1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_format.h" 9 #include "xfs_log_format.h" 10 #include "xfs_trans_resv.h" 11 #include "xfs_bit.h" 12 #include "xfs_shared.h" 13 #include "xfs_mount.h" 14 #include "xfs_ag.h" 15 #include "xfs_defer.h" 16 #include "xfs_trans.h" 17 #include "xfs_trans_priv.h" 18 #include "xfs_extfree_item.h" 19 #include "xfs_log.h" 20 #include "xfs_btree.h" 21 #include "xfs_rmap.h" 22 #include "xfs_alloc.h" 23 #include "xfs_bmap.h" 24 #include "xfs_trace.h" 25 #include "xfs_error.h" 26 #include "xfs_log_priv.h" 27 #include "xfs_log_recover.h" 28 29 struct kmem_cache *xfs_efi_cache; 30 struct kmem_cache *xfs_efd_cache; 31 32 static const struct xfs_item_ops xfs_efi_item_ops; 33 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip) 35 { 36 return container_of(lip, struct xfs_efi_log_item, efi_item); 37 } 38 39 STATIC void 40 xfs_efi_item_free( 41 struct xfs_efi_log_item *efip) 42 { 43 kvfree(efip->efi_item.li_lv_shadow); 44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS) 45 kfree(efip); 46 else 47 kmem_cache_free(xfs_efi_cache, efip); 48 } 49 50 /* 51 * Freeing the efi requires that we remove it from the AIL if it has already 52 * been placed there. However, the EFI may not yet have been placed in the AIL 53 * when called by xfs_efi_release() from EFD processing due to the ordering of 54 * committed vs unpin operations in bulk insert operations. Hence the reference 55 * count to ensure only the last caller frees the EFI. 56 */ 57 STATIC void 58 xfs_efi_release( 59 struct xfs_efi_log_item *efip) 60 { 61 ASSERT(atomic_read(&efip->efi_refcount) > 0); 62 if (!atomic_dec_and_test(&efip->efi_refcount)) 63 return; 64 65 xfs_trans_ail_delete(&efip->efi_item, 0); 66 xfs_efi_item_free(efip); 67 } 68 69 STATIC void 70 xfs_efi_item_size( 71 struct xfs_log_item *lip, 72 int *nvecs, 73 int *nbytes) 74 { 75 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 76 77 *nvecs += 1; 78 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents); 79 } 80 81 /* 82 * This is called to fill in the vector of log iovecs for the 83 * given efi log item. We use only 1 iovec, and we point that 84 * at the efi_log_format structure embedded in the efi item. 85 * It is at this point that we assert that all of the extent 86 * slots in the efi item have been filled. 87 */ 88 STATIC void 89 xfs_efi_item_format( 90 struct xfs_log_item *lip, 91 struct xfs_log_vec *lv) 92 { 93 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 94 struct xfs_log_iovec *vecp = NULL; 95 96 ASSERT(atomic_read(&efip->efi_next_extent) == 97 efip->efi_format.efi_nextents); 98 99 efip->efi_format.efi_type = XFS_LI_EFI; 100 efip->efi_format.efi_size = 1; 101 102 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT, 103 &efip->efi_format, 104 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents)); 105 } 106 107 108 /* 109 * The unpin operation is the last place an EFI is manipulated in the log. It is 110 * either inserted in the AIL or aborted in the event of a log I/O error. In 111 * either case, the EFI transaction has been successfully committed to make it 112 * this far. Therefore, we expect whoever committed the EFI to either construct 113 * and commit the EFD or drop the EFD's reference in the event of error. Simply 114 * drop the log's EFI reference now that the log is done with it. 115 */ 116 STATIC void 117 xfs_efi_item_unpin( 118 struct xfs_log_item *lip, 119 int remove) 120 { 121 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 122 xfs_efi_release(efip); 123 } 124 125 /* 126 * The EFI has been either committed or aborted if the transaction has been 127 * cancelled. If the transaction was cancelled, an EFD isn't going to be 128 * constructed and thus we free the EFI here directly. 129 */ 130 STATIC void 131 xfs_efi_item_release( 132 struct xfs_log_item *lip) 133 { 134 xfs_efi_release(EFI_ITEM(lip)); 135 } 136 137 /* 138 * Allocate and initialize an efi item with the given number of extents. 139 */ 140 STATIC struct xfs_efi_log_item * 141 xfs_efi_init( 142 struct xfs_mount *mp, 143 uint nextents) 144 145 { 146 struct xfs_efi_log_item *efip; 147 148 ASSERT(nextents > 0); 149 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) { 150 efip = kzalloc(xfs_efi_log_item_sizeof(nextents), 151 GFP_KERNEL | __GFP_NOFAIL); 152 } else { 153 efip = kmem_cache_zalloc(xfs_efi_cache, 154 GFP_KERNEL | __GFP_NOFAIL); 155 } 156 157 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops); 158 efip->efi_format.efi_nextents = nextents; 159 efip->efi_format.efi_id = (uintptr_t)(void *)efip; 160 atomic_set(&efip->efi_next_extent, 0); 161 atomic_set(&efip->efi_refcount, 2); 162 163 return efip; 164 } 165 166 /* 167 * Copy an EFI format buffer from the given buf, and into the destination 168 * EFI format structure. 169 * The given buffer can be in 32 bit or 64 bit form (which has different padding), 170 * one of which will be the native format for this kernel. 171 * It will handle the conversion of formats if necessary. 172 */ 173 STATIC int 174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt) 175 { 176 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr; 177 uint i; 178 uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents); 179 uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents); 180 uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents); 181 182 if (buf->i_len == len) { 183 memcpy(dst_efi_fmt, src_efi_fmt, 184 offsetof(struct xfs_efi_log_format, efi_extents)); 185 for (i = 0; i < src_efi_fmt->efi_nextents; i++) 186 memcpy(&dst_efi_fmt->efi_extents[i], 187 &src_efi_fmt->efi_extents[i], 188 sizeof(struct xfs_extent)); 189 return 0; 190 } else if (buf->i_len == len32) { 191 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr; 192 193 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type; 194 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size; 195 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents; 196 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id; 197 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 198 dst_efi_fmt->efi_extents[i].ext_start = 199 src_efi_fmt_32->efi_extents[i].ext_start; 200 dst_efi_fmt->efi_extents[i].ext_len = 201 src_efi_fmt_32->efi_extents[i].ext_len; 202 } 203 return 0; 204 } else if (buf->i_len == len64) { 205 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr; 206 207 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type; 208 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size; 209 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents; 210 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id; 211 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) { 212 dst_efi_fmt->efi_extents[i].ext_start = 213 src_efi_fmt_64->efi_extents[i].ext_start; 214 dst_efi_fmt->efi_extents[i].ext_len = 215 src_efi_fmt_64->efi_extents[i].ext_len; 216 } 217 return 0; 218 } 219 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr, 220 buf->i_len); 221 return -EFSCORRUPTED; 222 } 223 224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip) 225 { 226 return container_of(lip, struct xfs_efd_log_item, efd_item); 227 } 228 229 STATIC void 230 xfs_efd_item_free(struct xfs_efd_log_item *efdp) 231 { 232 kvfree(efdp->efd_item.li_lv_shadow); 233 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS) 234 kfree(efdp); 235 else 236 kmem_cache_free(xfs_efd_cache, efdp); 237 } 238 239 STATIC void 240 xfs_efd_item_size( 241 struct xfs_log_item *lip, 242 int *nvecs, 243 int *nbytes) 244 { 245 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 246 247 *nvecs += 1; 248 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents); 249 } 250 251 /* 252 * This is called to fill in the vector of log iovecs for the 253 * given efd log item. We use only 1 iovec, and we point that 254 * at the efd_log_format structure embedded in the efd item. 255 * It is at this point that we assert that all of the extent 256 * slots in the efd item have been filled. 257 */ 258 STATIC void 259 xfs_efd_item_format( 260 struct xfs_log_item *lip, 261 struct xfs_log_vec *lv) 262 { 263 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 264 struct xfs_log_iovec *vecp = NULL; 265 266 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents); 267 268 efdp->efd_format.efd_type = XFS_LI_EFD; 269 efdp->efd_format.efd_size = 1; 270 271 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT, 272 &efdp->efd_format, 273 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents)); 274 } 275 276 /* 277 * The EFD is either committed or aborted if the transaction is cancelled. If 278 * the transaction is cancelled, drop our reference to the EFI and free the EFD. 279 */ 280 STATIC void 281 xfs_efd_item_release( 282 struct xfs_log_item *lip) 283 { 284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip); 285 286 xfs_efi_release(efdp->efd_efip); 287 xfs_efd_item_free(efdp); 288 } 289 290 static struct xfs_log_item * 291 xfs_efd_item_intent( 292 struct xfs_log_item *lip) 293 { 294 return &EFD_ITEM(lip)->efd_efip->efi_item; 295 } 296 297 static const struct xfs_item_ops xfs_efd_item_ops = { 298 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED | 299 XFS_ITEM_INTENT_DONE, 300 .iop_size = xfs_efd_item_size, 301 .iop_format = xfs_efd_item_format, 302 .iop_release = xfs_efd_item_release, 303 .iop_intent = xfs_efd_item_intent, 304 }; 305 306 static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e) 307 { 308 return list_entry(e, struct xfs_extent_free_item, xefi_list); 309 } 310 311 /* 312 * Fill the EFD with all extents from the EFI when we need to roll the 313 * transaction and continue with a new EFI. 314 * 315 * This simply copies all the extents in the EFI to the EFD rather than make 316 * assumptions about which extents in the EFI have already been processed. We 317 * currently keep the xefi list in the same order as the EFI extent list, but 318 * that may not always be the case. Copying everything avoids leaving a landmine 319 * were we fail to cancel all the extents in an EFI if the xefi list is 320 * processed in a different order to the extents in the EFI. 321 */ 322 static void 323 xfs_efd_from_efi( 324 struct xfs_efd_log_item *efdp) 325 { 326 struct xfs_efi_log_item *efip = efdp->efd_efip; 327 uint i; 328 329 ASSERT(efip->efi_format.efi_nextents > 0); 330 ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents); 331 332 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 333 efdp->efd_format.efd_extents[i] = 334 efip->efi_format.efi_extents[i]; 335 } 336 efdp->efd_next_extent = efip->efi_format.efi_nextents; 337 } 338 339 static void 340 xfs_efd_add_extent( 341 struct xfs_efd_log_item *efdp, 342 struct xfs_extent_free_item *xefi) 343 { 344 struct xfs_extent *extp; 345 346 ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents); 347 348 extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent]; 349 extp->ext_start = xefi->xefi_startblock; 350 extp->ext_len = xefi->xefi_blockcount; 351 352 efdp->efd_next_extent++; 353 } 354 355 /* Sort bmap items by AG. */ 356 static int 357 xfs_extent_free_diff_items( 358 void *priv, 359 const struct list_head *a, 360 const struct list_head *b) 361 { 362 struct xfs_extent_free_item *ra = xefi_entry(a); 363 struct xfs_extent_free_item *rb = xefi_entry(b); 364 365 return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno; 366 } 367 368 /* Log a free extent to the intent item. */ 369 STATIC void 370 xfs_extent_free_log_item( 371 struct xfs_trans *tp, 372 struct xfs_efi_log_item *efip, 373 struct xfs_extent_free_item *xefi) 374 { 375 uint next_extent; 376 struct xfs_extent *extp; 377 378 /* 379 * atomic_inc_return gives us the value after the increment; 380 * we want to use it as an array index so we need to subtract 1 from 381 * it. 382 */ 383 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1; 384 ASSERT(next_extent < efip->efi_format.efi_nextents); 385 extp = &efip->efi_format.efi_extents[next_extent]; 386 extp->ext_start = xefi->xefi_startblock; 387 extp->ext_len = xefi->xefi_blockcount; 388 } 389 390 static struct xfs_log_item * 391 xfs_extent_free_create_intent( 392 struct xfs_trans *tp, 393 struct list_head *items, 394 unsigned int count, 395 bool sort) 396 { 397 struct xfs_mount *mp = tp->t_mountp; 398 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count); 399 struct xfs_extent_free_item *xefi; 400 401 ASSERT(count > 0); 402 403 if (sort) 404 list_sort(mp, items, xfs_extent_free_diff_items); 405 list_for_each_entry(xefi, items, xefi_list) 406 xfs_extent_free_log_item(tp, efip, xefi); 407 return &efip->efi_item; 408 } 409 410 /* Get an EFD so we can process all the free extents. */ 411 static struct xfs_log_item * 412 xfs_extent_free_create_done( 413 struct xfs_trans *tp, 414 struct xfs_log_item *intent, 415 unsigned int count) 416 { 417 struct xfs_efi_log_item *efip = EFI_ITEM(intent); 418 struct xfs_efd_log_item *efdp; 419 420 ASSERT(count > 0); 421 422 if (count > XFS_EFD_MAX_FAST_EXTENTS) { 423 efdp = kzalloc(xfs_efd_log_item_sizeof(count), 424 GFP_KERNEL | __GFP_NOFAIL); 425 } else { 426 efdp = kmem_cache_zalloc(xfs_efd_cache, 427 GFP_KERNEL | __GFP_NOFAIL); 428 } 429 430 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD, 431 &xfs_efd_item_ops); 432 efdp->efd_efip = efip; 433 efdp->efd_format.efd_nextents = count; 434 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id; 435 436 return &efdp->efd_item; 437 } 438 439 /* Add this deferred EFI to the transaction. */ 440 void 441 xfs_extent_free_defer_add( 442 struct xfs_trans *tp, 443 struct xfs_extent_free_item *xefi, 444 struct xfs_defer_pending **dfpp) 445 { 446 struct xfs_mount *mp = tp->t_mountp; 447 448 trace_xfs_extent_free_defer(mp, xefi); 449 450 xefi->xefi_pag = xfs_perag_intent_get(mp, xefi->xefi_startblock); 451 if (xefi->xefi_agresv == XFS_AG_RESV_AGFL) 452 *dfpp = xfs_defer_add(tp, &xefi->xefi_list, 453 &xfs_agfl_free_defer_type); 454 else 455 *dfpp = xfs_defer_add(tp, &xefi->xefi_list, 456 &xfs_extent_free_defer_type); 457 } 458 459 /* Cancel a free extent. */ 460 STATIC void 461 xfs_extent_free_cancel_item( 462 struct list_head *item) 463 { 464 struct xfs_extent_free_item *xefi = xefi_entry(item); 465 466 xfs_perag_intent_put(xefi->xefi_pag); 467 kmem_cache_free(xfs_extfree_item_cache, xefi); 468 } 469 470 /* Process a free extent. */ 471 STATIC int 472 xfs_extent_free_finish_item( 473 struct xfs_trans *tp, 474 struct xfs_log_item *done, 475 struct list_head *item, 476 struct xfs_btree_cur **state) 477 { 478 struct xfs_owner_info oinfo = { }; 479 struct xfs_extent_free_item *xefi = xefi_entry(item); 480 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 481 struct xfs_mount *mp = tp->t_mountp; 482 xfs_agblock_t agbno; 483 int error = 0; 484 485 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); 486 487 oinfo.oi_owner = xefi->xefi_owner; 488 if (xefi->xefi_flags & XFS_EFI_ATTR_FORK) 489 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK; 490 if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK) 491 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK; 492 493 trace_xfs_extent_free_deferred(mp, xefi); 494 495 /* 496 * If we need a new transaction to make progress, the caller will log a 497 * new EFI with the current contents. It will also log an EFD to cancel 498 * the existing EFI, and so we need to copy all the unprocessed extents 499 * in this EFI to the EFD so this works correctly. 500 */ 501 if (!(xefi->xefi_flags & XFS_EFI_CANCELLED)) 502 error = __xfs_free_extent(tp, xefi->xefi_pag, agbno, 503 xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv, 504 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD); 505 if (error == -EAGAIN) { 506 xfs_efd_from_efi(efdp); 507 return error; 508 } 509 510 xfs_efd_add_extent(efdp, xefi); 511 xfs_extent_free_cancel_item(item); 512 return error; 513 } 514 515 /* Abort all pending EFIs. */ 516 STATIC void 517 xfs_extent_free_abort_intent( 518 struct xfs_log_item *intent) 519 { 520 xfs_efi_release(EFI_ITEM(intent)); 521 } 522 523 /* 524 * AGFL blocks are accounted differently in the reserve pools and are not 525 * inserted into the busy extent list. 526 */ 527 STATIC int 528 xfs_agfl_free_finish_item( 529 struct xfs_trans *tp, 530 struct xfs_log_item *done, 531 struct list_head *item, 532 struct xfs_btree_cur **state) 533 { 534 struct xfs_owner_info oinfo = { }; 535 struct xfs_mount *mp = tp->t_mountp; 536 struct xfs_efd_log_item *efdp = EFD_ITEM(done); 537 struct xfs_extent_free_item *xefi = xefi_entry(item); 538 struct xfs_buf *agbp; 539 int error; 540 xfs_agblock_t agbno; 541 542 ASSERT(xefi->xefi_blockcount == 1); 543 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock); 544 oinfo.oi_owner = xefi->xefi_owner; 545 546 trace_xfs_agfl_free_deferred(mp, xefi); 547 548 error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp); 549 if (!error) 550 error = xfs_free_ag_extent(tp, agbp, xefi->xefi_pag->pag_agno, 551 agbno, 1, &oinfo, XFS_AG_RESV_AGFL); 552 553 xfs_efd_add_extent(efdp, xefi); 554 xfs_extent_free_cancel_item(&xefi->xefi_list); 555 return error; 556 } 557 558 /* Is this recovered EFI ok? */ 559 static inline bool 560 xfs_efi_validate_ext( 561 struct xfs_mount *mp, 562 struct xfs_extent *extp) 563 { 564 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len); 565 } 566 567 static inline void 568 xfs_efi_recover_work( 569 struct xfs_mount *mp, 570 struct xfs_defer_pending *dfp, 571 struct xfs_extent *extp) 572 { 573 struct xfs_extent_free_item *xefi; 574 575 xefi = kmem_cache_zalloc(xfs_extfree_item_cache, 576 GFP_KERNEL | __GFP_NOFAIL); 577 xefi->xefi_startblock = extp->ext_start; 578 xefi->xefi_blockcount = extp->ext_len; 579 xefi->xefi_agresv = XFS_AG_RESV_NONE; 580 xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN; 581 xefi->xefi_pag = xfs_perag_intent_get(mp, extp->ext_start); 582 583 xfs_defer_add_item(dfp, &xefi->xefi_list); 584 } 585 586 /* 587 * Process an extent free intent item that was recovered from 588 * the log. We need to free the extents that it describes. 589 */ 590 STATIC int 591 xfs_extent_free_recover_work( 592 struct xfs_defer_pending *dfp, 593 struct list_head *capture_list) 594 { 595 struct xfs_trans_res resv; 596 struct xfs_log_item *lip = dfp->dfp_intent; 597 struct xfs_efi_log_item *efip = EFI_ITEM(lip); 598 struct xfs_mount *mp = lip->li_log->l_mp; 599 struct xfs_trans *tp; 600 int i; 601 int error = 0; 602 603 /* 604 * First check the validity of the extents described by the 605 * EFI. If any are bad, then assume that all are bad and 606 * just toss the EFI. 607 */ 608 for (i = 0; i < efip->efi_format.efi_nextents; i++) { 609 if (!xfs_efi_validate_ext(mp, 610 &efip->efi_format.efi_extents[i])) { 611 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 612 &efip->efi_format, 613 sizeof(efip->efi_format)); 614 return -EFSCORRUPTED; 615 } 616 617 xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]); 618 } 619 620 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate); 621 error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp); 622 if (error) 623 return error; 624 625 error = xlog_recover_finish_intent(tp, dfp); 626 if (error == -EFSCORRUPTED) 627 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 628 &efip->efi_format, 629 sizeof(efip->efi_format)); 630 if (error) 631 goto abort_error; 632 633 return xfs_defer_ops_capture_and_commit(tp, capture_list); 634 635 abort_error: 636 xfs_trans_cancel(tp); 637 return error; 638 } 639 640 /* Relog an intent item to push the log tail forward. */ 641 static struct xfs_log_item * 642 xfs_extent_free_relog_intent( 643 struct xfs_trans *tp, 644 struct xfs_log_item *intent, 645 struct xfs_log_item *done_item) 646 { 647 struct xfs_efd_log_item *efdp = EFD_ITEM(done_item); 648 struct xfs_efi_log_item *efip; 649 struct xfs_extent *extp; 650 unsigned int count; 651 652 count = EFI_ITEM(intent)->efi_format.efi_nextents; 653 extp = EFI_ITEM(intent)->efi_format.efi_extents; 654 655 efdp->efd_next_extent = count; 656 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp)); 657 658 efip = xfs_efi_init(tp->t_mountp, count); 659 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp)); 660 atomic_set(&efip->efi_next_extent, count); 661 662 return &efip->efi_item; 663 } 664 665 const struct xfs_defer_op_type xfs_extent_free_defer_type = { 666 .name = "extent_free", 667 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 668 .create_intent = xfs_extent_free_create_intent, 669 .abort_intent = xfs_extent_free_abort_intent, 670 .create_done = xfs_extent_free_create_done, 671 .finish_item = xfs_extent_free_finish_item, 672 .cancel_item = xfs_extent_free_cancel_item, 673 .recover_work = xfs_extent_free_recover_work, 674 .relog_intent = xfs_extent_free_relog_intent, 675 }; 676 677 /* sub-type with special handling for AGFL deferred frees */ 678 const struct xfs_defer_op_type xfs_agfl_free_defer_type = { 679 .name = "agfl_free", 680 .max_items = XFS_EFI_MAX_FAST_EXTENTS, 681 .create_intent = xfs_extent_free_create_intent, 682 .abort_intent = xfs_extent_free_abort_intent, 683 .create_done = xfs_extent_free_create_done, 684 .finish_item = xfs_agfl_free_finish_item, 685 .cancel_item = xfs_extent_free_cancel_item, 686 .recover_work = xfs_extent_free_recover_work, 687 .relog_intent = xfs_extent_free_relog_intent, 688 }; 689 690 STATIC bool 691 xfs_efi_item_match( 692 struct xfs_log_item *lip, 693 uint64_t intent_id) 694 { 695 return EFI_ITEM(lip)->efi_format.efi_id == intent_id; 696 } 697 698 static const struct xfs_item_ops xfs_efi_item_ops = { 699 .flags = XFS_ITEM_INTENT, 700 .iop_size = xfs_efi_item_size, 701 .iop_format = xfs_efi_item_format, 702 .iop_unpin = xfs_efi_item_unpin, 703 .iop_release = xfs_efi_item_release, 704 .iop_match = xfs_efi_item_match, 705 }; 706 707 /* 708 * This routine is called to create an in-core extent free intent 709 * item from the efi format structure which was logged on disk. 710 * It allocates an in-core efi, copies the extents from the format 711 * structure into it, and adds the efi to the AIL with the given 712 * LSN. 713 */ 714 STATIC int 715 xlog_recover_efi_commit_pass2( 716 struct xlog *log, 717 struct list_head *buffer_list, 718 struct xlog_recover_item *item, 719 xfs_lsn_t lsn) 720 { 721 struct xfs_mount *mp = log->l_mp; 722 struct xfs_efi_log_item *efip; 723 struct xfs_efi_log_format *efi_formatp; 724 int error; 725 726 efi_formatp = item->ri_buf[0].i_addr; 727 728 if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) { 729 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, 730 item->ri_buf[0].i_addr, item->ri_buf[0].i_len); 731 return -EFSCORRUPTED; 732 } 733 734 efip = xfs_efi_init(mp, efi_formatp->efi_nextents); 735 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format); 736 if (error) { 737 xfs_efi_item_free(efip); 738 return error; 739 } 740 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); 741 742 xlog_recover_intent_item(log, &efip->efi_item, lsn, 743 &xfs_extent_free_defer_type); 744 return 0; 745 } 746 747 const struct xlog_recover_item_ops xlog_efi_item_ops = { 748 .item_type = XFS_LI_EFI, 749 .commit_pass2 = xlog_recover_efi_commit_pass2, 750 }; 751 752 /* 753 * This routine is called when an EFD format structure is found in a committed 754 * transaction in the log. Its purpose is to cancel the corresponding EFI if it 755 * was still in the log. To do this it searches the AIL for the EFI with an id 756 * equal to that in the EFD format structure. If we find it we drop the EFD 757 * reference, which removes the EFI from the AIL and frees it. 758 */ 759 STATIC int 760 xlog_recover_efd_commit_pass2( 761 struct xlog *log, 762 struct list_head *buffer_list, 763 struct xlog_recover_item *item, 764 xfs_lsn_t lsn) 765 { 766 struct xfs_efd_log_format *efd_formatp; 767 int buflen = item->ri_buf[0].i_len; 768 769 efd_formatp = item->ri_buf[0].i_addr; 770 771 if (buflen < sizeof(struct xfs_efd_log_format)) { 772 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 773 efd_formatp, buflen); 774 return -EFSCORRUPTED; 775 } 776 777 if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof( 778 efd_formatp->efd_nextents) && 779 item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof( 780 efd_formatp->efd_nextents)) { 781 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp, 782 efd_formatp, buflen); 783 return -EFSCORRUPTED; 784 } 785 786 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id); 787 return 0; 788 } 789 790 const struct xlog_recover_item_ops xlog_efd_item_ops = { 791 .item_type = XFS_LI_EFD, 792 .commit_pass2 = xlog_recover_efd_commit_pass2, 793 }; 794
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.