 415 return error; 416 417 /* 418 * Find the AGF btree roots. This is also a chicken-and-egg situation; 419 * see the function for more details. 420 */ 421 error = xrep_agf_find_btrees(sc, agf_bp, fab, agfl_bp); 422 if (error) 423 return error; 424 425 /* Last chance to abort before we start committing fixes. */ 426 if (xchk_should_terminate(sc, &error)) 427 return error; 428 429 /* Start rewriting the header and implant the btrees we found. */ 430 xrep_agf_init_header(sc, agf_bp, &old_agf); 431 xrep_agf_set_roots(sc, agf, fab); 432 error = xrep_agf_calc_from_btrees(sc, agf_bp); 433 if (error) 434 goto out_revert; 435 436 /* Commit the changes and reinitialize incore state. */ 437 return xrep_agf_commit_new(sc, agf_bp); 438 439 out_revert: 440 /* Mark the incore AGF state stale and revert the AGF. */ 441 clear_bit(XFS_AGSTATE_AGF_INIT, &sc->sa.pag->pag_opstate); 442 memcpy(agf, &old_agf, sizeof(old_agf)); 443 return error; 444 } 445 446 /* AGFL */ 447 448 struct xrep_agfl { 449 /* Bitmap of alleged AGFL blocks that we're not going to add. */ 450 struct xagb_bitmap crossed; 451 452 /* Bitmap of other OWN_AG metadata blocks. */ 453 struct xagb_bitmap agmetablocks; 454 455 /* Bitmap of free space. */ 456 struct xagb_bitmap *freesp; 457 458 /* rmapbt cursor for finding crosslinked blocks */ 459 struct xfs_btree_cur *rmap_cur; 460 461 struct xfs_scrub *sc; 462 }; 463 464 /* Record all OWN_AG (free space btree) information from the rmap data. */ 465 STATIC int 466 xrep_agfl_walk_rmap( 467 struct xfs_btree_cur *cur, 468 const struct xfs_rmap_irec *rec, 469 void *priv) 470 { 471 struct xrep_agfl *ra = priv; 472 int error = 0; 473 474 if (xchk_should_terminate(ra->sc, &error)) 475 return error; 476 477 /* Record all the OWN_AG blocks. */ 478 if (rec->rm_owner == XFS_RMAP_OWN_AG) { 479 error = xagb_bitmap_set(ra->freesp, rec->rm_startblock, 480 rec->rm_blockcount); 481 if (error) 482 return error; 483 } 484 485 return xagb_bitmap_set_btcur_path(&ra->agmetablocks, cur); 486 } 487 488 /* Strike out the blocks that are cross-linked according to the rmapbt. */ 489 STATIC int 490 xrep_agfl_check_extent( 491 uint32_t agbno, 492 uint32_t len, 493 void *priv) 494 { 495 struct xrep_agfl *ra = priv; 496 xfs_agblock_t last_agbno = agbno + len - 1; 497 int error; 498 499 while (agbno <= last_agbno) { 500 bool other_owners; 501 502 error = xfs_rmap_has_other_keys(ra->rmap_cur, agbno, 1, 503 &XFS_RMAP_OINFO_AG, &other_owners); 504 if (error) 505 return error; 506 507 if (other_owners) { 508 error = xagb_bitmap_set(&ra->crossed, agbno, 1); 509 if (error) 510 return error; 511 } 512 513 if (xchk_should_terminate(ra->sc, &error)) 514 return error; 515 agbno++; 516 } 517 518 return 0; 519 } 520 521 /* 522 * Map out all the non-AGFL OWN_AG space in this AG so that we can deduce 523 * which blocks belong to the AGFL. 524 * 525 * Compute the set of old AGFL blocks by subtracting from the list of OWN_AG 526 * blocks the list of blocks owned by all other OWN_AG metadata (bnobt, cntbt, 527 * rmapbt). These are the old AGFL blocks, so return that list and the number 528 * of blocks we're actually going to put back on the AGFL. 529 */ 530 STATIC int 531 xrep_agfl_collect_blocks( 532 struct xfs_scrub *sc, 533 struct xfs_buf *agf_bp, 534 struct xagb_bitmap *agfl_extents, 535 xfs_agblock_t *flcount) 536 { 537 struct xrep_agfl ra; 538 struct xfs_mount *mp = sc->mp; 539 struct xfs_btree_cur *cur; 540 int error; 541 542 ra.sc = sc; 543 ra.freesp = agfl_extents; 544 xagb_bitmap_init(&ra.agmetablocks); 545 xagb_bitmap_init(&ra.crossed); 546 547 /* Find all space used by the free space btrees & rmapbt. */ 548 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 549 error = xfs_rmap_query_all(cur, xrep_agfl_walk_rmap, &ra); 550 xfs_btree_del_cursor(cur, error); 551 if (error) 552 goto out_bmp; 553 554 /* Find all blocks currently being used by the bnobt. */ 555 cur = xfs_bnobt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 556 error = xagb_bitmap_set_btblocks(&ra.agmetablocks, cur); 557 xfs_btree_del_cursor(cur, error); 558 if (error) 559 goto out_bmp; 560 561 /* Find all blocks currently being used by the cntbt. */ 562 cur = xfs_cntbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 563 error = xagb_bitmap_set_btblocks(&ra.agmetablocks, cur); 564 xfs_btree_del_cursor(cur, error); 565 if (error) 566 goto out_bmp; 567 568 /* 569 * Drop the freesp meta blocks that are in use by btrees. 570 * The remaining blocks /should/ be AGFL blocks. 571 */ 572 error = xagb_bitmap_disunion(agfl_extents, &ra.agmetablocks); 573 if (error) 574 goto out_bmp; 575 576 /* Strike out the blocks that are cross-linked. */ 577 ra.rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 578 error = xagb_bitmap_walk(agfl_extents, xrep_agfl_check_extent, &ra); 579 xfs_btree_del_cursor(ra.rmap_cur, error); 580 if (error) 581 goto out_bmp; 582 error = xagb_bitmap_disunion(agfl_extents, &ra.crossed); 583 if (error) 584 goto out_bmp; 585 586 /* 587 * Calculate the new AGFL size. If we found more blocks than fit in 588 * the AGFL we'll free them later. 589 */ 590 *flcount = min_t(uint64_t, xagb_bitmap_hweight(agfl_extents), 591 xfs_agfl_size(mp)); 592 593 out_bmp: 594 xagb_bitmap_destroy(&ra.crossed); 595 xagb_bitmap_destroy(&ra.agmetablocks); 596 return error; 597 } 598 599 /* Update the AGF and reset the in-core state. */ 600 STATIC void 601 xrep_agfl_update_agf( 602 struct xfs_scrub *sc, 603 struct xfs_buf *agf_bp, 604 xfs_agblock_t flcount) 605 { 606 struct xfs_agf *agf = agf_bp->b_addr; 607 608 ASSERT(flcount <= xfs_agfl_size(sc->mp)); 609 610 /* Trigger fdblocks recalculation */ 611 xfs_force_summary_recalc(sc->mp); 612 613 /* Update the AGF counters. */ 614 if (xfs_perag_initialised_agf(sc->sa.pag)) { 615 sc->sa.pag->pagf_flcount = flcount; 616 clear_bit(XFS_AGSTATE_AGFL_NEEDS_RESET, 617 &sc->sa.pag->pag_opstate); 618 } 619 agf->agf_flfirst = cpu_to_be32(0); 620 agf->agf_flcount = cpu_to_be32(flcount); 621 if (flcount) 622 agf->agf_fllast = cpu_to_be32(flcount - 1); 623 else 624 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(sc->mp) - 1); 625 626 xfs_alloc_log_agf(sc->tp, agf_bp, 627 XFS_AGF_FLFIRST | XFS_AGF_FLLAST | XFS_AGF_FLCOUNT); 628 } 629 630 struct xrep_agfl_fill { 631 struct xagb_bitmap used_extents; 632 struct xfs_scrub *sc; 633 __be32 *agfl_bno; 634 xfs_agblock_t flcount; 635 unsigned int fl_off; 636 }; 637 638 /* Fill the AGFL with whatever blocks are in this extent. */ 639 static int 640 xrep_agfl_fill( 641 uint32_t start, 642 uint32_t len, 643 void *priv) 644 { 645 struct xrep_agfl_fill *af = priv; 646 struct xfs_scrub *sc = af->sc; 647 xfs_agblock_t agbno = start; 648 int error; 649 650 trace_xrep_agfl_insert(sc->sa.pag, agbno, len); 651 652 while (agbno < start + len && af->fl_off < af->flcount) 653 af->agfl_bno[af->fl_off++] = cpu_to_be32(agbno++); 654 655 error = xagb_bitmap_set(&af->used_extents, start, agbno - 1); 656 if (error) 657 return error; 658 659 if (af->fl_off == af->flcount) 660 return -ECANCELED; 661 662 return 0; 663 } 664 665 /* Write out a totally new AGFL. */ 666 STATIC int 667 xrep_agfl_init_header( 668 struct xfs_scrub *sc, 669 struct xfs_buf *agfl_bp, 670 struct xagb_bitmap *agfl_extents, 671 xfs_agblock_t flcount) 672 { 673 struct xrep_agfl_fill af = { 674 .sc = sc, 675 .flcount = flcount, 676 }; 677 struct xfs_mount *mp = sc->mp; 678 struct xfs_agfl *agfl; 679 int error; 680 681 ASSERT(flcount <= xfs_agfl_size(mp)); 682 683 /* 684 * Start rewriting the header by setting the bno[] array to 685 * NULLAGBLOCK, then setting AGFL header fields. 686 */ 687 agfl = XFS_BUF_TO_AGFL(agfl_bp); 688 memset(agfl, 0xFF, BBTOB(agfl_bp->b_length)); 689 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC); 690 agfl->agfl_seqno = cpu_to_be32(sc->sa.pag->pag_agno); 691 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid); 692 693 /* 694 * Fill the AGFL with the remaining blocks. If agfl_extents has more 695 * blocks than fit in the AGFL, they will be freed in a subsequent 696 * step. 697 */ 698 xagb_bitmap_init(&af.used_extents); 699 af.agfl_bno = xfs_buf_to_agfl_bno(agfl_bp); 700 xagb_bitmap_walk(agfl_extents, xrep_agfl_fill, &af); 701 error = xagb_bitmap_disunion(agfl_extents, &af.used_extents); 702 if (error) 703 return error; 704 705 /* Write new AGFL to disk. */ 706 xfs_trans_buf_set_type(sc->tp, agfl_bp, XFS_BLFT_AGFL_BUF); 707 xfs_trans_log_buf(sc->tp, agfl_bp, 0, BBTOB(agfl_bp->b_length) - 1); 708 xagb_bitmap_destroy(&af.used_extents); 709 return 0; 710 } 711 712 /* Repair the AGFL. */ 713 int 714 xrep_agfl( 715 struct xfs_scrub *sc) 716 { 717 struct xagb_bitmap agfl_extents; 718 struct xfs_mount *mp = sc->mp; 719 struct xfs_buf *agf_bp; 720 struct xfs_buf *agfl_bp; 721 xfs_agblock_t flcount; 722 int error; 723 724 /* We require the rmapbt to rebuild anything. */ 725 if (!xfs_has_rmapbt(mp)) 726 return -EOPNOTSUPP; 727 728 xagb_bitmap_init(&agfl_extents); 729 730 /* 731 * Read the AGF so that we can query the rmapbt. We hope that there's 732 * nothing wrong with the AGF, but all the AG header repair functions 733 * have this chicken-and-egg problem. 734 */ 735 error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp); 736 if (error) 737 return error; 738 739 /* 740 * Make sure we have the AGFL buffer, as scrub might have decided it 741 * was corrupt after xfs_alloc_read_agfl failed with -EFSCORRUPTED. 742 */ 743 error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, 744 XFS_AG_DADDR(mp, sc->sa.pag->pag_agno, 745 XFS_AGFL_DADDR(mp)), 746 XFS_FSS_TO_BB(mp, 1), 0, &agfl_bp, NULL); 747 if (error) 748 return error; 749 agfl_bp->b_ops = &xfs_agfl_buf_ops; 750 751 /* Gather all the extents we're going to put on the new AGFL. */ 752 error = xrep_agfl_collect_blocks(sc, agf_bp, &agfl_extents, &flcount); 753 if (error) 754 goto err; 755 756 /* Last chance to abort before we start committing fixes. */ 757 if (xchk_should_terminate(sc, &error)) 758 goto err; 759 760 /* 761 * Update AGF and AGFL. We reset the global free block counter when 762 * we adjust the AGF flcount (which can fail) so avoid updating any 763 * buffers until we know that part works. 764 */ 765 xrep_agfl_update_agf(sc, agf_bp, flcount); 766 error = xrep_agfl_init_header(sc, agfl_bp, &agfl_extents, flcount); 767 if (error) 768 goto err; 769 770 /* 771 * Ok, the AGFL should be ready to go now. Roll the transaction to 772 * make the new AGFL permanent before we start using it to return 773 * freespace overflow to the freespace btrees. 774 */ 775 sc->sa.agf_bp = agf_bp; 776 error = xrep_roll_ag_trans(sc); 777 if (error) 778 goto err; 779 780 /* Dump any AGFL overflow. */ 781 error = xrep_reap_agblocks(sc, &agfl_extents, &XFS_RMAP_OINFO_AG, 782 XFS_AG_RESV_AGFL); 783 if (error) 784 goto err; 785 786 err: 787 xagb_bitmap_destroy(&agfl_extents); 788 return error; 789 } 790 791 /* AGI */ 792 793 /* 794 * Offset within the xrep_find_ag_btree array for each btree type. Avoid the 795 * XFS_BTNUM_ names here to avoid creating a sparse array. 796 */ 797 enum { 798 XREP_AGI_INOBT = 0, 799 XREP_AGI_FINOBT, 800 XREP_AGI_END, 801 XREP_AGI_MAX 802 }; 803 804 #define XREP_AGI_LOOKUP_BATCH 32 805 806 struct xrep_agi { 807 struct xfs_scrub *sc; 808 809 /* AGI buffer, tracked separately */ 810 struct xfs_buf *agi_bp; 811 812 /* context for finding btree roots */ 813 struct xrep_find_ag_btree fab[XREP_AGI_MAX]; 814 815 /* old AGI contents in case we have to revert */ 816 struct xfs_agi old_agi; 817 818 /* bitmap of which inodes are unlinked */ 819 struct xagino_bitmap iunlink_bmp; 820 821 /* heads of the unlinked inode bucket lists */ 822 xfs_agino_t iunlink_heads[XFS_AGI_UNLINKED_BUCKETS]; 823 824 /* scratchpad for batched lookups of the radix tree */ 825 struct xfs_inode *lookup_batch[XREP_AGI_LOOKUP_BATCH]; 826 827 /* Map of ino -> next_ino for unlinked inode processing. */ 828 struct xfarray *iunlink_next; 829 830 /* Map of ino -> prev_ino for unlinked inode processing. */ 831 struct xfarray *iunlink_prev; 832 }; 833 834 static void 835 xrep_agi_buf_cleanup( 836 void *buf) 837 { 838 struct xrep_agi *ragi = buf; 839 840 xfarray_destroy(ragi->iunlink_prev); 841 xfarray_destroy(ragi->iunlink_next); 842 xagino_bitmap_destroy(&ragi->iunlink_bmp); 843 } 844 845 /* 846 * Given the inode btree roots described by *fab, find the roots, check them 847 * for sanity, and pass the root data back out via *fab. 848 */ 849 STATIC int 850 xrep_agi_find_btrees( 851 struct xrep_agi *ragi) 852 { 853 struct xfs_scrub *sc = ragi->sc; 854 struct xrep_find_ag_btree *fab = ragi->fab; 855 struct xfs_buf *agf_bp; 856 struct xfs_mount *mp = sc->mp; 857 int error; 858 859 /* Read the AGF. */ 860 error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp); 861 if (error) 862 return error; 863 864 /* Find the btree roots. */ 865 error = xrep_find_ag_btree_roots(sc, agf_bp, fab, NULL); 866 if (error) 867 return error; 868 869 /* We must find the inobt root. */ 870 if (!xrep_check_btree_root(sc, &fab[XREP_AGI_INOBT])) 871 return -EFSCORRUPTED; 872 873 /* We must find the finobt root if that feature is enabled. */ 874 if (xfs_has_finobt(mp) && 875 !xrep_check_btree_root(sc, &fab[XREP_AGI_FINOBT])) 876 return -EFSCORRUPTED; 877 878 return 0; 879 } 880 881 /* 882 * Reinitialize the AGI header, making an in-core copy of the old contents so 883 * that we know which in-core state needs to be reinitialized. 884 */ 885 STATIC void 886 xrep_agi_init_header( 887 struct xrep_agi *ragi) 888 { 889 struct xfs_scrub *sc = ragi->sc; 890 struct xfs_buf *agi_bp = ragi->agi_bp; 891 struct xfs_agi *old_agi = &ragi->old_agi; 892 struct xfs_agi *agi = agi_bp->b_addr; 893 struct xfs_perag *pag = sc->sa.pag; 894 struct xfs_mount *mp = sc->mp; 895 896 memcpy(old_agi, agi, sizeof(*old_agi)); 897 memset(agi, 0, BBTOB(agi_bp->b_length)); 898 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC); 899 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION); 900 agi->agi_seqno = cpu_to_be32(pag->pag_agno); 901 agi->agi_length = cpu_to_be32(pag->block_count); 902 agi->agi_newino = cpu_to_be32(NULLAGINO); 903 agi->agi_dirino = cpu_to_be32(NULLAGINO); 904 if (xfs_has_crc(mp)) 905 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid); 906 907 /* Mark the incore AGF data stale until we're done fixing things. */ 908 ASSERT(xfs_perag_initialised_agi(pag)); 909 clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 910 } 911 912 /* Set btree root information in an AGI. */ 913 STATIC void 914 xrep_agi_set_roots( 915 struct xrep_agi *ragi) 916 { 917 struct xfs_scrub *sc = ragi->sc; 918 struct xfs_agi *agi = ragi->agi_bp->b_addr; 919 struct xrep_find_ag_btree *fab = ragi->fab; 920 921 agi->agi_root = cpu_to_be32(fab[XREP_AGI_INOBT].root); 922 agi->agi_level = cpu_to_be32(fab[XREP_AGI_INOBT].height); 923 924 if (xfs_has_finobt(sc->mp)) { 925 agi->agi_free_root = cpu_to_be32(fab[XREP_AGI_FINOBT].root); 926 agi->agi_free_level = cpu_to_be32(fab[XREP_AGI_FINOBT].height); 927 } 928 } 929 930 /* Update the AGI counters. */ 931 STATIC int 932 xrep_agi_calc_from_btrees( 933 struct xrep_agi *ragi) 934 { 935 struct xfs_scrub *sc = ragi->sc; 936 struct xfs_buf *agi_bp = ragi->agi_bp; 937 struct xfs_btree_cur *cur; 938 struct xfs_agi *agi = agi_bp->b_addr; 939 struct xfs_mount *mp = sc->mp; 940 xfs_agino_t count; 941 xfs_agino_t freecount; 942 int error; 943 944 cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp); 945 error = xfs_ialloc_count_inodes(cur, &count, &freecount); 946 if (error) 947 goto err; 948 if (xfs_has_inobtcounts(mp)) { 949 xfs_agblock_t blocks; 950 951 error = xfs_btree_count_blocks(cur, &blocks); 952 if (error) 953 goto err; 954 agi->agi_iblocks = cpu_to_be32(blocks); 955 } 956 xfs_btree_del_cursor(cur, error); 957 958 agi->agi_count = cpu_to_be32(count); 959 agi->agi_freecount = cpu_to_be32(freecount); 960 961 if (xfs_has_finobt(mp) && xfs_has_inobtcounts(mp)) { 962 xfs_agblock_t blocks; 963 964 cur = xfs_finobt_init_cursor(sc->sa.pag, sc->tp, agi_bp); 965 error = xfs_btree_count_blocks(cur, &blocks); 966 if (error) 967 goto err; 968 xfs_btree_del_cursor(cur, error); 969 agi->agi_fblocks = cpu_to_be32(blocks); 970 } 971 972 return 0; 973 err: 974 xfs_btree_del_cursor(cur, error); 975 return error; 976 } 977 978 /* 979 * Record a forwards unlinked chain pointer from agino -> next_agino in our 980 * staging information. 981 */ 982 static inline int 983 xrep_iunlink_store_next( 984 struct xrep_agi *ragi, 985 xfs_agino_t agino, 986 xfs_agino_t next_agino) 987 { 988 ASSERT(next_agino != 0); 989 990 return xfarray_store(ragi->iunlink_next, agino, &next_agino); 991 } 992 993 /* 994 * Record a backwards unlinked chain pointer from prev_ino <- agino in our 995 * staging information. 996 */ 997 static inline int 998 xrep_iunlink_store_prev( 999 struct xrep_agi *ragi, 1000 xfs_agino_t agino, 1001 xfs_agino_t prev_agino) 1002 { 1003 ASSERT(prev_agino != 0); 1004 1005 return xfarray_store(ragi->iunlink_prev, agino, &prev_agino); 1006 } 1007 1008 /* 1009 * Given an @agino, look up the next inode in the iunlink bucket. Returns 1010 * NULLAGINO if we're at the end of the chain, 0 if @agino is not in memory 1011 * like it should be, or a per-AG inode number. 1012 */ 1013 static inline xfs_agino_t 1014 xrep_iunlink_next( 1015 struct xfs_scrub *sc, 1016 xfs_agino_t agino) 1017 { 1018 struct xfs_inode *ip; 1019 1020 ip = xfs_iunlink_lookup(sc->sa.pag, agino); 1021 if (!ip) 1022 return 0; 1023 1024 return ip->i_next_unlinked; 1025 } 1026 1027 /* 1028 * Load the inode @agino into memory, set its i_prev_unlinked, and drop the 1029 * inode so it can be inactivated. Returns NULLAGINO if we're at the end of 1030 * the chain or if we should stop walking the chain due to corruption; or a 1031 * per-AG inode number. 1032 */ 1033 STATIC xfs_agino_t 1034 xrep_iunlink_reload_next( 1035 struct xrep_agi *ragi, 1036 xfs_agino_t prev_agino, 1037 xfs_agino_t agino) 1038 { 1039 struct xfs_scrub *sc = ragi->sc; 1040 struct xfs_inode *ip; 1041 xfs_ino_t ino; 1042 xfs_agino_t ret = NULLAGINO; 1043 int error; 1044 1045 ino = XFS_AGINO_TO_INO(sc->mp, sc->sa.pag->pag_agno, agino); 1046 error = xchk_iget(ragi->sc, ino, &ip); 1047 if (error) 1048 return ret; 1049 1050 trace_xrep_iunlink_reload_next(ip, prev_agino); 1051 1052 /* If this is a linked inode, stop processing the chain. */ 1053 if (VFS_I(ip)->i_nlink != 0) { 1054 xrep_iunlink_store_next(ragi, agino, NULLAGINO); 1055 goto rele; 1056 } 1057 1058 ip->i_prev_unlinked = prev_agino; 1059 ret = ip->i_next_unlinked; 1060 1061 /* 1062 * Drop the inode reference that we just took. We hold the AGI, so 1063 * this inode cannot move off the unlinked list and hence cannot be 1064 * reclaimed. 1065 */ 1066 rele: 1067 xchk_irele(sc, ip); 1068 return ret; 1069 } 1070 1071 /* 1072 * Walk an AGI unlinked bucket's list to load incore any unlinked inodes that 1073 * still existed at mount time. This can happen if iunlink processing fails 1074 * during log recovery. 1075 */ 1076 STATIC int 1077 xrep_iunlink_walk_ondisk_bucket( 1078 struct xrep_agi *ragi, 1079 unsigned int bucket) 1080 { 1081 struct xfs_scrub *sc = ragi->sc; 1082 struct xfs_agi *agi = sc->sa.agi_bp->b_addr; 1083 xfs_agino_t prev_agino = NULLAGINO; 1084 xfs_agino_t next_agino; 1085 int error = 0; 1086 1087 next_agino = be32_to_cpu(agi->agi_unlinked[bucket]); 1088 while (next_agino != NULLAGINO) { 1089 xfs_agino_t agino = next_agino; 1090 1091 if (xchk_should_terminate(ragi->sc, &error)) 1092 return error; 1093 1094 trace_xrep_iunlink_walk_ondisk_bucket(sc->sa.pag, bucket, 1095 prev_agino, agino); 1096 1097 if (bucket != agino % XFS_AGI_UNLINKED_BUCKETS) 1098 break; 1099 1100 next_agino = xrep_iunlink_next(sc, agino); 1101 if (!next_agino) 1102 next_agino = xrep_iunlink_reload_next(ragi, prev_agino, 1103 agino); 1104 1105 prev_agino = agino; 1106 } 1107 1108 return 0; 1109 } 1110 1111 /* Decide if this is an unlinked inode in this AG. */ 1112 STATIC bool 1113 xrep_iunlink_igrab( 1114 struct xfs_perag *pag, 1115 struct xfs_inode *ip) 1116 { 1117 struct xfs_mount *mp = pag->pag_mount; 1118 1119 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1120 return false; 1121 1122 if (!xfs_inode_on_unlinked_list(ip)) 1123 return false; 1124 1125 return true; 1126 } 1127 1128 /* 1129 * Mark the given inode in the lookup batch in our unlinked inode bitmap, and 1130 * remember if this inode is the start of the unlinked chain. 1131 */ 1132 STATIC int 1133 xrep_iunlink_visit( 1134 struct xrep_agi *ragi, 1135 unsigned int batch_idx) 1136 { 1137 struct xfs_mount *mp = ragi->sc->mp; 1138 struct xfs_inode *ip = ragi->lookup_batch[batch_idx]; 1139 xfs_agino_t agino; 1140 unsigned int bucket; 1141 int error; 1142 1143 ASSERT(XFS_INO_TO_AGNO(mp, ip->i_ino) == ragi->sc->sa.pag->pag_agno); 1144 ASSERT(xfs_inode_on_unlinked_list(ip)); 1145 1146 agino = XFS_INO_TO_AGINO(mp, ip->i_ino); 1147 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 1148 1149 trace_xrep_iunlink_visit(ragi->sc->sa.pag, bucket, 1150 ragi->iunlink_heads[bucket], ip); 1151 1152 error = xagino_bitmap_set(&ragi->iunlink_bmp, agino, 1); 1153 if (error) 1154 return error; 1155 1156 if (ip->i_prev_unlinked == NULLAGINO) { 1157 if (ragi->iunlink_heads[bucket] == NULLAGINO) 1158 ragi->iunlink_heads[bucket] = agino; 1159 } 1160 1161 return 0; 1162 } 1163 1164 /* 1165 * Find all incore unlinked inodes so that we can rebuild the unlinked buckets. 1166 * We hold the AGI so there should not be any modifications to the unlinked 1167 * list. 1168 */ 1169 STATIC int 1170 xrep_iunlink_mark_incore( 1171 struct xrep_agi *ragi) 1172 { 1173 struct xfs_perag *pag = ragi->sc->sa.pag; 1174 struct xfs_mount *mp = pag->pag_mount; 1175 uint32_t first_index = 0; 1176 bool done = false; 1177 unsigned int nr_found = 0; 1178 1179 do { 1180 unsigned int i; 1181 int error = 0; 1182 1183 if (xchk_should_terminate(ragi->sc, &error)) 1184 return error; 1185 1186 rcu_read_lock(); 1187 1188 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, 1189 (void **)&ragi->lookup_batch, first_index, 1190 XREP_AGI_LOOKUP_BATCH); 1191 if (!nr_found) { 1192 rcu_read_unlock(); 1193 return 0; 1194 } 1195 1196 for (i = 0; i < nr_found; i++) { 1197 struct xfs_inode *ip = ragi->lookup_batch[i]; 1198 1199 if (done || !xrep_iunlink_igrab(pag, ip)) 1200 ragi->lookup_batch[i] = NULL; 1201 1202 /* 1203 * Update the index for the next lookup. Catch 1204 * overflows into the next AG range which can occur if 1205 * we have inodes in the last block of the AG and we 1206 * are currently pointing to the last inode. 1207 * 1208 * Because we may see inodes that are from the wrong AG 1209 * due to RCU freeing and reallocation, only update the 1210 * index if it lies in this AG. It was a race that lead 1211 * us to see this inode, so another lookup from the 1212 * same index will not find it again. 1213 */ 1214 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno) 1215 continue; 1216 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1); 1217 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) 1218 done = true; 1219 } 1220 1221 /* unlock now we've grabbed the inodes. */ 1222 rcu_read_unlock(); 1223 1224 for (i = 0; i < nr_found; i++) { 1225 if (!ragi->lookup_batch[i]) 1226 continue; 1227 error = xrep_iunlink_visit(ragi, i); 1228 if (error) 1229 return error; 1230 } 1231 } while (!done); 1232 1233 return 0; 1234 } 1235 1236 /* Mark all the unlinked ondisk inodes in this inobt record in iunlink_bmp. */ 1237 STATIC int 1238 xrep_iunlink_mark_ondisk_rec( 1239 struct xfs_btree_cur *cur, 1240 const union xfs_btree_rec *rec, 1241 void *priv) 1242 { 1243 struct xfs_inobt_rec_incore irec; 1244 struct xrep_agi *ragi = priv; 1245 struct xfs_scrub *sc = ragi->sc; 1246 struct xfs_mount *mp = cur->bc_mp; 1247 xfs_agino_t agino; 1248 unsigned int i; 1249 int error = 0; 1250 1251 xfs_inobt_btrec_to_irec(mp, rec, &irec); 1252 1253 for (i = 0, agino = irec.ir_startino; 1254 i < XFS_INODES_PER_CHUNK; 1255 i++, agino++) { 1256 struct xfs_inode *ip; 1257 unsigned int len = 1; 1258 1259 /* Skip free inodes */ 1260 if (XFS_INOBT_MASK(i) & irec.ir_free) 1261 continue; 1262 /* Skip inodes we've seen before */ 1263 if (xagino_bitmap_test(&ragi->iunlink_bmp, agino, &len)) 1264 continue; 1265 1266 /* 1267 * Skip incore inodes; these were already picked up by 1268 * the _mark_incore step. 1269 */ 1270 rcu_read_lock(); 1271 ip = radix_tree_lookup(&sc->sa.pag->pag_ici_root, agino); 1272 rcu_read_unlock(); 1273 if (ip) 1274 continue; 1275 1276 /* 1277 * Try to look up this inode. If we can't get it, just move 1278 * on because we haven't actually scrubbed the inobt or the 1279 * inodes yet. 1280 */ 1281 error = xchk_iget(ragi->sc, 1282 XFS_AGINO_TO_INO(mp, sc->sa.pag->pag_agno, 1283 agino), 1284 &ip); 1285 if (error) 1286 continue; 1287 1288 trace_xrep_iunlink_reload_ondisk(ip); 1289 1290 if (VFS_I(ip)->i_nlink == 0) 1291 error = xagino_bitmap_set(&ragi->iunlink_bmp, agino, 1); 1292 xchk_irele(sc, ip); 1293 if (error) 1294 break; 1295 } 1296 1297 return error; 1298 } 1299 1300 /* 1301 * Find ondisk inodes that are unlinked and not in cache, and mark them in 1302 * iunlink_bmp. We haven't checked the inobt yet, so we don't error out if 1303 * the btree is corrupt. 1304 */ 1305 STATIC void 1306 xrep_iunlink_mark_ondisk( 1307 struct xrep_agi *ragi) 1308 { 1309 struct xfs_scrub *sc = ragi->sc; 1310 struct xfs_buf *agi_bp = ragi->agi_bp; 1311 struct xfs_btree_cur *cur; 1312 int error; 1313 1314 cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp); 1315 error = xfs_btree_query_all(cur, xrep_iunlink_mark_ondisk_rec, ragi); 1316 xfs_btree_del_cursor(cur, error); 1317 } 1318 1319 /* 1320 * Walk an iunlink bucket's inode list. For each inode that should be on this 1321 * chain, clear its entry in in iunlink_bmp because it's ok and we don't need 1322 * to touch it further. 1323 */ 1324 STATIC int 1325 xrep_iunlink_resolve_bucket( 1326 struct xrep_agi *ragi, 1327 unsigned int bucket) 1328 { 1329 struct xfs_scrub *sc = ragi->sc; 1330 struct xfs_inode *ip; 1331 xfs_agino_t prev_agino = NULLAGINO; 1332 xfs_agino_t next_agino = ragi->iunlink_heads[bucket]; 1333 int error = 0; 1334 1335 while (next_agino != NULLAGINO) { 1336 if (xchk_should_terminate(ragi->sc, &error)) 1337 return error; 1338 1339 /* Find the next inode in the chain. */ 1340 ip = xfs_iunlink_lookup(sc->sa.pag, next_agino); 1341 if (!ip) { 1342 /* Inode not incore? Terminate the chain. */ 1343 trace_xrep_iunlink_resolve_uncached(sc->sa.pag, 1344 bucket, prev_agino, next_agino); 1345 1346 next_agino = NULLAGINO; 1347 break; 1348 } 1349 1350 if (next_agino % XFS_AGI_UNLINKED_BUCKETS != bucket) { 1351 /* 1352 * Inode is in the wrong bucket. Advance the list, 1353 * but pretend we didn't see this inode. 1354 */ 1355 trace_xrep_iunlink_resolve_wronglist(sc->sa.pag, 1356 bucket, prev_agino, next_agino); 1357 1358 next_agino = ip->i_next_unlinked; 1359 continue; 1360 } 1361 1362 if (!xfs_inode_on_unlinked_list(ip)) { 1363 /* 1364 * Incore inode doesn't think this inode is on an 1365 * unlinked list. This is probably because we reloaded 1366 * it from disk. Advance the list, but pretend we 1367 * didn't see this inode; we'll fix that later. 1368 */ 1369 trace_xrep_iunlink_resolve_nolist(sc->sa.pag, 1370 bucket, prev_agino, next_agino); 1371 next_agino = ip->i_next_unlinked; 1372 continue; 1373 } 1374 1375 trace_xrep_iunlink_resolve_ok(sc->sa.pag, bucket, prev_agino, 1376 next_agino); 1377 1378 /* 1379 * Otherwise, this inode's unlinked pointers are ok. Clear it 1380 * from the unlinked bitmap since we're done with it, and make 1381 * sure the chain is still correct. 1382 */ 1383 error = xagino_bitmap_clear(&ragi->iunlink_bmp, next_agino, 1); 1384 if (error) 1385 return error; 1386 1387 /* Remember the previous inode's next pointer. */ 1388 if (prev_agino != NULLAGINO) { 1389 error = xrep_iunlink_store_next(ragi, prev_agino, 1390 next_agino); 1391 if (error) 1392 return error; 1393 } 1394 1395 /* Remember this inode's previous pointer. */ 1396 error = xrep_iunlink_store_prev(ragi, next_agino, prev_agino); 1397 if (error) 1398 return error; 1399 1400 /* Advance the list and remember this inode. */ 1401 prev_agino = next_agino; 1402 next_agino = ip->i_next_unlinked; 1403 } 1404 1405 /* Update the previous inode's next pointer. */ 1406 if (prev_agino != NULLAGINO) { 1407 error = xrep_iunlink_store_next(ragi, prev_agino, next_agino); 1408 if (error) 1409 return error; 1410 } 1411 1412 return 0; 1413 } 1414 1415 /* Reinsert this unlinked inode into the head of the staged bucket list. */ 1416 STATIC int 1417 xrep_iunlink_add_to_bucket( 1418 struct xrep_agi *ragi, 1419 xfs_agino_t agino) 1420 { 1421 xfs_agino_t current_head; 1422 unsigned int bucket; 1423 int error; 1424 1425 bucket = agino % XFS_AGI_UNLINKED_BUCKETS; 1426 1427 /* Point this inode at the current head of the bucket list. */ 1428 current_head = ragi->iunlink_heads[bucket]; 1429 1430 trace_xrep_iunlink_add_to_bucket(ragi->sc->sa.pag, bucket, agino, 1431 current_head); 1432 1433 error = xrep_iunlink_store_next(ragi, agino, current_head); 1434 if (error) 1435 return error; 1436 1437 /* Remember the head inode's previous pointer. */ 1438 if (current_head != NULLAGINO) { 1439 error = xrep_iunlink_store_prev(ragi, current_head, agino); 1440 if (error) 1441 return error; 1442 } 1443 1444 ragi->iunlink_heads[bucket] = agino; 1445 return 0; 1446 } 1447 1448 /* Reinsert unlinked inodes into the staged iunlink buckets. */ 1449 STATIC int 1450 xrep_iunlink_add_lost_inodes( 1451 uint32_t start, 1452 uint32_t len, 1453 void *priv) 1454 { 1455 struct xrep_agi *ragi = priv; 1456 int error; 1457 1458 for (; len > 0; start++, len--) { 1459 error = xrep_iunlink_add_to_bucket(ragi, start); 1460 if (error) 1461 return error; 1462 } 1463 1464 return 0; 1465 } 1466 1467 /* 1468 * Figure out the iunlink bucket values and find inodes that need to be 1469 * reinserted into the list. 1470 */ 1471 STATIC int 1472 xrep_iunlink_rebuild_buckets( 1473 struct xrep_agi *ragi) 1474 { 1475 unsigned int i; 1476 int error; 1477 1478 /* 1479 * Walk the ondisk AGI unlinked list to find inodes that are on the 1480 * list but aren't in memory. This can happen if a past log recovery 1481 * tried to clear the iunlinked list but failed. Our scan rebuilds the 1482 * unlinked list using incore inodes, so we must load and link them 1483 * properly. 1484 */ 1485 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 1486 error = xrep_iunlink_walk_ondisk_bucket(ragi, i); 1487 if (error) 1488 return error; 1489 } 1490 1491 /* 1492 * Record all the incore unlinked inodes in iunlink_bmp that we didn't 1493 * find by walking the ondisk iunlink buckets. This shouldn't happen, 1494 * but we can't risk forgetting an inode somewhere. 1495 */ 1496 error = xrep_iunlink_mark_incore(ragi); 1497 if (error) 1498 return error; 1499 1500 /* 1501 * If there are ondisk inodes that are unlinked and are not been loaded 1502 * into cache, record them in iunlink_bmp. 1503 */ 1504 xrep_iunlink_mark_ondisk(ragi); 1505 1506 /* 1507 * Walk each iunlink bucket to (re)construct as much of the incore list 1508 * as would be correct. For each inode that survives this step, mark 1509 * it clear in iunlink_bmp; we're done with those inodes. 1510 */ 1511 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 1512 error = xrep_iunlink_resolve_bucket(ragi, i); 1513 if (error) 1514 return error; 1515 } 1516 1517 /* 1518 * Any unlinked inodes that we didn't find through the bucket list 1519 * walk (or was ignored by the walk) must be inserted into the bucket 1520 * list. Stage this in memory for now. 1521 */ 1522 return xagino_bitmap_walk(&ragi->iunlink_bmp, 1523 xrep_iunlink_add_lost_inodes, ragi); 1524 } 1525 1526 /* Update i_next_iunlinked for the inode @agino. */ 1527 STATIC int 1528 xrep_iunlink_relink_next( 1529 struct xrep_agi *ragi, 1530 xfarray_idx_t idx, 1531 xfs_agino_t next_agino) 1532 { 1533 struct xfs_scrub *sc = ragi->sc; 1534 struct xfs_perag *pag = sc->sa.pag; 1535 struct xfs_inode *ip; 1536 xfarray_idx_t agino = idx - 1; 1537 bool want_rele = false; 1538 int error = 0; 1539 1540 ip = xfs_iunlink_lookup(pag, agino); 1541 if (!ip) { 1542 xfs_ino_t ino; 1543 xfs_agino_t prev_agino; 1544 1545 /* 1546 * No inode exists in cache. Load it off the disk so that we 1547 * can reinsert it into the incore unlinked list. 1548 */ 1549 ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); 1550 error = xchk_iget(sc, ino, &ip); 1551 if (error) 1552 return -EFSCORRUPTED; 1553 1554 want_rele = true; 1555 1556 /* Set the backward pointer since this just came off disk. */ 1557 error = xfarray_load(ragi->iunlink_prev, agino, &prev_agino); 1558 if (error) 1559 goto out_rele; 1560 1561 trace_xrep_iunlink_relink_prev(ip, prev_agino); 1562 ip->i_prev_unlinked = prev_agino; 1563 } 1564 1565 /* Update the forward pointer. */ 1566 if (ip->i_next_unlinked != next_agino) { 1567 error = xfs_iunlink_log_inode(sc->tp, ip, pag, next_agino); 1568 if (error) 1569 goto out_rele; 1570 1571 trace_xrep_iunlink_relink_next(ip, next_agino); 1572 ip->i_next_unlinked = next_agino; 1573 } 1574 1575 out_rele: 1576 /* 1577 * The iunlink lookup doesn't igrab because we hold the AGI buffer lock 1578 * and the inode cannot be reclaimed. However, if we used iget to load 1579 * a missing inode, we must irele it here. 1580 */ 1581 if (want_rele) 1582 xchk_irele(sc, ip); 1583 return error; 1584 } 1585 1586 /* Update i_prev_iunlinked for the inode @agino. */ 1587 STATIC int 1588 xrep_iunlink_relink_prev( 1589 struct xrep_agi *ragi, 1590 xfarray_idx_t idx, 1591 xfs_agino_t prev_agino) 1592 { 1593 struct xfs_scrub *sc = ragi->sc; 1594 struct xfs_perag *pag = sc->sa.pag; 1595 struct xfs_inode *ip; 1596 xfarray_idx_t agino = idx - 1; 1597 bool want_rele = false; 1598 int error = 0; 1599 1600 ASSERT(prev_agino != 0); 1601 1602 ip = xfs_iunlink_lookup(pag, agino); 1603 if (!ip) { 1604 xfs_ino_t ino; 1605 xfs_agino_t next_agino; 1606 1607 /* 1608 * No inode exists in cache. Load it off the disk so that we 1609 * can reinsert it into the incore unlinked list. 1610 */ 1611 ino = XFS_AGINO_TO_INO(sc->mp, pag->pag_agno, agino); 1612 error = xchk_iget(sc, ino, &ip); 1613 if (error) 1614 return -EFSCORRUPTED; 1615 1616 want_rele = true; 1617 1618 /* Set the forward pointer since this just came off disk. */ 1619 error = xfarray_load(ragi->iunlink_prev, agino, &next_agino); 1620 if (error) 1621 goto out_rele; 1622 1623 error = xfs_iunlink_log_inode(sc->tp, ip, pag, next_agino); 1624 if (error) 1625 goto out_rele; 1626 1627 trace_xrep_iunlink_relink_next(ip, next_agino); 1628 ip->i_next_unlinked = next_agino; 1629 } 1630 1631 /* Update the backward pointer. */ 1632 if (ip->i_prev_unlinked != prev_agino) { 1633 trace_xrep_iunlink_relink_prev(ip, prev_agino); 1634 ip->i_prev_unlinked = prev_agino; 1635 } 1636 1637 out_rele: 1638 /* 1639 * The iunlink lookup doesn't igrab because we hold the AGI buffer lock 1640 * and the inode cannot be reclaimed. However, if we used iget to load 1641 * a missing inode, we must irele it here. 1642 */ 1643 if (want_rele) 1644 xchk_irele(sc, ip); 1645 return error; 1646 } 1647 1648 /* Log all the iunlink updates we need to finish regenerating the AGI. */ 1649 STATIC int 1650 xrep_iunlink_commit( 1651 struct xrep_agi *ragi) 1652 { 1653 struct xfs_agi *agi = ragi->agi_bp->b_addr; 1654 xfarray_idx_t idx = XFARRAY_CURSOR_INIT; 1655 xfs_agino_t agino; 1656 unsigned int i; 1657 int error; 1658 1659 /* Fix all the forward links */ 1660 while ((error = xfarray_iter(ragi->iunlink_next, &idx, &agino)) == 1) { 1661 error = xrep_iunlink_relink_next(ragi, idx, agino); 1662 if (error) 1663 return error; 1664 } 1665 1666 /* Fix all the back links */ 1667 idx = XFARRAY_CURSOR_INIT; 1668 while ((error = xfarray_iter(ragi->iunlink_prev, &idx, &agino)) == 1) { 1669 error = xrep_iunlink_relink_prev(ragi, idx, agino); 1670 if (error) 1671 return error; 1672 } 1673 1674 /* Copy the staged iunlink buckets to the new AGI. */ 1675 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) { 1676 trace_xrep_iunlink_commit_bucket(ragi->sc->sa.pag, i, 1677 be32_to_cpu(ragi->old_agi.agi_unlinked[i]), 1678 ragi->iunlink_heads[i]); 1679 1680 agi->agi_unlinked[i] = cpu_to_be32(ragi->iunlink_heads[i]); 1681 } 1682 1683 return 0; 1684 } 1685 1686 /* Trigger reinitialization of the in-core data. */ 1687 STATIC int 1688 xrep_agi_commit_new( 1689 struct xrep_agi *ragi) 1690 { 1691 struct xfs_scrub *sc = ragi->sc; 1692 struct xfs_buf *agi_bp = ragi->agi_bp; 1693 struct xfs_perag *pag; 1694 struct xfs_agi *agi = agi_bp->b_addr; 1695 1696 /* Trigger inode count recalculation */ 1697 xfs_force_summary_recalc(sc->mp); 1698 1699 /* Write this to disk. */ 1700 xfs_trans_buf_set_type(sc->tp, agi_bp, XFS_BLFT_AGI_BUF); 1701 xfs_trans_log_buf(sc->tp, agi_bp, 0, BBTOB(agi_bp->b_length) - 1); 1702 1703 /* Now reinitialize the in-core counters if necessary. */ 1704 pag = sc->sa.pag; 1705 pag->pagi_count = be32_to_cpu(agi->agi_count); 1706 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount); 1707 set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 1708 1709 return xrep_roll_ag_trans(sc); 1710 } 1711 1712 /* Repair the AGI. */ 1713 int 1714 xrep_agi( 1715 struct xfs_scrub *sc) 1716 { 1717 struct xrep_agi *ragi; 1718 struct xfs_mount *mp = sc->mp; 1719 char *descr; 1720 unsigned int i; 1721 int error; 1722 1723 /* We require the rmapbt to rebuild anything. */ 1724 if (!xfs_has_rmapbt(mp)) 1725 return -EOPNOTSUPP; 1726 1727 sc->buf = kzalloc(sizeof(struct xrep_agi), XCHK_GFP_FLAGS); 1728 if (!sc->buf) 1729 return -ENOMEM; 1730 ragi = sc->buf; 1731 ragi->sc = sc; 1732 1733 ragi->fab[XREP_AGI_INOBT] = (struct xrep_find_ag_btree){ 1734 .rmap_owner = XFS_RMAP_OWN_INOBT, 1735 .buf_ops = &xfs_inobt_buf_ops, 1736 .maxlevels = M_IGEO(sc->mp)->inobt_maxlevels, 1737 }; 1738 ragi->fab[XREP_AGI_FINOBT] = (struct xrep_find_ag_btree){ 1739 .rmap_owner = XFS_RMAP_OWN_INOBT, 1740 .buf_ops = &xfs_finobt_buf_ops, 1741 .maxlevels = M_IGEO(sc->mp)->inobt_maxlevels, 1742 }; 1743 ragi->fab[XREP_AGI_END] = (struct xrep_find_ag_btree){ 1744 .buf_ops = NULL, 1745 }; 1746 1747 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) 1748 ragi->iunlink_heads[i] = NULLAGINO; 1749 1750 xagino_bitmap_init(&ragi->iunlink_bmp); 1751 sc->buf_cleanup = xrep_agi_buf_cleanup; 1752 1753 descr = xchk_xfile_ag_descr(sc, "iunlinked next pointers"); 1754 error = xfarray_create(descr, 0, sizeof(xfs_agino_t), 1755 &ragi->iunlink_next); 1756 kfree(descr); 1757 if (error) 1758 return error; 1759 1760 descr = xchk_xfile_ag_descr(sc, "iunlinked prev pointers"); 1761 error = xfarray_create(descr, 0, sizeof(xfs_agino_t), 1762 &ragi->iunlink_prev); 1763 kfree(descr); 1764 if (error) 1765 return error; 1766 1767 /* 1768 * Make sure we have the AGI buffer, as scrub might have decided it 1769 * was corrupt after xfs_ialloc_read_agi failed with -EFSCORRUPTED. 1770 */ 1771 error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp, 1772 XFS_AG_DADDR(mp, sc->sa.pag->pag_agno, 1773 XFS_AGI_DADDR(mp)), 1774 XFS_FSS_TO_BB(mp, 1), 0, &ragi->agi_bp, NULL); 1775 if (error) 1776 return error; 1777 ragi->agi_bp->b_ops = &xfs_agi_buf_ops; 1778 1779 /* Find the AGI btree roots. */ 1780 error = xrep_agi_find_btrees(ragi); 1781 if (error) 1782 return error; 1783 1784 error = xrep_iunlink_rebuild_buckets(ragi); 1785 if (error) 1786 return error; 1787 1788 /* Last chance to abort before we start committing fixes. */ 1789 if (xchk_should_terminate(sc, &error)) 1790 return error; 1791 1792 /* Start rewriting the header and implant the btrees we found. */ 1793 xrep_agi_init_header(ragi); 1794 xrep_agi_set_roots(ragi); 1795 error = xrep_agi_calc_from_btrees(ragi); 1796 if (error) 1797 goto out_revert; 1798 error = xrep_iunlink_commit(ragi); 1799 if (error) 1800 goto out_revert; 1801 1802 /* Reinitialize in-core state. */ 1803 return xrep_agi_commit_new(ragi); 1804 1805 out_revert: 1806 /* Mark the incore AGI state stale and revert the AGI. */ 1807 clear_bit(XFS_AGSTATE_AGI_INIT, &sc->sa.pag->pag_opstate); 1808 memcpy(ragi->agi_bp->b_addr, &ragi->old_agi, sizeof(struct xfs_agi)); 1809 return error; 1810 } 1811
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.