1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2018-2023 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <djwong@kernel.org> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_mount.h" 12 #include "xfs_btree.h" 13 #include "xfs_log_format.h" 14 #include "xfs_trans.h" 15 #include "xfs_sb.h" 16 #include "xfs_inode.h" 17 #include "xfs_alloc.h" 18 #include "xfs_alloc_btree.h" 19 #include "xfs_ialloc.h" 20 #include "xfs_ialloc_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_rmap_btree.h" 23 #include "xfs_refcount_btree.h" 24 #include "xfs_extent_busy.h" 25 #include "xfs_ag.h" 26 #include "xfs_ag_resv.h" 27 #include "xfs_quota.h" 28 #include "xfs_qm.h" 29 #include "xfs_defer.h" 30 #include "xfs_errortag.h" 31 #include "xfs_error.h" 32 #include "xfs_reflink.h" 33 #include "xfs_health.h" 34 #include "xfs_buf_mem.h" 35 #include "xfs_da_format.h" 36 #include "xfs_da_btree.h" 37 #include "xfs_attr.h" 38 #include "xfs_dir2.h" 39 #include "scrub/scrub.h" 40 #include "scrub/common.h" 41 #include "scrub/trace.h" 42 #include "scrub/repair.h" 43 #include "scrub/bitmap.h" 44 #include "scrub/stats.h" 45 #include "scrub/xfile.h" 46 #include "scrub/attr_repair.h" 47 48 /* 49 * Attempt to repair some metadata, if the metadata is corrupt and userspace 50 * told us to fix it. This function returns -EAGAIN to mean "re-run scrub", 51 * and will set *fixed to true if it thinks it repaired anything. 52 */ 53 int 54 xrep_attempt( 55 struct xfs_scrub *sc, 56 struct xchk_stats_run *run) 57 { 58 u64 repair_start; 59 int error = 0; 60 61 trace_xrep_attempt(XFS_I(file_inode(sc->file)), sc->sm, error); 62 63 xchk_ag_btcur_free(&sc->sa); 64 65 /* Repair whatever's broken. */ 66 ASSERT(sc->ops->repair); 67 run->repair_attempted = true; 68 repair_start = xchk_stats_now(); 69 error = sc->ops->repair(sc); 70 trace_xrep_done(XFS_I(file_inode(sc->file)), sc->sm, error); 71 run->repair_ns += xchk_stats_elapsed_ns(repair_start); 72 switch (error) { 73 case 0: 74 /* 75 * Repair succeeded. Commit the fixes and perform a second 76 * scrub so that we can tell userspace if we fixed the problem. 77 */ 78 sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 79 sc->flags |= XREP_ALREADY_FIXED; 80 run->repair_succeeded = true; 81 return -EAGAIN; 82 case -ECHRNG: 83 sc->flags |= XCHK_NEED_DRAIN; 84 run->retries++; 85 return -EAGAIN; 86 case -EDEADLOCK: 87 /* Tell the caller to try again having grabbed all the locks. */ 88 if (!(sc->flags & XCHK_TRY_HARDER)) { 89 sc->flags |= XCHK_TRY_HARDER; 90 run->retries++; 91 return -EAGAIN; 92 } 93 /* 94 * We tried harder but still couldn't grab all the resources 95 * we needed to fix it. The corruption has not been fixed, 96 * so exit to userspace with the scan's output flags unchanged. 97 */ 98 return 0; 99 default: 100 /* 101 * EAGAIN tells the caller to re-scrub, so we cannot return 102 * that here. 103 */ 104 ASSERT(error != -EAGAIN); 105 return error; 106 } 107 } 108 109 /* 110 * Complain about unfixable problems in the filesystem. We don't log 111 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver 112 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the 113 * administrator isn't running xfs_scrub in no-repairs mode. 114 * 115 * Use this helper function because _ratelimited silently declares a static 116 * structure to track rate limiting information. 117 */ 118 void 119 xrep_failure( 120 struct xfs_mount *mp) 121 { 122 xfs_alert_ratelimited(mp, 123 "Corruption not fixed during online repair. Unmount and run xfs_repair."); 124 } 125 126 /* 127 * Repair probe -- userspace uses this to probe if we're willing to repair a 128 * given mountpoint. 129 */ 130 int 131 xrep_probe( 132 struct xfs_scrub *sc) 133 { 134 int error = 0; 135 136 if (xchk_should_terminate(sc, &error)) 137 return error; 138 139 return 0; 140 } 141 142 /* 143 * Roll a transaction, keeping the AG headers locked and reinitializing 144 * the btree cursors. 145 */ 146 int 147 xrep_roll_ag_trans( 148 struct xfs_scrub *sc) 149 { 150 int error; 151 152 /* 153 * Keep the AG header buffers locked while we roll the transaction. 154 * Ensure that both AG buffers are dirty and held when we roll the 155 * transaction so that they move forward in the log without losing the 156 * bli (and hence the bli type) when the transaction commits. 157 * 158 * Normal code would never hold clean buffers across a roll, but repair 159 * needs both buffers to maintain a total lock on the AG. 160 */ 161 if (sc->sa.agi_bp) { 162 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 163 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 164 } 165 166 if (sc->sa.agf_bp) { 167 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 168 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 169 } 170 171 /* 172 * Roll the transaction. We still hold the AG header buffers locked 173 * regardless of whether or not that succeeds. On failure, the buffers 174 * will be released during teardown on our way out of the kernel. If 175 * successful, join the buffers to the new transaction and move on. 176 */ 177 error = xfs_trans_roll(&sc->tp); 178 if (error) 179 return error; 180 181 /* Join the AG headers to the new transaction. */ 182 if (sc->sa.agi_bp) 183 xfs_trans_bjoin(sc->tp, sc->sa.agi_bp); 184 if (sc->sa.agf_bp) 185 xfs_trans_bjoin(sc->tp, sc->sa.agf_bp); 186 187 return 0; 188 } 189 190 /* Roll the scrub transaction, holding the primary metadata locked. */ 191 int 192 xrep_roll_trans( 193 struct xfs_scrub *sc) 194 { 195 if (!sc->ip) 196 return xrep_roll_ag_trans(sc); 197 return xfs_trans_roll_inode(&sc->tp, sc->ip); 198 } 199 200 /* Finish all deferred work attached to the repair transaction. */ 201 int 202 xrep_defer_finish( 203 struct xfs_scrub *sc) 204 { 205 int error; 206 207 /* 208 * Keep the AG header buffers locked while we complete deferred work 209 * items. Ensure that both AG buffers are dirty and held when we roll 210 * the transaction so that they move forward in the log without losing 211 * the bli (and hence the bli type) when the transaction commits. 212 * 213 * Normal code would never hold clean buffers across a roll, but repair 214 * needs both buffers to maintain a total lock on the AG. 215 */ 216 if (sc->sa.agi_bp) { 217 xfs_ialloc_log_agi(sc->tp, sc->sa.agi_bp, XFS_AGI_MAGICNUM); 218 xfs_trans_bhold(sc->tp, sc->sa.agi_bp); 219 } 220 221 if (sc->sa.agf_bp) { 222 xfs_alloc_log_agf(sc->tp, sc->sa.agf_bp, XFS_AGF_MAGICNUM); 223 xfs_trans_bhold(sc->tp, sc->sa.agf_bp); 224 } 225 226 /* 227 * Finish all deferred work items. We still hold the AG header buffers 228 * locked regardless of whether or not that succeeds. On failure, the 229 * buffers will be released during teardown on our way out of the 230 * kernel. If successful, join the buffers to the new transaction 231 * and move on. 232 */ 233 error = xfs_defer_finish(&sc->tp); 234 if (error) 235 return error; 236 237 /* 238 * Release the hold that we set above because defer_finish won't do 239 * that for us. The defer roll code redirties held buffers after each 240 * roll, so the AG header buffers should be ready for logging. 241 */ 242 if (sc->sa.agi_bp) 243 xfs_trans_bhold_release(sc->tp, sc->sa.agi_bp); 244 if (sc->sa.agf_bp) 245 xfs_trans_bhold_release(sc->tp, sc->sa.agf_bp); 246 247 return 0; 248 } 249 250 /* 251 * Does the given AG have enough space to rebuild a btree? Neither AG 252 * reservation can be critical, and we must have enough space (factoring 253 * in AG reservations) to construct a whole btree. 254 */ 255 bool 256 xrep_ag_has_space( 257 struct xfs_perag *pag, 258 xfs_extlen_t nr_blocks, 259 enum xfs_ag_resv_type type) 260 { 261 return !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) && 262 !xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) && 263 pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks; 264 } 265 266 /* 267 * Figure out how many blocks to reserve for an AG repair. We calculate the 268 * worst case estimate for the number of blocks we'd need to rebuild one of 269 * any type of per-AG btree. 270 */ 271 xfs_extlen_t 272 xrep_calc_ag_resblks( 273 struct xfs_scrub *sc) 274 { 275 struct xfs_mount *mp = sc->mp; 276 struct xfs_scrub_metadata *sm = sc->sm; 277 struct xfs_perag *pag; 278 struct xfs_buf *bp; 279 xfs_agino_t icount = NULLAGINO; 280 xfs_extlen_t aglen = NULLAGBLOCK; 281 xfs_extlen_t usedlen; 282 xfs_extlen_t freelen; 283 xfs_extlen_t bnobt_sz; 284 xfs_extlen_t inobt_sz; 285 xfs_extlen_t rmapbt_sz; 286 xfs_extlen_t refcbt_sz; 287 int error; 288 289 if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR)) 290 return 0; 291 292 pag = xfs_perag_get(mp, sm->sm_agno); 293 if (xfs_perag_initialised_agi(pag)) { 294 /* Use in-core icount if possible. */ 295 icount = pag->pagi_count; 296 } else { 297 /* Try to get the actual counters from disk. */ 298 error = xfs_ialloc_read_agi(pag, NULL, 0, &bp); 299 if (!error) { 300 icount = pag->pagi_count; 301 xfs_buf_relse(bp); 302 } 303 } 304 305 /* Now grab the block counters from the AGF. */ 306 error = xfs_alloc_read_agf(pag, NULL, 0, &bp); 307 if (error) { 308 aglen = pag->block_count; 309 freelen = aglen; 310 usedlen = aglen; 311 } else { 312 struct xfs_agf *agf = bp->b_addr; 313 314 aglen = be32_to_cpu(agf->agf_length); 315 freelen = be32_to_cpu(agf->agf_freeblks); 316 usedlen = aglen - freelen; 317 xfs_buf_relse(bp); 318 } 319 320 /* If the icount is impossible, make some worst-case assumptions. */ 321 if (icount == NULLAGINO || 322 !xfs_verify_agino(pag, icount)) { 323 icount = pag->agino_max - pag->agino_min + 1; 324 } 325 326 /* If the block counts are impossible, make worst-case assumptions. */ 327 if (aglen == NULLAGBLOCK || 328 aglen != pag->block_count || 329 freelen >= aglen) { 330 aglen = pag->block_count; 331 freelen = aglen; 332 usedlen = aglen; 333 } 334 xfs_perag_put(pag); 335 336 trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen, 337 freelen, usedlen); 338 339 /* 340 * Figure out how many blocks we'd need worst case to rebuild 341 * each type of btree. Note that we can only rebuild the 342 * bnobt/cntbt or inobt/finobt as pairs. 343 */ 344 bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen); 345 if (xfs_has_sparseinodes(mp)) 346 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 347 XFS_INODES_PER_HOLEMASK_BIT); 348 else 349 inobt_sz = xfs_iallocbt_calc_size(mp, icount / 350 XFS_INODES_PER_CHUNK); 351 if (xfs_has_finobt(mp)) 352 inobt_sz *= 2; 353 if (xfs_has_reflink(mp)) 354 refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen); 355 else 356 refcbt_sz = 0; 357 if (xfs_has_rmapbt(mp)) { 358 /* 359 * Guess how many blocks we need to rebuild the rmapbt. 360 * For non-reflink filesystems we can't have more records than 361 * used blocks. However, with reflink it's possible to have 362 * more than one rmap record per AG block. We don't know how 363 * many rmaps there could be in the AG, so we start off with 364 * what we hope is an generous over-estimation. 365 */ 366 if (xfs_has_reflink(mp)) 367 rmapbt_sz = xfs_rmapbt_calc_size(mp, 368 (unsigned long long)aglen * 2); 369 else 370 rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen); 371 } else { 372 rmapbt_sz = 0; 373 } 374 375 trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz, 376 inobt_sz, rmapbt_sz, refcbt_sz); 377 378 return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz)); 379 } 380 381 /* 382 * Reconstructing per-AG Btrees 383 * 384 * When a space btree is corrupt, we don't bother trying to fix it. Instead, 385 * we scan secondary space metadata to derive the records that should be in 386 * the damaged btree, initialize a fresh btree root, and insert the records. 387 * Note that for rebuilding the rmapbt we scan all the primary data to 388 * generate the new records. 389 * 390 * However, that leaves the matter of removing all the metadata describing the 391 * old broken structure. For primary metadata we use the rmap data to collect 392 * every extent with a matching rmap owner (bitmap); we then iterate all other 393 * metadata structures with the same rmap owner to collect the extents that 394 * cannot be removed (sublist). We then subtract sublist from bitmap to 395 * derive the blocks that were used by the old btree. These blocks can be 396 * reaped. 397 * 398 * For rmapbt reconstructions we must use different tactics for extent 399 * collection. First we iterate all primary metadata (this excludes the old 400 * rmapbt, obviously) to generate new rmap records. The gaps in the rmap 401 * records are collected as bitmap. The bnobt records are collected as 402 * sublist. As with the other btrees we subtract sublist from bitmap, and the 403 * result (since the rmapbt lives in the free space) are the blocks from the 404 * old rmapbt. 405 */ 406 407 /* Ensure the freelist is the correct size. */ 408 int 409 xrep_fix_freelist( 410 struct xfs_scrub *sc, 411 int alloc_flags) 412 { 413 struct xfs_alloc_arg args = {0}; 414 415 args.mp = sc->mp; 416 args.tp = sc->tp; 417 args.agno = sc->sa.pag->pag_agno; 418 args.alignment = 1; 419 args.pag = sc->sa.pag; 420 421 return xfs_alloc_fix_freelist(&args, alloc_flags); 422 } 423 424 /* 425 * Finding per-AG Btree Roots for AGF/AGI Reconstruction 426 * 427 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild 428 * the AG headers by using the rmap data to rummage through the AG looking for 429 * btree roots. This is not guaranteed to work if the AG is heavily damaged 430 * or the rmap data are corrupt. 431 * 432 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL 433 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the 434 * AGI is being rebuilt. It must maintain these locks until it's safe for 435 * other threads to change the btrees' shapes. The caller provides 436 * information about the btrees to look for by passing in an array of 437 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set. 438 * The (root, height) fields will be set on return if anything is found. The 439 * last element of the array should have a NULL buf_ops to mark the end of the 440 * array. 441 * 442 * For every rmapbt record matching any of the rmap owners in btree_info, 443 * read each block referenced by the rmap record. If the block is a btree 444 * block from this filesystem matching any of the magic numbers and has a 445 * level higher than what we've already seen, remember the block and the 446 * height of the tree required to have such a block. When the call completes, 447 * we return the highest block we've found for each btree description; those 448 * should be the roots. 449 */ 450 451 struct xrep_findroot { 452 struct xfs_scrub *sc; 453 struct xfs_buf *agfl_bp; 454 struct xfs_agf *agf; 455 struct xrep_find_ag_btree *btree_info; 456 }; 457 458 /* See if our block is in the AGFL. */ 459 STATIC int 460 xrep_findroot_agfl_walk( 461 struct xfs_mount *mp, 462 xfs_agblock_t bno, 463 void *priv) 464 { 465 xfs_agblock_t *agbno = priv; 466 467 return (*agbno == bno) ? -ECANCELED : 0; 468 } 469 470 /* Does this block match the btree information passed in? */ 471 STATIC int 472 xrep_findroot_block( 473 struct xrep_findroot *ri, 474 struct xrep_find_ag_btree *fab, 475 uint64_t owner, 476 xfs_agblock_t agbno, 477 bool *done_with_block) 478 { 479 struct xfs_mount *mp = ri->sc->mp; 480 struct xfs_buf *bp; 481 struct xfs_btree_block *btblock; 482 xfs_daddr_t daddr; 483 int block_level; 484 int error = 0; 485 486 daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.pag->pag_agno, agbno); 487 488 /* 489 * Blocks in the AGFL have stale contents that might just happen to 490 * have a matching magic and uuid. We don't want to pull these blocks 491 * in as part of a tree root, so we have to filter out the AGFL stuff 492 * here. If the AGFL looks insane we'll just refuse to repair. 493 */ 494 if (owner == XFS_RMAP_OWN_AG) { 495 error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp, 496 xrep_findroot_agfl_walk, &agbno); 497 if (error == -ECANCELED) 498 return 0; 499 if (error) 500 return error; 501 } 502 503 /* 504 * Read the buffer into memory so that we can see if it's a match for 505 * our btree type. We have no clue if it is beforehand, and we want to 506 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which 507 * will cause needless disk reads in subsequent calls to this function) 508 * and logging metadata verifier failures. 509 * 510 * Therefore, pass in NULL buffer ops. If the buffer was already in 511 * memory from some other caller it will already have b_ops assigned. 512 * If it was in memory from a previous unsuccessful findroot_block 513 * call, the buffer won't have b_ops but it should be clean and ready 514 * for us to try to verify if the read call succeeds. The same applies 515 * if the buffer wasn't in memory at all. 516 * 517 * Note: If we never match a btree type with this buffer, it will be 518 * left in memory with NULL b_ops. This shouldn't be a problem unless 519 * the buffer gets written. 520 */ 521 error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr, 522 mp->m_bsize, 0, &bp, NULL); 523 if (error) 524 return error; 525 526 /* Ensure the block magic matches the btree type we're looking for. */ 527 btblock = XFS_BUF_TO_BLOCK(bp); 528 ASSERT(fab->buf_ops->magic[1] != 0); 529 if (btblock->bb_magic != fab->buf_ops->magic[1]) 530 goto out; 531 532 /* 533 * If the buffer already has ops applied and they're not the ones for 534 * this btree type, we know this block doesn't match the btree and we 535 * can bail out. 536 * 537 * If the buffer ops match ours, someone else has already validated 538 * the block for us, so we can move on to checking if this is a root 539 * block candidate. 540 * 541 * If the buffer does not have ops, nobody has successfully validated 542 * the contents and the buffer cannot be dirty. If the magic, uuid, 543 * and structure match this btree type then we'll move on to checking 544 * if it's a root block candidate. If there is no match, bail out. 545 */ 546 if (bp->b_ops) { 547 if (bp->b_ops != fab->buf_ops) 548 goto out; 549 } else { 550 ASSERT(!xfs_trans_buf_is_dirty(bp)); 551 if (!uuid_equal(&btblock->bb_u.s.bb_uuid, 552 &mp->m_sb.sb_meta_uuid)) 553 goto out; 554 /* 555 * Read verifiers can reference b_ops, so we set the pointer 556 * here. If the verifier fails we'll reset the buffer state 557 * to what it was before we touched the buffer. 558 */ 559 bp->b_ops = fab->buf_ops; 560 fab->buf_ops->verify_read(bp); 561 if (bp->b_error) { 562 bp->b_ops = NULL; 563 bp->b_error = 0; 564 goto out; 565 } 566 567 /* 568 * Some read verifiers will (re)set b_ops, so we must be 569 * careful not to change b_ops after running the verifier. 570 */ 571 } 572 573 /* 574 * This block passes the magic/uuid and verifier tests for this btree 575 * type. We don't need the caller to try the other tree types. 576 */ 577 *done_with_block = true; 578 579 /* 580 * Compare this btree block's level to the height of the current 581 * candidate root block. 582 * 583 * If the level matches the root we found previously, throw away both 584 * blocks because there can't be two candidate roots. 585 * 586 * If level is lower in the tree than the root we found previously, 587 * ignore this block. 588 */ 589 block_level = xfs_btree_get_level(btblock); 590 if (block_level + 1 == fab->height) { 591 fab->root = NULLAGBLOCK; 592 goto out; 593 } else if (block_level < fab->height) { 594 goto out; 595 } 596 597 /* 598 * This is the highest block in the tree that we've found so far. 599 * Update the btree height to reflect what we've learned from this 600 * block. 601 */ 602 fab->height = block_level + 1; 603 604 /* 605 * If this block doesn't have sibling pointers, then it's the new root 606 * block candidate. Otherwise, the root will be found farther up the 607 * tree. 608 */ 609 if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) && 610 btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 611 fab->root = agbno; 612 else 613 fab->root = NULLAGBLOCK; 614 615 trace_xrep_findroot_block(mp, ri->sc->sa.pag->pag_agno, agbno, 616 be32_to_cpu(btblock->bb_magic), fab->height - 1); 617 out: 618 xfs_trans_brelse(ri->sc->tp, bp); 619 return error; 620 } 621 622 /* 623 * Do any of the blocks in this rmap record match one of the btrees we're 624 * looking for? 625 */ 626 STATIC int 627 xrep_findroot_rmap( 628 struct xfs_btree_cur *cur, 629 const struct xfs_rmap_irec *rec, 630 void *priv) 631 { 632 struct xrep_findroot *ri = priv; 633 struct xrep_find_ag_btree *fab; 634 xfs_agblock_t b; 635 bool done; 636 int error = 0; 637 638 /* Ignore anything that isn't AG metadata. */ 639 if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner)) 640 return 0; 641 642 /* Otherwise scan each block + btree type. */ 643 for (b = 0; b < rec->rm_blockcount; b++) { 644 done = false; 645 for (fab = ri->btree_info; fab->buf_ops; fab++) { 646 if (rec->rm_owner != fab->rmap_owner) 647 continue; 648 error = xrep_findroot_block(ri, fab, 649 rec->rm_owner, rec->rm_startblock + b, 650 &done); 651 if (error) 652 return error; 653 if (done) 654 break; 655 } 656 } 657 658 return 0; 659 } 660 661 /* Find the roots of the per-AG btrees described in btree_info. */ 662 int 663 xrep_find_ag_btree_roots( 664 struct xfs_scrub *sc, 665 struct xfs_buf *agf_bp, 666 struct xrep_find_ag_btree *btree_info, 667 struct xfs_buf *agfl_bp) 668 { 669 struct xfs_mount *mp = sc->mp; 670 struct xrep_findroot ri; 671 struct xrep_find_ag_btree *fab; 672 struct xfs_btree_cur *cur; 673 int error; 674 675 ASSERT(xfs_buf_islocked(agf_bp)); 676 ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp)); 677 678 ri.sc = sc; 679 ri.btree_info = btree_info; 680 ri.agf = agf_bp->b_addr; 681 ri.agfl_bp = agfl_bp; 682 for (fab = btree_info; fab->buf_ops; fab++) { 683 ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG); 684 ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner)); 685 fab->root = NULLAGBLOCK; 686 fab->height = 0; 687 } 688 689 cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag); 690 error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri); 691 xfs_btree_del_cursor(cur, error); 692 693 return error; 694 } 695 696 #ifdef CONFIG_XFS_QUOTA 697 /* Update some quota flags in the superblock. */ 698 void 699 xrep_update_qflags( 700 struct xfs_scrub *sc, 701 unsigned int clear_flags, 702 unsigned int set_flags) 703 { 704 struct xfs_mount *mp = sc->mp; 705 struct xfs_buf *bp; 706 707 mutex_lock(&mp->m_quotainfo->qi_quotaofflock); 708 if ((mp->m_qflags & clear_flags) == 0 && 709 (mp->m_qflags & set_flags) == set_flags) 710 goto no_update; 711 712 mp->m_qflags &= ~clear_flags; 713 mp->m_qflags |= set_flags; 714 715 spin_lock(&mp->m_sb_lock); 716 mp->m_sb.sb_qflags &= ~clear_flags; 717 mp->m_sb.sb_qflags |= set_flags; 718 spin_unlock(&mp->m_sb_lock); 719 720 /* 721 * Update the quota flags in the ondisk superblock without touching 722 * the summary counters. We have not quiesced inode chunk allocation, 723 * so we cannot coordinate with updates to the icount and ifree percpu 724 * counters. 725 */ 726 bp = xfs_trans_getsb(sc->tp); 727 xfs_sb_to_disk(bp->b_addr, &mp->m_sb); 728 xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF); 729 xfs_trans_log_buf(sc->tp, bp, 0, sizeof(struct xfs_dsb) - 1); 730 731 no_update: 732 mutex_unlock(&mp->m_quotainfo->qi_quotaofflock); 733 } 734 735 /* Force a quotacheck the next time we mount. */ 736 void 737 xrep_force_quotacheck( 738 struct xfs_scrub *sc, 739 xfs_dqtype_t type) 740 { 741 uint flag; 742 743 flag = xfs_quota_chkd_flag(type); 744 if (!(flag & sc->mp->m_qflags)) 745 return; 746 747 xrep_update_qflags(sc, flag, 0); 748 } 749 750 /* 751 * Attach dquots to this inode, or schedule quotacheck to fix them. 752 * 753 * This function ensures that the appropriate dquots are attached to an inode. 754 * We cannot allow the dquot code to allocate an on-disk dquot block here 755 * because we're already in transaction context. The on-disk dquot should 756 * already exist anyway. If the quota code signals corruption or missing quota 757 * information, schedule quotacheck, which will repair corruptions in the quota 758 * metadata. 759 */ 760 int 761 xrep_ino_dqattach( 762 struct xfs_scrub *sc) 763 { 764 int error; 765 766 ASSERT(sc->tp != NULL); 767 ASSERT(sc->ip != NULL); 768 769 error = xfs_qm_dqattach(sc->ip); 770 switch (error) { 771 case -EFSBADCRC: 772 case -EFSCORRUPTED: 773 case -ENOENT: 774 xfs_err_ratelimited(sc->mp, 775 "inode %llu repair encountered quota error %d, quotacheck forced.", 776 (unsigned long long)sc->ip->i_ino, error); 777 if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot) 778 xrep_force_quotacheck(sc, XFS_DQTYPE_USER); 779 if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot) 780 xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP); 781 if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot) 782 xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ); 783 fallthrough; 784 case -ESRCH: 785 error = 0; 786 break; 787 default: 788 break; 789 } 790 791 return error; 792 } 793 #endif /* CONFIG_XFS_QUOTA */ 794 795 /* 796 * Ensure that the inode being repaired is ready to handle a certain number of 797 * extents, or return EFSCORRUPTED. Caller must hold the ILOCK of the inode 798 * being repaired and have joined it to the scrub transaction. 799 */ 800 int 801 xrep_ino_ensure_extent_count( 802 struct xfs_scrub *sc, 803 int whichfork, 804 xfs_extnum_t nextents) 805 { 806 xfs_extnum_t max_extents; 807 bool inode_has_nrext64; 808 809 inode_has_nrext64 = xfs_inode_has_large_extent_counts(sc->ip); 810 max_extents = xfs_iext_max_nextents(inode_has_nrext64, whichfork); 811 if (nextents <= max_extents) 812 return 0; 813 if (inode_has_nrext64) 814 return -EFSCORRUPTED; 815 if (!xfs_has_large_extent_counts(sc->mp)) 816 return -EFSCORRUPTED; 817 818 max_extents = xfs_iext_max_nextents(true, whichfork); 819 if (nextents > max_extents) 820 return -EFSCORRUPTED; 821 822 sc->ip->i_diflags2 |= XFS_DIFLAG2_NREXT64; 823 xfs_trans_log_inode(sc->tp, sc->ip, XFS_ILOG_CORE); 824 return 0; 825 } 826 827 /* 828 * Initialize all the btree cursors for an AG repair except for the btree that 829 * we're rebuilding. 830 */ 831 void 832 xrep_ag_btcur_init( 833 struct xfs_scrub *sc, 834 struct xchk_ag *sa) 835 { 836 struct xfs_mount *mp = sc->mp; 837 838 /* Set up a bnobt cursor for cross-referencing. */ 839 if (sc->sm->sm_type != XFS_SCRUB_TYPE_BNOBT && 840 sc->sm->sm_type != XFS_SCRUB_TYPE_CNTBT) { 841 sa->bno_cur = xfs_bnobt_init_cursor(mp, sc->tp, sa->agf_bp, 842 sc->sa.pag); 843 sa->cnt_cur = xfs_cntbt_init_cursor(mp, sc->tp, sa->agf_bp, 844 sc->sa.pag); 845 } 846 847 /* Set up a inobt cursor for cross-referencing. */ 848 if (sc->sm->sm_type != XFS_SCRUB_TYPE_INOBT && 849 sc->sm->sm_type != XFS_SCRUB_TYPE_FINOBT) { 850 sa->ino_cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, 851 sa->agi_bp); 852 if (xfs_has_finobt(mp)) 853 sa->fino_cur = xfs_finobt_init_cursor(sc->sa.pag, 854 sc->tp, sa->agi_bp); 855 } 856 857 /* Set up a rmapbt cursor for cross-referencing. */ 858 if (sc->sm->sm_type != XFS_SCRUB_TYPE_RMAPBT && 859 xfs_has_rmapbt(mp)) 860 sa->rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, sa->agf_bp, 861 sc->sa.pag); 862 863 /* Set up a refcountbt cursor for cross-referencing. */ 864 if (sc->sm->sm_type != XFS_SCRUB_TYPE_REFCNTBT && 865 xfs_has_reflink(mp)) 866 sa->refc_cur = xfs_refcountbt_init_cursor(mp, sc->tp, 867 sa->agf_bp, sc->sa.pag); 868 } 869 870 /* 871 * Reinitialize the in-core AG state after a repair by rereading the AGF 872 * buffer. We had better get the same AGF buffer as the one that's attached 873 * to the scrub context. 874 */ 875 int 876 xrep_reinit_pagf( 877 struct xfs_scrub *sc) 878 { 879 struct xfs_perag *pag = sc->sa.pag; 880 struct xfs_buf *bp; 881 int error; 882 883 ASSERT(pag); 884 ASSERT(xfs_perag_initialised_agf(pag)); 885 886 clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate); 887 error = xfs_alloc_read_agf(pag, sc->tp, 0, &bp); 888 if (error) 889 return error; 890 891 if (bp != sc->sa.agf_bp) { 892 ASSERT(bp == sc->sa.agf_bp); 893 return -EFSCORRUPTED; 894 } 895 896 return 0; 897 } 898 899 /* 900 * Reinitialize the in-core AG state after a repair by rereading the AGI 901 * buffer. We had better get the same AGI buffer as the one that's attached 902 * to the scrub context. 903 */ 904 int 905 xrep_reinit_pagi( 906 struct xfs_scrub *sc) 907 { 908 struct xfs_perag *pag = sc->sa.pag; 909 struct xfs_buf *bp; 910 int error; 911 912 ASSERT(pag); 913 ASSERT(xfs_perag_initialised_agi(pag)); 914 915 clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate); 916 error = xfs_ialloc_read_agi(pag, sc->tp, 0, &bp); 917 if (error) 918 return error; 919 920 if (bp != sc->sa.agi_bp) { 921 ASSERT(bp == sc->sa.agi_bp); 922 return -EFSCORRUPTED; 923 } 924 925 return 0; 926 } 927 928 /* 929 * Given an active reference to a perag structure, load AG headers and cursors. 930 * This should only be called to scan an AG while repairing file-based metadata. 931 */ 932 int 933 xrep_ag_init( 934 struct xfs_scrub *sc, 935 struct xfs_perag *pag, 936 struct xchk_ag *sa) 937 { 938 int error; 939 940 ASSERT(!sa->pag); 941 942 error = xfs_ialloc_read_agi(pag, sc->tp, 0, &sa->agi_bp); 943 if (error) 944 return error; 945 946 error = xfs_alloc_read_agf(pag, sc->tp, 0, &sa->agf_bp); 947 if (error) 948 return error; 949 950 /* Grab our own passive reference from the caller's ref. */ 951 sa->pag = xfs_perag_hold(pag); 952 xrep_ag_btcur_init(sc, sa); 953 return 0; 954 } 955 956 /* Reinitialize the per-AG block reservation for the AG we just fixed. */ 957 int 958 xrep_reset_perag_resv( 959 struct xfs_scrub *sc) 960 { 961 int error; 962 963 if (!(sc->flags & XREP_RESET_PERAG_RESV)) 964 return 0; 965 966 ASSERT(sc->sa.pag != NULL); 967 ASSERT(sc->ops->type == ST_PERAG); 968 ASSERT(sc->tp); 969 970 sc->flags &= ~XREP_RESET_PERAG_RESV; 971 xfs_ag_resv_free(sc->sa.pag); 972 error = xfs_ag_resv_init(sc->sa.pag, sc->tp); 973 if (error == -ENOSPC) { 974 xfs_err(sc->mp, 975 "Insufficient free space to reset per-AG reservation for AG %u after repair.", 976 sc->sa.pag->pag_agno); 977 error = 0; 978 } 979 980 return error; 981 } 982 983 /* Decide if we are going to call the repair function for a scrub type. */ 984 bool 985 xrep_will_attempt( 986 struct xfs_scrub *sc) 987 { 988 /* Userspace asked us to rebuild the structure regardless. */ 989 if (sc->sm->sm_flags & XFS_SCRUB_IFLAG_FORCE_REBUILD) 990 return true; 991 992 /* Let debug users force us into the repair routines. */ 993 if (XFS_TEST_ERROR(false, sc->mp, XFS_ERRTAG_FORCE_SCRUB_REPAIR)) 994 return true; 995 996 /* Metadata is corrupt or failed cross-referencing. */ 997 if (xchk_needs_repair(sc->sm)) 998 return true; 999 1000 return false; 1001 } 1002 1003 /* Try to fix some part of a metadata inode by calling another scrubber. */ 1004 STATIC int 1005 xrep_metadata_inode_subtype( 1006 struct xfs_scrub *sc, 1007 unsigned int scrub_type) 1008 { 1009 struct xfs_scrub_subord *sub; 1010 int error; 1011 1012 /* 1013 * Let's see if the inode needs repair. Use a subordinate scrub context 1014 * to call the scrub and repair functions so that we can hang on to the 1015 * resources that we already acquired instead of using the standard 1016 * setup/teardown routines. 1017 */ 1018 sub = xchk_scrub_create_subord(sc, scrub_type); 1019 error = sub->sc.ops->scrub(&sub->sc); 1020 if (error) 1021 goto out; 1022 if (!xrep_will_attempt(&sub->sc)) 1023 goto out; 1024 1025 /* 1026 * Repair some part of the inode. This will potentially join the inode 1027 * to the transaction. 1028 */ 1029 error = sub->sc.ops->repair(&sub->sc); 1030 if (error) 1031 goto out; 1032 1033 /* 1034 * Finish all deferred intent items and then roll the transaction so 1035 * that the inode will not be joined to the transaction when we exit 1036 * the function. 1037 */ 1038 error = xfs_defer_finish(&sub->sc.tp); 1039 if (error) 1040 goto out; 1041 error = xfs_trans_roll(&sub->sc.tp); 1042 if (error) 1043 goto out; 1044 1045 /* 1046 * Clear the corruption flags and re-check the metadata that we just 1047 * repaired. 1048 */ 1049 sub->sc.sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT; 1050 error = sub->sc.ops->scrub(&sub->sc); 1051 if (error) 1052 goto out; 1053 1054 /* If corruption persists, the repair has failed. */ 1055 if (xchk_needs_repair(sub->sc.sm)) { 1056 error = -EFSCORRUPTED; 1057 goto out; 1058 } 1059 out: 1060 xchk_scrub_free_subord(sub); 1061 return error; 1062 } 1063 1064 /* 1065 * Repair the ondisk forks of a metadata inode. The caller must ensure that 1066 * sc->ip points to the metadata inode and the ILOCK is held on that inode. 1067 * The inode must not be joined to the transaction before the call, and will 1068 * not be afterwards. 1069 */ 1070 int 1071 xrep_metadata_inode_forks( 1072 struct xfs_scrub *sc) 1073 { 1074 bool dirty = false; 1075 int error; 1076 1077 /* Repair the inode record and the data fork. */ 1078 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_INODE); 1079 if (error) 1080 return error; 1081 1082 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTD); 1083 if (error) 1084 return error; 1085 1086 /* Make sure the attr fork looks ok before we delete it. */ 1087 error = xrep_metadata_inode_subtype(sc, XFS_SCRUB_TYPE_BMBTA); 1088 if (error) 1089 return error; 1090 1091 /* Clear the reflink flag since metadata never shares. */ 1092 if (xfs_is_reflink_inode(sc->ip)) { 1093 dirty = true; 1094 xfs_trans_ijoin(sc->tp, sc->ip, 0); 1095 error = xfs_reflink_clear_inode_flag(sc->ip, &sc->tp); 1096 if (error) 1097 return error; 1098 } 1099 1100 /* Clear the attr forks since metadata shouldn't have that. */ 1101 if (xfs_inode_hasattr(sc->ip)) { 1102 if (!dirty) { 1103 dirty = true; 1104 xfs_trans_ijoin(sc->tp, sc->ip, 0); 1105 } 1106 error = xrep_xattr_reset_fork(sc); 1107 if (error) 1108 return error; 1109 } 1110 1111 /* 1112 * If we modified the inode, roll the transaction but don't rejoin the 1113 * inode to the new transaction because xrep_bmap_data can do that. 1114 */ 1115 if (dirty) { 1116 error = xfs_trans_roll(&sc->tp); 1117 if (error) 1118 return error; 1119 dirty = false; 1120 } 1121 1122 return 0; 1123 } 1124 1125 /* 1126 * Set up an in-memory buffer cache so that we can use the xfbtree. Allocating 1127 * a shmem file might take loks, so we cannot be in transaction context. Park 1128 * our resources in the scrub context and let the teardown function take care 1129 * of them at the right time. 1130 */ 1131 int 1132 xrep_setup_xfbtree( 1133 struct xfs_scrub *sc, 1134 const char *descr) 1135 { 1136 ASSERT(sc->tp == NULL); 1137 1138 return xmbuf_alloc(sc->mp, descr, &sc->xmbtp); 1139 } 1140 1141 /* 1142 * Create a dummy transaction for use in a live update hook function. This 1143 * function MUST NOT be called from regular repair code because the current 1144 * process' transaction is saved via the cookie. 1145 */ 1146 int 1147 xrep_trans_alloc_hook_dummy( 1148 struct xfs_mount *mp, 1149 void **cookiep, 1150 struct xfs_trans **tpp) 1151 { 1152 int error; 1153 1154 *cookiep = current->journal_info; 1155 current->journal_info = NULL; 1156 1157 error = xfs_trans_alloc_empty(mp, tpp); 1158 if (!error) 1159 return 0; 1160 1161 current->journal_info = *cookiep; 1162 *cookiep = NULL; 1163 return error; 1164 } 1165 1166 /* Cancel a dummy transaction used by a live update hook function. */ 1167 void 1168 xrep_trans_cancel_hook_dummy( 1169 void **cookiep, 1170 struct xfs_trans *tp) 1171 { 1172 xfs_trans_cancel(tp); 1173 current->journal_info = *cookiep; 1174 *cookiep = NULL; 1175 } 1176 1177 /* 1178 * See if this buffer can pass the given ->verify_struct() function. 1179 * 1180 * If the buffer already has ops attached and they're not the ones that were 1181 * passed in, we reject the buffer. Otherwise, we perform the structure test 1182 * (note that we do not check CRCs) and return the outcome of the test. The 1183 * buffer ops and error state are left unchanged. 1184 */ 1185 bool 1186 xrep_buf_verify_struct( 1187 struct xfs_buf *bp, 1188 const struct xfs_buf_ops *ops) 1189 { 1190 const struct xfs_buf_ops *old_ops = bp->b_ops; 1191 xfs_failaddr_t fa; 1192 int old_error; 1193 1194 if (old_ops) { 1195 if (old_ops != ops) 1196 return false; 1197 } 1198 1199 old_error = bp->b_error; 1200 bp->b_ops = ops; 1201 fa = bp->b_ops->verify_struct(bp); 1202 bp->b_ops = old_ops; 1203 bp->b_error = old_error; 1204 1205 return fa == NULL; 1206 } 1207
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.