~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/xfs_buf_item.c

Version: ~ [ linux-6.11-rc3 ] ~ [ linux-6.10.4 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.45 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.104 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.164 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.223 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.281 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.319 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_shared.h"
  9 #include "xfs_format.h"
 10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_bit.h"
 13 #include "xfs_mount.h"
 14 #include "xfs_trans.h"
 15 #include "xfs_trans_priv.h"
 16 #include "xfs_buf_item.h"
 17 #include "xfs_inode.h"
 18 #include "xfs_inode_item.h"
 19 #include "xfs_quota.h"
 20 #include "xfs_dquot_item.h"
 21 #include "xfs_dquot.h"
 22 #include "xfs_trace.h"
 23 #include "xfs_log.h"
 24 #include "xfs_log_priv.h"
 25 #include "xfs_error.h"
 26 
 27 
 28 struct kmem_cache       *xfs_buf_item_cache;
 29 
 30 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
 31 {
 32         return container_of(lip, struct xfs_buf_log_item, bli_item);
 33 }
 34 
 35 /* Is this log iovec plausibly large enough to contain the buffer log format? */
 36 bool
 37 xfs_buf_log_check_iovec(
 38         struct xfs_log_iovec            *iovec)
 39 {
 40         struct xfs_buf_log_format       *blfp = iovec->i_addr;
 41         char                            *bmp_end;
 42         char                            *item_end;
 43 
 44         if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
 45                 return false;
 46 
 47         item_end = (char *)iovec->i_addr + iovec->i_len;
 48         bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
 49         return bmp_end <= item_end;
 50 }
 51 
 52 static inline int
 53 xfs_buf_log_format_size(
 54         struct xfs_buf_log_format *blfp)
 55 {
 56         return offsetof(struct xfs_buf_log_format, blf_data_map) +
 57                         (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
 58 }
 59 
 60 static inline bool
 61 xfs_buf_item_straddle(
 62         struct xfs_buf          *bp,
 63         uint                    offset,
 64         int                     first_bit,
 65         int                     nbits)
 66 {
 67         void                    *first, *last;
 68 
 69         first = xfs_buf_offset(bp, offset + (first_bit << XFS_BLF_SHIFT));
 70         last = xfs_buf_offset(bp,
 71                         offset + ((first_bit + nbits) << XFS_BLF_SHIFT));
 72 
 73         if (last - first != nbits * XFS_BLF_CHUNK)
 74                 return true;
 75         return false;
 76 }
 77 
 78 /*
 79  * Return the number of log iovecs and space needed to log the given buf log
 80  * item segment.
 81  *
 82  * It calculates this as 1 iovec for the buf log format structure and 1 for each
 83  * stretch of non-contiguous chunks to be logged.  Contiguous chunks are logged
 84  * in a single iovec.
 85  */
 86 STATIC void
 87 xfs_buf_item_size_segment(
 88         struct xfs_buf_log_item         *bip,
 89         struct xfs_buf_log_format       *blfp,
 90         uint                            offset,
 91         int                             *nvecs,
 92         int                             *nbytes)
 93 {
 94         struct xfs_buf                  *bp = bip->bli_buf;
 95         int                             first_bit;
 96         int                             nbits;
 97         int                             next_bit;
 98         int                             last_bit;
 99 
100         first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
101         if (first_bit == -1)
102                 return;
103 
104         (*nvecs)++;
105         *nbytes += xfs_buf_log_format_size(blfp);
106 
107         do {
108                 nbits = xfs_contig_bits(blfp->blf_data_map,
109                                         blfp->blf_map_size, first_bit);
110                 ASSERT(nbits > 0);
111 
112                 /*
113                  * Straddling a page is rare because we don't log contiguous
114                  * chunks of unmapped buffers anywhere.
115                  */
116                 if (nbits > 1 &&
117                     xfs_buf_item_straddle(bp, offset, first_bit, nbits))
118                         goto slow_scan;
119 
120                 (*nvecs)++;
121                 *nbytes += nbits * XFS_BLF_CHUNK;
122 
123                 /*
124                  * This takes the bit number to start looking from and
125                  * returns the next set bit from there.  It returns -1
126                  * if there are no more bits set or the start bit is
127                  * beyond the end of the bitmap.
128                  */
129                 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
130                                         (uint)first_bit + nbits + 1);
131         } while (first_bit != -1);
132 
133         return;
134 
135 slow_scan:
136         /* Count the first bit we jumped out of the above loop from */
137         (*nvecs)++;
138         *nbytes += XFS_BLF_CHUNK;
139         last_bit = first_bit;
140         while (last_bit != -1) {
141                 /*
142                  * This takes the bit number to start looking from and
143                  * returns the next set bit from there.  It returns -1
144                  * if there are no more bits set or the start bit is
145                  * beyond the end of the bitmap.
146                  */
147                 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
148                                         last_bit + 1);
149                 /*
150                  * If we run out of bits, leave the loop,
151                  * else if we find a new set of bits bump the number of vecs,
152                  * else keep scanning the current set of bits.
153                  */
154                 if (next_bit == -1) {
155                         break;
156                 } else if (next_bit != last_bit + 1 ||
157                            xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
158                         last_bit = next_bit;
159                         first_bit = next_bit;
160                         (*nvecs)++;
161                         nbits = 1;
162                 } else {
163                         last_bit++;
164                         nbits++;
165                 }
166                 *nbytes += XFS_BLF_CHUNK;
167         }
168 }
169 
170 /*
171  * Return the number of log iovecs and space needed to log the given buf log
172  * item.
173  *
174  * Discontiguous buffers need a format structure per region that is being
175  * logged. This makes the changes in the buffer appear to log recovery as though
176  * they came from separate buffers, just like would occur if multiple buffers
177  * were used instead of a single discontiguous buffer. This enables
178  * discontiguous buffers to be in-memory constructs, completely transparent to
179  * what ends up on disk.
180  *
181  * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
182  * format structures. If the item has previously been logged and has dirty
183  * regions, we do not relog them in stale buffers. This has the effect of
184  * reducing the size of the relogged item by the amount of dirty data tracked
185  * by the log item. This can result in the committing transaction reducing the
186  * amount of space being consumed by the CIL.
187  */
188 STATIC void
189 xfs_buf_item_size(
190         struct xfs_log_item     *lip,
191         int                     *nvecs,
192         int                     *nbytes)
193 {
194         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
195         struct xfs_buf          *bp = bip->bli_buf;
196         int                     i;
197         int                     bytes;
198         uint                    offset = 0;
199 
200         ASSERT(atomic_read(&bip->bli_refcount) > 0);
201         if (bip->bli_flags & XFS_BLI_STALE) {
202                 /*
203                  * The buffer is stale, so all we need to log is the buf log
204                  * format structure with the cancel flag in it as we are never
205                  * going to replay the changes tracked in the log item.
206                  */
207                 trace_xfs_buf_item_size_stale(bip);
208                 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
209                 *nvecs += bip->bli_format_count;
210                 for (i = 0; i < bip->bli_format_count; i++) {
211                         *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
212                 }
213                 return;
214         }
215 
216         ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
217 
218         if (bip->bli_flags & XFS_BLI_ORDERED) {
219                 /*
220                  * The buffer has been logged just to order it. It is not being
221                  * included in the transaction commit, so no vectors are used at
222                  * all.
223                  */
224                 trace_xfs_buf_item_size_ordered(bip);
225                 *nvecs = XFS_LOG_VEC_ORDERED;
226                 return;
227         }
228 
229         /*
230          * The vector count is based on the number of buffer vectors we have
231          * dirty bits in. This will only be greater than one when we have a
232          * compound buffer with more than one segment dirty. Hence for compound
233          * buffers we need to track which segment the dirty bits correspond to,
234          * and when we move from one segment to the next increment the vector
235          * count for the extra buf log format structure that will need to be
236          * written.
237          */
238         bytes = 0;
239         for (i = 0; i < bip->bli_format_count; i++) {
240                 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], offset,
241                                           nvecs, &bytes);
242                 offset += BBTOB(bp->b_maps[i].bm_len);
243         }
244 
245         /*
246          * Round up the buffer size required to minimise the number of memory
247          * allocations that need to be done as this item grows when relogged by
248          * repeated modifications.
249          */
250         *nbytes = round_up(bytes, 512);
251         trace_xfs_buf_item_size(bip);
252 }
253 
254 static inline void
255 xfs_buf_item_copy_iovec(
256         struct xfs_log_vec      *lv,
257         struct xfs_log_iovec    **vecp,
258         struct xfs_buf          *bp,
259         uint                    offset,
260         int                     first_bit,
261         uint                    nbits)
262 {
263         offset += first_bit * XFS_BLF_CHUNK;
264         xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
265                         xfs_buf_offset(bp, offset),
266                         nbits * XFS_BLF_CHUNK);
267 }
268 
269 static void
270 xfs_buf_item_format_segment(
271         struct xfs_buf_log_item *bip,
272         struct xfs_log_vec      *lv,
273         struct xfs_log_iovec    **vecp,
274         uint                    offset,
275         struct xfs_buf_log_format *blfp)
276 {
277         struct xfs_buf          *bp = bip->bli_buf;
278         uint                    base_size;
279         int                     first_bit;
280         int                     last_bit;
281         int                     next_bit;
282         uint                    nbits;
283 
284         /* copy the flags across from the base format item */
285         blfp->blf_flags = bip->__bli_format.blf_flags;
286 
287         /*
288          * Base size is the actual size of the ondisk structure - it reflects
289          * the actual size of the dirty bitmap rather than the size of the in
290          * memory structure.
291          */
292         base_size = xfs_buf_log_format_size(blfp);
293 
294         first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
295         if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
296                 /*
297                  * If the map is not be dirty in the transaction, mark
298                  * the size as zero and do not advance the vector pointer.
299                  */
300                 return;
301         }
302 
303         blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
304         blfp->blf_size = 1;
305 
306         if (bip->bli_flags & XFS_BLI_STALE) {
307                 /*
308                  * The buffer is stale, so all we need to log
309                  * is the buf log format structure with the
310                  * cancel flag in it.
311                  */
312                 trace_xfs_buf_item_format_stale(bip);
313                 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
314                 return;
315         }
316 
317 
318         /*
319          * Fill in an iovec for each set of contiguous chunks.
320          */
321         do {
322                 ASSERT(first_bit >= 0);
323                 nbits = xfs_contig_bits(blfp->blf_data_map,
324                                         blfp->blf_map_size, first_bit);
325                 ASSERT(nbits > 0);
326 
327                 /*
328                  * Straddling a page is rare because we don't log contiguous
329                  * chunks of unmapped buffers anywhere.
330                  */
331                 if (nbits > 1 &&
332                     xfs_buf_item_straddle(bp, offset, first_bit, nbits))
333                         goto slow_scan;
334 
335                 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
336                                         first_bit, nbits);
337                 blfp->blf_size++;
338 
339                 /*
340                  * This takes the bit number to start looking from and
341                  * returns the next set bit from there.  It returns -1
342                  * if there are no more bits set or the start bit is
343                  * beyond the end of the bitmap.
344                  */
345                 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
346                                         (uint)first_bit + nbits + 1);
347         } while (first_bit != -1);
348 
349         return;
350 
351 slow_scan:
352         ASSERT(bp->b_addr == NULL);
353         last_bit = first_bit;
354         nbits = 1;
355         for (;;) {
356                 /*
357                  * This takes the bit number to start looking from and
358                  * returns the next set bit from there.  It returns -1
359                  * if there are no more bits set or the start bit is
360                  * beyond the end of the bitmap.
361                  */
362                 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
363                                         (uint)last_bit + 1);
364                 /*
365                  * If we run out of bits fill in the last iovec and get out of
366                  * the loop.  Else if we start a new set of bits then fill in
367                  * the iovec for the series we were looking at and start
368                  * counting the bits in the new one.  Else we're still in the
369                  * same set of bits so just keep counting and scanning.
370                  */
371                 if (next_bit == -1) {
372                         xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
373                                                 first_bit, nbits);
374                         blfp->blf_size++;
375                         break;
376                 } else if (next_bit != last_bit + 1 ||
377                            xfs_buf_item_straddle(bp, offset, first_bit, nbits)) {
378                         xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
379                                                 first_bit, nbits);
380                         blfp->blf_size++;
381                         first_bit = next_bit;
382                         last_bit = next_bit;
383                         nbits = 1;
384                 } else {
385                         last_bit++;
386                         nbits++;
387                 }
388         }
389 }
390 
391 /*
392  * This is called to fill in the vector of log iovecs for the
393  * given log buf item.  It fills the first entry with a buf log
394  * format structure, and the rest point to contiguous chunks
395  * within the buffer.
396  */
397 STATIC void
398 xfs_buf_item_format(
399         struct xfs_log_item     *lip,
400         struct xfs_log_vec      *lv)
401 {
402         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
403         struct xfs_buf          *bp = bip->bli_buf;
404         struct xfs_log_iovec    *vecp = NULL;
405         uint                    offset = 0;
406         int                     i;
407 
408         ASSERT(atomic_read(&bip->bli_refcount) > 0);
409         ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
410                (bip->bli_flags & XFS_BLI_STALE));
411         ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
412                (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
413                 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
414         ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
415                (bip->bli_flags & XFS_BLI_STALE));
416 
417 
418         /*
419          * If it is an inode buffer, transfer the in-memory state to the
420          * format flags and clear the in-memory state.
421          *
422          * For buffer based inode allocation, we do not transfer
423          * this state if the inode buffer allocation has not yet been committed
424          * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
425          * correct replay of the inode allocation.
426          *
427          * For icreate item based inode allocation, the buffers aren't written
428          * to the journal during allocation, and hence we should always tag the
429          * buffer as an inode buffer so that the correct unlinked list replay
430          * occurs during recovery.
431          */
432         if (bip->bli_flags & XFS_BLI_INODE_BUF) {
433                 if (xfs_has_v3inodes(lip->li_log->l_mp) ||
434                     !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
435                       xfs_log_item_in_current_chkpt(lip)))
436                         bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
437                 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
438         }
439 
440         for (i = 0; i < bip->bli_format_count; i++) {
441                 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
442                                             &bip->bli_formats[i]);
443                 offset += BBTOB(bp->b_maps[i].bm_len);
444         }
445 
446         /*
447          * Check to make sure everything is consistent.
448          */
449         trace_xfs_buf_item_format(bip);
450 }
451 
452 /*
453  * This is called to pin the buffer associated with the buf log item in memory
454  * so it cannot be written out.
455  *
456  * We take a reference to the buffer log item here so that the BLI life cycle
457  * extends at least until the buffer is unpinned via xfs_buf_item_unpin() and
458  * inserted into the AIL.
459  *
460  * We also need to take a reference to the buffer itself as the BLI unpin
461  * processing requires accessing the buffer after the BLI has dropped the final
462  * BLI reference. See xfs_buf_item_unpin() for an explanation.
463  * If unpins race to drop the final BLI reference and only the
464  * BLI owns a reference to the buffer, then the loser of the race can have the
465  * buffer fgreed from under it (e.g. on shutdown). Taking a buffer reference per
466  * pin count ensures the life cycle of the buffer extends for as
467  * long as we hold the buffer pin reference in xfs_buf_item_unpin().
468  */
469 STATIC void
470 xfs_buf_item_pin(
471         struct xfs_log_item     *lip)
472 {
473         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
474 
475         ASSERT(atomic_read(&bip->bli_refcount) > 0);
476         ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
477                (bip->bli_flags & XFS_BLI_ORDERED) ||
478                (bip->bli_flags & XFS_BLI_STALE));
479 
480         trace_xfs_buf_item_pin(bip);
481 
482         xfs_buf_hold(bip->bli_buf);
483         atomic_inc(&bip->bli_refcount);
484         atomic_inc(&bip->bli_buf->b_pin_count);
485 }
486 
487 /*
488  * This is called to unpin the buffer associated with the buf log item which was
489  * previously pinned with a call to xfs_buf_item_pin().  We enter this function
490  * with a buffer pin count, a buffer reference and a BLI reference.
491  *
492  * We must drop the BLI reference before we unpin the buffer because the AIL
493  * doesn't acquire a BLI reference whenever it accesses it. Therefore if the
494  * refcount drops to zero, the bli could still be AIL resident and the buffer
495  * submitted for I/O at any point before we return. This can result in IO
496  * completion freeing the buffer while we are still trying to access it here.
497  * This race condition can also occur in shutdown situations where we abort and
498  * unpin buffers from contexts other that journal IO completion.
499  *
500  * Hence we have to hold a buffer reference per pin count to ensure that the
501  * buffer cannot be freed until we have finished processing the unpin operation.
502  * The reference is taken in xfs_buf_item_pin(), and we must hold it until we
503  * are done processing the buffer state. In the case of an abort (remove =
504  * true) then we re-use the current pin reference as the IO reference we hand
505  * off to IO failure handling.
506  */
507 STATIC void
508 xfs_buf_item_unpin(
509         struct xfs_log_item     *lip,
510         int                     remove)
511 {
512         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
513         struct xfs_buf          *bp = bip->bli_buf;
514         int                     stale = bip->bli_flags & XFS_BLI_STALE;
515         int                     freed;
516 
517         ASSERT(bp->b_log_item == bip);
518         ASSERT(atomic_read(&bip->bli_refcount) > 0);
519 
520         trace_xfs_buf_item_unpin(bip);
521 
522         freed = atomic_dec_and_test(&bip->bli_refcount);
523         if (atomic_dec_and_test(&bp->b_pin_count))
524                 wake_up_all(&bp->b_waiters);
525 
526         /*
527          * Nothing to do but drop the buffer pin reference if the BLI is
528          * still active.
529          */
530         if (!freed) {
531                 xfs_buf_rele(bp);
532                 return;
533         }
534 
535         if (stale) {
536                 ASSERT(bip->bli_flags & XFS_BLI_STALE);
537                 ASSERT(xfs_buf_islocked(bp));
538                 ASSERT(bp->b_flags & XBF_STALE);
539                 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
540                 ASSERT(list_empty(&lip->li_trans));
541                 ASSERT(!bp->b_transp);
542 
543                 trace_xfs_buf_item_unpin_stale(bip);
544 
545                 /*
546                  * The buffer has been locked and referenced since it was marked
547                  * stale so we own both lock and reference exclusively here. We
548                  * do not need the pin reference any more, so drop it now so
549                  * that we only have one reference to drop once item completion
550                  * processing is complete.
551                  */
552                 xfs_buf_rele(bp);
553 
554                 /*
555                  * If we get called here because of an IO error, we may or may
556                  * not have the item on the AIL. xfs_trans_ail_delete() will
557                  * take care of that situation. xfs_trans_ail_delete() drops
558                  * the AIL lock.
559                  */
560                 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
561                         xfs_buf_item_done(bp);
562                         xfs_buf_inode_iodone(bp);
563                         ASSERT(list_empty(&bp->b_li_list));
564                 } else {
565                         xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
566                         xfs_buf_item_relse(bp);
567                         ASSERT(bp->b_log_item == NULL);
568                 }
569                 xfs_buf_relse(bp);
570                 return;
571         }
572 
573         if (remove) {
574                 /*
575                  * We need to simulate an async IO failures here to ensure that
576                  * the correct error completion is run on this buffer. This
577                  * requires a reference to the buffer and for the buffer to be
578                  * locked. We can safely pass ownership of the pin reference to
579                  * the IO to ensure that nothing can free the buffer while we
580                  * wait for the lock and then run the IO failure completion.
581                  */
582                 xfs_buf_lock(bp);
583                 bp->b_flags |= XBF_ASYNC;
584                 xfs_buf_ioend_fail(bp);
585                 return;
586         }
587 
588         /*
589          * BLI has no more active references - it will be moved to the AIL to
590          * manage the remaining BLI/buffer life cycle. There is nothing left for
591          * us to do here so drop the pin reference to the buffer.
592          */
593         xfs_buf_rele(bp);
594 }
595 
596 STATIC uint
597 xfs_buf_item_push(
598         struct xfs_log_item     *lip,
599         struct list_head        *buffer_list)
600 {
601         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
602         struct xfs_buf          *bp = bip->bli_buf;
603         uint                    rval = XFS_ITEM_SUCCESS;
604 
605         if (xfs_buf_ispinned(bp))
606                 return XFS_ITEM_PINNED;
607         if (!xfs_buf_trylock(bp)) {
608                 /*
609                  * If we have just raced with a buffer being pinned and it has
610                  * been marked stale, we could end up stalling until someone else
611                  * issues a log force to unpin the stale buffer. Check for the
612                  * race condition here so xfsaild recognizes the buffer is pinned
613                  * and queues a log force to move it along.
614                  */
615                 if (xfs_buf_ispinned(bp))
616                         return XFS_ITEM_PINNED;
617                 return XFS_ITEM_LOCKED;
618         }
619 
620         ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
621 
622         trace_xfs_buf_item_push(bip);
623 
624         /* has a previous flush failed due to IO errors? */
625         if (bp->b_flags & XBF_WRITE_FAIL) {
626                 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
627             "Failing async write on buffer block 0x%llx. Retrying async write.",
628                                           (long long)xfs_buf_daddr(bp));
629         }
630 
631         if (!xfs_buf_delwri_queue(bp, buffer_list))
632                 rval = XFS_ITEM_FLUSHING;
633         xfs_buf_unlock(bp);
634         return rval;
635 }
636 
637 /*
638  * Drop the buffer log item refcount and take appropriate action. This helper
639  * determines whether the bli must be freed or not, since a decrement to zero
640  * does not necessarily mean the bli is unused.
641  *
642  * Return true if the bli is freed, false otherwise.
643  */
644 bool
645 xfs_buf_item_put(
646         struct xfs_buf_log_item *bip)
647 {
648         struct xfs_log_item     *lip = &bip->bli_item;
649         bool                    aborted;
650         bool                    dirty;
651 
652         /* drop the bli ref and return if it wasn't the last one */
653         if (!atomic_dec_and_test(&bip->bli_refcount))
654                 return false;
655 
656         /*
657          * We dropped the last ref and must free the item if clean or aborted.
658          * If the bli is dirty and non-aborted, the buffer was clean in the
659          * transaction but still awaiting writeback from previous changes. In
660          * that case, the bli is freed on buffer writeback completion.
661          */
662         aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
663                         xlog_is_shutdown(lip->li_log);
664         dirty = bip->bli_flags & XFS_BLI_DIRTY;
665         if (dirty && !aborted)
666                 return false;
667 
668         /*
669          * The bli is aborted or clean. An aborted item may be in the AIL
670          * regardless of dirty state.  For example, consider an aborted
671          * transaction that invalidated a dirty bli and cleared the dirty
672          * state.
673          */
674         if (aborted)
675                 xfs_trans_ail_delete(lip, 0);
676         xfs_buf_item_relse(bip->bli_buf);
677         return true;
678 }
679 
680 /*
681  * Release the buffer associated with the buf log item.  If there is no dirty
682  * logged data associated with the buffer recorded in the buf log item, then
683  * free the buf log item and remove the reference to it in the buffer.
684  *
685  * This call ignores the recursion count.  It is only called when the buffer
686  * should REALLY be unlocked, regardless of the recursion count.
687  *
688  * We unconditionally drop the transaction's reference to the log item. If the
689  * item was logged, then another reference was taken when it was pinned, so we
690  * can safely drop the transaction reference now.  This also allows us to avoid
691  * potential races with the unpin code freeing the bli by not referencing the
692  * bli after we've dropped the reference count.
693  *
694  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
695  * if necessary but do not unlock the buffer.  This is for support of
696  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
697  * free the item.
698  */
699 STATIC void
700 xfs_buf_item_release(
701         struct xfs_log_item     *lip)
702 {
703         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
704         struct xfs_buf          *bp = bip->bli_buf;
705         bool                    released;
706         bool                    hold = bip->bli_flags & XFS_BLI_HOLD;
707         bool                    stale = bip->bli_flags & XFS_BLI_STALE;
708 #if defined(DEBUG) || defined(XFS_WARN)
709         bool                    ordered = bip->bli_flags & XFS_BLI_ORDERED;
710         bool                    dirty = bip->bli_flags & XFS_BLI_DIRTY;
711         bool                    aborted = test_bit(XFS_LI_ABORTED,
712                                                    &lip->li_flags);
713 #endif
714 
715         trace_xfs_buf_item_release(bip);
716 
717         /*
718          * The bli dirty state should match whether the blf has logged segments
719          * except for ordered buffers, where only the bli should be dirty.
720          */
721         ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
722                (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
723         ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
724 
725         /*
726          * Clear the buffer's association with this transaction and
727          * per-transaction state from the bli, which has been copied above.
728          */
729         bp->b_transp = NULL;
730         bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
731 
732         /*
733          * Unref the item and unlock the buffer unless held or stale. Stale
734          * buffers remain locked until final unpin unless the bli is freed by
735          * the unref call. The latter implies shutdown because buffer
736          * invalidation dirties the bli and transaction.
737          */
738         released = xfs_buf_item_put(bip);
739         if (hold || (stale && !released))
740                 return;
741         ASSERT(!stale || aborted);
742         xfs_buf_relse(bp);
743 }
744 
745 STATIC void
746 xfs_buf_item_committing(
747         struct xfs_log_item     *lip,
748         xfs_csn_t               seq)
749 {
750         return xfs_buf_item_release(lip);
751 }
752 
753 /*
754  * This is called to find out where the oldest active copy of the
755  * buf log item in the on disk log resides now that the last log
756  * write of it completed at the given lsn.
757  * We always re-log all the dirty data in a buffer, so usually the
758  * latest copy in the on disk log is the only one that matters.  For
759  * those cases we simply return the given lsn.
760  *
761  * The one exception to this is for buffers full of newly allocated
762  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
763  * flag set, indicating that only the di_next_unlinked fields from the
764  * inodes in the buffers will be replayed during recovery.  If the
765  * original newly allocated inode images have not yet been flushed
766  * when the buffer is so relogged, then we need to make sure that we
767  * keep the old images in the 'active' portion of the log.  We do this
768  * by returning the original lsn of that transaction here rather than
769  * the current one.
770  */
771 STATIC xfs_lsn_t
772 xfs_buf_item_committed(
773         struct xfs_log_item     *lip,
774         xfs_lsn_t               lsn)
775 {
776         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
777 
778         trace_xfs_buf_item_committed(bip);
779 
780         if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
781                 return lip->li_lsn;
782         return lsn;
783 }
784 
785 #ifdef DEBUG_EXPENSIVE
786 static int
787 xfs_buf_item_precommit(
788         struct xfs_trans        *tp,
789         struct xfs_log_item     *lip)
790 {
791         struct xfs_buf_log_item *bip = BUF_ITEM(lip);
792         struct xfs_buf          *bp = bip->bli_buf;
793         struct xfs_mount        *mp = bp->b_mount;
794         xfs_failaddr_t          fa;
795 
796         if (!bp->b_ops || !bp->b_ops->verify_struct)
797                 return 0;
798         if (bip->bli_flags & XFS_BLI_STALE)
799                 return 0;
800 
801         fa = bp->b_ops->verify_struct(bp);
802         if (fa) {
803                 xfs_buf_verifier_error(bp, -EFSCORRUPTED, bp->b_ops->name,
804                                 bp->b_addr, BBTOB(bp->b_length), fa);
805                 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
806                 ASSERT(fa == NULL);
807         }
808 
809         return 0;
810 }
811 #else
812 # define xfs_buf_item_precommit NULL
813 #endif
814 
815 static const struct xfs_item_ops xfs_buf_item_ops = {
816         .iop_size       = xfs_buf_item_size,
817         .iop_precommit  = xfs_buf_item_precommit,
818         .iop_format     = xfs_buf_item_format,
819         .iop_pin        = xfs_buf_item_pin,
820         .iop_unpin      = xfs_buf_item_unpin,
821         .iop_release    = xfs_buf_item_release,
822         .iop_committing = xfs_buf_item_committing,
823         .iop_committed  = xfs_buf_item_committed,
824         .iop_push       = xfs_buf_item_push,
825 };
826 
827 STATIC void
828 xfs_buf_item_get_format(
829         struct xfs_buf_log_item *bip,
830         int                     count)
831 {
832         ASSERT(bip->bli_formats == NULL);
833         bip->bli_format_count = count;
834 
835         if (count == 1) {
836                 bip->bli_formats = &bip->__bli_format;
837                 return;
838         }
839 
840         bip->bli_formats = kzalloc(count * sizeof(struct xfs_buf_log_format),
841                                 GFP_KERNEL | __GFP_NOFAIL);
842 }
843 
844 STATIC void
845 xfs_buf_item_free_format(
846         struct xfs_buf_log_item *bip)
847 {
848         if (bip->bli_formats != &bip->__bli_format) {
849                 kfree(bip->bli_formats);
850                 bip->bli_formats = NULL;
851         }
852 }
853 
854 /*
855  * Allocate a new buf log item to go with the given buffer.
856  * Set the buffer's b_log_item field to point to the new
857  * buf log item.
858  */
859 int
860 xfs_buf_item_init(
861         struct xfs_buf  *bp,
862         struct xfs_mount *mp)
863 {
864         struct xfs_buf_log_item *bip = bp->b_log_item;
865         int                     chunks;
866         int                     map_size;
867         int                     i;
868 
869         /*
870          * Check to see if there is already a buf log item for
871          * this buffer. If we do already have one, there is
872          * nothing to do here so return.
873          */
874         ASSERT(bp->b_mount == mp);
875         if (bip) {
876                 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
877                 ASSERT(!bp->b_transp);
878                 ASSERT(bip->bli_buf == bp);
879                 return 0;
880         }
881 
882         bip = kmem_cache_zalloc(xfs_buf_item_cache, GFP_KERNEL | __GFP_NOFAIL);
883         xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
884         bip->bli_buf = bp;
885 
886         /*
887          * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
888          * can be divided into. Make sure not to truncate any pieces.
889          * map_size is the size of the bitmap needed to describe the
890          * chunks of the buffer.
891          *
892          * Discontiguous buffer support follows the layout of the underlying
893          * buffer. This makes the implementation as simple as possible.
894          */
895         xfs_buf_item_get_format(bip, bp->b_map_count);
896 
897         for (i = 0; i < bip->bli_format_count; i++) {
898                 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
899                                       XFS_BLF_CHUNK);
900                 map_size = DIV_ROUND_UP(chunks, NBWORD);
901 
902                 if (map_size > XFS_BLF_DATAMAP_SIZE) {
903                         kmem_cache_free(xfs_buf_item_cache, bip);
904                         xfs_err(mp,
905         "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
906                                         map_size,
907                                         BBTOB(bp->b_maps[i].bm_len));
908                         return -EFSCORRUPTED;
909                 }
910 
911                 bip->bli_formats[i].blf_type = XFS_LI_BUF;
912                 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
913                 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
914                 bip->bli_formats[i].blf_map_size = map_size;
915         }
916 
917         bp->b_log_item = bip;
918         xfs_buf_hold(bp);
919         return 0;
920 }
921 
922 
923 /*
924  * Mark bytes first through last inclusive as dirty in the buf
925  * item's bitmap.
926  */
927 static void
928 xfs_buf_item_log_segment(
929         uint                    first,
930         uint                    last,
931         uint                    *map)
932 {
933         uint            first_bit;
934         uint            last_bit;
935         uint            bits_to_set;
936         uint            bits_set;
937         uint            word_num;
938         uint            *wordp;
939         uint            bit;
940         uint            end_bit;
941         uint            mask;
942 
943         ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
944         ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
945 
946         /*
947          * Convert byte offsets to bit numbers.
948          */
949         first_bit = first >> XFS_BLF_SHIFT;
950         last_bit = last >> XFS_BLF_SHIFT;
951 
952         /*
953          * Calculate the total number of bits to be set.
954          */
955         bits_to_set = last_bit - first_bit + 1;
956 
957         /*
958          * Get a pointer to the first word in the bitmap
959          * to set a bit in.
960          */
961         word_num = first_bit >> BIT_TO_WORD_SHIFT;
962         wordp = &map[word_num];
963 
964         /*
965          * Calculate the starting bit in the first word.
966          */
967         bit = first_bit & (uint)(NBWORD - 1);
968 
969         /*
970          * First set any bits in the first word of our range.
971          * If it starts at bit 0 of the word, it will be
972          * set below rather than here.  That is what the variable
973          * bit tells us. The variable bits_set tracks the number
974          * of bits that have been set so far.  End_bit is the number
975          * of the last bit to be set in this word plus one.
976          */
977         if (bit) {
978                 end_bit = min(bit + bits_to_set, (uint)NBWORD);
979                 mask = ((1U << (end_bit - bit)) - 1) << bit;
980                 *wordp |= mask;
981                 wordp++;
982                 bits_set = end_bit - bit;
983         } else {
984                 bits_set = 0;
985         }
986 
987         /*
988          * Now set bits a whole word at a time that are between
989          * first_bit and last_bit.
990          */
991         while ((bits_to_set - bits_set) >= NBWORD) {
992                 *wordp = 0xffffffff;
993                 bits_set += NBWORD;
994                 wordp++;
995         }
996 
997         /*
998          * Finally, set any bits left to be set in one last partial word.
999          */
1000         end_bit = bits_to_set - bits_set;
1001         if (end_bit) {
1002                 mask = (1U << end_bit) - 1;
1003                 *wordp |= mask;
1004         }
1005 }
1006 
1007 /*
1008  * Mark bytes first through last inclusive as dirty in the buf
1009  * item's bitmap.
1010  */
1011 void
1012 xfs_buf_item_log(
1013         struct xfs_buf_log_item *bip,
1014         uint                    first,
1015         uint                    last)
1016 {
1017         int                     i;
1018         uint                    start;
1019         uint                    end;
1020         struct xfs_buf          *bp = bip->bli_buf;
1021 
1022         /*
1023          * walk each buffer segment and mark them dirty appropriately.
1024          */
1025         start = 0;
1026         for (i = 0; i < bip->bli_format_count; i++) {
1027                 if (start > last)
1028                         break;
1029                 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
1030 
1031                 /* skip to the map that includes the first byte to log */
1032                 if (first > end) {
1033                         start += BBTOB(bp->b_maps[i].bm_len);
1034                         continue;
1035                 }
1036 
1037                 /*
1038                  * Trim the range to this segment and mark it in the bitmap.
1039                  * Note that we must convert buffer offsets to segment relative
1040                  * offsets (e.g., the first byte of each segment is byte 0 of
1041                  * that segment).
1042                  */
1043                 if (first < start)
1044                         first = start;
1045                 if (end > last)
1046                         end = last;
1047                 xfs_buf_item_log_segment(first - start, end - start,
1048                                          &bip->bli_formats[i].blf_data_map[0]);
1049 
1050                 start += BBTOB(bp->b_maps[i].bm_len);
1051         }
1052 }
1053 
1054 
1055 /*
1056  * Return true if the buffer has any ranges logged/dirtied by a transaction,
1057  * false otherwise.
1058  */
1059 bool
1060 xfs_buf_item_dirty_format(
1061         struct xfs_buf_log_item *bip)
1062 {
1063         int                     i;
1064 
1065         for (i = 0; i < bip->bli_format_count; i++) {
1066                 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
1067                              bip->bli_formats[i].blf_map_size))
1068                         return true;
1069         }
1070 
1071         return false;
1072 }
1073 
1074 STATIC void
1075 xfs_buf_item_free(
1076         struct xfs_buf_log_item *bip)
1077 {
1078         xfs_buf_item_free_format(bip);
1079         kvfree(bip->bli_item.li_lv_shadow);
1080         kmem_cache_free(xfs_buf_item_cache, bip);
1081 }
1082 
1083 /*
1084  * xfs_buf_item_relse() is called when the buf log item is no longer needed.
1085  */
1086 void
1087 xfs_buf_item_relse(
1088         struct xfs_buf  *bp)
1089 {
1090         struct xfs_buf_log_item *bip = bp->b_log_item;
1091 
1092         trace_xfs_buf_item_relse(bp, _RET_IP_);
1093         ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
1094 
1095         if (atomic_read(&bip->bli_refcount))
1096                 return;
1097         bp->b_log_item = NULL;
1098         xfs_buf_rele(bp);
1099         xfs_buf_item_free(bip);
1100 }
1101 
1102 void
1103 xfs_buf_item_done(
1104         struct xfs_buf          *bp)
1105 {
1106         /*
1107          * If we are forcibly shutting down, this may well be off the AIL
1108          * already. That's because we simulate the log-committed callbacks to
1109          * unpin these buffers. Or we may never have put this item on AIL
1110          * because of the transaction was aborted forcibly.
1111          * xfs_trans_ail_delete() takes care of these.
1112          *
1113          * Either way, AIL is useless if we're forcing a shutdown.
1114          *
1115          * Note that log recovery writes might have buffer items that are not on
1116          * the AIL even when the file system is not shut down.
1117          */
1118         xfs_trans_ail_delete(&bp->b_log_item->bli_item,
1119                              (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
1120                              SHUTDOWN_CORRUPT_INCORE);
1121         xfs_buf_item_relse(bp);
1122 }
1123 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php