1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include <linux/backing-dev.h> 8 #include <linux/dax.h> 9 10 #include "xfs_shared.h" 11 #include "xfs_format.h" 12 #include "xfs_log_format.h" 13 #include "xfs_trans_resv.h" 14 #include "xfs_mount.h" 15 #include "xfs_trace.h" 16 #include "xfs_log.h" 17 #include "xfs_log_recover.h" 18 #include "xfs_log_priv.h" 19 #include "xfs_trans.h" 20 #include "xfs_buf_item.h" 21 #include "xfs_errortag.h" 22 #include "xfs_error.h" 23 #include "xfs_ag.h" 24 #include "xfs_buf_mem.h" 25 26 struct kmem_cache *xfs_buf_cache; 27 28 /* 29 * Locking orders 30 * 31 * xfs_buf_ioacct_inc: 32 * xfs_buf_ioacct_dec: 33 * b_sema (caller holds) 34 * b_lock 35 * 36 * xfs_buf_stale: 37 * b_sema (caller holds) 38 * b_lock 39 * lru_lock 40 * 41 * xfs_buf_rele: 42 * b_lock 43 * pag_buf_lock 44 * lru_lock 45 * 46 * xfs_buftarg_drain_rele 47 * lru_lock 48 * b_lock (trylock due to inversion) 49 * 50 * xfs_buftarg_isolate 51 * lru_lock 52 * b_lock (trylock due to inversion) 53 */ 54 55 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait); 56 57 static inline int 58 xfs_buf_submit( 59 struct xfs_buf *bp) 60 { 61 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC)); 62 } 63 64 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp) 65 { 66 return bp->b_rhash_key == XFS_BUF_DADDR_NULL; 67 } 68 69 static inline int 70 xfs_buf_is_vmapped( 71 struct xfs_buf *bp) 72 { 73 /* 74 * Return true if the buffer is vmapped. 75 * 76 * b_addr is null if the buffer is not mapped, but the code is clever 77 * enough to know it doesn't have to map a single page, so the check has 78 * to be both for b_addr and bp->b_page_count > 1. 79 */ 80 return bp->b_addr && bp->b_page_count > 1; 81 } 82 83 static inline int 84 xfs_buf_vmap_len( 85 struct xfs_buf *bp) 86 { 87 return (bp->b_page_count * PAGE_SIZE); 88 } 89 90 /* 91 * Bump the I/O in flight count on the buftarg if we haven't yet done so for 92 * this buffer. The count is incremented once per buffer (per hold cycle) 93 * because the corresponding decrement is deferred to buffer release. Buffers 94 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O 95 * tracking adds unnecessary overhead. This is used for sychronization purposes 96 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of 97 * in-flight buffers. 98 * 99 * Buffers that are never released (e.g., superblock, iclog buffers) must set 100 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count 101 * never reaches zero and unmount hangs indefinitely. 102 */ 103 static inline void 104 xfs_buf_ioacct_inc( 105 struct xfs_buf *bp) 106 { 107 if (bp->b_flags & XBF_NO_IOACCT) 108 return; 109 110 ASSERT(bp->b_flags & XBF_ASYNC); 111 spin_lock(&bp->b_lock); 112 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) { 113 bp->b_state |= XFS_BSTATE_IN_FLIGHT; 114 percpu_counter_inc(&bp->b_target->bt_io_count); 115 } 116 spin_unlock(&bp->b_lock); 117 } 118 119 /* 120 * Clear the in-flight state on a buffer about to be released to the LRU or 121 * freed and unaccount from the buftarg. 122 */ 123 static inline void 124 __xfs_buf_ioacct_dec( 125 struct xfs_buf *bp) 126 { 127 lockdep_assert_held(&bp->b_lock); 128 129 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) { 130 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT; 131 percpu_counter_dec(&bp->b_target->bt_io_count); 132 } 133 } 134 135 static inline void 136 xfs_buf_ioacct_dec( 137 struct xfs_buf *bp) 138 { 139 spin_lock(&bp->b_lock); 140 __xfs_buf_ioacct_dec(bp); 141 spin_unlock(&bp->b_lock); 142 } 143 144 /* 145 * When we mark a buffer stale, we remove the buffer from the LRU and clear the 146 * b_lru_ref count so that the buffer is freed immediately when the buffer 147 * reference count falls to zero. If the buffer is already on the LRU, we need 148 * to remove the reference that LRU holds on the buffer. 149 * 150 * This prevents build-up of stale buffers on the LRU. 151 */ 152 void 153 xfs_buf_stale( 154 struct xfs_buf *bp) 155 { 156 ASSERT(xfs_buf_islocked(bp)); 157 158 bp->b_flags |= XBF_STALE; 159 160 /* 161 * Clear the delwri status so that a delwri queue walker will not 162 * flush this buffer to disk now that it is stale. The delwri queue has 163 * a reference to the buffer, so this is safe to do. 164 */ 165 bp->b_flags &= ~_XBF_DELWRI_Q; 166 167 /* 168 * Once the buffer is marked stale and unlocked, a subsequent lookup 169 * could reset b_flags. There is no guarantee that the buffer is 170 * unaccounted (released to LRU) before that occurs. Drop in-flight 171 * status now to preserve accounting consistency. 172 */ 173 spin_lock(&bp->b_lock); 174 __xfs_buf_ioacct_dec(bp); 175 176 atomic_set(&bp->b_lru_ref, 0); 177 if (!(bp->b_state & XFS_BSTATE_DISPOSE) && 178 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru))) 179 atomic_dec(&bp->b_hold); 180 181 ASSERT(atomic_read(&bp->b_hold) >= 1); 182 spin_unlock(&bp->b_lock); 183 } 184 185 static int 186 xfs_buf_get_maps( 187 struct xfs_buf *bp, 188 int map_count) 189 { 190 ASSERT(bp->b_maps == NULL); 191 bp->b_map_count = map_count; 192 193 if (map_count == 1) { 194 bp->b_maps = &bp->__b_map; 195 return 0; 196 } 197 198 bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map), 199 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 200 if (!bp->b_maps) 201 return -ENOMEM; 202 return 0; 203 } 204 205 /* 206 * Frees b_pages if it was allocated. 207 */ 208 static void 209 xfs_buf_free_maps( 210 struct xfs_buf *bp) 211 { 212 if (bp->b_maps != &bp->__b_map) { 213 kfree(bp->b_maps); 214 bp->b_maps = NULL; 215 } 216 } 217 218 static int 219 _xfs_buf_alloc( 220 struct xfs_buftarg *target, 221 struct xfs_buf_map *map, 222 int nmaps, 223 xfs_buf_flags_t flags, 224 struct xfs_buf **bpp) 225 { 226 struct xfs_buf *bp; 227 int error; 228 int i; 229 230 *bpp = NULL; 231 bp = kmem_cache_zalloc(xfs_buf_cache, 232 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL); 233 234 /* 235 * We don't want certain flags to appear in b_flags unless they are 236 * specifically set by later operations on the buffer. 237 */ 238 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD); 239 240 atomic_set(&bp->b_hold, 1); 241 atomic_set(&bp->b_lru_ref, 1); 242 init_completion(&bp->b_iowait); 243 INIT_LIST_HEAD(&bp->b_lru); 244 INIT_LIST_HEAD(&bp->b_list); 245 INIT_LIST_HEAD(&bp->b_li_list); 246 sema_init(&bp->b_sema, 0); /* held, no waiters */ 247 spin_lock_init(&bp->b_lock); 248 bp->b_target = target; 249 bp->b_mount = target->bt_mount; 250 bp->b_flags = flags; 251 252 /* 253 * Set length and io_length to the same value initially. 254 * I/O routines should use io_length, which will be the same in 255 * most cases but may be reset (e.g. XFS recovery). 256 */ 257 error = xfs_buf_get_maps(bp, nmaps); 258 if (error) { 259 kmem_cache_free(xfs_buf_cache, bp); 260 return error; 261 } 262 263 bp->b_rhash_key = map[0].bm_bn; 264 bp->b_length = 0; 265 for (i = 0; i < nmaps; i++) { 266 bp->b_maps[i].bm_bn = map[i].bm_bn; 267 bp->b_maps[i].bm_len = map[i].bm_len; 268 bp->b_length += map[i].bm_len; 269 } 270 271 atomic_set(&bp->b_pin_count, 0); 272 init_waitqueue_head(&bp->b_waiters); 273 274 XFS_STATS_INC(bp->b_mount, xb_create); 275 trace_xfs_buf_init(bp, _RET_IP_); 276 277 *bpp = bp; 278 return 0; 279 } 280 281 static void 282 xfs_buf_free_pages( 283 struct xfs_buf *bp) 284 { 285 uint i; 286 287 ASSERT(bp->b_flags & _XBF_PAGES); 288 289 if (xfs_buf_is_vmapped(bp)) 290 vm_unmap_ram(bp->b_addr, bp->b_page_count); 291 292 for (i = 0; i < bp->b_page_count; i++) { 293 if (bp->b_pages[i]) 294 __free_page(bp->b_pages[i]); 295 } 296 mm_account_reclaimed_pages(bp->b_page_count); 297 298 if (bp->b_pages != bp->b_page_array) 299 kfree(bp->b_pages); 300 bp->b_pages = NULL; 301 bp->b_flags &= ~_XBF_PAGES; 302 } 303 304 static void 305 xfs_buf_free_callback( 306 struct callback_head *cb) 307 { 308 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu); 309 310 xfs_buf_free_maps(bp); 311 kmem_cache_free(xfs_buf_cache, bp); 312 } 313 314 static void 315 xfs_buf_free( 316 struct xfs_buf *bp) 317 { 318 trace_xfs_buf_free(bp, _RET_IP_); 319 320 ASSERT(list_empty(&bp->b_lru)); 321 322 if (xfs_buftarg_is_mem(bp->b_target)) 323 xmbuf_unmap_page(bp); 324 else if (bp->b_flags & _XBF_PAGES) 325 xfs_buf_free_pages(bp); 326 else if (bp->b_flags & _XBF_KMEM) 327 kfree(bp->b_addr); 328 329 call_rcu(&bp->b_rcu, xfs_buf_free_callback); 330 } 331 332 static int 333 xfs_buf_alloc_kmem( 334 struct xfs_buf *bp, 335 xfs_buf_flags_t flags) 336 { 337 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL; 338 size_t size = BBTOB(bp->b_length); 339 340 /* Assure zeroed buffer for non-read cases. */ 341 if (!(flags & XBF_READ)) 342 gfp_mask |= __GFP_ZERO; 343 344 bp->b_addr = kmalloc(size, gfp_mask); 345 if (!bp->b_addr) 346 return -ENOMEM; 347 348 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) != 349 ((unsigned long)bp->b_addr & PAGE_MASK)) { 350 /* b_addr spans two pages - use alloc_page instead */ 351 kfree(bp->b_addr); 352 bp->b_addr = NULL; 353 return -ENOMEM; 354 } 355 bp->b_offset = offset_in_page(bp->b_addr); 356 bp->b_pages = bp->b_page_array; 357 bp->b_pages[0] = kmem_to_page(bp->b_addr); 358 bp->b_page_count = 1; 359 bp->b_flags |= _XBF_KMEM; 360 return 0; 361 } 362 363 static int 364 xfs_buf_alloc_pages( 365 struct xfs_buf *bp, 366 xfs_buf_flags_t flags) 367 { 368 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN; 369 long filled = 0; 370 371 if (flags & XBF_READ_AHEAD) 372 gfp_mask |= __GFP_NORETRY; 373 374 /* Make sure that we have a page list */ 375 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE); 376 if (bp->b_page_count <= XB_PAGES) { 377 bp->b_pages = bp->b_page_array; 378 } else { 379 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count, 380 gfp_mask); 381 if (!bp->b_pages) 382 return -ENOMEM; 383 } 384 bp->b_flags |= _XBF_PAGES; 385 386 /* Assure zeroed buffer for non-read cases. */ 387 if (!(flags & XBF_READ)) 388 gfp_mask |= __GFP_ZERO; 389 390 /* 391 * Bulk filling of pages can take multiple calls. Not filling the entire 392 * array is not an allocation failure, so don't back off if we get at 393 * least one extra page. 394 */ 395 for (;;) { 396 long last = filled; 397 398 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count, 399 bp->b_pages); 400 if (filled == bp->b_page_count) { 401 XFS_STATS_INC(bp->b_mount, xb_page_found); 402 break; 403 } 404 405 if (filled != last) 406 continue; 407 408 if (flags & XBF_READ_AHEAD) { 409 xfs_buf_free_pages(bp); 410 return -ENOMEM; 411 } 412 413 XFS_STATS_INC(bp->b_mount, xb_page_retries); 414 memalloc_retry_wait(gfp_mask); 415 } 416 return 0; 417 } 418 419 /* 420 * Map buffer into kernel address-space if necessary. 421 */ 422 STATIC int 423 _xfs_buf_map_pages( 424 struct xfs_buf *bp, 425 xfs_buf_flags_t flags) 426 { 427 ASSERT(bp->b_flags & _XBF_PAGES); 428 if (bp->b_page_count == 1) { 429 /* A single page buffer is always mappable */ 430 bp->b_addr = page_address(bp->b_pages[0]); 431 } else if (flags & XBF_UNMAPPED) { 432 bp->b_addr = NULL; 433 } else { 434 int retried = 0; 435 unsigned nofs_flag; 436 437 /* 438 * vm_map_ram() will allocate auxiliary structures (e.g. 439 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs 440 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations 441 * from the same call site that can be run from both above and 442 * below memory reclaim causes lockdep false positives. Hence we 443 * always need to force this allocation to nofs context because 444 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to 445 * prevent false positive lockdep reports. 446 * 447 * XXX(dgc): I think dquot reclaim is the only place we can get 448 * to this function from memory reclaim context now. If we fix 449 * that like we've fixed inode reclaim to avoid writeback from 450 * reclaim, this nofs wrapping can go away. 451 */ 452 nofs_flag = memalloc_nofs_save(); 453 do { 454 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count, 455 -1); 456 if (bp->b_addr) 457 break; 458 vm_unmap_aliases(); 459 } while (retried++ <= 1); 460 memalloc_nofs_restore(nofs_flag); 461 462 if (!bp->b_addr) 463 return -ENOMEM; 464 } 465 466 return 0; 467 } 468 469 /* 470 * Finding and Reading Buffers 471 */ 472 static int 473 _xfs_buf_obj_cmp( 474 struct rhashtable_compare_arg *arg, 475 const void *obj) 476 { 477 const struct xfs_buf_map *map = arg->key; 478 const struct xfs_buf *bp = obj; 479 480 /* 481 * The key hashing in the lookup path depends on the key being the 482 * first element of the compare_arg, make sure to assert this. 483 */ 484 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0); 485 486 if (bp->b_rhash_key != map->bm_bn) 487 return 1; 488 489 if (unlikely(bp->b_length != map->bm_len)) { 490 /* 491 * found a block number match. If the range doesn't 492 * match, the only way this is allowed is if the buffer 493 * in the cache is stale and the transaction that made 494 * it stale has not yet committed. i.e. we are 495 * reallocating a busy extent. Skip this buffer and 496 * continue searching for an exact match. 497 * 498 * Note: If we're scanning for incore buffers to stale, don't 499 * complain if we find non-stale buffers. 500 */ 501 if (!(map->bm_flags & XBM_LIVESCAN)) 502 ASSERT(bp->b_flags & XBF_STALE); 503 return 1; 504 } 505 return 0; 506 } 507 508 static const struct rhashtable_params xfs_buf_hash_params = { 509 .min_size = 32, /* empty AGs have minimal footprint */ 510 .nelem_hint = 16, 511 .key_len = sizeof(xfs_daddr_t), 512 .key_offset = offsetof(struct xfs_buf, b_rhash_key), 513 .head_offset = offsetof(struct xfs_buf, b_rhash_head), 514 .automatic_shrinking = true, 515 .obj_cmpfn = _xfs_buf_obj_cmp, 516 }; 517 518 int 519 xfs_buf_cache_init( 520 struct xfs_buf_cache *bch) 521 { 522 spin_lock_init(&bch->bc_lock); 523 return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params); 524 } 525 526 void 527 xfs_buf_cache_destroy( 528 struct xfs_buf_cache *bch) 529 { 530 rhashtable_destroy(&bch->bc_hash); 531 } 532 533 static int 534 xfs_buf_map_verify( 535 struct xfs_buftarg *btp, 536 struct xfs_buf_map *map) 537 { 538 xfs_daddr_t eofs; 539 540 /* Check for IOs smaller than the sector size / not sector aligned */ 541 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize)); 542 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask)); 543 544 /* 545 * Corrupted block numbers can get through to here, unfortunately, so we 546 * have to check that the buffer falls within the filesystem bounds. 547 */ 548 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks); 549 if (map->bm_bn < 0 || map->bm_bn >= eofs) { 550 xfs_alert(btp->bt_mount, 551 "%s: daddr 0x%llx out of range, EOFS 0x%llx", 552 __func__, map->bm_bn, eofs); 553 WARN_ON(1); 554 return -EFSCORRUPTED; 555 } 556 return 0; 557 } 558 559 static int 560 xfs_buf_find_lock( 561 struct xfs_buf *bp, 562 xfs_buf_flags_t flags) 563 { 564 if (flags & XBF_TRYLOCK) { 565 if (!xfs_buf_trylock(bp)) { 566 XFS_STATS_INC(bp->b_mount, xb_busy_locked); 567 return -EAGAIN; 568 } 569 } else { 570 xfs_buf_lock(bp); 571 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited); 572 } 573 574 /* 575 * if the buffer is stale, clear all the external state associated with 576 * it. We need to keep flags such as how we allocated the buffer memory 577 * intact here. 578 */ 579 if (bp->b_flags & XBF_STALE) { 580 if (flags & XBF_LIVESCAN) { 581 xfs_buf_unlock(bp); 582 return -ENOENT; 583 } 584 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); 585 bp->b_flags &= _XBF_KMEM | _XBF_PAGES; 586 bp->b_ops = NULL; 587 } 588 return 0; 589 } 590 591 static inline int 592 xfs_buf_lookup( 593 struct xfs_buf_cache *bch, 594 struct xfs_buf_map *map, 595 xfs_buf_flags_t flags, 596 struct xfs_buf **bpp) 597 { 598 struct xfs_buf *bp; 599 int error; 600 601 rcu_read_lock(); 602 bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params); 603 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) { 604 rcu_read_unlock(); 605 return -ENOENT; 606 } 607 rcu_read_unlock(); 608 609 error = xfs_buf_find_lock(bp, flags); 610 if (error) { 611 xfs_buf_rele(bp); 612 return error; 613 } 614 615 trace_xfs_buf_find(bp, flags, _RET_IP_); 616 *bpp = bp; 617 return 0; 618 } 619 620 /* 621 * Insert the new_bp into the hash table. This consumes the perag reference 622 * taken for the lookup regardless of the result of the insert. 623 */ 624 static int 625 xfs_buf_find_insert( 626 struct xfs_buftarg *btp, 627 struct xfs_buf_cache *bch, 628 struct xfs_perag *pag, 629 struct xfs_buf_map *cmap, 630 struct xfs_buf_map *map, 631 int nmaps, 632 xfs_buf_flags_t flags, 633 struct xfs_buf **bpp) 634 { 635 struct xfs_buf *new_bp; 636 struct xfs_buf *bp; 637 int error; 638 639 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp); 640 if (error) 641 goto out_drop_pag; 642 643 if (xfs_buftarg_is_mem(new_bp->b_target)) { 644 error = xmbuf_map_page(new_bp); 645 } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE || 646 xfs_buf_alloc_kmem(new_bp, flags) < 0) { 647 /* 648 * For buffers that fit entirely within a single page, first 649 * attempt to allocate the memory from the heap to minimise 650 * memory usage. If we can't get heap memory for these small 651 * buffers, we fall back to using the page allocator. 652 */ 653 error = xfs_buf_alloc_pages(new_bp, flags); 654 } 655 if (error) 656 goto out_free_buf; 657 658 spin_lock(&bch->bc_lock); 659 bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash, 660 &new_bp->b_rhash_head, xfs_buf_hash_params); 661 if (IS_ERR(bp)) { 662 error = PTR_ERR(bp); 663 spin_unlock(&bch->bc_lock); 664 goto out_free_buf; 665 } 666 if (bp) { 667 /* found an existing buffer */ 668 atomic_inc(&bp->b_hold); 669 spin_unlock(&bch->bc_lock); 670 error = xfs_buf_find_lock(bp, flags); 671 if (error) 672 xfs_buf_rele(bp); 673 else 674 *bpp = bp; 675 goto out_free_buf; 676 } 677 678 /* The new buffer keeps the perag reference until it is freed. */ 679 new_bp->b_pag = pag; 680 spin_unlock(&bch->bc_lock); 681 *bpp = new_bp; 682 return 0; 683 684 out_free_buf: 685 xfs_buf_free(new_bp); 686 out_drop_pag: 687 if (pag) 688 xfs_perag_put(pag); 689 return error; 690 } 691 692 static inline struct xfs_perag * 693 xfs_buftarg_get_pag( 694 struct xfs_buftarg *btp, 695 const struct xfs_buf_map *map) 696 { 697 struct xfs_mount *mp = btp->bt_mount; 698 699 if (xfs_buftarg_is_mem(btp)) 700 return NULL; 701 return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn)); 702 } 703 704 static inline struct xfs_buf_cache * 705 xfs_buftarg_buf_cache( 706 struct xfs_buftarg *btp, 707 struct xfs_perag *pag) 708 { 709 if (pag) 710 return &pag->pag_bcache; 711 return btp->bt_cache; 712 } 713 714 /* 715 * Assembles a buffer covering the specified range. The code is optimised for 716 * cache hits, as metadata intensive workloads will see 3 orders of magnitude 717 * more hits than misses. 718 */ 719 int 720 xfs_buf_get_map( 721 struct xfs_buftarg *btp, 722 struct xfs_buf_map *map, 723 int nmaps, 724 xfs_buf_flags_t flags, 725 struct xfs_buf **bpp) 726 { 727 struct xfs_buf_cache *bch; 728 struct xfs_perag *pag; 729 struct xfs_buf *bp = NULL; 730 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn }; 731 int error; 732 int i; 733 734 if (flags & XBF_LIVESCAN) 735 cmap.bm_flags |= XBM_LIVESCAN; 736 for (i = 0; i < nmaps; i++) 737 cmap.bm_len += map[i].bm_len; 738 739 error = xfs_buf_map_verify(btp, &cmap); 740 if (error) 741 return error; 742 743 pag = xfs_buftarg_get_pag(btp, &cmap); 744 bch = xfs_buftarg_buf_cache(btp, pag); 745 746 error = xfs_buf_lookup(bch, &cmap, flags, &bp); 747 if (error && error != -ENOENT) 748 goto out_put_perag; 749 750 /* cache hits always outnumber misses by at least 10:1 */ 751 if (unlikely(!bp)) { 752 XFS_STATS_INC(btp->bt_mount, xb_miss_locked); 753 754 if (flags & XBF_INCORE) 755 goto out_put_perag; 756 757 /* xfs_buf_find_insert() consumes the perag reference. */ 758 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps, 759 flags, &bp); 760 if (error) 761 return error; 762 } else { 763 XFS_STATS_INC(btp->bt_mount, xb_get_locked); 764 if (pag) 765 xfs_perag_put(pag); 766 } 767 768 /* We do not hold a perag reference anymore. */ 769 if (!bp->b_addr) { 770 error = _xfs_buf_map_pages(bp, flags); 771 if (unlikely(error)) { 772 xfs_warn_ratelimited(btp->bt_mount, 773 "%s: failed to map %u pages", __func__, 774 bp->b_page_count); 775 xfs_buf_relse(bp); 776 return error; 777 } 778 } 779 780 /* 781 * Clear b_error if this is a lookup from a caller that doesn't expect 782 * valid data to be found in the buffer. 783 */ 784 if (!(flags & XBF_READ)) 785 xfs_buf_ioerror(bp, 0); 786 787 XFS_STATS_INC(btp->bt_mount, xb_get); 788 trace_xfs_buf_get(bp, flags, _RET_IP_); 789 *bpp = bp; 790 return 0; 791 792 out_put_perag: 793 if (pag) 794 xfs_perag_put(pag); 795 return error; 796 } 797 798 int 799 _xfs_buf_read( 800 struct xfs_buf *bp, 801 xfs_buf_flags_t flags) 802 { 803 ASSERT(!(flags & XBF_WRITE)); 804 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); 805 806 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE); 807 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); 808 809 return xfs_buf_submit(bp); 810 } 811 812 /* 813 * Reverify a buffer found in cache without an attached ->b_ops. 814 * 815 * If the caller passed an ops structure and the buffer doesn't have ops 816 * assigned, set the ops and use it to verify the contents. If verification 817 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is 818 * already in XBF_DONE state on entry. 819 * 820 * Under normal operations, every in-core buffer is verified on read I/O 821 * completion. There are two scenarios that can lead to in-core buffers without 822 * an assigned ->b_ops. The first is during log recovery of buffers on a V4 823 * filesystem, though these buffers are purged at the end of recovery. The 824 * other is online repair, which intentionally reads with a NULL buffer ops to 825 * run several verifiers across an in-core buffer in order to establish buffer 826 * type. If repair can't establish that, the buffer will be left in memory 827 * with NULL buffer ops. 828 */ 829 int 830 xfs_buf_reverify( 831 struct xfs_buf *bp, 832 const struct xfs_buf_ops *ops) 833 { 834 ASSERT(bp->b_flags & XBF_DONE); 835 ASSERT(bp->b_error == 0); 836 837 if (!ops || bp->b_ops) 838 return 0; 839 840 bp->b_ops = ops; 841 bp->b_ops->verify_read(bp); 842 if (bp->b_error) 843 bp->b_flags &= ~XBF_DONE; 844 return bp->b_error; 845 } 846 847 int 848 xfs_buf_read_map( 849 struct xfs_buftarg *target, 850 struct xfs_buf_map *map, 851 int nmaps, 852 xfs_buf_flags_t flags, 853 struct xfs_buf **bpp, 854 const struct xfs_buf_ops *ops, 855 xfs_failaddr_t fa) 856 { 857 struct xfs_buf *bp; 858 int error; 859 860 flags |= XBF_READ; 861 *bpp = NULL; 862 863 error = xfs_buf_get_map(target, map, nmaps, flags, &bp); 864 if (error) 865 return error; 866 867 trace_xfs_buf_read(bp, flags, _RET_IP_); 868 869 if (!(bp->b_flags & XBF_DONE)) { 870 /* Initiate the buffer read and wait. */ 871 XFS_STATS_INC(target->bt_mount, xb_get_read); 872 bp->b_ops = ops; 873 error = _xfs_buf_read(bp, flags); 874 875 /* Readahead iodone already dropped the buffer, so exit. */ 876 if (flags & XBF_ASYNC) 877 return 0; 878 } else { 879 /* Buffer already read; all we need to do is check it. */ 880 error = xfs_buf_reverify(bp, ops); 881 882 /* Readahead already finished; drop the buffer and exit. */ 883 if (flags & XBF_ASYNC) { 884 xfs_buf_relse(bp); 885 return 0; 886 } 887 888 /* We do not want read in the flags */ 889 bp->b_flags &= ~XBF_READ; 890 ASSERT(bp->b_ops != NULL || ops == NULL); 891 } 892 893 /* 894 * If we've had a read error, then the contents of the buffer are 895 * invalid and should not be used. To ensure that a followup read tries 896 * to pull the buffer from disk again, we clear the XBF_DONE flag and 897 * mark the buffer stale. This ensures that anyone who has a current 898 * reference to the buffer will interpret it's contents correctly and 899 * future cache lookups will also treat it as an empty, uninitialised 900 * buffer. 901 */ 902 if (error) { 903 /* 904 * Check against log shutdown for error reporting because 905 * metadata writeback may require a read first and we need to 906 * report errors in metadata writeback until the log is shut 907 * down. High level transaction read functions already check 908 * against mount shutdown, anyway, so we only need to be 909 * concerned about low level IO interactions here. 910 */ 911 if (!xlog_is_shutdown(target->bt_mount->m_log)) 912 xfs_buf_ioerror_alert(bp, fa); 913 914 bp->b_flags &= ~XBF_DONE; 915 xfs_buf_stale(bp); 916 xfs_buf_relse(bp); 917 918 /* bad CRC means corrupted metadata */ 919 if (error == -EFSBADCRC) 920 error = -EFSCORRUPTED; 921 return error; 922 } 923 924 *bpp = bp; 925 return 0; 926 } 927 928 /* 929 * If we are not low on memory then do the readahead in a deadlock 930 * safe manner. 931 */ 932 void 933 xfs_buf_readahead_map( 934 struct xfs_buftarg *target, 935 struct xfs_buf_map *map, 936 int nmaps, 937 const struct xfs_buf_ops *ops) 938 { 939 struct xfs_buf *bp; 940 941 /* 942 * Currently we don't have a good means or justification for performing 943 * xmbuf_map_page asynchronously, so we don't do readahead. 944 */ 945 if (xfs_buftarg_is_mem(target)) 946 return; 947 948 xfs_buf_read_map(target, map, nmaps, 949 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops, 950 __this_address); 951 } 952 953 /* 954 * Read an uncached buffer from disk. Allocates and returns a locked 955 * buffer containing the disk contents or nothing. Uncached buffers always have 956 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer 957 * is cached or uncached during fault diagnosis. 958 */ 959 int 960 xfs_buf_read_uncached( 961 struct xfs_buftarg *target, 962 xfs_daddr_t daddr, 963 size_t numblks, 964 xfs_buf_flags_t flags, 965 struct xfs_buf **bpp, 966 const struct xfs_buf_ops *ops) 967 { 968 struct xfs_buf *bp; 969 int error; 970 971 *bpp = NULL; 972 973 error = xfs_buf_get_uncached(target, numblks, flags, &bp); 974 if (error) 975 return error; 976 977 /* set up the buffer for a read IO */ 978 ASSERT(bp->b_map_count == 1); 979 bp->b_rhash_key = XFS_BUF_DADDR_NULL; 980 bp->b_maps[0].bm_bn = daddr; 981 bp->b_flags |= XBF_READ; 982 bp->b_ops = ops; 983 984 xfs_buf_submit(bp); 985 if (bp->b_error) { 986 error = bp->b_error; 987 xfs_buf_relse(bp); 988 return error; 989 } 990 991 *bpp = bp; 992 return 0; 993 } 994 995 int 996 xfs_buf_get_uncached( 997 struct xfs_buftarg *target, 998 size_t numblks, 999 xfs_buf_flags_t flags, 1000 struct xfs_buf **bpp) 1001 { 1002 int error; 1003 struct xfs_buf *bp; 1004 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks); 1005 1006 *bpp = NULL; 1007 1008 /* flags might contain irrelevant bits, pass only what we care about */ 1009 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp); 1010 if (error) 1011 return error; 1012 1013 if (xfs_buftarg_is_mem(bp->b_target)) 1014 error = xmbuf_map_page(bp); 1015 else 1016 error = xfs_buf_alloc_pages(bp, flags); 1017 if (error) 1018 goto fail_free_buf; 1019 1020 error = _xfs_buf_map_pages(bp, 0); 1021 if (unlikely(error)) { 1022 xfs_warn(target->bt_mount, 1023 "%s: failed to map pages", __func__); 1024 goto fail_free_buf; 1025 } 1026 1027 trace_xfs_buf_get_uncached(bp, _RET_IP_); 1028 *bpp = bp; 1029 return 0; 1030 1031 fail_free_buf: 1032 xfs_buf_free(bp); 1033 return error; 1034 } 1035 1036 /* 1037 * Increment reference count on buffer, to hold the buffer concurrently 1038 * with another thread which may release (free) the buffer asynchronously. 1039 * Must hold the buffer already to call this function. 1040 */ 1041 void 1042 xfs_buf_hold( 1043 struct xfs_buf *bp) 1044 { 1045 trace_xfs_buf_hold(bp, _RET_IP_); 1046 atomic_inc(&bp->b_hold); 1047 } 1048 1049 static void 1050 xfs_buf_rele_uncached( 1051 struct xfs_buf *bp) 1052 { 1053 ASSERT(list_empty(&bp->b_lru)); 1054 if (atomic_dec_and_test(&bp->b_hold)) { 1055 xfs_buf_ioacct_dec(bp); 1056 xfs_buf_free(bp); 1057 } 1058 } 1059 1060 static void 1061 xfs_buf_rele_cached( 1062 struct xfs_buf *bp) 1063 { 1064 struct xfs_buftarg *btp = bp->b_target; 1065 struct xfs_perag *pag = bp->b_pag; 1066 struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag); 1067 bool release; 1068 bool freebuf = false; 1069 1070 trace_xfs_buf_rele(bp, _RET_IP_); 1071 1072 ASSERT(atomic_read(&bp->b_hold) > 0); 1073 1074 /* 1075 * We grab the b_lock here first to serialise racing xfs_buf_rele() 1076 * calls. The pag_buf_lock being taken on the last reference only 1077 * serialises against racing lookups in xfs_buf_find(). IOWs, the second 1078 * to last reference we drop here is not serialised against the last 1079 * reference until we take bp->b_lock. Hence if we don't grab b_lock 1080 * first, the last "release" reference can win the race to the lock and 1081 * free the buffer before the second-to-last reference is processed, 1082 * leading to a use-after-free scenario. 1083 */ 1084 spin_lock(&bp->b_lock); 1085 release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock); 1086 if (!release) { 1087 /* 1088 * Drop the in-flight state if the buffer is already on the LRU 1089 * and it holds the only reference. This is racy because we 1090 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT 1091 * ensures the decrement occurs only once per-buf. 1092 */ 1093 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru)) 1094 __xfs_buf_ioacct_dec(bp); 1095 goto out_unlock; 1096 } 1097 1098 /* the last reference has been dropped ... */ 1099 __xfs_buf_ioacct_dec(bp); 1100 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) { 1101 /* 1102 * If the buffer is added to the LRU take a new reference to the 1103 * buffer for the LRU and clear the (now stale) dispose list 1104 * state flag 1105 */ 1106 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) { 1107 bp->b_state &= ~XFS_BSTATE_DISPOSE; 1108 atomic_inc(&bp->b_hold); 1109 } 1110 spin_unlock(&bch->bc_lock); 1111 } else { 1112 /* 1113 * most of the time buffers will already be removed from the 1114 * LRU, so optimise that case by checking for the 1115 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer 1116 * was on was the disposal list 1117 */ 1118 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) { 1119 list_lru_del_obj(&btp->bt_lru, &bp->b_lru); 1120 } else { 1121 ASSERT(list_empty(&bp->b_lru)); 1122 } 1123 1124 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1125 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head, 1126 xfs_buf_hash_params); 1127 spin_unlock(&bch->bc_lock); 1128 if (pag) 1129 xfs_perag_put(pag); 1130 freebuf = true; 1131 } 1132 1133 out_unlock: 1134 spin_unlock(&bp->b_lock); 1135 1136 if (freebuf) 1137 xfs_buf_free(bp); 1138 } 1139 1140 /* 1141 * Release a hold on the specified buffer. 1142 */ 1143 void 1144 xfs_buf_rele( 1145 struct xfs_buf *bp) 1146 { 1147 trace_xfs_buf_rele(bp, _RET_IP_); 1148 if (xfs_buf_is_uncached(bp)) 1149 xfs_buf_rele_uncached(bp); 1150 else 1151 xfs_buf_rele_cached(bp); 1152 } 1153 1154 /* 1155 * Lock a buffer object, if it is not already locked. 1156 * 1157 * If we come across a stale, pinned, locked buffer, we know that we are 1158 * being asked to lock a buffer that has been reallocated. Because it is 1159 * pinned, we know that the log has not been pushed to disk and hence it 1160 * will still be locked. Rather than continuing to have trylock attempts 1161 * fail until someone else pushes the log, push it ourselves before 1162 * returning. This means that the xfsaild will not get stuck trying 1163 * to push on stale inode buffers. 1164 */ 1165 int 1166 xfs_buf_trylock( 1167 struct xfs_buf *bp) 1168 { 1169 int locked; 1170 1171 locked = down_trylock(&bp->b_sema) == 0; 1172 if (locked) 1173 trace_xfs_buf_trylock(bp, _RET_IP_); 1174 else 1175 trace_xfs_buf_trylock_fail(bp, _RET_IP_); 1176 return locked; 1177 } 1178 1179 /* 1180 * Lock a buffer object. 1181 * 1182 * If we come across a stale, pinned, locked buffer, we know that we 1183 * are being asked to lock a buffer that has been reallocated. Because 1184 * it is pinned, we know that the log has not been pushed to disk and 1185 * hence it will still be locked. Rather than sleeping until someone 1186 * else pushes the log, push it ourselves before trying to get the lock. 1187 */ 1188 void 1189 xfs_buf_lock( 1190 struct xfs_buf *bp) 1191 { 1192 trace_xfs_buf_lock(bp, _RET_IP_); 1193 1194 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE)) 1195 xfs_log_force(bp->b_mount, 0); 1196 down(&bp->b_sema); 1197 1198 trace_xfs_buf_lock_done(bp, _RET_IP_); 1199 } 1200 1201 void 1202 xfs_buf_unlock( 1203 struct xfs_buf *bp) 1204 { 1205 ASSERT(xfs_buf_islocked(bp)); 1206 1207 up(&bp->b_sema); 1208 trace_xfs_buf_unlock(bp, _RET_IP_); 1209 } 1210 1211 STATIC void 1212 xfs_buf_wait_unpin( 1213 struct xfs_buf *bp) 1214 { 1215 DECLARE_WAITQUEUE (wait, current); 1216 1217 if (atomic_read(&bp->b_pin_count) == 0) 1218 return; 1219 1220 add_wait_queue(&bp->b_waiters, &wait); 1221 for (;;) { 1222 set_current_state(TASK_UNINTERRUPTIBLE); 1223 if (atomic_read(&bp->b_pin_count) == 0) 1224 break; 1225 io_schedule(); 1226 } 1227 remove_wait_queue(&bp->b_waiters, &wait); 1228 set_current_state(TASK_RUNNING); 1229 } 1230 1231 static void 1232 xfs_buf_ioerror_alert_ratelimited( 1233 struct xfs_buf *bp) 1234 { 1235 static unsigned long lasttime; 1236 static struct xfs_buftarg *lasttarg; 1237 1238 if (bp->b_target != lasttarg || 1239 time_after(jiffies, (lasttime + 5*HZ))) { 1240 lasttime = jiffies; 1241 xfs_buf_ioerror_alert(bp, __this_address); 1242 } 1243 lasttarg = bp->b_target; 1244 } 1245 1246 /* 1247 * Account for this latest trip around the retry handler, and decide if 1248 * we've failed enough times to constitute a permanent failure. 1249 */ 1250 static bool 1251 xfs_buf_ioerror_permanent( 1252 struct xfs_buf *bp, 1253 struct xfs_error_cfg *cfg) 1254 { 1255 struct xfs_mount *mp = bp->b_mount; 1256 1257 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER && 1258 ++bp->b_retries > cfg->max_retries) 1259 return true; 1260 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1261 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time)) 1262 return true; 1263 1264 /* At unmount we may treat errors differently */ 1265 if (xfs_is_unmounting(mp) && mp->m_fail_unmount) 1266 return true; 1267 1268 return false; 1269 } 1270 1271 /* 1272 * On a sync write or shutdown we just want to stale the buffer and let the 1273 * caller handle the error in bp->b_error appropriately. 1274 * 1275 * If the write was asynchronous then no one will be looking for the error. If 1276 * this is the first failure of this type, clear the error state and write the 1277 * buffer out again. This means we always retry an async write failure at least 1278 * once, but we also need to set the buffer up to behave correctly now for 1279 * repeated failures. 1280 * 1281 * If we get repeated async write failures, then we take action according to the 1282 * error configuration we have been set up to use. 1283 * 1284 * Returns true if this function took care of error handling and the caller must 1285 * not touch the buffer again. Return false if the caller should proceed with 1286 * normal I/O completion handling. 1287 */ 1288 static bool 1289 xfs_buf_ioend_handle_error( 1290 struct xfs_buf *bp) 1291 { 1292 struct xfs_mount *mp = bp->b_mount; 1293 struct xfs_error_cfg *cfg; 1294 1295 /* 1296 * If we've already shutdown the journal because of I/O errors, there's 1297 * no point in giving this a retry. 1298 */ 1299 if (xlog_is_shutdown(mp->m_log)) 1300 goto out_stale; 1301 1302 xfs_buf_ioerror_alert_ratelimited(bp); 1303 1304 /* 1305 * We're not going to bother about retrying this during recovery. 1306 * One strike! 1307 */ 1308 if (bp->b_flags & _XBF_LOGRECOVERY) { 1309 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1310 return false; 1311 } 1312 1313 /* 1314 * Synchronous writes will have callers process the error. 1315 */ 1316 if (!(bp->b_flags & XBF_ASYNC)) 1317 goto out_stale; 1318 1319 trace_xfs_buf_iodone_async(bp, _RET_IP_); 1320 1321 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error); 1322 if (bp->b_last_error != bp->b_error || 1323 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) { 1324 bp->b_last_error = bp->b_error; 1325 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER && 1326 !bp->b_first_retry_time) 1327 bp->b_first_retry_time = jiffies; 1328 goto resubmit; 1329 } 1330 1331 /* 1332 * Permanent error - we need to trigger a shutdown if we haven't already 1333 * to indicate that inconsistency will result from this action. 1334 */ 1335 if (xfs_buf_ioerror_permanent(bp, cfg)) { 1336 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR); 1337 goto out_stale; 1338 } 1339 1340 /* Still considered a transient error. Caller will schedule retries. */ 1341 if (bp->b_flags & _XBF_INODES) 1342 xfs_buf_inode_io_fail(bp); 1343 else if (bp->b_flags & _XBF_DQUOTS) 1344 xfs_buf_dquot_io_fail(bp); 1345 else 1346 ASSERT(list_empty(&bp->b_li_list)); 1347 xfs_buf_ioerror(bp, 0); 1348 xfs_buf_relse(bp); 1349 return true; 1350 1351 resubmit: 1352 xfs_buf_ioerror(bp, 0); 1353 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL); 1354 xfs_buf_submit(bp); 1355 return true; 1356 out_stale: 1357 xfs_buf_stale(bp); 1358 bp->b_flags |= XBF_DONE; 1359 bp->b_flags &= ~XBF_WRITE; 1360 trace_xfs_buf_error_relse(bp, _RET_IP_); 1361 return false; 1362 } 1363 1364 static void 1365 xfs_buf_ioend( 1366 struct xfs_buf *bp) 1367 { 1368 trace_xfs_buf_iodone(bp, _RET_IP_); 1369 1370 /* 1371 * Pull in IO completion errors now. We are guaranteed to be running 1372 * single threaded, so we don't need the lock to read b_io_error. 1373 */ 1374 if (!bp->b_error && bp->b_io_error) 1375 xfs_buf_ioerror(bp, bp->b_io_error); 1376 1377 if (bp->b_flags & XBF_READ) { 1378 if (!bp->b_error && bp->b_ops) 1379 bp->b_ops->verify_read(bp); 1380 if (!bp->b_error) 1381 bp->b_flags |= XBF_DONE; 1382 } else { 1383 if (!bp->b_error) { 1384 bp->b_flags &= ~XBF_WRITE_FAIL; 1385 bp->b_flags |= XBF_DONE; 1386 } 1387 1388 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp)) 1389 return; 1390 1391 /* clear the retry state */ 1392 bp->b_last_error = 0; 1393 bp->b_retries = 0; 1394 bp->b_first_retry_time = 0; 1395 1396 /* 1397 * Note that for things like remote attribute buffers, there may 1398 * not be a buffer log item here, so processing the buffer log 1399 * item must remain optional. 1400 */ 1401 if (bp->b_log_item) 1402 xfs_buf_item_done(bp); 1403 1404 if (bp->b_flags & _XBF_INODES) 1405 xfs_buf_inode_iodone(bp); 1406 else if (bp->b_flags & _XBF_DQUOTS) 1407 xfs_buf_dquot_iodone(bp); 1408 1409 } 1410 1411 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD | 1412 _XBF_LOGRECOVERY); 1413 1414 if (bp->b_flags & XBF_ASYNC) 1415 xfs_buf_relse(bp); 1416 else 1417 complete(&bp->b_iowait); 1418 } 1419 1420 static void 1421 xfs_buf_ioend_work( 1422 struct work_struct *work) 1423 { 1424 struct xfs_buf *bp = 1425 container_of(work, struct xfs_buf, b_ioend_work); 1426 1427 xfs_buf_ioend(bp); 1428 } 1429 1430 static void 1431 xfs_buf_ioend_async( 1432 struct xfs_buf *bp) 1433 { 1434 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work); 1435 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work); 1436 } 1437 1438 void 1439 __xfs_buf_ioerror( 1440 struct xfs_buf *bp, 1441 int error, 1442 xfs_failaddr_t failaddr) 1443 { 1444 ASSERT(error <= 0 && error >= -1000); 1445 bp->b_error = error; 1446 trace_xfs_buf_ioerror(bp, error, failaddr); 1447 } 1448 1449 void 1450 xfs_buf_ioerror_alert( 1451 struct xfs_buf *bp, 1452 xfs_failaddr_t func) 1453 { 1454 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error", 1455 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d", 1456 func, (uint64_t)xfs_buf_daddr(bp), 1457 bp->b_length, -bp->b_error); 1458 } 1459 1460 /* 1461 * To simulate an I/O failure, the buffer must be locked and held with at least 1462 * three references. The LRU reference is dropped by the stale call. The buf 1463 * item reference is dropped via ioend processing. The third reference is owned 1464 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC. 1465 */ 1466 void 1467 xfs_buf_ioend_fail( 1468 struct xfs_buf *bp) 1469 { 1470 bp->b_flags &= ~XBF_DONE; 1471 xfs_buf_stale(bp); 1472 xfs_buf_ioerror(bp, -EIO); 1473 xfs_buf_ioend(bp); 1474 } 1475 1476 int 1477 xfs_bwrite( 1478 struct xfs_buf *bp) 1479 { 1480 int error; 1481 1482 ASSERT(xfs_buf_islocked(bp)); 1483 1484 bp->b_flags |= XBF_WRITE; 1485 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | 1486 XBF_DONE); 1487 1488 error = xfs_buf_submit(bp); 1489 if (error) 1490 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR); 1491 return error; 1492 } 1493 1494 static void 1495 xfs_buf_bio_end_io( 1496 struct bio *bio) 1497 { 1498 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private; 1499 1500 if (!bio->bi_status && 1501 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) && 1502 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR)) 1503 bio->bi_status = BLK_STS_IOERR; 1504 1505 /* 1506 * don't overwrite existing errors - otherwise we can lose errors on 1507 * buffers that require multiple bios to complete. 1508 */ 1509 if (bio->bi_status) { 1510 int error = blk_status_to_errno(bio->bi_status); 1511 1512 cmpxchg(&bp->b_io_error, 0, error); 1513 } 1514 1515 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ)) 1516 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp)); 1517 1518 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) 1519 xfs_buf_ioend_async(bp); 1520 bio_put(bio); 1521 } 1522 1523 static void 1524 xfs_buf_ioapply_map( 1525 struct xfs_buf *bp, 1526 int map, 1527 int *buf_offset, 1528 int *count, 1529 blk_opf_t op) 1530 { 1531 int page_index; 1532 unsigned int total_nr_pages = bp->b_page_count; 1533 int nr_pages; 1534 struct bio *bio; 1535 sector_t sector = bp->b_maps[map].bm_bn; 1536 int size; 1537 int offset; 1538 1539 /* skip the pages in the buffer before the start offset */ 1540 page_index = 0; 1541 offset = *buf_offset; 1542 while (offset >= PAGE_SIZE) { 1543 page_index++; 1544 offset -= PAGE_SIZE; 1545 } 1546 1547 /* 1548 * Limit the IO size to the length of the current vector, and update the 1549 * remaining IO count for the next time around. 1550 */ 1551 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count); 1552 *count -= size; 1553 *buf_offset += size; 1554 1555 next_chunk: 1556 atomic_inc(&bp->b_io_remaining); 1557 nr_pages = bio_max_segs(total_nr_pages); 1558 1559 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO); 1560 bio->bi_iter.bi_sector = sector; 1561 bio->bi_end_io = xfs_buf_bio_end_io; 1562 bio->bi_private = bp; 1563 1564 for (; size && nr_pages; nr_pages--, page_index++) { 1565 int rbytes, nbytes = PAGE_SIZE - offset; 1566 1567 if (nbytes > size) 1568 nbytes = size; 1569 1570 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes, 1571 offset); 1572 if (rbytes < nbytes) 1573 break; 1574 1575 offset = 0; 1576 sector += BTOBB(nbytes); 1577 size -= nbytes; 1578 total_nr_pages--; 1579 } 1580 1581 if (likely(bio->bi_iter.bi_size)) { 1582 if (xfs_buf_is_vmapped(bp)) { 1583 flush_kernel_vmap_range(bp->b_addr, 1584 xfs_buf_vmap_len(bp)); 1585 } 1586 submit_bio(bio); 1587 if (size) 1588 goto next_chunk; 1589 } else { 1590 /* 1591 * This is guaranteed not to be the last io reference count 1592 * because the caller (xfs_buf_submit) holds a count itself. 1593 */ 1594 atomic_dec(&bp->b_io_remaining); 1595 xfs_buf_ioerror(bp, -EIO); 1596 bio_put(bio); 1597 } 1598 1599 } 1600 1601 STATIC void 1602 _xfs_buf_ioapply( 1603 struct xfs_buf *bp) 1604 { 1605 struct blk_plug plug; 1606 blk_opf_t op; 1607 int offset; 1608 int size; 1609 int i; 1610 1611 /* 1612 * Make sure we capture only current IO errors rather than stale errors 1613 * left over from previous use of the buffer (e.g. failed readahead). 1614 */ 1615 bp->b_error = 0; 1616 1617 if (bp->b_flags & XBF_WRITE) { 1618 op = REQ_OP_WRITE; 1619 1620 /* 1621 * Run the write verifier callback function if it exists. If 1622 * this function fails it will mark the buffer with an error and 1623 * the IO should not be dispatched. 1624 */ 1625 if (bp->b_ops) { 1626 bp->b_ops->verify_write(bp); 1627 if (bp->b_error) { 1628 xfs_force_shutdown(bp->b_mount, 1629 SHUTDOWN_CORRUPT_INCORE); 1630 return; 1631 } 1632 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) { 1633 struct xfs_mount *mp = bp->b_mount; 1634 1635 /* 1636 * non-crc filesystems don't attach verifiers during 1637 * log recovery, so don't warn for such filesystems. 1638 */ 1639 if (xfs_has_crc(mp)) { 1640 xfs_warn(mp, 1641 "%s: no buf ops on daddr 0x%llx len %d", 1642 __func__, xfs_buf_daddr(bp), 1643 bp->b_length); 1644 xfs_hex_dump(bp->b_addr, 1645 XFS_CORRUPTION_DUMP_LEN); 1646 dump_stack(); 1647 } 1648 } 1649 } else { 1650 op = REQ_OP_READ; 1651 if (bp->b_flags & XBF_READ_AHEAD) 1652 op |= REQ_RAHEAD; 1653 } 1654 1655 /* we only use the buffer cache for meta-data */ 1656 op |= REQ_META; 1657 1658 /* in-memory targets are directly mapped, no IO required. */ 1659 if (xfs_buftarg_is_mem(bp->b_target)) { 1660 xfs_buf_ioend(bp); 1661 return; 1662 } 1663 1664 /* 1665 * Walk all the vectors issuing IO on them. Set up the initial offset 1666 * into the buffer and the desired IO size before we start - 1667 * _xfs_buf_ioapply_vec() will modify them appropriately for each 1668 * subsequent call. 1669 */ 1670 offset = bp->b_offset; 1671 size = BBTOB(bp->b_length); 1672 blk_start_plug(&plug); 1673 for (i = 0; i < bp->b_map_count; i++) { 1674 xfs_buf_ioapply_map(bp, i, &offset, &size, op); 1675 if (bp->b_error) 1676 break; 1677 if (size <= 0) 1678 break; /* all done */ 1679 } 1680 blk_finish_plug(&plug); 1681 } 1682 1683 /* 1684 * Wait for I/O completion of a sync buffer and return the I/O error code. 1685 */ 1686 static int 1687 xfs_buf_iowait( 1688 struct xfs_buf *bp) 1689 { 1690 ASSERT(!(bp->b_flags & XBF_ASYNC)); 1691 1692 trace_xfs_buf_iowait(bp, _RET_IP_); 1693 wait_for_completion(&bp->b_iowait); 1694 trace_xfs_buf_iowait_done(bp, _RET_IP_); 1695 1696 return bp->b_error; 1697 } 1698 1699 /* 1700 * Buffer I/O submission path, read or write. Asynchronous submission transfers 1701 * the buffer lock ownership and the current reference to the IO. It is not 1702 * safe to reference the buffer after a call to this function unless the caller 1703 * holds an additional reference itself. 1704 */ 1705 static int 1706 __xfs_buf_submit( 1707 struct xfs_buf *bp, 1708 bool wait) 1709 { 1710 int error = 0; 1711 1712 trace_xfs_buf_submit(bp, _RET_IP_); 1713 1714 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 1715 1716 /* 1717 * On log shutdown we stale and complete the buffer immediately. We can 1718 * be called to read the superblock before the log has been set up, so 1719 * be careful checking the log state. 1720 * 1721 * Checking the mount shutdown state here can result in the log tail 1722 * moving inappropriately on disk as the log may not yet be shut down. 1723 * i.e. failing this buffer on mount shutdown can remove it from the AIL 1724 * and move the tail of the log forwards without having written this 1725 * buffer to disk. This corrupts the log tail state in memory, and 1726 * because the log may not be shut down yet, it can then be propagated 1727 * to disk before the log is shutdown. Hence we check log shutdown 1728 * state here rather than mount state to avoid corrupting the log tail 1729 * on shutdown. 1730 */ 1731 if (bp->b_mount->m_log && 1732 xlog_is_shutdown(bp->b_mount->m_log)) { 1733 xfs_buf_ioend_fail(bp); 1734 return -EIO; 1735 } 1736 1737 /* 1738 * Grab a reference so the buffer does not go away underneath us. For 1739 * async buffers, I/O completion drops the callers reference, which 1740 * could occur before submission returns. 1741 */ 1742 xfs_buf_hold(bp); 1743 1744 if (bp->b_flags & XBF_WRITE) 1745 xfs_buf_wait_unpin(bp); 1746 1747 /* clear the internal error state to avoid spurious errors */ 1748 bp->b_io_error = 0; 1749 1750 /* 1751 * Set the count to 1 initially, this will stop an I/O completion 1752 * callout which happens before we have started all the I/O from calling 1753 * xfs_buf_ioend too early. 1754 */ 1755 atomic_set(&bp->b_io_remaining, 1); 1756 if (bp->b_flags & XBF_ASYNC) 1757 xfs_buf_ioacct_inc(bp); 1758 _xfs_buf_ioapply(bp); 1759 1760 /* 1761 * If _xfs_buf_ioapply failed, we can get back here with only the IO 1762 * reference we took above. If we drop it to zero, run completion so 1763 * that we don't return to the caller with completion still pending. 1764 */ 1765 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { 1766 if (bp->b_error || !(bp->b_flags & XBF_ASYNC)) 1767 xfs_buf_ioend(bp); 1768 else 1769 xfs_buf_ioend_async(bp); 1770 } 1771 1772 if (wait) 1773 error = xfs_buf_iowait(bp); 1774 1775 /* 1776 * Release the hold that keeps the buffer referenced for the entire 1777 * I/O. Note that if the buffer is async, it is not safe to reference 1778 * after this release. 1779 */ 1780 xfs_buf_rele(bp); 1781 return error; 1782 } 1783 1784 void * 1785 xfs_buf_offset( 1786 struct xfs_buf *bp, 1787 size_t offset) 1788 { 1789 struct page *page; 1790 1791 if (bp->b_addr) 1792 return bp->b_addr + offset; 1793 1794 page = bp->b_pages[offset >> PAGE_SHIFT]; 1795 return page_address(page) + (offset & (PAGE_SIZE-1)); 1796 } 1797 1798 void 1799 xfs_buf_zero( 1800 struct xfs_buf *bp, 1801 size_t boff, 1802 size_t bsize) 1803 { 1804 size_t bend; 1805 1806 bend = boff + bsize; 1807 while (boff < bend) { 1808 struct page *page; 1809 int page_index, page_offset, csize; 1810 1811 page_index = (boff + bp->b_offset) >> PAGE_SHIFT; 1812 page_offset = (boff + bp->b_offset) & ~PAGE_MASK; 1813 page = bp->b_pages[page_index]; 1814 csize = min_t(size_t, PAGE_SIZE - page_offset, 1815 BBTOB(bp->b_length) - boff); 1816 1817 ASSERT((csize + page_offset) <= PAGE_SIZE); 1818 1819 memset(page_address(page) + page_offset, 0, csize); 1820 1821 boff += csize; 1822 } 1823 } 1824 1825 /* 1826 * Log a message about and stale a buffer that a caller has decided is corrupt. 1827 * 1828 * This function should be called for the kinds of metadata corruption that 1829 * cannot be detect from a verifier, such as incorrect inter-block relationship 1830 * data. Do /not/ call this function from a verifier function. 1831 * 1832 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will 1833 * be marked stale, but b_error will not be set. The caller is responsible for 1834 * releasing the buffer or fixing it. 1835 */ 1836 void 1837 __xfs_buf_mark_corrupt( 1838 struct xfs_buf *bp, 1839 xfs_failaddr_t fa) 1840 { 1841 ASSERT(bp->b_flags & XBF_DONE); 1842 1843 xfs_buf_corruption_error(bp, fa); 1844 xfs_buf_stale(bp); 1845 } 1846 1847 /* 1848 * Handling of buffer targets (buftargs). 1849 */ 1850 1851 /* 1852 * Wait for any bufs with callbacks that have been submitted but have not yet 1853 * returned. These buffers will have an elevated hold count, so wait on those 1854 * while freeing all the buffers only held by the LRU. 1855 */ 1856 static enum lru_status 1857 xfs_buftarg_drain_rele( 1858 struct list_head *item, 1859 struct list_lru_one *lru, 1860 spinlock_t *lru_lock, 1861 void *arg) 1862 1863 { 1864 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1865 struct list_head *dispose = arg; 1866 1867 if (atomic_read(&bp->b_hold) > 1) { 1868 /* need to wait, so skip it this pass */ 1869 trace_xfs_buf_drain_buftarg(bp, _RET_IP_); 1870 return LRU_SKIP; 1871 } 1872 if (!spin_trylock(&bp->b_lock)) 1873 return LRU_SKIP; 1874 1875 /* 1876 * clear the LRU reference count so the buffer doesn't get 1877 * ignored in xfs_buf_rele(). 1878 */ 1879 atomic_set(&bp->b_lru_ref, 0); 1880 bp->b_state |= XFS_BSTATE_DISPOSE; 1881 list_lru_isolate_move(lru, item, dispose); 1882 spin_unlock(&bp->b_lock); 1883 return LRU_REMOVED; 1884 } 1885 1886 /* 1887 * Wait for outstanding I/O on the buftarg to complete. 1888 */ 1889 void 1890 xfs_buftarg_wait( 1891 struct xfs_buftarg *btp) 1892 { 1893 /* 1894 * First wait on the buftarg I/O count for all in-flight buffers to be 1895 * released. This is critical as new buffers do not make the LRU until 1896 * they are released. 1897 * 1898 * Next, flush the buffer workqueue to ensure all completion processing 1899 * has finished. Just waiting on buffer locks is not sufficient for 1900 * async IO as the reference count held over IO is not released until 1901 * after the buffer lock is dropped. Hence we need to ensure here that 1902 * all reference counts have been dropped before we start walking the 1903 * LRU list. 1904 */ 1905 while (percpu_counter_sum(&btp->bt_io_count)) 1906 delay(100); 1907 flush_workqueue(btp->bt_mount->m_buf_workqueue); 1908 } 1909 1910 void 1911 xfs_buftarg_drain( 1912 struct xfs_buftarg *btp) 1913 { 1914 LIST_HEAD(dispose); 1915 int loop = 0; 1916 bool write_fail = false; 1917 1918 xfs_buftarg_wait(btp); 1919 1920 /* loop until there is nothing left on the lru list. */ 1921 while (list_lru_count(&btp->bt_lru)) { 1922 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele, 1923 &dispose, LONG_MAX); 1924 1925 while (!list_empty(&dispose)) { 1926 struct xfs_buf *bp; 1927 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 1928 list_del_init(&bp->b_lru); 1929 if (bp->b_flags & XBF_WRITE_FAIL) { 1930 write_fail = true; 1931 xfs_buf_alert_ratelimited(bp, 1932 "XFS: Corruption Alert", 1933 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!", 1934 (long long)xfs_buf_daddr(bp)); 1935 } 1936 xfs_buf_rele(bp); 1937 } 1938 if (loop++ != 0) 1939 delay(100); 1940 } 1941 1942 /* 1943 * If one or more failed buffers were freed, that means dirty metadata 1944 * was thrown away. This should only ever happen after I/O completion 1945 * handling has elevated I/O error(s) to permanent failures and shuts 1946 * down the journal. 1947 */ 1948 if (write_fail) { 1949 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log)); 1950 xfs_alert(btp->bt_mount, 1951 "Please run xfs_repair to determine the extent of the problem."); 1952 } 1953 } 1954 1955 static enum lru_status 1956 xfs_buftarg_isolate( 1957 struct list_head *item, 1958 struct list_lru_one *lru, 1959 spinlock_t *lru_lock, 1960 void *arg) 1961 { 1962 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru); 1963 struct list_head *dispose = arg; 1964 1965 /* 1966 * we are inverting the lru lock/bp->b_lock here, so use a trylock. 1967 * If we fail to get the lock, just skip it. 1968 */ 1969 if (!spin_trylock(&bp->b_lock)) 1970 return LRU_SKIP; 1971 /* 1972 * Decrement the b_lru_ref count unless the value is already 1973 * zero. If the value is already zero, we need to reclaim the 1974 * buffer, otherwise it gets another trip through the LRU. 1975 */ 1976 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) { 1977 spin_unlock(&bp->b_lock); 1978 return LRU_ROTATE; 1979 } 1980 1981 bp->b_state |= XFS_BSTATE_DISPOSE; 1982 list_lru_isolate_move(lru, item, dispose); 1983 spin_unlock(&bp->b_lock); 1984 return LRU_REMOVED; 1985 } 1986 1987 static unsigned long 1988 xfs_buftarg_shrink_scan( 1989 struct shrinker *shrink, 1990 struct shrink_control *sc) 1991 { 1992 struct xfs_buftarg *btp = shrink->private_data; 1993 LIST_HEAD(dispose); 1994 unsigned long freed; 1995 1996 freed = list_lru_shrink_walk(&btp->bt_lru, sc, 1997 xfs_buftarg_isolate, &dispose); 1998 1999 while (!list_empty(&dispose)) { 2000 struct xfs_buf *bp; 2001 bp = list_first_entry(&dispose, struct xfs_buf, b_lru); 2002 list_del_init(&bp->b_lru); 2003 xfs_buf_rele(bp); 2004 } 2005 2006 return freed; 2007 } 2008 2009 static unsigned long 2010 xfs_buftarg_shrink_count( 2011 struct shrinker *shrink, 2012 struct shrink_control *sc) 2013 { 2014 struct xfs_buftarg *btp = shrink->private_data; 2015 return list_lru_shrink_count(&btp->bt_lru, sc); 2016 } 2017 2018 void 2019 xfs_destroy_buftarg( 2020 struct xfs_buftarg *btp) 2021 { 2022 shrinker_free(btp->bt_shrinker); 2023 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0); 2024 percpu_counter_destroy(&btp->bt_io_count); 2025 list_lru_destroy(&btp->bt_lru); 2026 } 2027 2028 void 2029 xfs_free_buftarg( 2030 struct xfs_buftarg *btp) 2031 { 2032 xfs_destroy_buftarg(btp); 2033 fs_put_dax(btp->bt_daxdev, btp->bt_mount); 2034 /* the main block device is closed by kill_block_super */ 2035 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev) 2036 bdev_fput(btp->bt_bdev_file); 2037 kfree(btp); 2038 } 2039 2040 int 2041 xfs_setsize_buftarg( 2042 struct xfs_buftarg *btp, 2043 unsigned int sectorsize) 2044 { 2045 /* Set up metadata sector size info */ 2046 btp->bt_meta_sectorsize = sectorsize; 2047 btp->bt_meta_sectormask = sectorsize - 1; 2048 2049 if (set_blocksize(btp->bt_bdev_file, sectorsize)) { 2050 xfs_warn(btp->bt_mount, 2051 "Cannot set_blocksize to %u on device %pg", 2052 sectorsize, btp->bt_bdev); 2053 return -EINVAL; 2054 } 2055 2056 return 0; 2057 } 2058 2059 int 2060 xfs_init_buftarg( 2061 struct xfs_buftarg *btp, 2062 size_t logical_sectorsize, 2063 const char *descr) 2064 { 2065 /* Set up device logical sector size mask */ 2066 btp->bt_logical_sectorsize = logical_sectorsize; 2067 btp->bt_logical_sectormask = logical_sectorsize - 1; 2068 2069 /* 2070 * Buffer IO error rate limiting. Limit it to no more than 10 messages 2071 * per 30 seconds so as to not spam logs too much on repeated errors. 2072 */ 2073 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ, 2074 DEFAULT_RATELIMIT_BURST); 2075 2076 if (list_lru_init(&btp->bt_lru)) 2077 return -ENOMEM; 2078 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL)) 2079 goto out_destroy_lru; 2080 2081 btp->bt_shrinker = 2082 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr); 2083 if (!btp->bt_shrinker) 2084 goto out_destroy_io_count; 2085 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count; 2086 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan; 2087 btp->bt_shrinker->private_data = btp; 2088 shrinker_register(btp->bt_shrinker); 2089 return 0; 2090 2091 out_destroy_io_count: 2092 percpu_counter_destroy(&btp->bt_io_count); 2093 out_destroy_lru: 2094 list_lru_destroy(&btp->bt_lru); 2095 return -ENOMEM; 2096 } 2097 2098 struct xfs_buftarg * 2099 xfs_alloc_buftarg( 2100 struct xfs_mount *mp, 2101 struct file *bdev_file) 2102 { 2103 struct xfs_buftarg *btp; 2104 const struct dax_holder_operations *ops = NULL; 2105 2106 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE) 2107 ops = &xfs_dax_holder_operations; 2108 #endif 2109 btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL); 2110 2111 btp->bt_mount = mp; 2112 btp->bt_bdev_file = bdev_file; 2113 btp->bt_bdev = file_bdev(bdev_file); 2114 btp->bt_dev = btp->bt_bdev->bd_dev; 2115 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off, 2116 mp, ops); 2117 2118 /* 2119 * When allocating the buftargs we have not yet read the super block and 2120 * thus don't know the file system sector size yet. 2121 */ 2122 if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev))) 2123 goto error_free; 2124 if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev), 2125 mp->m_super->s_id)) 2126 goto error_free; 2127 2128 return btp; 2129 2130 error_free: 2131 kfree(btp); 2132 return NULL; 2133 } 2134 2135 static inline void 2136 xfs_buf_list_del( 2137 struct xfs_buf *bp) 2138 { 2139 list_del_init(&bp->b_list); 2140 wake_up_var(&bp->b_list); 2141 } 2142 2143 /* 2144 * Cancel a delayed write list. 2145 * 2146 * Remove each buffer from the list, clear the delwri queue flag and drop the 2147 * associated buffer reference. 2148 */ 2149 void 2150 xfs_buf_delwri_cancel( 2151 struct list_head *list) 2152 { 2153 struct xfs_buf *bp; 2154 2155 while (!list_empty(list)) { 2156 bp = list_first_entry(list, struct xfs_buf, b_list); 2157 2158 xfs_buf_lock(bp); 2159 bp->b_flags &= ~_XBF_DELWRI_Q; 2160 xfs_buf_list_del(bp); 2161 xfs_buf_relse(bp); 2162 } 2163 } 2164 2165 /* 2166 * Add a buffer to the delayed write list. 2167 * 2168 * This queues a buffer for writeout if it hasn't already been. Note that 2169 * neither this routine nor the buffer list submission functions perform 2170 * any internal synchronization. It is expected that the lists are thread-local 2171 * to the callers. 2172 * 2173 * Returns true if we queued up the buffer, or false if it already had 2174 * been on the buffer list. 2175 */ 2176 bool 2177 xfs_buf_delwri_queue( 2178 struct xfs_buf *bp, 2179 struct list_head *list) 2180 { 2181 ASSERT(xfs_buf_islocked(bp)); 2182 ASSERT(!(bp->b_flags & XBF_READ)); 2183 2184 /* 2185 * If the buffer is already marked delwri it already is queued up 2186 * by someone else for imediate writeout. Just ignore it in that 2187 * case. 2188 */ 2189 if (bp->b_flags & _XBF_DELWRI_Q) { 2190 trace_xfs_buf_delwri_queued(bp, _RET_IP_); 2191 return false; 2192 } 2193 2194 trace_xfs_buf_delwri_queue(bp, _RET_IP_); 2195 2196 /* 2197 * If a buffer gets written out synchronously or marked stale while it 2198 * is on a delwri list we lazily remove it. To do this, the other party 2199 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone. 2200 * It remains referenced and on the list. In a rare corner case it 2201 * might get readded to a delwri list after the synchronous writeout, in 2202 * which case we need just need to re-add the flag here. 2203 */ 2204 bp->b_flags |= _XBF_DELWRI_Q; 2205 if (list_empty(&bp->b_list)) { 2206 atomic_inc(&bp->b_hold); 2207 list_add_tail(&bp->b_list, list); 2208 } 2209 2210 return true; 2211 } 2212 2213 /* 2214 * Queue a buffer to this delwri list as part of a data integrity operation. 2215 * If the buffer is on any other delwri list, we'll wait for that to clear 2216 * so that the caller can submit the buffer for IO and wait for the result. 2217 * Callers must ensure the buffer is not already on the list. 2218 */ 2219 void 2220 xfs_buf_delwri_queue_here( 2221 struct xfs_buf *bp, 2222 struct list_head *buffer_list) 2223 { 2224 /* 2225 * We need this buffer to end up on the /caller's/ delwri list, not any 2226 * old list. This can happen if the buffer is marked stale (which 2227 * clears DELWRI_Q) after the AIL queues the buffer to its list but 2228 * before the AIL has a chance to submit the list. 2229 */ 2230 while (!list_empty(&bp->b_list)) { 2231 xfs_buf_unlock(bp); 2232 wait_var_event(&bp->b_list, list_empty(&bp->b_list)); 2233 xfs_buf_lock(bp); 2234 } 2235 2236 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q)); 2237 2238 xfs_buf_delwri_queue(bp, buffer_list); 2239 } 2240 2241 /* 2242 * Compare function is more complex than it needs to be because 2243 * the return value is only 32 bits and we are doing comparisons 2244 * on 64 bit values 2245 */ 2246 static int 2247 xfs_buf_cmp( 2248 void *priv, 2249 const struct list_head *a, 2250 const struct list_head *b) 2251 { 2252 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list); 2253 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list); 2254 xfs_daddr_t diff; 2255 2256 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn; 2257 if (diff < 0) 2258 return -1; 2259 if (diff > 0) 2260 return 1; 2261 return 0; 2262 } 2263 2264 /* 2265 * Submit buffers for write. If wait_list is specified, the buffers are 2266 * submitted using sync I/O and placed on the wait list such that the caller can 2267 * iowait each buffer. Otherwise async I/O is used and the buffers are released 2268 * at I/O completion time. In either case, buffers remain locked until I/O 2269 * completes and the buffer is released from the queue. 2270 */ 2271 static int 2272 xfs_buf_delwri_submit_buffers( 2273 struct list_head *buffer_list, 2274 struct list_head *wait_list) 2275 { 2276 struct xfs_buf *bp, *n; 2277 int pinned = 0; 2278 struct blk_plug plug; 2279 2280 list_sort(NULL, buffer_list, xfs_buf_cmp); 2281 2282 blk_start_plug(&plug); 2283 list_for_each_entry_safe(bp, n, buffer_list, b_list) { 2284 if (!wait_list) { 2285 if (!xfs_buf_trylock(bp)) 2286 continue; 2287 if (xfs_buf_ispinned(bp)) { 2288 xfs_buf_unlock(bp); 2289 pinned++; 2290 continue; 2291 } 2292 } else { 2293 xfs_buf_lock(bp); 2294 } 2295 2296 /* 2297 * Someone else might have written the buffer synchronously or 2298 * marked it stale in the meantime. In that case only the 2299 * _XBF_DELWRI_Q flag got cleared, and we have to drop the 2300 * reference and remove it from the list here. 2301 */ 2302 if (!(bp->b_flags & _XBF_DELWRI_Q)) { 2303 xfs_buf_list_del(bp); 2304 xfs_buf_relse(bp); 2305 continue; 2306 } 2307 2308 trace_xfs_buf_delwri_split(bp, _RET_IP_); 2309 2310 /* 2311 * If we have a wait list, each buffer (and associated delwri 2312 * queue reference) transfers to it and is submitted 2313 * synchronously. Otherwise, drop the buffer from the delwri 2314 * queue and submit async. 2315 */ 2316 bp->b_flags &= ~_XBF_DELWRI_Q; 2317 bp->b_flags |= XBF_WRITE; 2318 if (wait_list) { 2319 bp->b_flags &= ~XBF_ASYNC; 2320 list_move_tail(&bp->b_list, wait_list); 2321 } else { 2322 bp->b_flags |= XBF_ASYNC; 2323 xfs_buf_list_del(bp); 2324 } 2325 __xfs_buf_submit(bp, false); 2326 } 2327 blk_finish_plug(&plug); 2328 2329 return pinned; 2330 } 2331 2332 /* 2333 * Write out a buffer list asynchronously. 2334 * 2335 * This will take the @buffer_list, write all non-locked and non-pinned buffers 2336 * out and not wait for I/O completion on any of the buffers. This interface 2337 * is only safely useable for callers that can track I/O completion by higher 2338 * level means, e.g. AIL pushing as the @buffer_list is consumed in this 2339 * function. 2340 * 2341 * Note: this function will skip buffers it would block on, and in doing so 2342 * leaves them on @buffer_list so they can be retried on a later pass. As such, 2343 * it is up to the caller to ensure that the buffer list is fully submitted or 2344 * cancelled appropriately when they are finished with the list. Failure to 2345 * cancel or resubmit the list until it is empty will result in leaked buffers 2346 * at unmount time. 2347 */ 2348 int 2349 xfs_buf_delwri_submit_nowait( 2350 struct list_head *buffer_list) 2351 { 2352 return xfs_buf_delwri_submit_buffers(buffer_list, NULL); 2353 } 2354 2355 /* 2356 * Write out a buffer list synchronously. 2357 * 2358 * This will take the @buffer_list, write all buffers out and wait for I/O 2359 * completion on all of the buffers. @buffer_list is consumed by the function, 2360 * so callers must have some other way of tracking buffers if they require such 2361 * functionality. 2362 */ 2363 int 2364 xfs_buf_delwri_submit( 2365 struct list_head *buffer_list) 2366 { 2367 LIST_HEAD (wait_list); 2368 int error = 0, error2; 2369 struct xfs_buf *bp; 2370 2371 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list); 2372 2373 /* Wait for IO to complete. */ 2374 while (!list_empty(&wait_list)) { 2375 bp = list_first_entry(&wait_list, struct xfs_buf, b_list); 2376 2377 xfs_buf_list_del(bp); 2378 2379 /* 2380 * Wait on the locked buffer, check for errors and unlock and 2381 * release the delwri queue reference. 2382 */ 2383 error2 = xfs_buf_iowait(bp); 2384 xfs_buf_relse(bp); 2385 if (!error) 2386 error = error2; 2387 } 2388 2389 return error; 2390 } 2391 2392 /* 2393 * Push a single buffer on a delwri queue. 2394 * 2395 * The purpose of this function is to submit a single buffer of a delwri queue 2396 * and return with the buffer still on the original queue. The waiting delwri 2397 * buffer submission infrastructure guarantees transfer of the delwri queue 2398 * buffer reference to a temporary wait list. We reuse this infrastructure to 2399 * transfer the buffer back to the original queue. 2400 * 2401 * Note the buffer transitions from the queued state, to the submitted and wait 2402 * listed state and back to the queued state during this call. The buffer 2403 * locking and queue management logic between _delwri_pushbuf() and 2404 * _delwri_queue() guarantee that the buffer cannot be queued to another list 2405 * before returning. 2406 */ 2407 int 2408 xfs_buf_delwri_pushbuf( 2409 struct xfs_buf *bp, 2410 struct list_head *buffer_list) 2411 { 2412 LIST_HEAD (submit_list); 2413 int error; 2414 2415 ASSERT(bp->b_flags & _XBF_DELWRI_Q); 2416 2417 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_); 2418 2419 /* 2420 * Isolate the buffer to a new local list so we can submit it for I/O 2421 * independently from the rest of the original list. 2422 */ 2423 xfs_buf_lock(bp); 2424 list_move(&bp->b_list, &submit_list); 2425 xfs_buf_unlock(bp); 2426 2427 /* 2428 * Delwri submission clears the DELWRI_Q buffer flag and returns with 2429 * the buffer on the wait list with the original reference. Rather than 2430 * bounce the buffer from a local wait list back to the original list 2431 * after I/O completion, reuse the original list as the wait list. 2432 */ 2433 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list); 2434 2435 /* 2436 * The buffer is now locked, under I/O and wait listed on the original 2437 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and 2438 * return with the buffer unlocked and on the original queue. 2439 */ 2440 error = xfs_buf_iowait(bp); 2441 bp->b_flags |= _XBF_DELWRI_Q; 2442 xfs_buf_unlock(bp); 2443 2444 return error; 2445 } 2446 2447 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref) 2448 { 2449 /* 2450 * Set the lru reference count to 0 based on the error injection tag. 2451 * This allows userspace to disrupt buffer caching for debug/testing 2452 * purposes. 2453 */ 2454 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF)) 2455 lru_ref = 0; 2456 2457 atomic_set(&bp->b_lru_ref, lru_ref); 2458 } 2459 2460 /* 2461 * Verify an on-disk magic value against the magic value specified in the 2462 * verifier structure. The verifier magic is in disk byte order so the caller is 2463 * expected to pass the value directly from disk. 2464 */ 2465 bool 2466 xfs_verify_magic( 2467 struct xfs_buf *bp, 2468 __be32 dmagic) 2469 { 2470 struct xfs_mount *mp = bp->b_mount; 2471 int idx; 2472 2473 idx = xfs_has_crc(mp); 2474 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])) 2475 return false; 2476 return dmagic == bp->b_ops->magic[idx]; 2477 } 2478 /* 2479 * Verify an on-disk magic value against the magic value specified in the 2480 * verifier structure. The verifier magic is in disk byte order so the caller is 2481 * expected to pass the value directly from disk. 2482 */ 2483 bool 2484 xfs_verify_magic16( 2485 struct xfs_buf *bp, 2486 __be16 dmagic) 2487 { 2488 struct xfs_mount *mp = bp->b_mount; 2489 int idx; 2490 2491 idx = xfs_has_crc(mp); 2492 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])) 2493 return false; 2494 return dmagic == bp->b_ops->magic16[idx]; 2495 } 2496
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.