~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

TOMOYO Linux Cross Reference
Linux/fs/xfs/xfs_extfree_item.c

Version: ~ [ linux-6.11.5 ] ~ [ linux-6.10.14 ] ~ [ linux-6.9.12 ] ~ [ linux-6.8.12 ] ~ [ linux-6.7.12 ] ~ [ linux-6.6.58 ] ~ [ linux-6.5.13 ] ~ [ linux-6.4.16 ] ~ [ linux-6.3.13 ] ~ [ linux-6.2.16 ] ~ [ linux-6.1.114 ] ~ [ linux-6.0.19 ] ~ [ linux-5.19.17 ] ~ [ linux-5.18.19 ] ~ [ linux-5.17.15 ] ~ [ linux-5.16.20 ] ~ [ linux-5.15.169 ] ~ [ linux-5.14.21 ] ~ [ linux-5.13.19 ] ~ [ linux-5.12.19 ] ~ [ linux-5.11.22 ] ~ [ linux-5.10.228 ] ~ [ linux-5.9.16 ] ~ [ linux-5.8.18 ] ~ [ linux-5.7.19 ] ~ [ linux-5.6.19 ] ~ [ linux-5.5.19 ] ~ [ linux-5.4.284 ] ~ [ linux-5.3.18 ] ~ [ linux-5.2.21 ] ~ [ linux-5.1.21 ] ~ [ linux-5.0.21 ] ~ [ linux-4.20.17 ] ~ [ linux-4.19.322 ] ~ [ linux-4.18.20 ] ~ [ linux-4.17.19 ] ~ [ linux-4.16.18 ] ~ [ linux-4.15.18 ] ~ [ linux-4.14.336 ] ~ [ linux-4.13.16 ] ~ [ linux-4.12.14 ] ~ [ linux-4.11.12 ] ~ [ linux-4.10.17 ] ~ [ linux-4.9.337 ] ~ [ linux-4.4.302 ] ~ [ linux-3.10.108 ] ~ [ linux-2.6.32.71 ] ~ [ linux-2.6.0 ] ~ [ linux-2.4.37.11 ] ~ [ unix-v6-master ] ~ [ ccs-tools-1.8.9 ] ~ [ policy-sample ] ~
Architecture: ~ [ i386 ] ~ [ alpha ] ~ [ m68k ] ~ [ mips ] ~ [ ppc ] ~ [ sparc ] ~ [ sparc64 ] ~

  1 // SPDX-License-Identifier: GPL-2.0
  2 /*
  3  * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  4  * All Rights Reserved.
  5  */
  6 #include "xfs.h"
  7 #include "xfs_fs.h"
  8 #include "xfs_format.h"
  9 #include "xfs_log_format.h"
 10 #include "xfs_trans_resv.h"
 11 #include "xfs_bit.h"
 12 #include "xfs_shared.h"
 13 #include "xfs_mount.h"
 14 #include "xfs_ag.h"
 15 #include "xfs_defer.h"
 16 #include "xfs_trans.h"
 17 #include "xfs_trans_priv.h"
 18 #include "xfs_extfree_item.h"
 19 #include "xfs_log.h"
 20 #include "xfs_btree.h"
 21 #include "xfs_rmap.h"
 22 #include "xfs_alloc.h"
 23 #include "xfs_bmap.h"
 24 #include "xfs_trace.h"
 25 #include "xfs_error.h"
 26 #include "xfs_log_priv.h"
 27 #include "xfs_log_recover.h"
 28 
 29 struct kmem_cache       *xfs_efi_cache;
 30 struct kmem_cache       *xfs_efd_cache;
 31 
 32 static const struct xfs_item_ops xfs_efi_item_ops;
 33 
 34 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
 35 {
 36         return container_of(lip, struct xfs_efi_log_item, efi_item);
 37 }
 38 
 39 STATIC void
 40 xfs_efi_item_free(
 41         struct xfs_efi_log_item *efip)
 42 {
 43         kvfree(efip->efi_item.li_lv_shadow);
 44         if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
 45                 kfree(efip);
 46         else
 47                 kmem_cache_free(xfs_efi_cache, efip);
 48 }
 49 
 50 /*
 51  * Freeing the efi requires that we remove it from the AIL if it has already
 52  * been placed there. However, the EFI may not yet have been placed in the AIL
 53  * when called by xfs_efi_release() from EFD processing due to the ordering of
 54  * committed vs unpin operations in bulk insert operations. Hence the reference
 55  * count to ensure only the last caller frees the EFI.
 56  */
 57 STATIC void
 58 xfs_efi_release(
 59         struct xfs_efi_log_item *efip)
 60 {
 61         ASSERT(atomic_read(&efip->efi_refcount) > 0);
 62         if (!atomic_dec_and_test(&efip->efi_refcount))
 63                 return;
 64 
 65         xfs_trans_ail_delete(&efip->efi_item, 0);
 66         xfs_efi_item_free(efip);
 67 }
 68 
 69 STATIC void
 70 xfs_efi_item_size(
 71         struct xfs_log_item     *lip,
 72         int                     *nvecs,
 73         int                     *nbytes)
 74 {
 75         struct xfs_efi_log_item *efip = EFI_ITEM(lip);
 76 
 77         *nvecs += 1;
 78         *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
 79 }
 80 
 81 /*
 82  * This is called to fill in the vector of log iovecs for the
 83  * given efi log item. We use only 1 iovec, and we point that
 84  * at the efi_log_format structure embedded in the efi item.
 85  * It is at this point that we assert that all of the extent
 86  * slots in the efi item have been filled.
 87  */
 88 STATIC void
 89 xfs_efi_item_format(
 90         struct xfs_log_item     *lip,
 91         struct xfs_log_vec      *lv)
 92 {
 93         struct xfs_efi_log_item *efip = EFI_ITEM(lip);
 94         struct xfs_log_iovec    *vecp = NULL;
 95 
 96         ASSERT(atomic_read(&efip->efi_next_extent) ==
 97                                 efip->efi_format.efi_nextents);
 98 
 99         efip->efi_format.efi_type = XFS_LI_EFI;
100         efip->efi_format.efi_size = 1;
101 
102         xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103                         &efip->efi_format,
104                         xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105 }
106 
107 
108 /*
109  * The unpin operation is the last place an EFI is manipulated in the log. It is
110  * either inserted in the AIL or aborted in the event of a log I/O error. In
111  * either case, the EFI transaction has been successfully committed to make it
112  * this far. Therefore, we expect whoever committed the EFI to either construct
113  * and commit the EFD or drop the EFD's reference in the event of error. Simply
114  * drop the log's EFI reference now that the log is done with it.
115  */
116 STATIC void
117 xfs_efi_item_unpin(
118         struct xfs_log_item     *lip,
119         int                     remove)
120 {
121         struct xfs_efi_log_item *efip = EFI_ITEM(lip);
122         xfs_efi_release(efip);
123 }
124 
125 /*
126  * The EFI has been either committed or aborted if the transaction has been
127  * cancelled. If the transaction was cancelled, an EFD isn't going to be
128  * constructed and thus we free the EFI here directly.
129  */
130 STATIC void
131 xfs_efi_item_release(
132         struct xfs_log_item     *lip)
133 {
134         xfs_efi_release(EFI_ITEM(lip));
135 }
136 
137 /*
138  * Allocate and initialize an efi item with the given number of extents.
139  */
140 STATIC struct xfs_efi_log_item *
141 xfs_efi_init(
142         struct xfs_mount        *mp,
143         uint                    nextents)
144 
145 {
146         struct xfs_efi_log_item *efip;
147 
148         ASSERT(nextents > 0);
149         if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150                 efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151                                 GFP_KERNEL | __GFP_NOFAIL);
152         } else {
153                 efip = kmem_cache_zalloc(xfs_efi_cache,
154                                          GFP_KERNEL | __GFP_NOFAIL);
155         }
156 
157         xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158         efip->efi_format.efi_nextents = nextents;
159         efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160         atomic_set(&efip->efi_next_extent, 0);
161         atomic_set(&efip->efi_refcount, 2);
162 
163         return efip;
164 }
165 
166 /*
167  * Copy an EFI format buffer from the given buf, and into the destination
168  * EFI format structure.
169  * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170  * one of which will be the native format for this kernel.
171  * It will handle the conversion of formats if necessary.
172  */
173 STATIC int
174 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175 {
176         xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177         uint i;
178         uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179         uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180         uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181 
182         if (buf->i_len == len) {
183                 memcpy(dst_efi_fmt, src_efi_fmt,
184                        offsetof(struct xfs_efi_log_format, efi_extents));
185                 for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186                         memcpy(&dst_efi_fmt->efi_extents[i],
187                                &src_efi_fmt->efi_extents[i],
188                                sizeof(struct xfs_extent));
189                 return 0;
190         } else if (buf->i_len == len32) {
191                 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192 
193                 dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194                 dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195                 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196                 dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197                 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198                         dst_efi_fmt->efi_extents[i].ext_start =
199                                 src_efi_fmt_32->efi_extents[i].ext_start;
200                         dst_efi_fmt->efi_extents[i].ext_len =
201                                 src_efi_fmt_32->efi_extents[i].ext_len;
202                 }
203                 return 0;
204         } else if (buf->i_len == len64) {
205                 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206 
207                 dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208                 dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209                 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210                 dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211                 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212                         dst_efi_fmt->efi_extents[i].ext_start =
213                                 src_efi_fmt_64->efi_extents[i].ext_start;
214                         dst_efi_fmt->efi_extents[i].ext_len =
215                                 src_efi_fmt_64->efi_extents[i].ext_len;
216                 }
217                 return 0;
218         }
219         XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220                         buf->i_len);
221         return -EFSCORRUPTED;
222 }
223 
224 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225 {
226         return container_of(lip, struct xfs_efd_log_item, efd_item);
227 }
228 
229 STATIC void
230 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231 {
232         kvfree(efdp->efd_item.li_lv_shadow);
233         if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234                 kfree(efdp);
235         else
236                 kmem_cache_free(xfs_efd_cache, efdp);
237 }
238 
239 STATIC void
240 xfs_efd_item_size(
241         struct xfs_log_item     *lip,
242         int                     *nvecs,
243         int                     *nbytes)
244 {
245         struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
246 
247         *nvecs += 1;
248         *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249 }
250 
251 /*
252  * This is called to fill in the vector of log iovecs for the
253  * given efd log item. We use only 1 iovec, and we point that
254  * at the efd_log_format structure embedded in the efd item.
255  * It is at this point that we assert that all of the extent
256  * slots in the efd item have been filled.
257  */
258 STATIC void
259 xfs_efd_item_format(
260         struct xfs_log_item     *lip,
261         struct xfs_log_vec      *lv)
262 {
263         struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
264         struct xfs_log_iovec    *vecp = NULL;
265 
266         ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267 
268         efdp->efd_format.efd_type = XFS_LI_EFD;
269         efdp->efd_format.efd_size = 1;
270 
271         xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272                         &efdp->efd_format,
273                         xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274 }
275 
276 /*
277  * The EFD is either committed or aborted if the transaction is cancelled. If
278  * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279  */
280 STATIC void
281 xfs_efd_item_release(
282         struct xfs_log_item     *lip)
283 {
284         struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
285 
286         xfs_efi_release(efdp->efd_efip);
287         xfs_efd_item_free(efdp);
288 }
289 
290 static struct xfs_log_item *
291 xfs_efd_item_intent(
292         struct xfs_log_item     *lip)
293 {
294         return &EFD_ITEM(lip)->efd_efip->efi_item;
295 }
296 
297 static const struct xfs_item_ops xfs_efd_item_ops = {
298         .flags          = XFS_ITEM_RELEASE_WHEN_COMMITTED |
299                           XFS_ITEM_INTENT_DONE,
300         .iop_size       = xfs_efd_item_size,
301         .iop_format     = xfs_efd_item_format,
302         .iop_release    = xfs_efd_item_release,
303         .iop_intent     = xfs_efd_item_intent,
304 };
305 
306 static inline struct xfs_extent_free_item *xefi_entry(const struct list_head *e)
307 {
308         return list_entry(e, struct xfs_extent_free_item, xefi_list);
309 }
310 
311 /*
312  * Fill the EFD with all extents from the EFI when we need to roll the
313  * transaction and continue with a new EFI.
314  *
315  * This simply copies all the extents in the EFI to the EFD rather than make
316  * assumptions about which extents in the EFI have already been processed. We
317  * currently keep the xefi list in the same order as the EFI extent list, but
318  * that may not always be the case. Copying everything avoids leaving a landmine
319  * were we fail to cancel all the extents in an EFI if the xefi list is
320  * processed in a different order to the extents in the EFI.
321  */
322 static void
323 xfs_efd_from_efi(
324         struct xfs_efd_log_item *efdp)
325 {
326         struct xfs_efi_log_item *efip = efdp->efd_efip;
327         uint                    i;
328 
329         ASSERT(efip->efi_format.efi_nextents > 0);
330         ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
331 
332         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
333                efdp->efd_format.efd_extents[i] =
334                        efip->efi_format.efi_extents[i];
335         }
336         efdp->efd_next_extent = efip->efi_format.efi_nextents;
337 }
338 
339 static void
340 xfs_efd_add_extent(
341         struct xfs_efd_log_item         *efdp,
342         struct xfs_extent_free_item     *xefi)
343 {
344         struct xfs_extent               *extp;
345 
346         ASSERT(efdp->efd_next_extent < efdp->efd_format.efd_nextents);
347 
348         extp = &efdp->efd_format.efd_extents[efdp->efd_next_extent];
349         extp->ext_start = xefi->xefi_startblock;
350         extp->ext_len = xefi->xefi_blockcount;
351 
352         efdp->efd_next_extent++;
353 }
354 
355 /* Sort bmap items by AG. */
356 static int
357 xfs_extent_free_diff_items(
358         void                            *priv,
359         const struct list_head          *a,
360         const struct list_head          *b)
361 {
362         struct xfs_extent_free_item     *ra = xefi_entry(a);
363         struct xfs_extent_free_item     *rb = xefi_entry(b);
364 
365         return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
366 }
367 
368 /* Log a free extent to the intent item. */
369 STATIC void
370 xfs_extent_free_log_item(
371         struct xfs_trans                *tp,
372         struct xfs_efi_log_item         *efip,
373         struct xfs_extent_free_item     *xefi)
374 {
375         uint                            next_extent;
376         struct xfs_extent               *extp;
377 
378         /*
379          * atomic_inc_return gives us the value after the increment;
380          * we want to use it as an array index so we need to subtract 1 from
381          * it.
382          */
383         next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
384         ASSERT(next_extent < efip->efi_format.efi_nextents);
385         extp = &efip->efi_format.efi_extents[next_extent];
386         extp->ext_start = xefi->xefi_startblock;
387         extp->ext_len = xefi->xefi_blockcount;
388 }
389 
390 static struct xfs_log_item *
391 xfs_extent_free_create_intent(
392         struct xfs_trans                *tp,
393         struct list_head                *items,
394         unsigned int                    count,
395         bool                            sort)
396 {
397         struct xfs_mount                *mp = tp->t_mountp;
398         struct xfs_efi_log_item         *efip = xfs_efi_init(mp, count);
399         struct xfs_extent_free_item     *xefi;
400 
401         ASSERT(count > 0);
402 
403         if (sort)
404                 list_sort(mp, items, xfs_extent_free_diff_items);
405         list_for_each_entry(xefi, items, xefi_list)
406                 xfs_extent_free_log_item(tp, efip, xefi);
407         return &efip->efi_item;
408 }
409 
410 /* Get an EFD so we can process all the free extents. */
411 static struct xfs_log_item *
412 xfs_extent_free_create_done(
413         struct xfs_trans                *tp,
414         struct xfs_log_item             *intent,
415         unsigned int                    count)
416 {
417         struct xfs_efi_log_item         *efip = EFI_ITEM(intent);
418         struct xfs_efd_log_item         *efdp;
419 
420         ASSERT(count > 0);
421 
422         if (count > XFS_EFD_MAX_FAST_EXTENTS) {
423                 efdp = kzalloc(xfs_efd_log_item_sizeof(count),
424                                 GFP_KERNEL | __GFP_NOFAIL);
425         } else {
426                 efdp = kmem_cache_zalloc(xfs_efd_cache,
427                                         GFP_KERNEL | __GFP_NOFAIL);
428         }
429 
430         xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
431                           &xfs_efd_item_ops);
432         efdp->efd_efip = efip;
433         efdp->efd_format.efd_nextents = count;
434         efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
435 
436         return &efdp->efd_item;
437 }
438 
439 /* Add this deferred EFI to the transaction. */
440 void
441 xfs_extent_free_defer_add(
442         struct xfs_trans                *tp,
443         struct xfs_extent_free_item     *xefi,
444         struct xfs_defer_pending        **dfpp)
445 {
446         struct xfs_mount                *mp = tp->t_mountp;
447 
448         trace_xfs_extent_free_defer(mp, xefi);
449 
450         xefi->xefi_pag = xfs_perag_intent_get(mp, xefi->xefi_startblock);
451         if (xefi->xefi_agresv == XFS_AG_RESV_AGFL)
452                 *dfpp = xfs_defer_add(tp, &xefi->xefi_list,
453                                 &xfs_agfl_free_defer_type);
454         else
455                 *dfpp = xfs_defer_add(tp, &xefi->xefi_list,
456                                 &xfs_extent_free_defer_type);
457 }
458 
459 /* Cancel a free extent. */
460 STATIC void
461 xfs_extent_free_cancel_item(
462         struct list_head                *item)
463 {
464         struct xfs_extent_free_item     *xefi = xefi_entry(item);
465 
466         xfs_perag_intent_put(xefi->xefi_pag);
467         kmem_cache_free(xfs_extfree_item_cache, xefi);
468 }
469 
470 /* Process a free extent. */
471 STATIC int
472 xfs_extent_free_finish_item(
473         struct xfs_trans                *tp,
474         struct xfs_log_item             *done,
475         struct list_head                *item,
476         struct xfs_btree_cur            **state)
477 {
478         struct xfs_owner_info           oinfo = { };
479         struct xfs_extent_free_item     *xefi = xefi_entry(item);
480         struct xfs_efd_log_item         *efdp = EFD_ITEM(done);
481         struct xfs_mount                *mp = tp->t_mountp;
482         xfs_agblock_t                   agbno;
483         int                             error = 0;
484 
485         agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
486 
487         oinfo.oi_owner = xefi->xefi_owner;
488         if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
489                 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
490         if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
491                 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
492 
493         trace_xfs_extent_free_deferred(mp, xefi);
494 
495         /*
496          * If we need a new transaction to make progress, the caller will log a
497          * new EFI with the current contents. It will also log an EFD to cancel
498          * the existing EFI, and so we need to copy all the unprocessed extents
499          * in this EFI to the EFD so this works correctly.
500          */
501         if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
502                 error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
503                                 xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
504                                 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
505         if (error == -EAGAIN) {
506                 xfs_efd_from_efi(efdp);
507                 return error;
508         }
509 
510         xfs_efd_add_extent(efdp, xefi);
511         xfs_extent_free_cancel_item(item);
512         return error;
513 }
514 
515 /* Abort all pending EFIs. */
516 STATIC void
517 xfs_extent_free_abort_intent(
518         struct xfs_log_item             *intent)
519 {
520         xfs_efi_release(EFI_ITEM(intent));
521 }
522 
523 /*
524  * AGFL blocks are accounted differently in the reserve pools and are not
525  * inserted into the busy extent list.
526  */
527 STATIC int
528 xfs_agfl_free_finish_item(
529         struct xfs_trans                *tp,
530         struct xfs_log_item             *done,
531         struct list_head                *item,
532         struct xfs_btree_cur            **state)
533 {
534         struct xfs_owner_info           oinfo = { };
535         struct xfs_mount                *mp = tp->t_mountp;
536         struct xfs_efd_log_item         *efdp = EFD_ITEM(done);
537         struct xfs_extent_free_item     *xefi = xefi_entry(item);
538         struct xfs_buf                  *agbp;
539         int                             error;
540         xfs_agblock_t                   agbno;
541 
542         ASSERT(xefi->xefi_blockcount == 1);
543         agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
544         oinfo.oi_owner = xefi->xefi_owner;
545 
546         trace_xfs_agfl_free_deferred(mp, xefi);
547 
548         error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
549         if (!error)
550                 error = xfs_free_ag_extent(tp, agbp, xefi->xefi_pag->pag_agno,
551                                 agbno, 1, &oinfo, XFS_AG_RESV_AGFL);
552 
553         xfs_efd_add_extent(efdp, xefi);
554         xfs_extent_free_cancel_item(&xefi->xefi_list);
555         return error;
556 }
557 
558 /* Is this recovered EFI ok? */
559 static inline bool
560 xfs_efi_validate_ext(
561         struct xfs_mount                *mp,
562         struct xfs_extent               *extp)
563 {
564         return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
565 }
566 
567 static inline void
568 xfs_efi_recover_work(
569         struct xfs_mount                *mp,
570         struct xfs_defer_pending        *dfp,
571         struct xfs_extent               *extp)
572 {
573         struct xfs_extent_free_item     *xefi;
574 
575         xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
576                                GFP_KERNEL | __GFP_NOFAIL);
577         xefi->xefi_startblock = extp->ext_start;
578         xefi->xefi_blockcount = extp->ext_len;
579         xefi->xefi_agresv = XFS_AG_RESV_NONE;
580         xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
581         xefi->xefi_pag = xfs_perag_intent_get(mp, extp->ext_start);
582 
583         xfs_defer_add_item(dfp, &xefi->xefi_list);
584 }
585 
586 /*
587  * Process an extent free intent item that was recovered from
588  * the log.  We need to free the extents that it describes.
589  */
590 STATIC int
591 xfs_extent_free_recover_work(
592         struct xfs_defer_pending        *dfp,
593         struct list_head                *capture_list)
594 {
595         struct xfs_trans_res            resv;
596         struct xfs_log_item             *lip = dfp->dfp_intent;
597         struct xfs_efi_log_item         *efip = EFI_ITEM(lip);
598         struct xfs_mount                *mp = lip->li_log->l_mp;
599         struct xfs_trans                *tp;
600         int                             i;
601         int                             error = 0;
602 
603         /*
604          * First check the validity of the extents described by the
605          * EFI.  If any are bad, then assume that all are bad and
606          * just toss the EFI.
607          */
608         for (i = 0; i < efip->efi_format.efi_nextents; i++) {
609                 if (!xfs_efi_validate_ext(mp,
610                                         &efip->efi_format.efi_extents[i])) {
611                         XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
612                                         &efip->efi_format,
613                                         sizeof(efip->efi_format));
614                         return -EFSCORRUPTED;
615                 }
616 
617                 xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]);
618         }
619 
620         resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
621         error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
622         if (error)
623                 return error;
624 
625         error = xlog_recover_finish_intent(tp, dfp);
626         if (error == -EFSCORRUPTED)
627                 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
628                                 &efip->efi_format,
629                                 sizeof(efip->efi_format));
630         if (error)
631                 goto abort_error;
632 
633         return xfs_defer_ops_capture_and_commit(tp, capture_list);
634 
635 abort_error:
636         xfs_trans_cancel(tp);
637         return error;
638 }
639 
640 /* Relog an intent item to push the log tail forward. */
641 static struct xfs_log_item *
642 xfs_extent_free_relog_intent(
643         struct xfs_trans                *tp,
644         struct xfs_log_item             *intent,
645         struct xfs_log_item             *done_item)
646 {
647         struct xfs_efd_log_item         *efdp = EFD_ITEM(done_item);
648         struct xfs_efi_log_item         *efip;
649         struct xfs_extent               *extp;
650         unsigned int                    count;
651 
652         count = EFI_ITEM(intent)->efi_format.efi_nextents;
653         extp = EFI_ITEM(intent)->efi_format.efi_extents;
654 
655         efdp->efd_next_extent = count;
656         memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
657 
658         efip = xfs_efi_init(tp->t_mountp, count);
659         memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
660         atomic_set(&efip->efi_next_extent, count);
661 
662         return &efip->efi_item;
663 }
664 
665 const struct xfs_defer_op_type xfs_extent_free_defer_type = {
666         .name           = "extent_free",
667         .max_items      = XFS_EFI_MAX_FAST_EXTENTS,
668         .create_intent  = xfs_extent_free_create_intent,
669         .abort_intent   = xfs_extent_free_abort_intent,
670         .create_done    = xfs_extent_free_create_done,
671         .finish_item    = xfs_extent_free_finish_item,
672         .cancel_item    = xfs_extent_free_cancel_item,
673         .recover_work   = xfs_extent_free_recover_work,
674         .relog_intent   = xfs_extent_free_relog_intent,
675 };
676 
677 /* sub-type with special handling for AGFL deferred frees */
678 const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
679         .name           = "agfl_free",
680         .max_items      = XFS_EFI_MAX_FAST_EXTENTS,
681         .create_intent  = xfs_extent_free_create_intent,
682         .abort_intent   = xfs_extent_free_abort_intent,
683         .create_done    = xfs_extent_free_create_done,
684         .finish_item    = xfs_agfl_free_finish_item,
685         .cancel_item    = xfs_extent_free_cancel_item,
686         .recover_work   = xfs_extent_free_recover_work,
687         .relog_intent   = xfs_extent_free_relog_intent,
688 };
689 
690 STATIC bool
691 xfs_efi_item_match(
692         struct xfs_log_item     *lip,
693         uint64_t                intent_id)
694 {
695         return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
696 }
697 
698 static const struct xfs_item_ops xfs_efi_item_ops = {
699         .flags          = XFS_ITEM_INTENT,
700         .iop_size       = xfs_efi_item_size,
701         .iop_format     = xfs_efi_item_format,
702         .iop_unpin      = xfs_efi_item_unpin,
703         .iop_release    = xfs_efi_item_release,
704         .iop_match      = xfs_efi_item_match,
705 };
706 
707 /*
708  * This routine is called to create an in-core extent free intent
709  * item from the efi format structure which was logged on disk.
710  * It allocates an in-core efi, copies the extents from the format
711  * structure into it, and adds the efi to the AIL with the given
712  * LSN.
713  */
714 STATIC int
715 xlog_recover_efi_commit_pass2(
716         struct xlog                     *log,
717         struct list_head                *buffer_list,
718         struct xlog_recover_item        *item,
719         xfs_lsn_t                       lsn)
720 {
721         struct xfs_mount                *mp = log->l_mp;
722         struct xfs_efi_log_item         *efip;
723         struct xfs_efi_log_format       *efi_formatp;
724         int                             error;
725 
726         efi_formatp = item->ri_buf[0].i_addr;
727 
728         if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
729                 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
730                                 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
731                 return -EFSCORRUPTED;
732         }
733 
734         efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
735         error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
736         if (error) {
737                 xfs_efi_item_free(efip);
738                 return error;
739         }
740         atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
741 
742         xlog_recover_intent_item(log, &efip->efi_item, lsn,
743                         &xfs_extent_free_defer_type);
744         return 0;
745 }
746 
747 const struct xlog_recover_item_ops xlog_efi_item_ops = {
748         .item_type              = XFS_LI_EFI,
749         .commit_pass2           = xlog_recover_efi_commit_pass2,
750 };
751 
752 /*
753  * This routine is called when an EFD format structure is found in a committed
754  * transaction in the log. Its purpose is to cancel the corresponding EFI if it
755  * was still in the log. To do this it searches the AIL for the EFI with an id
756  * equal to that in the EFD format structure. If we find it we drop the EFD
757  * reference, which removes the EFI from the AIL and frees it.
758  */
759 STATIC int
760 xlog_recover_efd_commit_pass2(
761         struct xlog                     *log,
762         struct list_head                *buffer_list,
763         struct xlog_recover_item        *item,
764         xfs_lsn_t                       lsn)
765 {
766         struct xfs_efd_log_format       *efd_formatp;
767         int                             buflen = item->ri_buf[0].i_len;
768 
769         efd_formatp = item->ri_buf[0].i_addr;
770 
771         if (buflen < sizeof(struct xfs_efd_log_format)) {
772                 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
773                                 efd_formatp, buflen);
774                 return -EFSCORRUPTED;
775         }
776 
777         if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
778                                                 efd_formatp->efd_nextents) &&
779             item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
780                                                 efd_formatp->efd_nextents)) {
781                 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
782                                 efd_formatp, buflen);
783                 return -EFSCORRUPTED;
784         }
785 
786         xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
787         return 0;
788 }
789 
790 const struct xlog_recover_item_ops xlog_efd_item_ops = {
791         .item_type              = XFS_LI_EFD,
792         .commit_pass2           = xlog_recover_efd_commit_pass2,
793 };
794 

~ [ source navigation ] ~ [ diff markup ] ~ [ identifier search ] ~

kernel.org | git.kernel.org | LWN.net | Project Home | SVN repository | Mail admin

Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.

sflogo.php