~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/xfs_buf.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include <linux/backing-dev.h>
  8 #include <linux/dax.h>
  9 
 10 #include "xfs_shared.h"
 11 #include "xfs_format.h"
 12 #include "xfs_log_format.h"
 13 #include "xfs_trans_resv.h"
 14 #include "xfs_mount.h"
 15 #include "xfs_trace.h"
 16 #include "xfs_log.h"
 17 #include "xfs_log_recover.h"
 18 #include "xfs_log_priv.h"
 19 #include "xfs_trans.h"
 20 #include "xfs_buf_item.h"
 21 #include "xfs_errortag.h"
 22 #include "xfs_error.h"
 23 #include "xfs_ag.h"
 24 #include "xfs_buf_mem.h"
 25 
 26 struct kmem_cache *xfs_buf_cache;
 27 
 28 /*
 29  * Locking orders
 30  *
 31  * xfs_buf_ioacct_inc:
 32  * xfs_buf_ioacct_dec:
 33  *      b_sema (caller holds)
 34  *        b_lock
 35  *
 36  * xfs_buf_stale:
 37  *      b_sema (caller holds)
 38  *        b_lock
 39  *          lru_lock
 40  *
 41  * xfs_buf_rele:
 42  *      b_lock
 43  *        pag_buf_lock
 44  *          lru_lock
 45  *
 46  * xfs_buftarg_drain_rele
 47  *      lru_lock
 48  *        b_lock (trylock due to inversion)
 49  *
 50  * xfs_buftarg_isolate
 51  *      lru_lock
 52  *        b_lock (trylock due to inversion)
 53  */
 54 
 55 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
 56 
 57 static inline int
 58 xfs_buf_submit(
 59         struct xfs_buf          *bp)
 60 {
 61         return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
 62 }
 63 
 64 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
 65 {
 66         return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
 67 }
 68 
 69 static inline int
 70 xfs_buf_is_vmapped(
 71         struct xfs_buf  *bp)
 72 {
 73         /*
 74          * Return true if the buffer is vmapped.
 75          *
 76          * b_addr is null if the buffer is not mapped, but the code is clever
 77          * enough to know it doesn't have to map a single page, so the check has
 78          * to be both for b_addr and bp->b_page_count > 1.
 79          */
 80         return bp->b_addr && bp->b_page_count > 1;
 81 }
 82 
 83 static inline int
 84 xfs_buf_vmap_len(
 85         struct xfs_buf  *bp)
 86 {
 87         return (bp->b_page_count * PAGE_SIZE);
 88 }
 89 
 90 /*
 91  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
 92  * this buffer. The count is incremented once per buffer (per hold cycle)
 93  * because the corresponding decrement is deferred to buffer release. Buffers
 94  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
 95  * tracking adds unnecessary overhead. This is used for sychronization purposes
 96  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
 97  * in-flight buffers.
 98  *
 99  * Buffers that are never released (e.g., superblock, iclog buffers) must set
100  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
101  * never reaches zero and unmount hangs indefinitely.
102  */
103 static inline void
104 xfs_buf_ioacct_inc(
105         struct xfs_buf  *bp)
106 {
107         if (bp->b_flags & XBF_NO_IOACCT)
108                 return;
109 
110         ASSERT(bp->b_flags & XBF_ASYNC);
111         spin_lock(&bp->b_lock);
112         if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
113                 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
114                 percpu_counter_inc(&bp->b_target->bt_io_count);
115         }
116         spin_unlock(&bp->b_lock);
117 }
118 
119 /*
120  * Clear the in-flight state on a buffer about to be released to the LRU or
121  * freed and unaccount from the buftarg.
122  */
123 static inline void
124 __xfs_buf_ioacct_dec(
125         struct xfs_buf  *bp)
126 {
127         lockdep_assert_held(&bp->b_lock);
128 
129         if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
130                 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
131                 percpu_counter_dec(&bp->b_target->bt_io_count);
132         }
133 }
134 
135 static inline void
136 xfs_buf_ioacct_dec(
137         struct xfs_buf  *bp)
138 {
139         spin_lock(&bp->b_lock);
140         __xfs_buf_ioacct_dec(bp);
141         spin_unlock(&bp->b_lock);
142 }
143 
144 /*
145  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
146  * b_lru_ref count so that the buffer is freed immediately when the buffer
147  * reference count falls to zero. If the buffer is already on the LRU, we need
148  * to remove the reference that LRU holds on the buffer.
149  *
150  * This prevents build-up of stale buffers on the LRU.
151  */
152 void
153 xfs_buf_stale(
154         struct xfs_buf  *bp)
155 {
156         ASSERT(xfs_buf_islocked(bp));
157 
158         bp->b_flags |= XBF_STALE;
159 
160         /*
161          * Clear the delwri status so that a delwri queue walker will not
162          * flush this buffer to disk now that it is stale. The delwri queue has
163          * a reference to the buffer, so this is safe to do.
164          */
165         bp->b_flags &= ~_XBF_DELWRI_Q;
166 
167         /*
168          * Once the buffer is marked stale and unlocked, a subsequent lookup
169          * could reset b_flags. There is no guarantee that the buffer is
170          * unaccounted (released to LRU) before that occurs. Drop in-flight
171          * status now to preserve accounting consistency.
172          */
173         spin_lock(&bp->b_lock);
174         __xfs_buf_ioacct_dec(bp);
175 
176         atomic_set(&bp->b_lru_ref, 0);
177         if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
178             (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
179                 atomic_dec(&bp->b_hold);
180 
181         ASSERT(atomic_read(&bp->b_hold) >= 1);
182         spin_unlock(&bp->b_lock);
183 }
184 
185 static int
186 xfs_buf_get_maps(
187         struct xfs_buf          *bp,
188         int                     map_count)
189 {
190         ASSERT(bp->b_maps == NULL);
191         bp->b_map_count = map_count;
192 
193         if (map_count == 1) {
194                 bp->b_maps = &bp->__b_map;
195                 return 0;
196         }
197 
198         bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
199                         GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
200         if (!bp->b_maps)
201                 return -ENOMEM;
202         return 0;
203 }
204 
205 /*
206  *      Frees b_pages if it was allocated.
207  */
208 static void
209 xfs_buf_free_maps(
210         struct xfs_buf  *bp)
211 {
212         if (bp->b_maps != &bp->__b_map) {
213                 kfree(bp->b_maps);
214                 bp->b_maps = NULL;
215         }
216 }
217 
218 static int
219 _xfs_buf_alloc(
220         struct xfs_buftarg      *target,
221         struct xfs_buf_map      *map,
222         int                     nmaps,
223         xfs_buf_flags_t         flags,
224         struct xfs_buf          **bpp)
225 {
226         struct xfs_buf          *bp;
227         int                     error;
228         int                     i;
229 
230         *bpp = NULL;
231         bp = kmem_cache_zalloc(xfs_buf_cache,
232                         GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
233 
234         /*
235          * We don't want certain flags to appear in b_flags unless they are
236          * specifically set by later operations on the buffer.
237          */
238         flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
239 
240         atomic_set(&bp->b_hold, 1);
241         atomic_set(&bp->b_lru_ref, 1);
242         init_completion(&bp->b_iowait);
243         INIT_LIST_HEAD(&bp->b_lru);
244         INIT_LIST_HEAD(&bp->b_list);
245         INIT_LIST_HEAD(&bp->b_li_list);
246         sema_init(&bp->b_sema, 0); /* held, no waiters */
247         spin_lock_init(&bp->b_lock);
248         bp->b_target = target;
249         bp->b_mount = target->bt_mount;
250         bp->b_flags = flags;
251 
252         /*
253          * Set length and io_length to the same value initially.
254          * I/O routines should use io_length, which will be the same in
255          * most cases but may be reset (e.g. XFS recovery).
256          */
257         error = xfs_buf_get_maps(bp, nmaps);
258         if (error)  {
259                 kmem_cache_free(xfs_buf_cache, bp);
260                 return error;
261         }
262 
263         bp->b_rhash_key = map[0].bm_bn;
264         bp->b_length = 0;
265         for (i = 0; i < nmaps; i++) {
266                 bp->b_maps[i].bm_bn = map[i].bm_bn;
267                 bp->b_maps[i].bm_len = map[i].bm_len;
268                 bp->b_length += map[i].bm_len;
269         }
270 
271         atomic_set(&bp->b_pin_count, 0);
272         init_waitqueue_head(&bp->b_waiters);
273 
274         XFS_STATS_INC(bp->b_mount, xb_create);
275         trace_xfs_buf_init(bp, _RET_IP_);
276 
277         *bpp = bp;
278         return 0;
279 }
280 
281 static void
282 xfs_buf_free_pages(
283         struct xfs_buf  *bp)
284 {
285         uint            i;
286 
287         ASSERT(bp->b_flags & _XBF_PAGES);
288 
289         if (xfs_buf_is_vmapped(bp))
290                 vm_unmap_ram(bp->b_addr, bp->b_page_count);
291 
292         for (i = 0; i < bp->b_page_count; i++) {
293                 if (bp->b_pages[i])
294                         __free_page(bp->b_pages[i]);
295         }
296         mm_account_reclaimed_pages(bp->b_page_count);
297 
298         if (bp->b_pages != bp->b_page_array)
299                 kfree(bp->b_pages);
300         bp->b_pages = NULL;
301         bp->b_flags &= ~_XBF_PAGES;
302 }
303 
304 static void
305 xfs_buf_free_callback(
306         struct callback_head    *cb)
307 {
308         struct xfs_buf          *bp = container_of(cb, struct xfs_buf, b_rcu);
309 
310         xfs_buf_free_maps(bp);
311         kmem_cache_free(xfs_buf_cache, bp);
312 }
313 
314 static void
315 xfs_buf_free(
316         struct xfs_buf          *bp)
317 {
318         trace_xfs_buf_free(bp, _RET_IP_);
319 
320         ASSERT(list_empty(&bp->b_lru));
321 
322         if (xfs_buftarg_is_mem(bp->b_target))
323                 xmbuf_unmap_page(bp);
324         else if (bp->b_flags & _XBF_PAGES)
325                 xfs_buf_free_pages(bp);
326         else if (bp->b_flags & _XBF_KMEM)
327                 kfree(bp->b_addr);
328 
329         call_rcu(&bp->b_rcu, xfs_buf_free_callback);
330 }
331 
332 static int
333 xfs_buf_alloc_kmem(
334         struct xfs_buf  *bp,
335         xfs_buf_flags_t flags)
336 {
337         gfp_t           gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
338         size_t          size = BBTOB(bp->b_length);
339 
340         /* Assure zeroed buffer for non-read cases. */
341         if (!(flags & XBF_READ))
342                 gfp_mask |= __GFP_ZERO;
343 
344         bp->b_addr = kmalloc(size, gfp_mask);
345         if (!bp->b_addr)
346                 return -ENOMEM;
347 
348         if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
349             ((unsigned long)bp->b_addr & PAGE_MASK)) {
350                 /* b_addr spans two pages - use alloc_page instead */
351                 kfree(bp->b_addr);
352                 bp->b_addr = NULL;
353                 return -ENOMEM;
354         }
355         bp->b_offset = offset_in_page(bp->b_addr);
356         bp->b_pages = bp->b_page_array;
357         bp->b_pages[0] = kmem_to_page(bp->b_addr);
358         bp->b_page_count = 1;
359         bp->b_flags |= _XBF_KMEM;
360         return 0;
361 }
362 
363 static int
364 xfs_buf_alloc_pages(
365         struct xfs_buf  *bp,
366         xfs_buf_flags_t flags)
367 {
368         gfp_t           gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
369         long            filled = 0;
370 
371         if (flags & XBF_READ_AHEAD)
372                 gfp_mask |= __GFP_NORETRY;
373 
374         /* Make sure that we have a page list */
375         bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
376         if (bp->b_page_count <= XB_PAGES) {
377                 bp->b_pages = bp->b_page_array;
378         } else {
379                 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
380                                         gfp_mask);
381                 if (!bp->b_pages)
382                         return -ENOMEM;
383         }
384         bp->b_flags |= _XBF_PAGES;
385 
386         /* Assure zeroed buffer for non-read cases. */
387         if (!(flags & XBF_READ))
388                 gfp_mask |= __GFP_ZERO;
389 
390         /*
391          * Bulk filling of pages can take multiple calls. Not filling the entire
392          * array is not an allocation failure, so don't back off if we get at
393          * least one extra page.
394          */
395         for (;;) {
396                 long    last = filled;
397 
398                 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
399                                                 bp->b_pages);
400                 if (filled == bp->b_page_count) {
401                         XFS_STATS_INC(bp->b_mount, xb_page_found);
402                         break;
403                 }
404 
405                 if (filled != last)
406                         continue;
407 
408                 if (flags & XBF_READ_AHEAD) {
409                         xfs_buf_free_pages(bp);
410                         return -ENOMEM;
411                 }
412 
413                 XFS_STATS_INC(bp->b_mount, xb_page_retries);
414                 memalloc_retry_wait(gfp_mask);
415         }
416         return 0;
417 }
418 
419 /*
420  *      Map buffer into kernel address-space if necessary.
421  */
422 STATIC int
423 _xfs_buf_map_pages(
424         struct xfs_buf          *bp,
425         xfs_buf_flags_t         flags)
426 {
427         ASSERT(bp->b_flags & _XBF_PAGES);
428         if (bp->b_page_count == 1) {
429                 /* A single page buffer is always mappable */
430                 bp->b_addr = page_address(bp->b_pages[0]);
431         } else if (flags & XBF_UNMAPPED) {
432                 bp->b_addr = NULL;
433         } else {
434                 int retried = 0;
435                 unsigned nofs_flag;
436 
437                 /*
438                  * vm_map_ram() will allocate auxiliary structures (e.g.
439                  * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
440                  * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
441                  * from the same call site that can be run from both above and
442                  * below memory reclaim causes lockdep false positives. Hence we
443                  * always need to force this allocation to nofs context because
444                  * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
445                  * prevent false positive lockdep reports.
446                  *
447                  * XXX(dgc): I think dquot reclaim is the only place we can get
448                  * to this function from memory reclaim context now. If we fix
449                  * that like we've fixed inode reclaim to avoid writeback from
450                  * reclaim, this nofs wrapping can go away.
451                  */
452                 nofs_flag = memalloc_nofs_save();
453                 do {
454                         bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
455                                                 -1);
456                         if (bp->b_addr)
457                                 break;
458                         vm_unmap_aliases();
459                 } while (retried++ <= 1);
460                 memalloc_nofs_restore(nofs_flag);
461 
462                 if (!bp->b_addr)
463                         return -ENOMEM;
464         }
465 
466         return 0;
467 }
468 
469 /*
470  *      Finding and Reading Buffers
471  */
472 static int
473 _xfs_buf_obj_cmp(
474         struct rhashtable_compare_arg   *arg,
475         const void                      *obj)
476 {
477         const struct xfs_buf_map        *map = arg->key;
478         const struct xfs_buf            *bp = obj;
479 
480         /*
481          * The key hashing in the lookup path depends on the key being the
482          * first element of the compare_arg, make sure to assert this.
483          */
484         BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
485 
486         if (bp->b_rhash_key != map->bm_bn)
487                 return 1;
488 
489         if (unlikely(bp->b_length != map->bm_len)) {
490                 /*
491                  * found a block number match. If the range doesn't
492                  * match, the only way this is allowed is if the buffer
493                  * in the cache is stale and the transaction that made
494                  * it stale has not yet committed. i.e. we are
495                  * reallocating a busy extent. Skip this buffer and
496                  * continue searching for an exact match.
497                  *
498                  * Note: If we're scanning for incore buffers to stale, don't
499                  * complain if we find non-stale buffers.
500                  */
501                 if (!(map->bm_flags & XBM_LIVESCAN))
502                         ASSERT(bp->b_flags & XBF_STALE);
503                 return 1;
504         }
505         return 0;
506 }
507 
508 static const struct rhashtable_params xfs_buf_hash_params = {
509         .min_size               = 32,   /* empty AGs have minimal footprint */
510         .nelem_hint             = 16,
511         .key_len                = sizeof(xfs_daddr_t),
512         .key_offset             = offsetof(struct xfs_buf, b_rhash_key),
513         .head_offset            = offsetof(struct xfs_buf, b_rhash_head),
514         .automatic_shrinking    = true,
515         .obj_cmpfn              = _xfs_buf_obj_cmp,
516 };
517 
518 int
519 xfs_buf_cache_init(
520         struct xfs_buf_cache    *bch)
521 {
522         spin_lock_init(&bch->bc_lock);
523         return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
524 }
525 
526 void
527 xfs_buf_cache_destroy(
528         struct xfs_buf_cache    *bch)
529 {
530         rhashtable_destroy(&bch->bc_hash);
531 }
532 
533 static int
534 xfs_buf_map_verify(
535         struct xfs_buftarg      *btp,
536         struct xfs_buf_map      *map)
537 {
538         xfs_daddr_t             eofs;
539 
540         /* Check for IOs smaller than the sector size / not sector aligned */
541         ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
542         ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
543 
544         /*
545          * Corrupted block numbers can get through to here, unfortunately, so we
546          * have to check that the buffer falls within the filesystem bounds.
547          */
548         eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
549         if (map->bm_bn < 0 || map->bm_bn >= eofs) {
550                 xfs_alert(btp->bt_mount,
551                           "%s: daddr 0x%llx out of range, EOFS 0x%llx",
552                           __func__, map->bm_bn, eofs);
553                 WARN_ON(1);
554                 return -EFSCORRUPTED;
555         }
556         return 0;
557 }
558 
559 static int
560 xfs_buf_find_lock(
561         struct xfs_buf          *bp,
562         xfs_buf_flags_t         flags)
563 {
564         if (flags & XBF_TRYLOCK) {
565                 if (!xfs_buf_trylock(bp)) {
566                         XFS_STATS_INC(bp->b_mount, xb_busy_locked);
567                         return -EAGAIN;
568                 }
569         } else {
570                 xfs_buf_lock(bp);
571                 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
572         }
573 
574         /*
575          * if the buffer is stale, clear all the external state associated with
576          * it. We need to keep flags such as how we allocated the buffer memory
577          * intact here.
578          */
579         if (bp->b_flags & XBF_STALE) {
580                 if (flags & XBF_LIVESCAN) {
581                         xfs_buf_unlock(bp);
582                         return -ENOENT;
583                 }
584                 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
585                 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
586                 bp->b_ops = NULL;
587         }
588         return 0;
589 }
590 
591 static inline int
592 xfs_buf_lookup(
593         struct xfs_buf_cache    *bch,
594         struct xfs_buf_map      *map,
595         xfs_buf_flags_t         flags,
596         struct xfs_buf          **bpp)
597 {
598         struct xfs_buf          *bp;
599         int                     error;
600 
601         rcu_read_lock();
602         bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
603         if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
604                 rcu_read_unlock();
605                 return -ENOENT;
606         }
607         rcu_read_unlock();
608 
609         error = xfs_buf_find_lock(bp, flags);
610         if (error) {
611                 xfs_buf_rele(bp);
612                 return error;
613         }
614 
615         trace_xfs_buf_find(bp, flags, _RET_IP_);
616         *bpp = bp;
617         return 0;
618 }
619 
620 /*
621  * Insert the new_bp into the hash table. This consumes the perag reference
622  * taken for the lookup regardless of the result of the insert.
623  */
624 static int
625 xfs_buf_find_insert(
626         struct xfs_buftarg      *btp,
627         struct xfs_buf_cache    *bch,
628         struct xfs_perag        *pag,
629         struct xfs_buf_map      *cmap,
630         struct xfs_buf_map      *map,
631         int                     nmaps,
632         xfs_buf_flags_t         flags,
633         struct xfs_buf          **bpp)
634 {
635         struct xfs_buf          *new_bp;
636         struct xfs_buf          *bp;
637         int                     error;
638 
639         error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
640         if (error)
641                 goto out_drop_pag;
642 
643         if (xfs_buftarg_is_mem(new_bp->b_target)) {
644                 error = xmbuf_map_page(new_bp);
645         } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
646                    xfs_buf_alloc_kmem(new_bp, flags) < 0) {
647                 /*
648                  * For buffers that fit entirely within a single page, first
649                  * attempt to allocate the memory from the heap to minimise
650                  * memory usage. If we can't get heap memory for these small
651                  * buffers, we fall back to using the page allocator.
652                  */
653                 error = xfs_buf_alloc_pages(new_bp, flags);
654         }
655         if (error)
656                 goto out_free_buf;
657 
658         spin_lock(&bch->bc_lock);
659         bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
660                         &new_bp->b_rhash_head, xfs_buf_hash_params);
661         if (IS_ERR(bp)) {
662                 error = PTR_ERR(bp);
663                 spin_unlock(&bch->bc_lock);
664                 goto out_free_buf;
665         }
666         if (bp) {
667                 /* found an existing buffer */
668                 atomic_inc(&bp->b_hold);
669                 spin_unlock(&bch->bc_lock);
670                 error = xfs_buf_find_lock(bp, flags);
671                 if (error)
672                         xfs_buf_rele(bp);
673                 else
674                         *bpp = bp;
675                 goto out_free_buf;
676         }
677 
678         /* The new buffer keeps the perag reference until it is freed. */
679         new_bp->b_pag = pag;
680         spin_unlock(&bch->bc_lock);
681         *bpp = new_bp;
682         return 0;
683 
684 out_free_buf:
685         xfs_buf_free(new_bp);
686 out_drop_pag:
687         if (pag)
688                 xfs_perag_put(pag);
689         return error;
690 }
691 
692 static inline struct xfs_perag *
693 xfs_buftarg_get_pag(
694         struct xfs_buftarg              *btp,
695         const struct xfs_buf_map        *map)
696 {
697         struct xfs_mount                *mp = btp->bt_mount;
698 
699         if (xfs_buftarg_is_mem(btp))
700                 return NULL;
701         return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
702 }
703 
704 static inline struct xfs_buf_cache *
705 xfs_buftarg_buf_cache(
706         struct xfs_buftarg              *btp,
707         struct xfs_perag                *pag)
708 {
709         if (pag)
710                 return &pag->pag_bcache;
711         return btp->bt_cache;
712 }
713 
714 /*
715  * Assembles a buffer covering the specified range. The code is optimised for
716  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
717  * more hits than misses.
718  */
719 int
720 xfs_buf_get_map(
721         struct xfs_buftarg      *btp,
722         struct xfs_buf_map      *map,
723         int                     nmaps,
724         xfs_buf_flags_t         flags,
725         struct xfs_buf          **bpp)
726 {
727         struct xfs_buf_cache    *bch;
728         struct xfs_perag        *pag;
729         struct xfs_buf          *bp = NULL;
730         struct xfs_buf_map      cmap = { .bm_bn = map[0].bm_bn };
731         int                     error;
732         int                     i;
733 
734         if (flags & XBF_LIVESCAN)
735                 cmap.bm_flags |= XBM_LIVESCAN;
736         for (i = 0; i < nmaps; i++)
737                 cmap.bm_len += map[i].bm_len;
738 
739         error = xfs_buf_map_verify(btp, &cmap);
740         if (error)
741                 return error;
742 
743         pag = xfs_buftarg_get_pag(btp, &cmap);
744         bch = xfs_buftarg_buf_cache(btp, pag);
745 
746         error = xfs_buf_lookup(bch, &cmap, flags, &bp);
747         if (error && error != -ENOENT)
748                 goto out_put_perag;
749 
750         /* cache hits always outnumber misses by at least 10:1 */
751         if (unlikely(!bp)) {
752                 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
753 
754                 if (flags & XBF_INCORE)
755                         goto out_put_perag;
756 
757                 /* xfs_buf_find_insert() consumes the perag reference. */
758                 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
759                                 flags, &bp);
760                 if (error)
761                         return error;
762         } else {
763                 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
764                 if (pag)
765                         xfs_perag_put(pag);
766         }
767 
768         /* We do not hold a perag reference anymore. */
769         if (!bp->b_addr) {
770                 error = _xfs_buf_map_pages(bp, flags);
771                 if (unlikely(error)) {
772                         xfs_warn_ratelimited(btp->bt_mount,
773                                 "%s: failed to map %u pages", __func__,
774                                 bp->b_page_count);
775                         xfs_buf_relse(bp);
776                         return error;
777                 }
778         }
779 
780         /*
781          * Clear b_error if this is a lookup from a caller that doesn't expect
782          * valid data to be found in the buffer.
783          */
784         if (!(flags & XBF_READ))
785                 xfs_buf_ioerror(bp, 0);
786 
787         XFS_STATS_INC(btp->bt_mount, xb_get);
788         trace_xfs_buf_get(bp, flags, _RET_IP_);
789         *bpp = bp;
790         return 0;
791 
792 out_put_perag:
793         if (pag)
794                 xfs_perag_put(pag);
795         return error;
796 }
797 
798 int
799 _xfs_buf_read(
800         struct xfs_buf          *bp,
801         xfs_buf_flags_t         flags)
802 {
803         ASSERT(!(flags & XBF_WRITE));
804         ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
805 
806         bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
807         bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
808 
809         return xfs_buf_submit(bp);
810 }
811 
812 /*
813  * Reverify a buffer found in cache without an attached ->b_ops.
814  *
815  * If the caller passed an ops structure and the buffer doesn't have ops
816  * assigned, set the ops and use it to verify the contents. If verification
817  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
818  * already in XBF_DONE state on entry.
819  *
820  * Under normal operations, every in-core buffer is verified on read I/O
821  * completion. There are two scenarios that can lead to in-core buffers without
822  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
823  * filesystem, though these buffers are purged at the end of recovery. The
824  * other is online repair, which intentionally reads with a NULL buffer ops to
825  * run several verifiers across an in-core buffer in order to establish buffer
826  * type.  If repair can't establish that, the buffer will be left in memory
827  * with NULL buffer ops.
828  */
829 int
830 xfs_buf_reverify(
831         struct xfs_buf          *bp,
832         const struct xfs_buf_ops *ops)
833 {
834         ASSERT(bp->b_flags & XBF_DONE);
835         ASSERT(bp->b_error == 0);
836 
837         if (!ops || bp->b_ops)
838                 return 0;
839 
840         bp->b_ops = ops;
841         bp->b_ops->verify_read(bp);
842         if (bp->b_error)
843                 bp->b_flags &= ~XBF_DONE;
844         return bp->b_error;
845 }
846 
847 int
848 xfs_buf_read_map(
849         struct xfs_buftarg      *target,
850         struct xfs_buf_map      *map,
851         int                     nmaps,
852         xfs_buf_flags_t         flags,
853         struct xfs_buf          **bpp,
854         const struct xfs_buf_ops *ops,
855         xfs_failaddr_t          fa)
856 {
857         struct xfs_buf          *bp;
858         int                     error;
859 
860         flags |= XBF_READ;
861         *bpp = NULL;
862 
863         error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
864         if (error)
865                 return error;
866 
867         trace_xfs_buf_read(bp, flags, _RET_IP_);
868 
869         if (!(bp->b_flags & XBF_DONE)) {
870                 /* Initiate the buffer read and wait. */
871                 XFS_STATS_INC(target->bt_mount, xb_get_read);
872                 bp->b_ops = ops;
873                 error = _xfs_buf_read(bp, flags);
874 
875                 /* Readahead iodone already dropped the buffer, so exit. */
876                 if (flags & XBF_ASYNC)
877                         return 0;
878         } else {
879                 /* Buffer already read; all we need to do is check it. */
880                 error = xfs_buf_reverify(bp, ops);
881 
882                 /* Readahead already finished; drop the buffer and exit. */
883                 if (flags & XBF_ASYNC) {
884                         xfs_buf_relse(bp);
885                         return 0;
886                 }
887 
888                 /* We do not want read in the flags */
889                 bp->b_flags &= ~XBF_READ;
890                 ASSERT(bp->b_ops != NULL || ops == NULL);
891         }
892 
893         /*
894          * If we've had a read error, then the contents of the buffer are
895          * invalid and should not be used. To ensure that a followup read tries
896          * to pull the buffer from disk again, we clear the XBF_DONE flag and
897          * mark the buffer stale. This ensures that anyone who has a current
898          * reference to the buffer will interpret it's contents correctly and
899          * future cache lookups will also treat it as an empty, uninitialised
900          * buffer.
901          */
902         if (error) {
903                 /*
904                  * Check against log shutdown for error reporting because
905                  * metadata writeback may require a read first and we need to
906                  * report errors in metadata writeback until the log is shut
907                  * down. High level transaction read functions already check
908                  * against mount shutdown, anyway, so we only need to be
909                  * concerned about low level IO interactions here.
910                  */
911                 if (!xlog_is_shutdown(target->bt_mount->m_log))
912                         xfs_buf_ioerror_alert(bp, fa);
913 
914                 bp->b_flags &= ~XBF_DONE;
915                 xfs_buf_stale(bp);
916                 xfs_buf_relse(bp);
917 
918                 /* bad CRC means corrupted metadata */
919                 if (error == -EFSBADCRC)
920                         error = -EFSCORRUPTED;
921                 return error;
922         }
923 
924         *bpp = bp;
925         return 0;
926 }
927 
928 /*
929  *      If we are not low on memory then do the readahead in a deadlock
930  *      safe manner.
931  */
932 void
933 xfs_buf_readahead_map(
934         struct xfs_buftarg      *target,
935         struct xfs_buf_map      *map,
936         int                     nmaps,
937         const struct xfs_buf_ops *ops)
938 {
939         struct xfs_buf          *bp;
940 
941         /*
942          * Currently we don't have a good means or justification for performing
943          * xmbuf_map_page asynchronously, so we don't do readahead.
944          */
945         if (xfs_buftarg_is_mem(target))
946                 return;
947 
948         xfs_buf_read_map(target, map, nmaps,
949                      XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
950                      __this_address);
951 }
952 
953 /*
954  * Read an uncached buffer from disk. Allocates and returns a locked
955  * buffer containing the disk contents or nothing. Uncached buffers always have
956  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
957  * is cached or uncached during fault diagnosis.
958  */
959 int
960 xfs_buf_read_uncached(
961         struct xfs_buftarg      *target,
962         xfs_daddr_t             daddr,
963         size_t                  numblks,
964         xfs_buf_flags_t         flags,
965         struct xfs_buf          **bpp,
966         const struct xfs_buf_ops *ops)
967 {
968         struct xfs_buf          *bp;
969         int                     error;
970 
971         *bpp = NULL;
972 
973         error = xfs_buf_get_uncached(target, numblks, flags, &bp);
974         if (error)
975                 return error;
976 
977         /* set up the buffer for a read IO */
978         ASSERT(bp->b_map_count == 1);
979         bp->b_rhash_key = XFS_BUF_DADDR_NULL;
980         bp->b_maps[0].bm_bn = daddr;
981         bp->b_flags |= XBF_READ;
982         bp->b_ops = ops;
983 
984         xfs_buf_submit(bp);
985         if (bp->b_error) {
986                 error = bp->b_error;
987                 xfs_buf_relse(bp);
988                 return error;
989         }
990 
991         *bpp = bp;
992         return 0;
993 }
994 
995 int
996 xfs_buf_get_uncached(
997         struct xfs_buftarg      *target,
998         size_t                  numblks,
999         xfs_buf_flags_t         flags,
1000         struct xfs_buf          **bpp)
1001 {
1002         int                     error;
1003         struct xfs_buf          *bp;
1004         DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1005 
1006         *bpp = NULL;
1007 
1008         /* flags might contain irrelevant bits, pass only what we care about */
1009         error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1010         if (error)
1011                 return error;
1012 
1013         if (xfs_buftarg_is_mem(bp->b_target))
1014                 error = xmbuf_map_page(bp);
1015         else
1016                 error = xfs_buf_alloc_pages(bp, flags);
1017         if (error)
1018                 goto fail_free_buf;
1019 
1020         error = _xfs_buf_map_pages(bp, 0);
1021         if (unlikely(error)) {
1022                 xfs_warn(target->bt_mount,
1023                         "%s: failed to map pages", __func__);
1024                 goto fail_free_buf;
1025         }
1026 
1027         trace_xfs_buf_get_uncached(bp, _RET_IP_);
1028         *bpp = bp;
1029         return 0;
1030 
1031 fail_free_buf:
1032         xfs_buf_free(bp);
1033         return error;
1034 }
1035 
1036 /*
1037  *      Increment reference count on buffer, to hold the buffer concurrently
1038  *      with another thread which may release (free) the buffer asynchronously.
1039  *      Must hold the buffer already to call this function.
1040  */
1041 void
1042 xfs_buf_hold(
1043         struct xfs_buf          *bp)
1044 {
1045         trace_xfs_buf_hold(bp, _RET_IP_);
1046         atomic_inc(&bp->b_hold);
1047 }
1048 
1049 static void
1050 xfs_buf_rele_uncached(
1051         struct xfs_buf          *bp)
1052 {
1053         ASSERT(list_empty(&bp->b_lru));
1054         if (atomic_dec_and_test(&bp->b_hold)) {
1055                 xfs_buf_ioacct_dec(bp);
1056                 xfs_buf_free(bp);
1057         }
1058 }
1059 
1060 static void
1061 xfs_buf_rele_cached(
1062         struct xfs_buf          *bp)
1063 {
1064         struct xfs_buftarg      *btp = bp->b_target;
1065         struct xfs_perag        *pag = bp->b_pag;
1066         struct xfs_buf_cache    *bch = xfs_buftarg_buf_cache(btp, pag);
1067         bool                    release;
1068         bool                    freebuf = false;
1069 
1070         trace_xfs_buf_rele(bp, _RET_IP_);
1071 
1072         ASSERT(atomic_read(&bp->b_hold) > 0);
1073 
1074         /*
1075          * We grab the b_lock here first to serialise racing xfs_buf_rele()
1076          * calls. The pag_buf_lock being taken on the last reference only
1077          * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1078          * to last reference we drop here is not serialised against the last
1079          * reference until we take bp->b_lock. Hence if we don't grab b_lock
1080          * first, the last "release" reference can win the race to the lock and
1081          * free the buffer before the second-to-last reference is processed,
1082          * leading to a use-after-free scenario.
1083          */
1084         spin_lock(&bp->b_lock);
1085         release = atomic_dec_and_lock(&bp->b_hold, &bch->bc_lock);
1086         if (!release) {
1087                 /*
1088                  * Drop the in-flight state if the buffer is already on the LRU
1089                  * and it holds the only reference. This is racy because we
1090                  * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1091                  * ensures the decrement occurs only once per-buf.
1092                  */
1093                 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1094                         __xfs_buf_ioacct_dec(bp);
1095                 goto out_unlock;
1096         }
1097 
1098         /* the last reference has been dropped ... */
1099         __xfs_buf_ioacct_dec(bp);
1100         if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1101                 /*
1102                  * If the buffer is added to the LRU take a new reference to the
1103                  * buffer for the LRU and clear the (now stale) dispose list
1104                  * state flag
1105                  */
1106                 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru)) {
1107                         bp->b_state &= ~XFS_BSTATE_DISPOSE;
1108                         atomic_inc(&bp->b_hold);
1109                 }
1110                 spin_unlock(&bch->bc_lock);
1111         } else {
1112                 /*
1113                  * most of the time buffers will already be removed from the
1114                  * LRU, so optimise that case by checking for the
1115                  * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1116                  * was on was the disposal list
1117                  */
1118                 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1119                         list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1120                 } else {
1121                         ASSERT(list_empty(&bp->b_lru));
1122                 }
1123 
1124                 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1125                 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1126                                 xfs_buf_hash_params);
1127                 spin_unlock(&bch->bc_lock);
1128                 if (pag)
1129                         xfs_perag_put(pag);
1130                 freebuf = true;
1131         }
1132 
1133 out_unlock:
1134         spin_unlock(&bp->b_lock);
1135 
1136         if (freebuf)
1137                 xfs_buf_free(bp);
1138 }
1139 
1140 /*
1141  * Release a hold on the specified buffer.
1142  */
1143 void
1144 xfs_buf_rele(
1145         struct xfs_buf          *bp)
1146 {
1147         trace_xfs_buf_rele(bp, _RET_IP_);
1148         if (xfs_buf_is_uncached(bp))
1149                 xfs_buf_rele_uncached(bp);
1150         else
1151                 xfs_buf_rele_cached(bp);
1152 }
1153 
1154 /*
1155  *      Lock a buffer object, if it is not already locked.
1156  *
1157  *      If we come across a stale, pinned, locked buffer, we know that we are
1158  *      being asked to lock a buffer that has been reallocated. Because it is
1159  *      pinned, we know that the log has not been pushed to disk and hence it
1160  *      will still be locked.  Rather than continuing to have trylock attempts
1161  *      fail until someone else pushes the log, push it ourselves before
1162  *      returning.  This means that the xfsaild will not get stuck trying
1163  *      to push on stale inode buffers.
1164  */
1165 int
1166 xfs_buf_trylock(
1167         struct xfs_buf          *bp)
1168 {
1169         int                     locked;
1170 
1171         locked = down_trylock(&bp->b_sema) == 0;
1172         if (locked)
1173                 trace_xfs_buf_trylock(bp, _RET_IP_);
1174         else
1175                 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1176         return locked;
1177 }
1178 
1179 /*
1180  *      Lock a buffer object.
1181  *
1182  *      If we come across a stale, pinned, locked buffer, we know that we
1183  *      are being asked to lock a buffer that has been reallocated. Because
1184  *      it is pinned, we know that the log has not been pushed to disk and
1185  *      hence it will still be locked. Rather than sleeping until someone
1186  *      else pushes the log, push it ourselves before trying to get the lock.
1187  */
1188 void
1189 xfs_buf_lock(
1190         struct xfs_buf          *bp)
1191 {
1192         trace_xfs_buf_lock(bp, _RET_IP_);
1193 
1194         if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1195                 xfs_log_force(bp->b_mount, 0);
1196         down(&bp->b_sema);
1197 
1198         trace_xfs_buf_lock_done(bp, _RET_IP_);
1199 }
1200 
1201 void
1202 xfs_buf_unlock(
1203         struct xfs_buf          *bp)
1204 {
1205         ASSERT(xfs_buf_islocked(bp));
1206 
1207         up(&bp->b_sema);
1208         trace_xfs_buf_unlock(bp, _RET_IP_);
1209 }
1210 
1211 STATIC void
1212 xfs_buf_wait_unpin(
1213         struct xfs_buf          *bp)
1214 {
1215         DECLARE_WAITQUEUE       (wait, current);
1216 
1217         if (atomic_read(&bp->b_pin_count) == 0)
1218                 return;
1219 
1220         add_wait_queue(&bp->b_waiters, &wait);
1221         for (;;) {
1222                 set_current_state(TASK_UNINTERRUPTIBLE);
1223                 if (atomic_read(&bp->b_pin_count) == 0)
1224                         break;
1225                 io_schedule();
1226         }
1227         remove_wait_queue(&bp->b_waiters, &wait);
1228         set_current_state(TASK_RUNNING);
1229 }
1230 
1231 static void
1232 xfs_buf_ioerror_alert_ratelimited(
1233         struct xfs_buf          *bp)
1234 {
1235         static unsigned long    lasttime;
1236         static struct xfs_buftarg *lasttarg;
1237 
1238         if (bp->b_target != lasttarg ||
1239             time_after(jiffies, (lasttime + 5*HZ))) {
1240                 lasttime = jiffies;
1241                 xfs_buf_ioerror_alert(bp, __this_address);
1242         }
1243         lasttarg = bp->b_target;
1244 }
1245 
1246 /*
1247  * Account for this latest trip around the retry handler, and decide if
1248  * we've failed enough times to constitute a permanent failure.
1249  */
1250 static bool
1251 xfs_buf_ioerror_permanent(
1252         struct xfs_buf          *bp,
1253         struct xfs_error_cfg    *cfg)
1254 {
1255         struct xfs_mount        *mp = bp->b_mount;
1256 
1257         if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1258             ++bp->b_retries > cfg->max_retries)
1259                 return true;
1260         if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1261             time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1262                 return true;
1263 
1264         /* At unmount we may treat errors differently */
1265         if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1266                 return true;
1267 
1268         return false;
1269 }
1270 
1271 /*
1272  * On a sync write or shutdown we just want to stale the buffer and let the
1273  * caller handle the error in bp->b_error appropriately.
1274  *
1275  * If the write was asynchronous then no one will be looking for the error.  If
1276  * this is the first failure of this type, clear the error state and write the
1277  * buffer out again. This means we always retry an async write failure at least
1278  * once, but we also need to set the buffer up to behave correctly now for
1279  * repeated failures.
1280  *
1281  * If we get repeated async write failures, then we take action according to the
1282  * error configuration we have been set up to use.
1283  *
1284  * Returns true if this function took care of error handling and the caller must
1285  * not touch the buffer again.  Return false if the caller should proceed with
1286  * normal I/O completion handling.
1287  */
1288 static bool
1289 xfs_buf_ioend_handle_error(
1290         struct xfs_buf          *bp)
1291 {
1292         struct xfs_mount        *mp = bp->b_mount;
1293         struct xfs_error_cfg    *cfg;
1294 
1295         /*
1296          * If we've already shutdown the journal because of I/O errors, there's
1297          * no point in giving this a retry.
1298          */
1299         if (xlog_is_shutdown(mp->m_log))
1300                 goto out_stale;
1301 
1302         xfs_buf_ioerror_alert_ratelimited(bp);
1303 
1304         /*
1305          * We're not going to bother about retrying this during recovery.
1306          * One strike!
1307          */
1308         if (bp->b_flags & _XBF_LOGRECOVERY) {
1309                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1310                 return false;
1311         }
1312 
1313         /*
1314          * Synchronous writes will have callers process the error.
1315          */
1316         if (!(bp->b_flags & XBF_ASYNC))
1317                 goto out_stale;
1318 
1319         trace_xfs_buf_iodone_async(bp, _RET_IP_);
1320 
1321         cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1322         if (bp->b_last_error != bp->b_error ||
1323             !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1324                 bp->b_last_error = bp->b_error;
1325                 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1326                     !bp->b_first_retry_time)
1327                         bp->b_first_retry_time = jiffies;
1328                 goto resubmit;
1329         }
1330 
1331         /*
1332          * Permanent error - we need to trigger a shutdown if we haven't already
1333          * to indicate that inconsistency will result from this action.
1334          */
1335         if (xfs_buf_ioerror_permanent(bp, cfg)) {
1336                 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1337                 goto out_stale;
1338         }
1339 
1340         /* Still considered a transient error. Caller will schedule retries. */
1341         if (bp->b_flags & _XBF_INODES)
1342                 xfs_buf_inode_io_fail(bp);
1343         else if (bp->b_flags & _XBF_DQUOTS)
1344                 xfs_buf_dquot_io_fail(bp);
1345         else
1346                 ASSERT(list_empty(&bp->b_li_list));
1347         xfs_buf_ioerror(bp, 0);
1348         xfs_buf_relse(bp);
1349         return true;
1350 
1351 resubmit:
1352         xfs_buf_ioerror(bp, 0);
1353         bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1354         xfs_buf_submit(bp);
1355         return true;
1356 out_stale:
1357         xfs_buf_stale(bp);
1358         bp->b_flags |= XBF_DONE;
1359         bp->b_flags &= ~XBF_WRITE;
1360         trace_xfs_buf_error_relse(bp, _RET_IP_);
1361         return false;
1362 }
1363 
1364 static void
1365 xfs_buf_ioend(
1366         struct xfs_buf  *bp)
1367 {
1368         trace_xfs_buf_iodone(bp, _RET_IP_);
1369 
1370         /*
1371          * Pull in IO completion errors now. We are guaranteed to be running
1372          * single threaded, so we don't need the lock to read b_io_error.
1373          */
1374         if (!bp->b_error && bp->b_io_error)
1375                 xfs_buf_ioerror(bp, bp->b_io_error);
1376 
1377         if (bp->b_flags & XBF_READ) {
1378                 if (!bp->b_error && bp->b_ops)
1379                         bp->b_ops->verify_read(bp);
1380                 if (!bp->b_error)
1381                         bp->b_flags |= XBF_DONE;
1382         } else {
1383                 if (!bp->b_error) {
1384                         bp->b_flags &= ~XBF_WRITE_FAIL;
1385                         bp->b_flags |= XBF_DONE;
1386                 }
1387 
1388                 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1389                         return;
1390 
1391                 /* clear the retry state */
1392                 bp->b_last_error = 0;
1393                 bp->b_retries = 0;
1394                 bp->b_first_retry_time = 0;
1395 
1396                 /*
1397                  * Note that for things like remote attribute buffers, there may
1398                  * not be a buffer log item here, so processing the buffer log
1399                  * item must remain optional.
1400                  */
1401                 if (bp->b_log_item)
1402                         xfs_buf_item_done(bp);
1403 
1404                 if (bp->b_flags & _XBF_INODES)
1405                         xfs_buf_inode_iodone(bp);
1406                 else if (bp->b_flags & _XBF_DQUOTS)
1407                         xfs_buf_dquot_iodone(bp);
1408 
1409         }
1410 
1411         bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1412                          _XBF_LOGRECOVERY);
1413 
1414         if (bp->b_flags & XBF_ASYNC)
1415                 xfs_buf_relse(bp);
1416         else
1417                 complete(&bp->b_iowait);
1418 }
1419 
1420 static void
1421 xfs_buf_ioend_work(
1422         struct work_struct      *work)
1423 {
1424         struct xfs_buf          *bp =
1425                 container_of(work, struct xfs_buf, b_ioend_work);
1426 
1427         xfs_buf_ioend(bp);
1428 }
1429 
1430 static void
1431 xfs_buf_ioend_async(
1432         struct xfs_buf  *bp)
1433 {
1434         INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1435         queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1436 }
1437 
1438 void
1439 __xfs_buf_ioerror(
1440         struct xfs_buf          *bp,
1441         int                     error,
1442         xfs_failaddr_t          failaddr)
1443 {
1444         ASSERT(error <= 0 && error >= -1000);
1445         bp->b_error = error;
1446         trace_xfs_buf_ioerror(bp, error, failaddr);
1447 }
1448 
1449 void
1450 xfs_buf_ioerror_alert(
1451         struct xfs_buf          *bp,
1452         xfs_failaddr_t          func)
1453 {
1454         xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1455                 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1456                                   func, (uint64_t)xfs_buf_daddr(bp),
1457                                   bp->b_length, -bp->b_error);
1458 }
1459 
1460 /*
1461  * To simulate an I/O failure, the buffer must be locked and held with at least
1462  * three references. The LRU reference is dropped by the stale call. The buf
1463  * item reference is dropped via ioend processing. The third reference is owned
1464  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1465  */
1466 void
1467 xfs_buf_ioend_fail(
1468         struct xfs_buf  *bp)
1469 {
1470         bp->b_flags &= ~XBF_DONE;
1471         xfs_buf_stale(bp);
1472         xfs_buf_ioerror(bp, -EIO);
1473         xfs_buf_ioend(bp);
1474 }
1475 
1476 int
1477 xfs_bwrite(
1478         struct xfs_buf          *bp)
1479 {
1480         int                     error;
1481 
1482         ASSERT(xfs_buf_islocked(bp));
1483 
1484         bp->b_flags |= XBF_WRITE;
1485         bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1486                          XBF_DONE);
1487 
1488         error = xfs_buf_submit(bp);
1489         if (error)
1490                 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1491         return error;
1492 }
1493 
1494 static void
1495 xfs_buf_bio_end_io(
1496         struct bio              *bio)
1497 {
1498         struct xfs_buf          *bp = (struct xfs_buf *)bio->bi_private;
1499 
1500         if (!bio->bi_status &&
1501             (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1502             XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1503                 bio->bi_status = BLK_STS_IOERR;
1504 
1505         /*
1506          * don't overwrite existing errors - otherwise we can lose errors on
1507          * buffers that require multiple bios to complete.
1508          */
1509         if (bio->bi_status) {
1510                 int error = blk_status_to_errno(bio->bi_status);
1511 
1512                 cmpxchg(&bp->b_io_error, 0, error);
1513         }
1514 
1515         if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1516                 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1517 
1518         if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1519                 xfs_buf_ioend_async(bp);
1520         bio_put(bio);
1521 }
1522 
1523 static void
1524 xfs_buf_ioapply_map(
1525         struct xfs_buf  *bp,
1526         int             map,
1527         int             *buf_offset,
1528         int             *count,
1529         blk_opf_t       op)
1530 {
1531         int             page_index;
1532         unsigned int    total_nr_pages = bp->b_page_count;
1533         int             nr_pages;
1534         struct bio      *bio;
1535         sector_t        sector =  bp->b_maps[map].bm_bn;
1536         int             size;
1537         int             offset;
1538 
1539         /* skip the pages in the buffer before the start offset */
1540         page_index = 0;
1541         offset = *buf_offset;
1542         while (offset >= PAGE_SIZE) {
1543                 page_index++;
1544                 offset -= PAGE_SIZE;
1545         }
1546 
1547         /*
1548          * Limit the IO size to the length of the current vector, and update the
1549          * remaining IO count for the next time around.
1550          */
1551         size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1552         *count -= size;
1553         *buf_offset += size;
1554 
1555 next_chunk:
1556         atomic_inc(&bp->b_io_remaining);
1557         nr_pages = bio_max_segs(total_nr_pages);
1558 
1559         bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1560         bio->bi_iter.bi_sector = sector;
1561         bio->bi_end_io = xfs_buf_bio_end_io;
1562         bio->bi_private = bp;
1563 
1564         for (; size && nr_pages; nr_pages--, page_index++) {
1565                 int     rbytes, nbytes = PAGE_SIZE - offset;
1566 
1567                 if (nbytes > size)
1568                         nbytes = size;
1569 
1570                 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1571                                       offset);
1572                 if (rbytes < nbytes)
1573                         break;
1574 
1575                 offset = 0;
1576                 sector += BTOBB(nbytes);
1577                 size -= nbytes;
1578                 total_nr_pages--;
1579         }
1580 
1581         if (likely(bio->bi_iter.bi_size)) {
1582                 if (xfs_buf_is_vmapped(bp)) {
1583                         flush_kernel_vmap_range(bp->b_addr,
1584                                                 xfs_buf_vmap_len(bp));
1585                 }
1586                 submit_bio(bio);
1587                 if (size)
1588                         goto next_chunk;
1589         } else {
1590                 /*
1591                  * This is guaranteed not to be the last io reference count
1592                  * because the caller (xfs_buf_submit) holds a count itself.
1593                  */
1594                 atomic_dec(&bp->b_io_remaining);
1595                 xfs_buf_ioerror(bp, -EIO);
1596                 bio_put(bio);
1597         }
1598 
1599 }
1600 
1601 STATIC void
1602 _xfs_buf_ioapply(
1603         struct xfs_buf  *bp)
1604 {
1605         struct blk_plug plug;
1606         blk_opf_t       op;
1607         int             offset;
1608         int             size;
1609         int             i;
1610 
1611         /*
1612          * Make sure we capture only current IO errors rather than stale errors
1613          * left over from previous use of the buffer (e.g. failed readahead).
1614          */
1615         bp->b_error = 0;
1616 
1617         if (bp->b_flags & XBF_WRITE) {
1618                 op = REQ_OP_WRITE;
1619 
1620                 /*
1621                  * Run the write verifier callback function if it exists. If
1622                  * this function fails it will mark the buffer with an error and
1623                  * the IO should not be dispatched.
1624                  */
1625                 if (bp->b_ops) {
1626                         bp->b_ops->verify_write(bp);
1627                         if (bp->b_error) {
1628                                 xfs_force_shutdown(bp->b_mount,
1629                                                    SHUTDOWN_CORRUPT_INCORE);
1630                                 return;
1631                         }
1632                 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1633                         struct xfs_mount *mp = bp->b_mount;
1634 
1635                         /*
1636                          * non-crc filesystems don't attach verifiers during
1637                          * log recovery, so don't warn for such filesystems.
1638                          */
1639                         if (xfs_has_crc(mp)) {
1640                                 xfs_warn(mp,
1641                                         "%s: no buf ops on daddr 0x%llx len %d",
1642                                         __func__, xfs_buf_daddr(bp),
1643                                         bp->b_length);
1644                                 xfs_hex_dump(bp->b_addr,
1645                                                 XFS_CORRUPTION_DUMP_LEN);
1646                                 dump_stack();
1647                         }
1648                 }
1649         } else {
1650                 op = REQ_OP_READ;
1651                 if (bp->b_flags & XBF_READ_AHEAD)
1652                         op |= REQ_RAHEAD;
1653         }
1654 
1655         /* we only use the buffer cache for meta-data */
1656         op |= REQ_META;
1657 
1658         /* in-memory targets are directly mapped, no IO required. */
1659         if (xfs_buftarg_is_mem(bp->b_target)) {
1660                 xfs_buf_ioend(bp);
1661                 return;
1662         }
1663 
1664         /*
1665          * Walk all the vectors issuing IO on them. Set up the initial offset
1666          * into the buffer and the desired IO size before we start -
1667          * _xfs_buf_ioapply_vec() will modify them appropriately for each
1668          * subsequent call.
1669          */
1670         offset = bp->b_offset;
1671         size = BBTOB(bp->b_length);
1672         blk_start_plug(&plug);
1673         for (i = 0; i < bp->b_map_count; i++) {
1674                 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1675                 if (bp->b_error)
1676                         break;
1677                 if (size <= 0)
1678                         break;  /* all done */
1679         }
1680         blk_finish_plug(&plug);
1681 }
1682 
1683 /*
1684  * Wait for I/O completion of a sync buffer and return the I/O error code.
1685  */
1686 static int
1687 xfs_buf_iowait(
1688         struct xfs_buf  *bp)
1689 {
1690         ASSERT(!(bp->b_flags & XBF_ASYNC));
1691 
1692         trace_xfs_buf_iowait(bp, _RET_IP_);
1693         wait_for_completion(&bp->b_iowait);
1694         trace_xfs_buf_iowait_done(bp, _RET_IP_);
1695 
1696         return bp->b_error;
1697 }
1698 
1699 /*
1700  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1701  * the buffer lock ownership and the current reference to the IO. It is not
1702  * safe to reference the buffer after a call to this function unless the caller
1703  * holds an additional reference itself.
1704  */
1705 static int
1706 __xfs_buf_submit(
1707         struct xfs_buf  *bp,
1708         bool            wait)
1709 {
1710         int             error = 0;
1711 
1712         trace_xfs_buf_submit(bp, _RET_IP_);
1713 
1714         ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1715 
1716         /*
1717          * On log shutdown we stale and complete the buffer immediately. We can
1718          * be called to read the superblock before the log has been set up, so
1719          * be careful checking the log state.
1720          *
1721          * Checking the mount shutdown state here can result in the log tail
1722          * moving inappropriately on disk as the log may not yet be shut down.
1723          * i.e. failing this buffer on mount shutdown can remove it from the AIL
1724          * and move the tail of the log forwards without having written this
1725          * buffer to disk. This corrupts the log tail state in memory, and
1726          * because the log may not be shut down yet, it can then be propagated
1727          * to disk before the log is shutdown. Hence we check log shutdown
1728          * state here rather than mount state to avoid corrupting the log tail
1729          * on shutdown.
1730          */
1731         if (bp->b_mount->m_log &&
1732             xlog_is_shutdown(bp->b_mount->m_log)) {
1733                 xfs_buf_ioend_fail(bp);
1734                 return -EIO;
1735         }
1736 
1737         /*
1738          * Grab a reference so the buffer does not go away underneath us. For
1739          * async buffers, I/O completion drops the callers reference, which
1740          * could occur before submission returns.
1741          */
1742         xfs_buf_hold(bp);
1743 
1744         if (bp->b_flags & XBF_WRITE)
1745                 xfs_buf_wait_unpin(bp);
1746 
1747         /* clear the internal error state to avoid spurious errors */
1748         bp->b_io_error = 0;
1749 
1750         /*
1751          * Set the count to 1 initially, this will stop an I/O completion
1752          * callout which happens before we have started all the I/O from calling
1753          * xfs_buf_ioend too early.
1754          */
1755         atomic_set(&bp->b_io_remaining, 1);
1756         if (bp->b_flags & XBF_ASYNC)
1757                 xfs_buf_ioacct_inc(bp);
1758         _xfs_buf_ioapply(bp);
1759 
1760         /*
1761          * If _xfs_buf_ioapply failed, we can get back here with only the IO
1762          * reference we took above. If we drop it to zero, run completion so
1763          * that we don't return to the caller with completion still pending.
1764          */
1765         if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1766                 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1767                         xfs_buf_ioend(bp);
1768                 else
1769                         xfs_buf_ioend_async(bp);
1770         }
1771 
1772         if (wait)
1773                 error = xfs_buf_iowait(bp);
1774 
1775         /*
1776          * Release the hold that keeps the buffer referenced for the entire
1777          * I/O. Note that if the buffer is async, it is not safe to reference
1778          * after this release.
1779          */
1780         xfs_buf_rele(bp);
1781         return error;
1782 }
1783 
1784 void *
1785 xfs_buf_offset(
1786         struct xfs_buf          *bp,
1787         size_t                  offset)
1788 {
1789         struct page             *page;
1790 
1791         if (bp->b_addr)
1792                 return bp->b_addr + offset;
1793 
1794         page = bp->b_pages[offset >> PAGE_SHIFT];
1795         return page_address(page) + (offset & (PAGE_SIZE-1));
1796 }
1797 
1798 void
1799 xfs_buf_zero(
1800         struct xfs_buf          *bp,
1801         size_t                  boff,
1802         size_t                  bsize)
1803 {
1804         size_t                  bend;
1805 
1806         bend = boff + bsize;
1807         while (boff < bend) {
1808                 struct page     *page;
1809                 int             page_index, page_offset, csize;
1810 
1811                 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1812                 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1813                 page = bp->b_pages[page_index];
1814                 csize = min_t(size_t, PAGE_SIZE - page_offset,
1815                                       BBTOB(bp->b_length) - boff);
1816 
1817                 ASSERT((csize + page_offset) <= PAGE_SIZE);
1818 
1819                 memset(page_address(page) + page_offset, 0, csize);
1820 
1821                 boff += csize;
1822         }
1823 }
1824 
1825 /*
1826  * Log a message about and stale a buffer that a caller has decided is corrupt.
1827  *
1828  * This function should be called for the kinds of metadata corruption that
1829  * cannot be detect from a verifier, such as incorrect inter-block relationship
1830  * data.  Do /not/ call this function from a verifier function.
1831  *
1832  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1833  * be marked stale, but b_error will not be set.  The caller is responsible for
1834  * releasing the buffer or fixing it.
1835  */
1836 void
1837 __xfs_buf_mark_corrupt(
1838         struct xfs_buf          *bp,
1839         xfs_failaddr_t          fa)
1840 {
1841         ASSERT(bp->b_flags & XBF_DONE);
1842 
1843         xfs_buf_corruption_error(bp, fa);
1844         xfs_buf_stale(bp);
1845 }
1846 
1847 /*
1848  *      Handling of buffer targets (buftargs).
1849  */
1850 
1851 /*
1852  * Wait for any bufs with callbacks that have been submitted but have not yet
1853  * returned. These buffers will have an elevated hold count, so wait on those
1854  * while freeing all the buffers only held by the LRU.
1855  */
1856 static enum lru_status
1857 xfs_buftarg_drain_rele(
1858         struct list_head        *item,
1859         struct list_lru_one     *lru,
1860         spinlock_t              *lru_lock,
1861         void                    *arg)
1862 
1863 {
1864         struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1865         struct list_head        *dispose = arg;
1866 
1867         if (atomic_read(&bp->b_hold) > 1) {
1868                 /* need to wait, so skip it this pass */
1869                 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1870                 return LRU_SKIP;
1871         }
1872         if (!spin_trylock(&bp->b_lock))
1873                 return LRU_SKIP;
1874 
1875         /*
1876          * clear the LRU reference count so the buffer doesn't get
1877          * ignored in xfs_buf_rele().
1878          */
1879         atomic_set(&bp->b_lru_ref, 0);
1880         bp->b_state |= XFS_BSTATE_DISPOSE;
1881         list_lru_isolate_move(lru, item, dispose);
1882         spin_unlock(&bp->b_lock);
1883         return LRU_REMOVED;
1884 }
1885 
1886 /*
1887  * Wait for outstanding I/O on the buftarg to complete.
1888  */
1889 void
1890 xfs_buftarg_wait(
1891         struct xfs_buftarg      *btp)
1892 {
1893         /*
1894          * First wait on the buftarg I/O count for all in-flight buffers to be
1895          * released. This is critical as new buffers do not make the LRU until
1896          * they are released.
1897          *
1898          * Next, flush the buffer workqueue to ensure all completion processing
1899          * has finished. Just waiting on buffer locks is not sufficient for
1900          * async IO as the reference count held over IO is not released until
1901          * after the buffer lock is dropped. Hence we need to ensure here that
1902          * all reference counts have been dropped before we start walking the
1903          * LRU list.
1904          */
1905         while (percpu_counter_sum(&btp->bt_io_count))
1906                 delay(100);
1907         flush_workqueue(btp->bt_mount->m_buf_workqueue);
1908 }
1909 
1910 void
1911 xfs_buftarg_drain(
1912         struct xfs_buftarg      *btp)
1913 {
1914         LIST_HEAD(dispose);
1915         int                     loop = 0;
1916         bool                    write_fail = false;
1917 
1918         xfs_buftarg_wait(btp);
1919 
1920         /* loop until there is nothing left on the lru list. */
1921         while (list_lru_count(&btp->bt_lru)) {
1922                 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1923                               &dispose, LONG_MAX);
1924 
1925                 while (!list_empty(&dispose)) {
1926                         struct xfs_buf *bp;
1927                         bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1928                         list_del_init(&bp->b_lru);
1929                         if (bp->b_flags & XBF_WRITE_FAIL) {
1930                                 write_fail = true;
1931                                 xfs_buf_alert_ratelimited(bp,
1932                                         "XFS: Corruption Alert",
1933 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1934                                         (long long)xfs_buf_daddr(bp));
1935                         }
1936                         xfs_buf_rele(bp);
1937                 }
1938                 if (loop++ != 0)
1939                         delay(100);
1940         }
1941 
1942         /*
1943          * If one or more failed buffers were freed, that means dirty metadata
1944          * was thrown away. This should only ever happen after I/O completion
1945          * handling has elevated I/O error(s) to permanent failures and shuts
1946          * down the journal.
1947          */
1948         if (write_fail) {
1949                 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1950                 xfs_alert(btp->bt_mount,
1951               "Please run xfs_repair to determine the extent of the problem.");
1952         }
1953 }
1954 
1955 static enum lru_status
1956 xfs_buftarg_isolate(
1957         struct list_head        *item,
1958         struct list_lru_one     *lru,
1959         spinlock_t              *lru_lock,
1960         void                    *arg)
1961 {
1962         struct xfs_buf          *bp = container_of(item, struct xfs_buf, b_lru);
1963         struct list_head        *dispose = arg;
1964 
1965         /*
1966          * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1967          * If we fail to get the lock, just skip it.
1968          */
1969         if (!spin_trylock(&bp->b_lock))
1970                 return LRU_SKIP;
1971         /*
1972          * Decrement the b_lru_ref count unless the value is already
1973          * zero. If the value is already zero, we need to reclaim the
1974          * buffer, otherwise it gets another trip through the LRU.
1975          */
1976         if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1977                 spin_unlock(&bp->b_lock);
1978                 return LRU_ROTATE;
1979         }
1980 
1981         bp->b_state |= XFS_BSTATE_DISPOSE;
1982         list_lru_isolate_move(lru, item, dispose);
1983         spin_unlock(&bp->b_lock);
1984         return LRU_REMOVED;
1985 }
1986 
1987 static unsigned long
1988 xfs_buftarg_shrink_scan(
1989         struct shrinker         *shrink,
1990         struct shrink_control   *sc)
1991 {
1992         struct xfs_buftarg      *btp = shrink->private_data;
1993         LIST_HEAD(dispose);
1994         unsigned long           freed;
1995 
1996         freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1997                                      xfs_buftarg_isolate, &dispose);
1998 
1999         while (!list_empty(&dispose)) {
2000                 struct xfs_buf *bp;
2001                 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
2002                 list_del_init(&bp->b_lru);
2003                 xfs_buf_rele(bp);
2004         }
2005 
2006         return freed;
2007 }
2008 
2009 static unsigned long
2010 xfs_buftarg_shrink_count(
2011         struct shrinker         *shrink,
2012         struct shrink_control   *sc)
2013 {
2014         struct xfs_buftarg      *btp = shrink->private_data;
2015         return list_lru_shrink_count(&btp->bt_lru, sc);
2016 }
2017 
2018 void
2019 xfs_destroy_buftarg(
2020         struct xfs_buftarg      *btp)
2021 {
2022         shrinker_free(btp->bt_shrinker);
2023         ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
2024         percpu_counter_destroy(&btp->bt_io_count);
2025         list_lru_destroy(&btp->bt_lru);
2026 }
2027 
2028 void
2029 xfs_free_buftarg(
2030         struct xfs_buftarg      *btp)
2031 {
2032         xfs_destroy_buftarg(btp);
2033         fs_put_dax(btp->bt_daxdev, btp->bt_mount);
2034         /* the main block device is closed by kill_block_super */
2035         if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
2036                 bdev_fput(btp->bt_bdev_file);
2037         kfree(btp);
2038 }
2039 
2040 int
2041 xfs_setsize_buftarg(
2042         struct xfs_buftarg      *btp,
2043         unsigned int            sectorsize)
2044 {
2045         /* Set up metadata sector size info */
2046         btp->bt_meta_sectorsize = sectorsize;
2047         btp->bt_meta_sectormask = sectorsize - 1;
2048 
2049         if (set_blocksize(btp->bt_bdev_file, sectorsize)) {
2050                 xfs_warn(btp->bt_mount,
2051                         "Cannot set_blocksize to %u on device %pg",
2052                         sectorsize, btp->bt_bdev);
2053                 return -EINVAL;
2054         }
2055 
2056         return 0;
2057 }
2058 
2059 int
2060 xfs_init_buftarg(
2061         struct xfs_buftarg              *btp,
2062         size_t                          logical_sectorsize,
2063         const char                      *descr)
2064 {
2065         /* Set up device logical sector size mask */
2066         btp->bt_logical_sectorsize = logical_sectorsize;
2067         btp->bt_logical_sectormask = logical_sectorsize - 1;
2068 
2069         /*
2070          * Buffer IO error rate limiting. Limit it to no more than 10 messages
2071          * per 30 seconds so as to not spam logs too much on repeated errors.
2072          */
2073         ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2074                              DEFAULT_RATELIMIT_BURST);
2075 
2076         if (list_lru_init(&btp->bt_lru))
2077                 return -ENOMEM;
2078         if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2079                 goto out_destroy_lru;
2080 
2081         btp->bt_shrinker =
2082                 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
2083         if (!btp->bt_shrinker)
2084                 goto out_destroy_io_count;
2085         btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
2086         btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
2087         btp->bt_shrinker->private_data = btp;
2088         shrinker_register(btp->bt_shrinker);
2089         return 0;
2090 
2091 out_destroy_io_count:
2092         percpu_counter_destroy(&btp->bt_io_count);
2093 out_destroy_lru:
2094         list_lru_destroy(&btp->bt_lru);
2095         return -ENOMEM;
2096 }
2097 
2098 struct xfs_buftarg *
2099 xfs_alloc_buftarg(
2100         struct xfs_mount        *mp,
2101         struct file             *bdev_file)
2102 {
2103         struct xfs_buftarg      *btp;
2104         const struct dax_holder_operations *ops = NULL;
2105 
2106 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2107         ops = &xfs_dax_holder_operations;
2108 #endif
2109         btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
2110 
2111         btp->bt_mount = mp;
2112         btp->bt_bdev_file = bdev_file;
2113         btp->bt_bdev = file_bdev(bdev_file);
2114         btp->bt_dev = btp->bt_bdev->bd_dev;
2115         btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2116                                             mp, ops);
2117 
2118         /*
2119          * When allocating the buftargs we have not yet read the super block and
2120          * thus don't know the file system sector size yet.
2121          */
2122         if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2123                 goto error_free;
2124         if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2125                         mp->m_super->s_id))
2126                 goto error_free;
2127 
2128         return btp;
2129 
2130 error_free:
2131         kfree(btp);
2132         return NULL;
2133 }
2134 
2135 static inline void
2136 xfs_buf_list_del(
2137         struct xfs_buf          *bp)
2138 {
2139         list_del_init(&bp->b_list);
2140         wake_up_var(&bp->b_list);
2141 }
2142 
2143 /*
2144  * Cancel a delayed write list.
2145  *
2146  * Remove each buffer from the list, clear the delwri queue flag and drop the
2147  * associated buffer reference.
2148  */
2149 void
2150 xfs_buf_delwri_cancel(
2151         struct list_head        *list)
2152 {
2153         struct xfs_buf          *bp;
2154 
2155         while (!list_empty(list)) {
2156                 bp = list_first_entry(list, struct xfs_buf, b_list);
2157 
2158                 xfs_buf_lock(bp);
2159                 bp->b_flags &= ~_XBF_DELWRI_Q;
2160                 xfs_buf_list_del(bp);
2161                 xfs_buf_relse(bp);
2162         }
2163 }
2164 
2165 /*
2166  * Add a buffer to the delayed write list.
2167  *
2168  * This queues a buffer for writeout if it hasn't already been.  Note that
2169  * neither this routine nor the buffer list submission functions perform
2170  * any internal synchronization.  It is expected that the lists are thread-local
2171  * to the callers.
2172  *
2173  * Returns true if we queued up the buffer, or false if it already had
2174  * been on the buffer list.
2175  */
2176 bool
2177 xfs_buf_delwri_queue(
2178         struct xfs_buf          *bp,
2179         struct list_head        *list)
2180 {
2181         ASSERT(xfs_buf_islocked(bp));
2182         ASSERT(!(bp->b_flags & XBF_READ));
2183 
2184         /*
2185          * If the buffer is already marked delwri it already is queued up
2186          * by someone else for imediate writeout.  Just ignore it in that
2187          * case.
2188          */
2189         if (bp->b_flags & _XBF_DELWRI_Q) {
2190                 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2191                 return false;
2192         }
2193 
2194         trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2195 
2196         /*
2197          * If a buffer gets written out synchronously or marked stale while it
2198          * is on a delwri list we lazily remove it. To do this, the other party
2199          * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2200          * It remains referenced and on the list.  In a rare corner case it
2201          * might get readded to a delwri list after the synchronous writeout, in
2202          * which case we need just need to re-add the flag here.
2203          */
2204         bp->b_flags |= _XBF_DELWRI_Q;
2205         if (list_empty(&bp->b_list)) {
2206                 atomic_inc(&bp->b_hold);
2207                 list_add_tail(&bp->b_list, list);
2208         }
2209 
2210         return true;
2211 }
2212 
2213 /*
2214  * Queue a buffer to this delwri list as part of a data integrity operation.
2215  * If the buffer is on any other delwri list, we'll wait for that to clear
2216  * so that the caller can submit the buffer for IO and wait for the result.
2217  * Callers must ensure the buffer is not already on the list.
2218  */
2219 void
2220 xfs_buf_delwri_queue_here(
2221         struct xfs_buf          *bp,
2222         struct list_head        *buffer_list)
2223 {
2224         /*
2225          * We need this buffer to end up on the /caller's/ delwri list, not any
2226          * old list.  This can happen if the buffer is marked stale (which
2227          * clears DELWRI_Q) after the AIL queues the buffer to its list but
2228          * before the AIL has a chance to submit the list.
2229          */
2230         while (!list_empty(&bp->b_list)) {
2231                 xfs_buf_unlock(bp);
2232                 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2233                 xfs_buf_lock(bp);
2234         }
2235 
2236         ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2237 
2238         xfs_buf_delwri_queue(bp, buffer_list);
2239 }
2240 
2241 /*
2242  * Compare function is more complex than it needs to be because
2243  * the return value is only 32 bits and we are doing comparisons
2244  * on 64 bit values
2245  */
2246 static int
2247 xfs_buf_cmp(
2248         void                    *priv,
2249         const struct list_head  *a,
2250         const struct list_head  *b)
2251 {
2252         struct xfs_buf  *ap = container_of(a, struct xfs_buf, b_list);
2253         struct xfs_buf  *bp = container_of(b, struct xfs_buf, b_list);
2254         xfs_daddr_t             diff;
2255 
2256         diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2257         if (diff < 0)
2258                 return -1;
2259         if (diff > 0)
2260                 return 1;
2261         return 0;
2262 }
2263 
2264 /*
2265  * Submit buffers for write. If wait_list is specified, the buffers are
2266  * submitted using sync I/O and placed on the wait list such that the caller can
2267  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2268  * at I/O completion time. In either case, buffers remain locked until I/O
2269  * completes and the buffer is released from the queue.
2270  */
2271 static int
2272 xfs_buf_delwri_submit_buffers(
2273         struct list_head        *buffer_list,
2274         struct list_head        *wait_list)
2275 {
2276         struct xfs_buf          *bp, *n;
2277         int                     pinned = 0;
2278         struct blk_plug         plug;
2279 
2280         list_sort(NULL, buffer_list, xfs_buf_cmp);
2281 
2282         blk_start_plug(&plug);
2283         list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2284                 if (!wait_list) {
2285                         if (!xfs_buf_trylock(bp))
2286                                 continue;
2287                         if (xfs_buf_ispinned(bp)) {
2288                                 xfs_buf_unlock(bp);
2289                                 pinned++;
2290                                 continue;
2291                         }
2292                 } else {
2293                         xfs_buf_lock(bp);
2294                 }
2295 
2296                 /*
2297                  * Someone else might have written the buffer synchronously or
2298                  * marked it stale in the meantime.  In that case only the
2299                  * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2300                  * reference and remove it from the list here.
2301                  */
2302                 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2303                         xfs_buf_list_del(bp);
2304                         xfs_buf_relse(bp);
2305                         continue;
2306                 }
2307 
2308                 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2309 
2310                 /*
2311                  * If we have a wait list, each buffer (and associated delwri
2312                  * queue reference) transfers to it and is submitted
2313                  * synchronously. Otherwise, drop the buffer from the delwri
2314                  * queue and submit async.
2315                  */
2316                 bp->b_flags &= ~_XBF_DELWRI_Q;
2317                 bp->b_flags |= XBF_WRITE;
2318                 if (wait_list) {
2319                         bp->b_flags &= ~XBF_ASYNC;
2320                         list_move_tail(&bp->b_list, wait_list);
2321                 } else {
2322                         bp->b_flags |= XBF_ASYNC;
2323                         xfs_buf_list_del(bp);
2324                 }
2325                 __xfs_buf_submit(bp, false);
2326         }
2327         blk_finish_plug(&plug);
2328 
2329         return pinned;
2330 }
2331 
2332 /*
2333  * Write out a buffer list asynchronously.
2334  *
2335  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2336  * out and not wait for I/O completion on any of the buffers.  This interface
2337  * is only safely useable for callers that can track I/O completion by higher
2338  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2339  * function.
2340  *
2341  * Note: this function will skip buffers it would block on, and in doing so
2342  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2343  * it is up to the caller to ensure that the buffer list is fully submitted or
2344  * cancelled appropriately when they are finished with the list. Failure to
2345  * cancel or resubmit the list until it is empty will result in leaked buffers
2346  * at unmount time.
2347  */
2348 int
2349 xfs_buf_delwri_submit_nowait(
2350         struct list_head        *buffer_list)
2351 {
2352         return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2353 }
2354 
2355 /*
2356  * Write out a buffer list synchronously.
2357  *
2358  * This will take the @buffer_list, write all buffers out and wait for I/O
2359  * completion on all of the buffers. @buffer_list is consumed by the function,
2360  * so callers must have some other way of tracking buffers if they require such
2361  * functionality.
2362  */
2363 int
2364 xfs_buf_delwri_submit(
2365         struct list_head        *buffer_list)
2366 {
2367         LIST_HEAD               (wait_list);
2368         int                     error = 0, error2;
2369         struct xfs_buf          *bp;
2370 
2371         xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2372 
2373         /* Wait for IO to complete. */
2374         while (!list_empty(&wait_list)) {
2375                 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2376 
2377                 xfs_buf_list_del(bp);
2378 
2379                 /*
2380                  * Wait on the locked buffer, check for errors and unlock and
2381                  * release the delwri queue reference.
2382                  */
2383                 error2 = xfs_buf_iowait(bp);
2384                 xfs_buf_relse(bp);
2385                 if (!error)
2386                         error = error2;
2387         }
2388 
2389         return error;
2390 }
2391 
2392 /*
2393  * Push a single buffer on a delwri queue.
2394  *
2395  * The purpose of this function is to submit a single buffer of a delwri queue
2396  * and return with the buffer still on the original queue. The waiting delwri
2397  * buffer submission infrastructure guarantees transfer of the delwri queue
2398  * buffer reference to a temporary wait list. We reuse this infrastructure to
2399  * transfer the buffer back to the original queue.
2400  *
2401  * Note the buffer transitions from the queued state, to the submitted and wait
2402  * listed state and back to the queued state during this call. The buffer
2403  * locking and queue management logic between _delwri_pushbuf() and
2404  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2405  * before returning.
2406  */
2407 int
2408 xfs_buf_delwri_pushbuf(
2409         struct xfs_buf          *bp,
2410         struct list_head        *buffer_list)
2411 {
2412         LIST_HEAD               (submit_list);
2413         int                     error;
2414 
2415         ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2416 
2417         trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2418 
2419         /*
2420          * Isolate the buffer to a new local list so we can submit it for I/O
2421          * independently from the rest of the original list.
2422          */
2423         xfs_buf_lock(bp);
2424         list_move(&bp->b_list, &submit_list);
2425         xfs_buf_unlock(bp);
2426 
2427         /*
2428          * Delwri submission clears the DELWRI_Q buffer flag and returns with
2429          * the buffer on the wait list with the original reference. Rather than
2430          * bounce the buffer from a local wait list back to the original list
2431          * after I/O completion, reuse the original list as the wait list.
2432          */
2433         xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2434 
2435         /*
2436          * The buffer is now locked, under I/O and wait listed on the original
2437          * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2438          * return with the buffer unlocked and on the original queue.
2439          */
2440         error = xfs_buf_iowait(bp);
2441         bp->b_flags |= _XBF_DELWRI_Q;
2442         xfs_buf_unlock(bp);
2443 
2444         return error;
2445 }
2446 
2447 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2448 {
2449         /*
2450          * Set the lru reference count to 0 based on the error injection tag.
2451          * This allows userspace to disrupt buffer caching for debug/testing
2452          * purposes.
2453          */
2454         if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2455                 lru_ref = 0;
2456 
2457         atomic_set(&bp->b_lru_ref, lru_ref);
2458 }
2459 
2460 /*
2461  * Verify an on-disk magic value against the magic value specified in the
2462  * verifier structure. The verifier magic is in disk byte order so the caller is
2463  * expected to pass the value directly from disk.
2464  */
2465 bool
2466 xfs_verify_magic(
2467         struct xfs_buf          *bp,
2468         __be32                  dmagic)
2469 {
2470         struct xfs_mount        *mp = bp->b_mount;
2471         int                     idx;
2472 
2473         idx = xfs_has_crc(mp);
2474         if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2475                 return false;
2476         return dmagic == bp->b_ops->magic[idx];
2477 }
2478 /*
2479  * Verify an on-disk magic value against the magic value specified in the
2480  * verifier structure. The verifier magic is in disk byte order so the caller is
2481  * expected to pass the value directly from disk.
2482  */
2483 bool
2484 xfs_verify_magic16(
2485         struct xfs_buf          *bp,
2486         __be16                  dmagic)
2487 {
2488         struct xfs_mount        *mp = bp->b_mount;
2489         int                     idx;
2490 
2491         idx = xfs_has_crc(mp);
2492         if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2493                 return false;
2494         return dmagic == bp->b_ops->magic16[idx];
2495 }
2496 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php