1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2010, 2023 Red Hat, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_shared.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_trans.h" 12 #include "xfs_mount.h" 13 #include "xfs_btree.h" 14 #include "xfs_alloc_btree.h" 15 #include "xfs_alloc.h" 16 #include "xfs_discard.h" 17 #include "xfs_error.h" 18 #include "xfs_extent_busy.h" 19 #include "xfs_trace.h" 20 #include "xfs_log.h" 21 #include "xfs_ag.h" 22 #include "xfs_health.h" 23 #include "xfs_rtbitmap.h" 24 25 /* 26 * Notes on an efficient, low latency fstrim algorithm 27 * 28 * We need to walk the filesystem free space and issue discards on the free 29 * space that meet the search criteria (size and location). We cannot issue 30 * discards on extents that might be in use, or are so recently in use they are 31 * still marked as busy. To serialise against extent state changes whilst we are 32 * gathering extents to trim, we must hold the AGF lock to lock out other 33 * allocations and extent free operations that might change extent state. 34 * 35 * However, we cannot just hold the AGF for the entire AG free space walk whilst 36 * we issue discards on each free space that is found. Storage devices can have 37 * extremely slow discard implementations (e.g. ceph RBD) and so walking a 38 * couple of million free extents and issuing synchronous discards on each 39 * extent can take a *long* time. Whilst we are doing this walk, nothing else 40 * can access the AGF, and we can stall transactions and hence the log whilst 41 * modifications wait for the AGF lock to be released. This can lead hung tasks 42 * kicking the hung task timer and rebooting the system. This is bad. 43 * 44 * Hence we need to take a leaf from the bulkstat playbook. It takes the AGI 45 * lock, gathers a range of inode cluster buffers that are allocated, drops the 46 * AGI lock and then reads all the inode cluster buffers and processes them. It 47 * loops doing this, using a cursor to keep track of where it is up to in the AG 48 * for each iteration to restart the INOBT lookup from. 49 * 50 * We can't do this exactly with free space - once we drop the AGF lock, the 51 * state of the free extent is out of our control and we cannot run a discard 52 * safely on it in this situation. Unless, of course, we've marked the free 53 * extent as busy and undergoing a discard operation whilst we held the AGF 54 * locked. 55 * 56 * This is exactly how online discard works - free extents are marked busy when 57 * they are freed, and once the extent free has been committed to the journal, 58 * the busy extent record is marked as "undergoing discard" and the discard is 59 * then issued on the free extent. Once the discard completes, the busy extent 60 * record is removed and the extent is able to be allocated again. 61 * 62 * In the context of fstrim, if we find a free extent we need to discard, we 63 * don't have to discard it immediately. All we need to do it record that free 64 * extent as being busy and under discard, and all the allocation routines will 65 * now avoid trying to allocate it. Hence if we mark the extent as busy under 66 * the AGF lock, we can safely discard it without holding the AGF lock because 67 * nothing will attempt to allocate that free space until the discard completes. 68 * 69 * This also allows us to issue discards asynchronously like we do with online 70 * discard, and so for fast devices fstrim will run much faster as we can have 71 * multiple discard operations in flight at once, as well as pipeline the free 72 * extent search so that it overlaps in flight discard IO. 73 */ 74 75 struct workqueue_struct *xfs_discard_wq; 76 77 static void 78 xfs_discard_endio_work( 79 struct work_struct *work) 80 { 81 struct xfs_busy_extents *extents = 82 container_of(work, struct xfs_busy_extents, endio_work); 83 84 xfs_extent_busy_clear(extents->mount, &extents->extent_list, false); 85 kfree(extents->owner); 86 } 87 88 /* 89 * Queue up the actual completion to a thread to avoid IRQ-safe locking for 90 * pagb_lock. 91 */ 92 static void 93 xfs_discard_endio( 94 struct bio *bio) 95 { 96 struct xfs_busy_extents *extents = bio->bi_private; 97 98 INIT_WORK(&extents->endio_work, xfs_discard_endio_work); 99 queue_work(xfs_discard_wq, &extents->endio_work); 100 bio_put(bio); 101 } 102 103 /* 104 * Walk the discard list and issue discards on all the busy extents in the 105 * list. We plug and chain the bios so that we only need a single completion 106 * call to clear all the busy extents once the discards are complete. 107 */ 108 int 109 xfs_discard_extents( 110 struct xfs_mount *mp, 111 struct xfs_busy_extents *extents) 112 { 113 struct xfs_extent_busy *busyp; 114 struct bio *bio = NULL; 115 struct blk_plug plug; 116 int error = 0; 117 118 blk_start_plug(&plug); 119 list_for_each_entry(busyp, &extents->extent_list, list) { 120 trace_xfs_discard_extent(mp, busyp->agno, busyp->bno, 121 busyp->length); 122 123 error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev, 124 XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno), 125 XFS_FSB_TO_BB(mp, busyp->length), 126 GFP_KERNEL, &bio); 127 if (error && error != -EOPNOTSUPP) { 128 xfs_info(mp, 129 "discard failed for extent [0x%llx,%u], error %d", 130 (unsigned long long)busyp->bno, 131 busyp->length, 132 error); 133 break; 134 } 135 } 136 137 if (bio) { 138 bio->bi_private = extents; 139 bio->bi_end_io = xfs_discard_endio; 140 submit_bio(bio); 141 } else { 142 xfs_discard_endio_work(&extents->endio_work); 143 } 144 blk_finish_plug(&plug); 145 146 return error; 147 } 148 149 struct xfs_trim_cur { 150 xfs_agblock_t start; 151 xfs_extlen_t count; 152 xfs_agblock_t end; 153 xfs_extlen_t minlen; 154 bool by_bno; 155 }; 156 157 static int 158 xfs_trim_gather_extents( 159 struct xfs_perag *pag, 160 struct xfs_trim_cur *tcur, 161 struct xfs_busy_extents *extents) 162 { 163 struct xfs_mount *mp = pag->pag_mount; 164 struct xfs_trans *tp; 165 struct xfs_btree_cur *cur; 166 struct xfs_buf *agbp; 167 int error; 168 int i; 169 int batch = 100; 170 171 /* 172 * Force out the log. This means any transactions that might have freed 173 * space before we take the AGF buffer lock are now on disk, and the 174 * volatile disk cache is flushed. 175 */ 176 xfs_log_force(mp, XFS_LOG_SYNC); 177 178 error = xfs_trans_alloc_empty(mp, &tp); 179 if (error) 180 return error; 181 182 error = xfs_alloc_read_agf(pag, tp, 0, &agbp); 183 if (error) 184 goto out_trans_cancel; 185 186 if (tcur->by_bno) { 187 /* sub-AG discard request always starts at tcur->start */ 188 cur = xfs_bnobt_init_cursor(mp, tp, agbp, pag); 189 error = xfs_alloc_lookup_le(cur, tcur->start, 0, &i); 190 if (!error && !i) 191 error = xfs_alloc_lookup_ge(cur, tcur->start, 0, &i); 192 } else if (tcur->start == 0) { 193 /* first time through a by-len starts with max length */ 194 cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); 195 error = xfs_alloc_lookup_ge(cur, 0, tcur->count, &i); 196 } else { 197 /* nth time through a by-len starts where we left off */ 198 cur = xfs_cntbt_init_cursor(mp, tp, agbp, pag); 199 error = xfs_alloc_lookup_le(cur, tcur->start, tcur->count, &i); 200 } 201 if (error) 202 goto out_del_cursor; 203 if (i == 0) { 204 /* nothing of that length left in the AG, we are done */ 205 tcur->count = 0; 206 goto out_del_cursor; 207 } 208 209 /* 210 * Loop until we are done with all extents that are large 211 * enough to be worth discarding or we hit batch limits. 212 */ 213 while (i) { 214 xfs_agblock_t fbno; 215 xfs_extlen_t flen; 216 217 error = xfs_alloc_get_rec(cur, &fbno, &flen, &i); 218 if (error) 219 break; 220 if (XFS_IS_CORRUPT(mp, i != 1)) { 221 xfs_btree_mark_sick(cur); 222 error = -EFSCORRUPTED; 223 break; 224 } 225 226 if (--batch <= 0) { 227 /* 228 * Update the cursor to point at this extent so we 229 * restart the next batch from this extent. 230 */ 231 tcur->start = fbno; 232 tcur->count = flen; 233 break; 234 } 235 236 /* 237 * If the extent is entirely outside of the range we are 238 * supposed to skip it. Do not bother to trim down partially 239 * overlapping ranges for now. 240 */ 241 if (fbno + flen < tcur->start) { 242 trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen); 243 goto next_extent; 244 } 245 if (fbno > tcur->end) { 246 trace_xfs_discard_exclude(mp, pag->pag_agno, fbno, flen); 247 if (tcur->by_bno) { 248 tcur->count = 0; 249 break; 250 } 251 goto next_extent; 252 } 253 254 /* Trim the extent returned to the range we want. */ 255 if (fbno < tcur->start) { 256 flen -= tcur->start - fbno; 257 fbno = tcur->start; 258 } 259 if (fbno + flen > tcur->end + 1) 260 flen = tcur->end - fbno + 1; 261 262 /* Too small? Give up. */ 263 if (flen < tcur->minlen) { 264 trace_xfs_discard_toosmall(mp, pag->pag_agno, fbno, flen); 265 if (tcur->by_bno) 266 goto next_extent; 267 tcur->count = 0; 268 break; 269 } 270 271 /* 272 * If any blocks in the range are still busy, skip the 273 * discard and try again the next time. 274 */ 275 if (xfs_extent_busy_search(mp, pag, fbno, flen)) { 276 trace_xfs_discard_busy(mp, pag->pag_agno, fbno, flen); 277 goto next_extent; 278 } 279 280 xfs_extent_busy_insert_discard(pag, fbno, flen, 281 &extents->extent_list); 282 next_extent: 283 if (tcur->by_bno) 284 error = xfs_btree_increment(cur, 0, &i); 285 else 286 error = xfs_btree_decrement(cur, 0, &i); 287 if (error) 288 break; 289 290 /* 291 * If there's no more records in the tree, we are done. Set the 292 * cursor block count to 0 to indicate to the caller that there 293 * is no more extents to search. 294 */ 295 if (i == 0) 296 tcur->count = 0; 297 } 298 299 /* 300 * If there was an error, release all the gathered busy extents because 301 * we aren't going to issue a discard on them any more. 302 */ 303 if (error) 304 xfs_extent_busy_clear(mp, &extents->extent_list, false); 305 out_del_cursor: 306 xfs_btree_del_cursor(cur, error); 307 out_trans_cancel: 308 xfs_trans_cancel(tp); 309 return error; 310 } 311 312 static bool 313 xfs_trim_should_stop(void) 314 { 315 return fatal_signal_pending(current) || freezing(current); 316 } 317 318 /* 319 * Iterate the free list gathering extents and discarding them. We need a cursor 320 * for the repeated iteration of gather/discard loop, so use the longest extent 321 * we found in the last batch as the key to start the next. 322 */ 323 static int 324 xfs_trim_perag_extents( 325 struct xfs_perag *pag, 326 xfs_agblock_t start, 327 xfs_agblock_t end, 328 xfs_extlen_t minlen) 329 { 330 struct xfs_trim_cur tcur = { 331 .start = start, 332 .count = pag->pagf_longest, 333 .end = end, 334 .minlen = minlen, 335 }; 336 int error = 0; 337 338 if (start != 0 || end != pag->block_count) 339 tcur.by_bno = true; 340 341 do { 342 struct xfs_busy_extents *extents; 343 344 extents = kzalloc(sizeof(*extents), GFP_KERNEL); 345 if (!extents) { 346 error = -ENOMEM; 347 break; 348 } 349 350 extents->mount = pag->pag_mount; 351 extents->owner = extents; 352 INIT_LIST_HEAD(&extents->extent_list); 353 354 error = xfs_trim_gather_extents(pag, &tcur, extents); 355 if (error) { 356 kfree(extents); 357 break; 358 } 359 360 /* 361 * We hand the extent list to the discard function here so the 362 * discarded extents can be removed from the busy extent list. 363 * This allows the discards to run asynchronously with gathering 364 * the next round of extents to discard. 365 * 366 * However, we must ensure that we do not reference the extent 367 * list after this function call, as it may have been freed by 368 * the time control returns to us. 369 */ 370 error = xfs_discard_extents(pag->pag_mount, extents); 371 if (error) 372 break; 373 374 if (xfs_trim_should_stop()) 375 break; 376 377 } while (tcur.count != 0); 378 379 return error; 380 381 } 382 383 static int 384 xfs_trim_datadev_extents( 385 struct xfs_mount *mp, 386 xfs_daddr_t start, 387 xfs_daddr_t end, 388 xfs_extlen_t minlen) 389 { 390 xfs_agnumber_t start_agno, end_agno; 391 xfs_agblock_t start_agbno, end_agbno; 392 xfs_daddr_t ddev_end; 393 struct xfs_perag *pag; 394 int last_error = 0, error; 395 396 ddev_end = min_t(xfs_daddr_t, end, 397 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) - 1); 398 399 start_agno = xfs_daddr_to_agno(mp, start); 400 start_agbno = xfs_daddr_to_agbno(mp, start); 401 end_agno = xfs_daddr_to_agno(mp, ddev_end); 402 end_agbno = xfs_daddr_to_agbno(mp, ddev_end); 403 404 for_each_perag_range(mp, start_agno, end_agno, pag) { 405 xfs_agblock_t agend = pag->block_count; 406 407 if (start_agno == end_agno) 408 agend = end_agbno; 409 error = xfs_trim_perag_extents(pag, start_agbno, agend, minlen); 410 if (error) 411 last_error = error; 412 413 if (xfs_trim_should_stop()) { 414 xfs_perag_rele(pag); 415 break; 416 } 417 start_agbno = 0; 418 } 419 420 return last_error; 421 } 422 423 #ifdef CONFIG_XFS_RT 424 struct xfs_trim_rtdev { 425 /* list of rt extents to free */ 426 struct list_head extent_list; 427 428 /* minimum length that caller allows us to trim */ 429 xfs_rtblock_t minlen_fsb; 430 431 /* restart point for the rtbitmap walk */ 432 xfs_rtxnum_t restart_rtx; 433 434 /* stopping point for the current rtbitmap walk */ 435 xfs_rtxnum_t stop_rtx; 436 }; 437 438 struct xfs_rtx_busy { 439 struct list_head list; 440 xfs_rtblock_t bno; 441 xfs_rtblock_t length; 442 }; 443 444 static void 445 xfs_discard_free_rtdev_extents( 446 struct xfs_trim_rtdev *tr) 447 { 448 struct xfs_rtx_busy *busyp, *n; 449 450 list_for_each_entry_safe(busyp, n, &tr->extent_list, list) { 451 list_del_init(&busyp->list); 452 kfree(busyp); 453 } 454 } 455 456 /* 457 * Walk the discard list and issue discards on all the busy extents in the 458 * list. We plug and chain the bios so that we only need a single completion 459 * call to clear all the busy extents once the discards are complete. 460 */ 461 static int 462 xfs_discard_rtdev_extents( 463 struct xfs_mount *mp, 464 struct xfs_trim_rtdev *tr) 465 { 466 struct block_device *bdev = mp->m_rtdev_targp->bt_bdev; 467 struct xfs_rtx_busy *busyp; 468 struct bio *bio = NULL; 469 struct blk_plug plug; 470 xfs_rtblock_t start = NULLRTBLOCK, length = 0; 471 int error = 0; 472 473 blk_start_plug(&plug); 474 list_for_each_entry(busyp, &tr->extent_list, list) { 475 if (start == NULLRTBLOCK) 476 start = busyp->bno; 477 length += busyp->length; 478 479 trace_xfs_discard_rtextent(mp, busyp->bno, busyp->length); 480 481 error = __blkdev_issue_discard(bdev, 482 XFS_FSB_TO_BB(mp, busyp->bno), 483 XFS_FSB_TO_BB(mp, busyp->length), 484 GFP_NOFS, &bio); 485 if (error) 486 break; 487 } 488 xfs_discard_free_rtdev_extents(tr); 489 490 if (bio) { 491 error = submit_bio_wait(bio); 492 if (error == -EOPNOTSUPP) 493 error = 0; 494 if (error) 495 xfs_info(mp, 496 "discard failed for rtextent [0x%llx,%llu], error %d", 497 (unsigned long long)start, 498 (unsigned long long)length, 499 error); 500 bio_put(bio); 501 } 502 blk_finish_plug(&plug); 503 504 return error; 505 } 506 507 static int 508 xfs_trim_gather_rtextent( 509 struct xfs_mount *mp, 510 struct xfs_trans *tp, 511 const struct xfs_rtalloc_rec *rec, 512 void *priv) 513 { 514 struct xfs_trim_rtdev *tr = priv; 515 struct xfs_rtx_busy *busyp; 516 xfs_rtblock_t rbno, rlen; 517 518 if (rec->ar_startext > tr->stop_rtx) { 519 /* 520 * If we've scanned a large number of rtbitmap blocks, update 521 * the cursor to point at this extent so we restart the next 522 * batch from this extent. 523 */ 524 tr->restart_rtx = rec->ar_startext; 525 return -ECANCELED; 526 } 527 528 rbno = xfs_rtx_to_rtb(mp, rec->ar_startext); 529 rlen = xfs_rtx_to_rtb(mp, rec->ar_extcount); 530 531 /* Ignore too small. */ 532 if (rlen < tr->minlen_fsb) { 533 trace_xfs_discard_rttoosmall(mp, rbno, rlen); 534 return 0; 535 } 536 537 busyp = kzalloc(sizeof(struct xfs_rtx_busy), GFP_KERNEL); 538 if (!busyp) 539 return -ENOMEM; 540 541 busyp->bno = rbno; 542 busyp->length = rlen; 543 INIT_LIST_HEAD(&busyp->list); 544 list_add_tail(&busyp->list, &tr->extent_list); 545 546 tr->restart_rtx = rec->ar_startext + rec->ar_extcount; 547 return 0; 548 } 549 550 static int 551 xfs_trim_rtdev_extents( 552 struct xfs_mount *mp, 553 xfs_daddr_t start, 554 xfs_daddr_t end, 555 xfs_daddr_t minlen) 556 { 557 struct xfs_rtalloc_rec low = { }; 558 struct xfs_rtalloc_rec high = { }; 559 struct xfs_trim_rtdev tr = { 560 .minlen_fsb = XFS_BB_TO_FSB(mp, minlen), 561 }; 562 struct xfs_trans *tp; 563 xfs_daddr_t rtdev_daddr; 564 int error; 565 566 INIT_LIST_HEAD(&tr.extent_list); 567 568 /* Shift the start and end downwards to match the rt device. */ 569 rtdev_daddr = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 570 if (start > rtdev_daddr) 571 start -= rtdev_daddr; 572 else 573 start = 0; 574 575 if (end <= rtdev_daddr) 576 return 0; 577 end -= rtdev_daddr; 578 579 error = xfs_trans_alloc_empty(mp, &tp); 580 if (error) 581 return error; 582 583 end = min_t(xfs_daddr_t, end, 584 XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks) - 1); 585 586 /* Convert the rt blocks to rt extents */ 587 low.ar_startext = xfs_rtb_to_rtxup(mp, XFS_BB_TO_FSB(mp, start)); 588 high.ar_startext = xfs_rtb_to_rtx(mp, XFS_BB_TO_FSBT(mp, end)); 589 590 /* 591 * Walk the free ranges between low and high. The query_range function 592 * trims the extents returned. 593 */ 594 do { 595 tr.stop_rtx = low.ar_startext + (mp->m_sb.sb_blocksize * NBBY); 596 xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP); 597 error = xfs_rtalloc_query_range(mp, tp, &low, &high, 598 xfs_trim_gather_rtextent, &tr); 599 600 if (error == -ECANCELED) 601 error = 0; 602 if (error) { 603 xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP); 604 xfs_discard_free_rtdev_extents(&tr); 605 break; 606 } 607 608 if (list_empty(&tr.extent_list)) { 609 xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP); 610 break; 611 } 612 613 error = xfs_discard_rtdev_extents(mp, &tr); 614 xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP); 615 if (error) 616 break; 617 618 low.ar_startext = tr.restart_rtx; 619 } while (!xfs_trim_should_stop() && low.ar_startext <= high.ar_startext); 620 621 xfs_trans_cancel(tp); 622 return error; 623 } 624 #else 625 # define xfs_trim_rtdev_extents(...) (-EOPNOTSUPP) 626 #endif /* CONFIG_XFS_RT */ 627 628 /* 629 * trim a range of the filesystem. 630 * 631 * Note: the parameters passed from userspace are byte ranges into the 632 * filesystem which does not match to the format we use for filesystem block 633 * addressing. FSB addressing is sparse (AGNO|AGBNO), while the incoming format 634 * is a linear address range. Hence we need to use DADDR based conversions and 635 * comparisons for determining the correct offset and regions to trim. 636 * 637 * The realtime device is mapped into the FITRIM "address space" immediately 638 * after the data device. 639 */ 640 int 641 xfs_ioc_trim( 642 struct xfs_mount *mp, 643 struct fstrim_range __user *urange) 644 { 645 unsigned int granularity = 646 bdev_discard_granularity(mp->m_ddev_targp->bt_bdev); 647 struct block_device *rt_bdev = NULL; 648 struct fstrim_range range; 649 xfs_daddr_t start, end; 650 xfs_extlen_t minlen; 651 xfs_rfsblock_t max_blocks; 652 int error, last_error = 0; 653 654 if (!capable(CAP_SYS_ADMIN)) 655 return -EPERM; 656 if (mp->m_rtdev_targp && 657 bdev_max_discard_sectors(mp->m_rtdev_targp->bt_bdev)) 658 rt_bdev = mp->m_rtdev_targp->bt_bdev; 659 if (!bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev) && !rt_bdev) 660 return -EOPNOTSUPP; 661 662 if (rt_bdev) 663 granularity = max(granularity, 664 bdev_discard_granularity(rt_bdev)); 665 666 /* 667 * We haven't recovered the log, so we cannot use our bnobt-guided 668 * storage zapping commands. 669 */ 670 if (xfs_has_norecovery(mp)) 671 return -EROFS; 672 673 if (copy_from_user(&range, urange, sizeof(range))) 674 return -EFAULT; 675 676 range.minlen = max_t(u64, granularity, range.minlen); 677 minlen = XFS_B_TO_FSB(mp, range.minlen); 678 679 /* 680 * Truncating down the len isn't actually quite correct, but using 681 * BBTOB would mean we trivially get overflows for values 682 * of ULLONG_MAX or slightly lower. And ULLONG_MAX is the default 683 * used by the fstrim application. In the end it really doesn't 684 * matter as trimming blocks is an advisory interface. 685 */ 686 max_blocks = mp->m_sb.sb_dblocks + mp->m_sb.sb_rblocks; 687 if (range.start >= XFS_FSB_TO_B(mp, max_blocks) || 688 range.minlen > XFS_FSB_TO_B(mp, mp->m_ag_max_usable) || 689 range.len < mp->m_sb.sb_blocksize) 690 return -EINVAL; 691 692 start = BTOBB(range.start); 693 end = start + BTOBBT(range.len) - 1; 694 695 if (bdev_max_discard_sectors(mp->m_ddev_targp->bt_bdev)) { 696 error = xfs_trim_datadev_extents(mp, start, end, minlen); 697 if (error) 698 last_error = error; 699 } 700 701 if (rt_bdev && !xfs_trim_should_stop()) { 702 error = xfs_trim_rtdev_extents(mp, start, end, minlen); 703 if (error) 704 last_error = error; 705 } 706 707 if (last_error) 708 return last_error; 709 710 range.len = min_t(unsigned long long, range.len, 711 XFS_FSB_TO_B(mp, max_blocks)); 712 if (copy_to_user(urange, &range, sizeof(range))) 713 return -EFAULT; 714 return 0; 715 } 716
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.