~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/xfs_buf_item_recover.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_shared.h"
  9 #include "xfs_format.h"
 10 #include "xfs_log_format.h"
 11 #include "xfs_trans_resv.h"
 12 #include "xfs_bit.h"
 13 #include "xfs_mount.h"
 14 #include "xfs_trans.h"
 15 #include "xfs_buf_item.h"
 16 #include "xfs_trans_priv.h"
 17 #include "xfs_trace.h"
 18 #include "xfs_log.h"
 19 #include "xfs_log_priv.h"
 20 #include "xfs_log_recover.h"
 21 #include "xfs_error.h"
 22 #include "xfs_inode.h"
 23 #include "xfs_dir2.h"
 24 #include "xfs_quota.h"
 25 
 26 /*
 27  * This is the number of entries in the l_buf_cancel_table used during
 28  * recovery.
 29  */
 30 #define XLOG_BC_TABLE_SIZE      64
 31 
 32 #define XLOG_BUF_CANCEL_BUCKET(log, blkno) \
 33         ((log)->l_buf_cancel_table + ((uint64_t)blkno % XLOG_BC_TABLE_SIZE))
 34 
 35 /*
 36  * This structure is used during recovery to record the buf log items which
 37  * have been canceled and should not be replayed.
 38  */
 39 struct xfs_buf_cancel {
 40         xfs_daddr_t             bc_blkno;
 41         uint                    bc_len;
 42         int                     bc_refcount;
 43         struct list_head        bc_list;
 44 };
 45 
 46 static struct xfs_buf_cancel *
 47 xlog_find_buffer_cancelled(
 48         struct xlog             *log,
 49         xfs_daddr_t             blkno,
 50         uint                    len)
 51 {
 52         struct list_head        *bucket;
 53         struct xfs_buf_cancel   *bcp;
 54 
 55         if (!log->l_buf_cancel_table)
 56                 return NULL;
 57 
 58         bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
 59         list_for_each_entry(bcp, bucket, bc_list) {
 60                 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
 61                         return bcp;
 62         }
 63 
 64         return NULL;
 65 }
 66 
 67 static bool
 68 xlog_add_buffer_cancelled(
 69         struct xlog             *log,
 70         xfs_daddr_t             blkno,
 71         uint                    len)
 72 {
 73         struct xfs_buf_cancel   *bcp;
 74 
 75         /*
 76          * If we find an existing cancel record, this indicates that the buffer
 77          * was cancelled multiple times.  To ensure that during pass 2 we keep
 78          * the record in the table until we reach its last occurrence in the
 79          * log, a reference count is kept to tell how many times we expect to
 80          * see this record during the second pass.
 81          */
 82         bcp = xlog_find_buffer_cancelled(log, blkno, len);
 83         if (bcp) {
 84                 bcp->bc_refcount++;
 85                 return false;
 86         }
 87 
 88         bcp = kmalloc(sizeof(struct xfs_buf_cancel), GFP_KERNEL | __GFP_NOFAIL);
 89         bcp->bc_blkno = blkno;
 90         bcp->bc_len = len;
 91         bcp->bc_refcount = 1;
 92         list_add_tail(&bcp->bc_list, XLOG_BUF_CANCEL_BUCKET(log, blkno));
 93         return true;
 94 }
 95 
 96 /*
 97  * Check if there is and entry for blkno, len in the buffer cancel record table.
 98  */
 99 bool
100 xlog_is_buffer_cancelled(
101         struct xlog             *log,
102         xfs_daddr_t             blkno,
103         uint                    len)
104 {
105         return xlog_find_buffer_cancelled(log, blkno, len) != NULL;
106 }
107 
108 /*
109  * Check if there is and entry for blkno, len in the buffer cancel record table,
110  * and decremented the reference count on it if there is one.
111  *
112  * Remove the cancel record once the refcount hits zero, so that if the same
113  * buffer is re-used again after its last cancellation we actually replay the
114  * changes made at that point.
115  */
116 static bool
117 xlog_put_buffer_cancelled(
118         struct xlog             *log,
119         xfs_daddr_t             blkno,
120         uint                    len)
121 {
122         struct xfs_buf_cancel   *bcp;
123 
124         bcp = xlog_find_buffer_cancelled(log, blkno, len);
125         if (!bcp) {
126                 ASSERT(0);
127                 return false;
128         }
129 
130         if (--bcp->bc_refcount == 0) {
131                 list_del(&bcp->bc_list);
132                 kfree(bcp);
133         }
134         return true;
135 }
136 
137 /* log buffer item recovery */
138 
139 /*
140  * Sort buffer items for log recovery.  Most buffer items should end up on the
141  * buffer list and are recovered first, with the following exceptions:
142  *
143  * 1. XFS_BLF_CANCEL buffers must be processed last because some log items
144  *    might depend on the incor ecancellation record, and replaying a cancelled
145  *    buffer item can remove the incore record.
146  *
147  * 2. XFS_BLF_INODE_BUF buffers are handled after most regular items so that
148  *    we replay di_next_unlinked only after flushing the inode 'free' state
149  *    to the inode buffer.
150  *
151  * See xlog_recover_reorder_trans for more details.
152  */
153 STATIC enum xlog_recover_reorder
154 xlog_recover_buf_reorder(
155         struct xlog_recover_item        *item)
156 {
157         struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
158 
159         if (buf_f->blf_flags & XFS_BLF_CANCEL)
160                 return XLOG_REORDER_CANCEL_LIST;
161         if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
162                 return XLOG_REORDER_INODE_BUFFER_LIST;
163         return XLOG_REORDER_BUFFER_LIST;
164 }
165 
166 STATIC void
167 xlog_recover_buf_ra_pass2(
168         struct xlog                     *log,
169         struct xlog_recover_item        *item)
170 {
171         struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
172 
173         xlog_buf_readahead(log, buf_f->blf_blkno, buf_f->blf_len, NULL);
174 }
175 
176 /*
177  * Build up the table of buf cancel records so that we don't replay cancelled
178  * data in the second pass.
179  */
180 static int
181 xlog_recover_buf_commit_pass1(
182         struct xlog                     *log,
183         struct xlog_recover_item        *item)
184 {
185         struct xfs_buf_log_format       *bf = item->ri_buf[0].i_addr;
186 
187         if (!xfs_buf_log_check_iovec(&item->ri_buf[0])) {
188                 xfs_err(log->l_mp, "bad buffer log item size (%d)",
189                                 item->ri_buf[0].i_len);
190                 return -EFSCORRUPTED;
191         }
192 
193         if (!(bf->blf_flags & XFS_BLF_CANCEL))
194                 trace_xfs_log_recover_buf_not_cancel(log, bf);
195         else if (xlog_add_buffer_cancelled(log, bf->blf_blkno, bf->blf_len))
196                 trace_xfs_log_recover_buf_cancel_add(log, bf);
197         else
198                 trace_xfs_log_recover_buf_cancel_ref_inc(log, bf);
199         return 0;
200 }
201 
202 /*
203  * Validate the recovered buffer is of the correct type and attach the
204  * appropriate buffer operations to them for writeback. Magic numbers are in a
205  * few places:
206  *      the first 16 bits of the buffer (inode buffer, dquot buffer),
207  *      the first 32 bits of the buffer (most blocks),
208  *      inside a struct xfs_da_blkinfo at the start of the buffer.
209  */
210 static void
211 xlog_recover_validate_buf_type(
212         struct xfs_mount                *mp,
213         struct xfs_buf                  *bp,
214         struct xfs_buf_log_format       *buf_f,
215         xfs_lsn_t                       current_lsn)
216 {
217         struct xfs_da_blkinfo           *info = bp->b_addr;
218         uint32_t                        magic32;
219         uint16_t                        magic16;
220         uint16_t                        magicda;
221         char                            *warnmsg = NULL;
222 
223         /*
224          * We can only do post recovery validation on items on CRC enabled
225          * fielsystems as we need to know when the buffer was written to be able
226          * to determine if we should have replayed the item. If we replay old
227          * metadata over a newer buffer, then it will enter a temporarily
228          * inconsistent state resulting in verification failures. Hence for now
229          * just avoid the verification stage for non-crc filesystems
230          */
231         if (!xfs_has_crc(mp))
232                 return;
233 
234         magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
235         magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
236         magicda = be16_to_cpu(info->magic);
237         switch (xfs_blft_from_flags(buf_f)) {
238         case XFS_BLFT_BTREE_BUF:
239                 switch (magic32) {
240                 case XFS_ABTB_CRC_MAGIC:
241                 case XFS_ABTB_MAGIC:
242                         bp->b_ops = &xfs_bnobt_buf_ops;
243                         break;
244                 case XFS_ABTC_CRC_MAGIC:
245                 case XFS_ABTC_MAGIC:
246                         bp->b_ops = &xfs_cntbt_buf_ops;
247                         break;
248                 case XFS_IBT_CRC_MAGIC:
249                 case XFS_IBT_MAGIC:
250                         bp->b_ops = &xfs_inobt_buf_ops;
251                         break;
252                 case XFS_FIBT_CRC_MAGIC:
253                 case XFS_FIBT_MAGIC:
254                         bp->b_ops = &xfs_finobt_buf_ops;
255                         break;
256                 case XFS_BMAP_CRC_MAGIC:
257                 case XFS_BMAP_MAGIC:
258                         bp->b_ops = &xfs_bmbt_buf_ops;
259                         break;
260                 case XFS_RMAP_CRC_MAGIC:
261                         bp->b_ops = &xfs_rmapbt_buf_ops;
262                         break;
263                 case XFS_REFC_CRC_MAGIC:
264                         bp->b_ops = &xfs_refcountbt_buf_ops;
265                         break;
266                 default:
267                         warnmsg = "Bad btree block magic!";
268                         break;
269                 }
270                 break;
271         case XFS_BLFT_AGF_BUF:
272                 if (magic32 != XFS_AGF_MAGIC) {
273                         warnmsg = "Bad AGF block magic!";
274                         break;
275                 }
276                 bp->b_ops = &xfs_agf_buf_ops;
277                 break;
278         case XFS_BLFT_AGFL_BUF:
279                 if (magic32 != XFS_AGFL_MAGIC) {
280                         warnmsg = "Bad AGFL block magic!";
281                         break;
282                 }
283                 bp->b_ops = &xfs_agfl_buf_ops;
284                 break;
285         case XFS_BLFT_AGI_BUF:
286                 if (magic32 != XFS_AGI_MAGIC) {
287                         warnmsg = "Bad AGI block magic!";
288                         break;
289                 }
290                 bp->b_ops = &xfs_agi_buf_ops;
291                 break;
292         case XFS_BLFT_UDQUOT_BUF:
293         case XFS_BLFT_PDQUOT_BUF:
294         case XFS_BLFT_GDQUOT_BUF:
295 #ifdef CONFIG_XFS_QUOTA
296                 if (magic16 != XFS_DQUOT_MAGIC) {
297                         warnmsg = "Bad DQUOT block magic!";
298                         break;
299                 }
300                 bp->b_ops = &xfs_dquot_buf_ops;
301 #else
302                 xfs_alert(mp,
303         "Trying to recover dquots without QUOTA support built in!");
304                 ASSERT(0);
305 #endif
306                 break;
307         case XFS_BLFT_DINO_BUF:
308                 if (magic16 != XFS_DINODE_MAGIC) {
309                         warnmsg = "Bad INODE block magic!";
310                         break;
311                 }
312                 bp->b_ops = &xfs_inode_buf_ops;
313                 break;
314         case XFS_BLFT_SYMLINK_BUF:
315                 if (magic32 != XFS_SYMLINK_MAGIC) {
316                         warnmsg = "Bad symlink block magic!";
317                         break;
318                 }
319                 bp->b_ops = &xfs_symlink_buf_ops;
320                 break;
321         case XFS_BLFT_DIR_BLOCK_BUF:
322                 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
323                     magic32 != XFS_DIR3_BLOCK_MAGIC) {
324                         warnmsg = "Bad dir block magic!";
325                         break;
326                 }
327                 bp->b_ops = &xfs_dir3_block_buf_ops;
328                 break;
329         case XFS_BLFT_DIR_DATA_BUF:
330                 if (magic32 != XFS_DIR2_DATA_MAGIC &&
331                     magic32 != XFS_DIR3_DATA_MAGIC) {
332                         warnmsg = "Bad dir data magic!";
333                         break;
334                 }
335                 bp->b_ops = &xfs_dir3_data_buf_ops;
336                 break;
337         case XFS_BLFT_DIR_FREE_BUF:
338                 if (magic32 != XFS_DIR2_FREE_MAGIC &&
339                     magic32 != XFS_DIR3_FREE_MAGIC) {
340                         warnmsg = "Bad dir3 free magic!";
341                         break;
342                 }
343                 bp->b_ops = &xfs_dir3_free_buf_ops;
344                 break;
345         case XFS_BLFT_DIR_LEAF1_BUF:
346                 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
347                     magicda != XFS_DIR3_LEAF1_MAGIC) {
348                         warnmsg = "Bad dir leaf1 magic!";
349                         break;
350                 }
351                 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
352                 break;
353         case XFS_BLFT_DIR_LEAFN_BUF:
354                 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
355                     magicda != XFS_DIR3_LEAFN_MAGIC) {
356                         warnmsg = "Bad dir leafn magic!";
357                         break;
358                 }
359                 bp->b_ops = &xfs_dir3_leafn_buf_ops;
360                 break;
361         case XFS_BLFT_DA_NODE_BUF:
362                 if (magicda != XFS_DA_NODE_MAGIC &&
363                     magicda != XFS_DA3_NODE_MAGIC) {
364                         warnmsg = "Bad da node magic!";
365                         break;
366                 }
367                 bp->b_ops = &xfs_da3_node_buf_ops;
368                 break;
369         case XFS_BLFT_ATTR_LEAF_BUF:
370                 if (magicda != XFS_ATTR_LEAF_MAGIC &&
371                     magicda != XFS_ATTR3_LEAF_MAGIC) {
372                         warnmsg = "Bad attr leaf magic!";
373                         break;
374                 }
375                 bp->b_ops = &xfs_attr3_leaf_buf_ops;
376                 break;
377         case XFS_BLFT_ATTR_RMT_BUF:
378                 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
379                         warnmsg = "Bad attr remote magic!";
380                         break;
381                 }
382                 bp->b_ops = &xfs_attr3_rmt_buf_ops;
383                 break;
384         case XFS_BLFT_SB_BUF:
385                 if (magic32 != XFS_SB_MAGIC) {
386                         warnmsg = "Bad SB block magic!";
387                         break;
388                 }
389                 bp->b_ops = &xfs_sb_buf_ops;
390                 break;
391 #ifdef CONFIG_XFS_RT
392         case XFS_BLFT_RTBITMAP_BUF:
393         case XFS_BLFT_RTSUMMARY_BUF:
394                 /* no magic numbers for verification of RT buffers */
395                 bp->b_ops = &xfs_rtbuf_ops;
396                 break;
397 #endif /* CONFIG_XFS_RT */
398         default:
399                 xfs_warn(mp, "Unknown buffer type %d!",
400                          xfs_blft_from_flags(buf_f));
401                 break;
402         }
403 
404         /*
405          * Nothing else to do in the case of a NULL current LSN as this means
406          * the buffer is more recent than the change in the log and will be
407          * skipped.
408          */
409         if (current_lsn == NULLCOMMITLSN)
410                 return;
411 
412         if (warnmsg) {
413                 xfs_warn(mp, warnmsg);
414                 ASSERT(0);
415         }
416 
417         /*
418          * We must update the metadata LSN of the buffer as it is written out to
419          * ensure that older transactions never replay over this one and corrupt
420          * the buffer. This can occur if log recovery is interrupted at some
421          * point after the current transaction completes, at which point a
422          * subsequent mount starts recovery from the beginning.
423          *
424          * Write verifiers update the metadata LSN from log items attached to
425          * the buffer. Therefore, initialize a bli purely to carry the LSN to
426          * the verifier.
427          */
428         if (bp->b_ops) {
429                 struct xfs_buf_log_item *bip;
430 
431                 bp->b_flags |= _XBF_LOGRECOVERY;
432                 xfs_buf_item_init(bp, mp);
433                 bip = bp->b_log_item;
434                 bip->bli_item.li_lsn = current_lsn;
435         }
436 }
437 
438 /*
439  * Perform a 'normal' buffer recovery.  Each logged region of the
440  * buffer should be copied over the corresponding region in the
441  * given buffer.  The bitmap in the buf log format structure indicates
442  * where to place the logged data.
443  */
444 STATIC void
445 xlog_recover_do_reg_buffer(
446         struct xfs_mount                *mp,
447         struct xlog_recover_item        *item,
448         struct xfs_buf                  *bp,
449         struct xfs_buf_log_format       *buf_f,
450         xfs_lsn_t                       current_lsn)
451 {
452         int                     i;
453         int                     bit;
454         int                     nbits;
455         xfs_failaddr_t          fa;
456         const size_t            size_disk_dquot = sizeof(struct xfs_disk_dquot);
457 
458         trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
459 
460         bit = 0;
461         i = 1;  /* 0 is the buf format structure */
462         while (1) {
463                 bit = xfs_next_bit(buf_f->blf_data_map,
464                                    buf_f->blf_map_size, bit);
465                 if (bit == -1)
466                         break;
467                 nbits = xfs_contig_bits(buf_f->blf_data_map,
468                                         buf_f->blf_map_size, bit);
469                 ASSERT(nbits > 0);
470                 ASSERT(item->ri_buf[i].i_addr != NULL);
471                 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
472                 ASSERT(BBTOB(bp->b_length) >=
473                        ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
474 
475                 /*
476                  * The dirty regions logged in the buffer, even though
477                  * contiguous, may span multiple chunks. This is because the
478                  * dirty region may span a physical page boundary in a buffer
479                  * and hence be split into two separate vectors for writing into
480                  * the log. Hence we need to trim nbits back to the length of
481                  * the current region being copied out of the log.
482                  */
483                 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
484                         nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
485 
486                 /*
487                  * Do a sanity check if this is a dquot buffer. Just checking
488                  * the first dquot in the buffer should do. XXXThis is
489                  * probably a good thing to do for other buf types also.
490                  */
491                 fa = NULL;
492                 if (buf_f->blf_flags &
493                    (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
494                         if (item->ri_buf[i].i_addr == NULL) {
495                                 xfs_alert(mp,
496                                         "XFS: NULL dquot in %s.", __func__);
497                                 goto next;
498                         }
499                         if (item->ri_buf[i].i_len < size_disk_dquot) {
500                                 xfs_alert(mp,
501                                         "XFS: dquot too small (%d) in %s.",
502                                         item->ri_buf[i].i_len, __func__);
503                                 goto next;
504                         }
505                         fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr, -1);
506                         if (fa) {
507                                 xfs_alert(mp,
508         "dquot corrupt at %pS trying to replay into block 0x%llx",
509                                         fa, xfs_buf_daddr(bp));
510                                 goto next;
511                         }
512                 }
513 
514                 memcpy(xfs_buf_offset(bp,
515                         (uint)bit << XFS_BLF_SHIFT),    /* dest */
516                         item->ri_buf[i].i_addr,         /* source */
517                         nbits<<XFS_BLF_SHIFT);          /* length */
518  next:
519                 i++;
520                 bit += nbits;
521         }
522 
523         /* Shouldn't be any more regions */
524         ASSERT(i == item->ri_total);
525 
526         xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
527 }
528 
529 /*
530  * Perform a dquot buffer recovery.
531  * Simple algorithm: if we have found a QUOTAOFF log item of the same type
532  * (ie. USR or GRP), then just toss this buffer away; don't recover it.
533  * Else, treat it as a regular buffer and do recovery.
534  *
535  * Return false if the buffer was tossed and true if we recovered the buffer to
536  * indicate to the caller if the buffer needs writing.
537  */
538 STATIC bool
539 xlog_recover_do_dquot_buffer(
540         struct xfs_mount                *mp,
541         struct xlog                     *log,
542         struct xlog_recover_item        *item,
543         struct xfs_buf                  *bp,
544         struct xfs_buf_log_format       *buf_f)
545 {
546         uint                    type;
547 
548         trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
549 
550         /*
551          * Filesystems are required to send in quota flags at mount time.
552          */
553         if (!mp->m_qflags)
554                 return false;
555 
556         type = 0;
557         if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
558                 type |= XFS_DQTYPE_USER;
559         if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
560                 type |= XFS_DQTYPE_PROJ;
561         if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
562                 type |= XFS_DQTYPE_GROUP;
563         /*
564          * This type of quotas was turned off, so ignore this buffer
565          */
566         if (log->l_quotaoffs_flag & type)
567                 return false;
568 
569         xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
570         return true;
571 }
572 
573 /*
574  * Perform recovery for a buffer full of inodes.  In these buffers, the only
575  * data which should be recovered is that which corresponds to the
576  * di_next_unlinked pointers in the on disk inode structures.  The rest of the
577  * data for the inodes is always logged through the inodes themselves rather
578  * than the inode buffer and is recovered in xlog_recover_inode_pass2().
579  *
580  * The only time when buffers full of inodes are fully recovered is when the
581  * buffer is full of newly allocated inodes.  In this case the buffer will
582  * not be marked as an inode buffer and so will be sent to
583  * xlog_recover_do_reg_buffer() below during recovery.
584  */
585 STATIC int
586 xlog_recover_do_inode_buffer(
587         struct xfs_mount                *mp,
588         struct xlog_recover_item        *item,
589         struct xfs_buf                  *bp,
590         struct xfs_buf_log_format       *buf_f)
591 {
592         int                             i;
593         int                             item_index = 0;
594         int                             bit = 0;
595         int                             nbits = 0;
596         int                             reg_buf_offset = 0;
597         int                             reg_buf_bytes = 0;
598         int                             next_unlinked_offset;
599         int                             inodes_per_buf;
600         xfs_agino_t                     *logged_nextp;
601         xfs_agino_t                     *buffer_nextp;
602 
603         trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
604 
605         /*
606          * Post recovery validation only works properly on CRC enabled
607          * filesystems.
608          */
609         if (xfs_has_crc(mp))
610                 bp->b_ops = &xfs_inode_buf_ops;
611 
612         inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
613         for (i = 0; i < inodes_per_buf; i++) {
614                 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
615                         offsetof(struct xfs_dinode, di_next_unlinked);
616 
617                 while (next_unlinked_offset >=
618                        (reg_buf_offset + reg_buf_bytes)) {
619                         /*
620                          * The next di_next_unlinked field is beyond
621                          * the current logged region.  Find the next
622                          * logged region that contains or is beyond
623                          * the current di_next_unlinked field.
624                          */
625                         bit += nbits;
626                         bit = xfs_next_bit(buf_f->blf_data_map,
627                                            buf_f->blf_map_size, bit);
628 
629                         /*
630                          * If there are no more logged regions in the
631                          * buffer, then we're done.
632                          */
633                         if (bit == -1)
634                                 return 0;
635 
636                         nbits = xfs_contig_bits(buf_f->blf_data_map,
637                                                 buf_f->blf_map_size, bit);
638                         ASSERT(nbits > 0);
639                         reg_buf_offset = bit << XFS_BLF_SHIFT;
640                         reg_buf_bytes = nbits << XFS_BLF_SHIFT;
641                         item_index++;
642                 }
643 
644                 /*
645                  * If the current logged region starts after the current
646                  * di_next_unlinked field, then move on to the next
647                  * di_next_unlinked field.
648                  */
649                 if (next_unlinked_offset < reg_buf_offset)
650                         continue;
651 
652                 ASSERT(item->ri_buf[item_index].i_addr != NULL);
653                 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
654                 ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
655 
656                 /*
657                  * The current logged region contains a copy of the
658                  * current di_next_unlinked field.  Extract its value
659                  * and copy it to the buffer copy.
660                  */
661                 logged_nextp = item->ri_buf[item_index].i_addr +
662                                 next_unlinked_offset - reg_buf_offset;
663                 if (XFS_IS_CORRUPT(mp, *logged_nextp == 0)) {
664                         xfs_alert(mp,
665                 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
666                 "Trying to replay bad (0) inode di_next_unlinked field.",
667                                 item, bp);
668                         return -EFSCORRUPTED;
669                 }
670 
671                 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
672                 *buffer_nextp = *logged_nextp;
673 
674                 /*
675                  * If necessary, recalculate the CRC in the on-disk inode. We
676                  * have to leave the inode in a consistent state for whoever
677                  * reads it next....
678                  */
679                 xfs_dinode_calc_crc(mp,
680                                 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
681 
682         }
683 
684         return 0;
685 }
686 
687 /*
688  * V5 filesystems know the age of the buffer on disk being recovered. We can
689  * have newer objects on disk than we are replaying, and so for these cases we
690  * don't want to replay the current change as that will make the buffer contents
691  * temporarily invalid on disk.
692  *
693  * The magic number might not match the buffer type we are going to recover
694  * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags.  Hence
695  * extract the LSN of the existing object in the buffer based on it's current
696  * magic number.  If we don't recognise the magic number in the buffer, then
697  * return a LSN of -1 so that the caller knows it was an unrecognised block and
698  * so can recover the buffer.
699  *
700  * Note: we cannot rely solely on magic number matches to determine that the
701  * buffer has a valid LSN - we also need to verify that it belongs to this
702  * filesystem, so we need to extract the object's LSN and compare it to that
703  * which we read from the superblock. If the UUIDs don't match, then we've got a
704  * stale metadata block from an old filesystem instance that we need to recover
705  * over the top of.
706  */
707 static xfs_lsn_t
708 xlog_recover_get_buf_lsn(
709         struct xfs_mount        *mp,
710         struct xfs_buf          *bp,
711         struct xfs_buf_log_format *buf_f)
712 {
713         uint32_t                magic32;
714         uint16_t                magic16;
715         uint16_t                magicda;
716         void                    *blk = bp->b_addr;
717         uuid_t                  *uuid;
718         xfs_lsn_t               lsn = -1;
719         uint16_t                blft;
720 
721         /* v4 filesystems always recover immediately */
722         if (!xfs_has_crc(mp))
723                 goto recover_immediately;
724 
725         /*
726          * realtime bitmap and summary file blocks do not have magic numbers or
727          * UUIDs, so we must recover them immediately.
728          */
729         blft = xfs_blft_from_flags(buf_f);
730         if (blft == XFS_BLFT_RTBITMAP_BUF || blft == XFS_BLFT_RTSUMMARY_BUF)
731                 goto recover_immediately;
732 
733         magic32 = be32_to_cpu(*(__be32 *)blk);
734         switch (magic32) {
735         case XFS_ABTB_CRC_MAGIC:
736         case XFS_ABTC_CRC_MAGIC:
737         case XFS_ABTB_MAGIC:
738         case XFS_ABTC_MAGIC:
739         case XFS_RMAP_CRC_MAGIC:
740         case XFS_REFC_CRC_MAGIC:
741         case XFS_FIBT_CRC_MAGIC:
742         case XFS_FIBT_MAGIC:
743         case XFS_IBT_CRC_MAGIC:
744         case XFS_IBT_MAGIC: {
745                 struct xfs_btree_block *btb = blk;
746 
747                 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
748                 uuid = &btb->bb_u.s.bb_uuid;
749                 break;
750         }
751         case XFS_BMAP_CRC_MAGIC:
752         case XFS_BMAP_MAGIC: {
753                 struct xfs_btree_block *btb = blk;
754 
755                 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
756                 uuid = &btb->bb_u.l.bb_uuid;
757                 break;
758         }
759         case XFS_AGF_MAGIC:
760                 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
761                 uuid = &((struct xfs_agf *)blk)->agf_uuid;
762                 break;
763         case XFS_AGFL_MAGIC:
764                 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
765                 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
766                 break;
767         case XFS_AGI_MAGIC:
768                 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
769                 uuid = &((struct xfs_agi *)blk)->agi_uuid;
770                 break;
771         case XFS_SYMLINK_MAGIC:
772                 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
773                 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
774                 break;
775         case XFS_DIR3_BLOCK_MAGIC:
776         case XFS_DIR3_DATA_MAGIC:
777         case XFS_DIR3_FREE_MAGIC:
778                 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
779                 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
780                 break;
781         case XFS_ATTR3_RMT_MAGIC:
782                 /*
783                  * Remote attr blocks are written synchronously, rather than
784                  * being logged. That means they do not contain a valid LSN
785                  * (i.e. transactionally ordered) in them, and hence any time we
786                  * see a buffer to replay over the top of a remote attribute
787                  * block we should simply do so.
788                  */
789                 goto recover_immediately;
790         case XFS_SB_MAGIC:
791                 /*
792                  * superblock uuids are magic. We may or may not have a
793                  * sb_meta_uuid on disk, but it will be set in the in-core
794                  * superblock. We set the uuid pointer for verification
795                  * according to the superblock feature mask to ensure we check
796                  * the relevant UUID in the superblock.
797                  */
798                 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
799                 if (xfs_has_metauuid(mp))
800                         uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
801                 else
802                         uuid = &((struct xfs_dsb *)blk)->sb_uuid;
803                 break;
804         default:
805                 break;
806         }
807 
808         if (lsn != (xfs_lsn_t)-1) {
809                 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
810                         goto recover_immediately;
811                 return lsn;
812         }
813 
814         magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
815         switch (magicda) {
816         case XFS_DIR3_LEAF1_MAGIC:
817         case XFS_DIR3_LEAFN_MAGIC:
818         case XFS_ATTR3_LEAF_MAGIC:
819         case XFS_DA3_NODE_MAGIC:
820                 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
821                 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
822                 break;
823         default:
824                 break;
825         }
826 
827         if (lsn != (xfs_lsn_t)-1) {
828                 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
829                         goto recover_immediately;
830                 return lsn;
831         }
832 
833         /*
834          * We do individual object checks on dquot and inode buffers as they
835          * have their own individual LSN records. Also, we could have a stale
836          * buffer here, so we have to at least recognise these buffer types.
837          *
838          * A notd complexity here is inode unlinked list processing - it logs
839          * the inode directly in the buffer, but we don't know which inodes have
840          * been modified, and there is no global buffer LSN. Hence we need to
841          * recover all inode buffer types immediately. This problem will be
842          * fixed by logical logging of the unlinked list modifications.
843          */
844         magic16 = be16_to_cpu(*(__be16 *)blk);
845         switch (magic16) {
846         case XFS_DQUOT_MAGIC:
847         case XFS_DINODE_MAGIC:
848                 goto recover_immediately;
849         default:
850                 break;
851         }
852 
853         /* unknown buffer contents, recover immediately */
854 
855 recover_immediately:
856         return (xfs_lsn_t)-1;
857 
858 }
859 
860 /*
861  * This routine replays a modification made to a buffer at runtime.
862  * There are actually two types of buffer, regular and inode, which
863  * are handled differently.  Inode buffers are handled differently
864  * in that we only recover a specific set of data from them, namely
865  * the inode di_next_unlinked fields.  This is because all other inode
866  * data is actually logged via inode records and any data we replay
867  * here which overlaps that may be stale.
868  *
869  * When meta-data buffers are freed at run time we log a buffer item
870  * with the XFS_BLF_CANCEL bit set to indicate that previous copies
871  * of the buffer in the log should not be replayed at recovery time.
872  * This is so that if the blocks covered by the buffer are reused for
873  * file data before we crash we don't end up replaying old, freed
874  * meta-data into a user's file.
875  *
876  * To handle the cancellation of buffer log items, we make two passes
877  * over the log during recovery.  During the first we build a table of
878  * those buffers which have been cancelled, and during the second we
879  * only replay those buffers which do not have corresponding cancel
880  * records in the table.  See xlog_recover_buf_pass[1,2] above
881  * for more details on the implementation of the table of cancel records.
882  */
883 STATIC int
884 xlog_recover_buf_commit_pass2(
885         struct xlog                     *log,
886         struct list_head                *buffer_list,
887         struct xlog_recover_item        *item,
888         xfs_lsn_t                       current_lsn)
889 {
890         struct xfs_buf_log_format       *buf_f = item->ri_buf[0].i_addr;
891         struct xfs_mount                *mp = log->l_mp;
892         struct xfs_buf                  *bp;
893         int                             error;
894         uint                            buf_flags;
895         xfs_lsn_t                       lsn;
896 
897         /*
898          * In this pass we only want to recover all the buffers which have
899          * not been cancelled and are not cancellation buffers themselves.
900          */
901         if (buf_f->blf_flags & XFS_BLF_CANCEL) {
902                 if (xlog_put_buffer_cancelled(log, buf_f->blf_blkno,
903                                 buf_f->blf_len))
904                         goto cancelled;
905         } else {
906 
907                 if (xlog_is_buffer_cancelled(log, buf_f->blf_blkno,
908                                 buf_f->blf_len))
909                         goto cancelled;
910         }
911 
912         trace_xfs_log_recover_buf_recover(log, buf_f);
913 
914         buf_flags = 0;
915         if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
916                 buf_flags |= XBF_UNMAPPED;
917 
918         error = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
919                           buf_flags, &bp, NULL);
920         if (error)
921                 return error;
922 
923         /*
924          * Recover the buffer only if we get an LSN from it and it's less than
925          * the lsn of the transaction we are replaying.
926          *
927          * Note that we have to be extremely careful of readahead here.
928          * Readahead does not attach verfiers to the buffers so if we don't
929          * actually do any replay after readahead because of the LSN we found
930          * in the buffer if more recent than that current transaction then we
931          * need to attach the verifier directly. Failure to do so can lead to
932          * future recovery actions (e.g. EFI and unlinked list recovery) can
933          * operate on the buffers and they won't get the verifier attached. This
934          * can lead to blocks on disk having the correct content but a stale
935          * CRC.
936          *
937          * It is safe to assume these clean buffers are currently up to date.
938          * If the buffer is dirtied by a later transaction being replayed, then
939          * the verifier will be reset to match whatever recover turns that
940          * buffer into.
941          */
942         lsn = xlog_recover_get_buf_lsn(mp, bp, buf_f);
943         if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
944                 trace_xfs_log_recover_buf_skip(log, buf_f);
945                 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
946 
947                 /*
948                  * We're skipping replay of this buffer log item due to the log
949                  * item LSN being behind the ondisk buffer.  Verify the buffer
950                  * contents since we aren't going to run the write verifier.
951                  */
952                 if (bp->b_ops) {
953                         bp->b_ops->verify_read(bp);
954                         error = bp->b_error;
955                 }
956                 goto out_release;
957         }
958 
959         if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
960                 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
961                 if (error)
962                         goto out_release;
963         } else if (buf_f->blf_flags &
964                   (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
965                 bool    dirty;
966 
967                 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
968                 if (!dirty)
969                         goto out_release;
970         } else {
971                 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
972         }
973 
974         /*
975          * Perform delayed write on the buffer.  Asynchronous writes will be
976          * slower when taking into account all the buffers to be flushed.
977          *
978          * Also make sure that only inode buffers with good sizes stay in
979          * the buffer cache.  The kernel moves inodes in buffers of 1 block
980          * or inode_cluster_size bytes, whichever is bigger.  The inode
981          * buffers in the log can be a different size if the log was generated
982          * by an older kernel using unclustered inode buffers or a newer kernel
983          * running with a different inode cluster size.  Regardless, if
984          * the inode buffer size isn't max(blocksize, inode_cluster_size)
985          * for *our* value of inode_cluster_size, then we need to keep
986          * the buffer out of the buffer cache so that the buffer won't
987          * overlap with future reads of those inodes.
988          */
989         if (XFS_DINODE_MAGIC ==
990             be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
991             (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
992                 xfs_buf_stale(bp);
993                 error = xfs_bwrite(bp);
994         } else {
995                 ASSERT(bp->b_mount == mp);
996                 bp->b_flags |= _XBF_LOGRECOVERY;
997                 xfs_buf_delwri_queue(bp, buffer_list);
998         }
999 
1000 out_release:
1001         xfs_buf_relse(bp);
1002         return error;
1003 cancelled:
1004         trace_xfs_log_recover_buf_cancel(log, buf_f);
1005         return 0;
1006 }
1007 
1008 const struct xlog_recover_item_ops xlog_buf_item_ops = {
1009         .item_type              = XFS_LI_BUF,
1010         .reorder                = xlog_recover_buf_reorder,
1011         .ra_pass2               = xlog_recover_buf_ra_pass2,
1012         .commit_pass1           = xlog_recover_buf_commit_pass1,
1013         .commit_pass2           = xlog_recover_buf_commit_pass2,
1014 };
1015 
1016 #ifdef DEBUG
1017 void
1018 xlog_check_buf_cancel_table(
1019         struct xlog     *log)
1020 {
1021         int             i;
1022 
1023         for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
1024                 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1025 }
1026 #endif
1027 
1028 int
1029 xlog_alloc_buf_cancel_table(
1030         struct xlog     *log)
1031 {
1032         void            *p;
1033         int             i;
1034 
1035         ASSERT(log->l_buf_cancel_table == NULL);
1036 
1037         p = kmalloc_array(XLOG_BC_TABLE_SIZE, sizeof(struct list_head),
1038                           GFP_KERNEL);
1039         if (!p)
1040                 return -ENOMEM;
1041 
1042         log->l_buf_cancel_table = p;
1043         for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
1044                 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
1045 
1046         return 0;
1047 }
1048 
1049 void
1050 xlog_free_buf_cancel_table(
1051         struct xlog     *log)
1052 {
1053         int             i;
1054 
1055         if (!log->l_buf_cancel_table)
1056                 return;
1057 
1058         for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) {
1059                 struct xfs_buf_cancel   *bc;
1060 
1061                 while ((bc = list_first_entry_or_null(
1062                                 &log->l_buf_cancel_table[i],
1063                                 struct xfs_buf_cancel, bc_list))) {
1064                         list_del(&bc->bc_list);
1065                         kfree(bc);
1066                 }
1067         }
1068 
1069         kfree(log->l_buf_cancel_table);
1070         log->l_buf_cancel_table = NULL;
1071 }
1072 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php