1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Copyright (C) 2017 Oracle. All Rights Reserved. 4 * Author: Darrick J. Wong <darrick.wong@oracle.com> 5 */ 6 #include "xfs.h" 7 #include "xfs_fs.h" 8 #include "xfs_shared.h" 9 #include "xfs_format.h" 10 #include "xfs_log_format.h" 11 #include "xfs_trans_resv.h" 12 #include "xfs_mount.h" 13 #include "xfs_inode.h" 14 #include "xfs_trans.h" 15 #include "xfs_btree.h" 16 #include "xfs_rmap_btree.h" 17 #include "xfs_trace.h" 18 #include "xfs_rmap.h" 19 #include "xfs_alloc.h" 20 #include "xfs_bit.h" 21 #include <linux/fsmap.h> 22 #include "xfs_fsmap.h" 23 #include "xfs_refcount.h" 24 #include "xfs_refcount_btree.h" 25 #include "xfs_alloc_btree.h" 26 #include "xfs_rtbitmap.h" 27 #include "xfs_ag.h" 28 29 /* Convert an xfs_fsmap to an fsmap. */ 30 static void 31 xfs_fsmap_from_internal( 32 struct fsmap *dest, 33 struct xfs_fsmap *src) 34 { 35 dest->fmr_device = src->fmr_device; 36 dest->fmr_flags = src->fmr_flags; 37 dest->fmr_physical = BBTOB(src->fmr_physical); 38 dest->fmr_owner = src->fmr_owner; 39 dest->fmr_offset = BBTOB(src->fmr_offset); 40 dest->fmr_length = BBTOB(src->fmr_length); 41 dest->fmr_reserved[0] = 0; 42 dest->fmr_reserved[1] = 0; 43 dest->fmr_reserved[2] = 0; 44 } 45 46 /* Convert an fsmap to an xfs_fsmap. */ 47 void 48 xfs_fsmap_to_internal( 49 struct xfs_fsmap *dest, 50 struct fsmap *src) 51 { 52 dest->fmr_device = src->fmr_device; 53 dest->fmr_flags = src->fmr_flags; 54 dest->fmr_physical = BTOBBT(src->fmr_physical); 55 dest->fmr_owner = src->fmr_owner; 56 dest->fmr_offset = BTOBBT(src->fmr_offset); 57 dest->fmr_length = BTOBBT(src->fmr_length); 58 } 59 60 /* Convert an fsmap owner into an rmapbt owner. */ 61 static int 62 xfs_fsmap_owner_to_rmap( 63 struct xfs_rmap_irec *dest, 64 const struct xfs_fsmap *src) 65 { 66 if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) { 67 dest->rm_owner = src->fmr_owner; 68 return 0; 69 } 70 71 switch (src->fmr_owner) { 72 case 0: /* "lowest owner id possible" */ 73 case -1ULL: /* "highest owner id possible" */ 74 dest->rm_owner = src->fmr_owner; 75 break; 76 case XFS_FMR_OWN_FREE: 77 dest->rm_owner = XFS_RMAP_OWN_NULL; 78 break; 79 case XFS_FMR_OWN_UNKNOWN: 80 dest->rm_owner = XFS_RMAP_OWN_UNKNOWN; 81 break; 82 case XFS_FMR_OWN_FS: 83 dest->rm_owner = XFS_RMAP_OWN_FS; 84 break; 85 case XFS_FMR_OWN_LOG: 86 dest->rm_owner = XFS_RMAP_OWN_LOG; 87 break; 88 case XFS_FMR_OWN_AG: 89 dest->rm_owner = XFS_RMAP_OWN_AG; 90 break; 91 case XFS_FMR_OWN_INOBT: 92 dest->rm_owner = XFS_RMAP_OWN_INOBT; 93 break; 94 case XFS_FMR_OWN_INODES: 95 dest->rm_owner = XFS_RMAP_OWN_INODES; 96 break; 97 case XFS_FMR_OWN_REFC: 98 dest->rm_owner = XFS_RMAP_OWN_REFC; 99 break; 100 case XFS_FMR_OWN_COW: 101 dest->rm_owner = XFS_RMAP_OWN_COW; 102 break; 103 case XFS_FMR_OWN_DEFECTIVE: /* not implemented */ 104 /* fall through */ 105 default: 106 return -EINVAL; 107 } 108 return 0; 109 } 110 111 /* Convert an rmapbt owner into an fsmap owner. */ 112 static int 113 xfs_fsmap_owner_from_rmap( 114 struct xfs_fsmap *dest, 115 const struct xfs_rmap_irec *src) 116 { 117 dest->fmr_flags = 0; 118 if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) { 119 dest->fmr_owner = src->rm_owner; 120 return 0; 121 } 122 dest->fmr_flags |= FMR_OF_SPECIAL_OWNER; 123 124 switch (src->rm_owner) { 125 case XFS_RMAP_OWN_FS: 126 dest->fmr_owner = XFS_FMR_OWN_FS; 127 break; 128 case XFS_RMAP_OWN_LOG: 129 dest->fmr_owner = XFS_FMR_OWN_LOG; 130 break; 131 case XFS_RMAP_OWN_AG: 132 dest->fmr_owner = XFS_FMR_OWN_AG; 133 break; 134 case XFS_RMAP_OWN_INOBT: 135 dest->fmr_owner = XFS_FMR_OWN_INOBT; 136 break; 137 case XFS_RMAP_OWN_INODES: 138 dest->fmr_owner = XFS_FMR_OWN_INODES; 139 break; 140 case XFS_RMAP_OWN_REFC: 141 dest->fmr_owner = XFS_FMR_OWN_REFC; 142 break; 143 case XFS_RMAP_OWN_COW: 144 dest->fmr_owner = XFS_FMR_OWN_COW; 145 break; 146 case XFS_RMAP_OWN_NULL: /* "free" */ 147 dest->fmr_owner = XFS_FMR_OWN_FREE; 148 break; 149 default: 150 ASSERT(0); 151 return -EFSCORRUPTED; 152 } 153 return 0; 154 } 155 156 /* getfsmap query state */ 157 struct xfs_getfsmap_info { 158 struct xfs_fsmap_head *head; 159 struct fsmap *fsmap_recs; /* mapping records */ 160 struct xfs_buf *agf_bp; /* AGF, for refcount queries */ 161 struct xfs_perag *pag; /* AG info, if applicable */ 162 xfs_daddr_t next_daddr; /* next daddr we expect */ 163 /* daddr of low fsmap key when we're using the rtbitmap */ 164 xfs_daddr_t low_daddr; 165 xfs_daddr_t end_daddr; /* daddr of high fsmap key */ 166 u64 missing_owner; /* owner of holes */ 167 u32 dev; /* device id */ 168 /* 169 * Low rmap key for the query. If low.rm_blockcount is nonzero, this 170 * is the second (or later) call to retrieve the recordset in pieces. 171 * xfs_getfsmap_rec_before_start will compare all records retrieved 172 * by the rmapbt query to filter out any records that start before 173 * the last record. 174 */ 175 struct xfs_rmap_irec low; 176 struct xfs_rmap_irec high; /* high rmap key */ 177 bool last; /* last extent? */ 178 }; 179 180 /* Associate a device with a getfsmap handler. */ 181 struct xfs_getfsmap_dev { 182 u32 dev; 183 int (*fn)(struct xfs_trans *tp, 184 const struct xfs_fsmap *keys, 185 struct xfs_getfsmap_info *info); 186 sector_t nr_sectors; 187 }; 188 189 /* Compare two getfsmap device handlers. */ 190 static int 191 xfs_getfsmap_dev_compare( 192 const void *p1, 193 const void *p2) 194 { 195 const struct xfs_getfsmap_dev *d1 = p1; 196 const struct xfs_getfsmap_dev *d2 = p2; 197 198 return d1->dev - d2->dev; 199 } 200 201 /* Decide if this mapping is shared. */ 202 STATIC int 203 xfs_getfsmap_is_shared( 204 struct xfs_trans *tp, 205 struct xfs_getfsmap_info *info, 206 const struct xfs_rmap_irec *rec, 207 bool *stat) 208 { 209 struct xfs_mount *mp = tp->t_mountp; 210 struct xfs_btree_cur *cur; 211 xfs_agblock_t fbno; 212 xfs_extlen_t flen; 213 int error; 214 215 *stat = false; 216 if (!xfs_has_reflink(mp)) 217 return 0; 218 /* rt files will have no perag structure */ 219 if (!info->pag) 220 return 0; 221 222 /* Are there any shared blocks here? */ 223 flen = 0; 224 cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp, info->pag); 225 226 error = xfs_refcount_find_shared(cur, rec->rm_startblock, 227 rec->rm_blockcount, &fbno, &flen, false); 228 229 xfs_btree_del_cursor(cur, error); 230 if (error) 231 return error; 232 233 *stat = flen > 0; 234 return 0; 235 } 236 237 static inline void 238 xfs_getfsmap_format( 239 struct xfs_mount *mp, 240 struct xfs_fsmap *xfm, 241 struct xfs_getfsmap_info *info) 242 { 243 struct fsmap *rec; 244 245 trace_xfs_getfsmap_mapping(mp, xfm); 246 247 rec = &info->fsmap_recs[info->head->fmh_entries++]; 248 xfs_fsmap_from_internal(rec, xfm); 249 } 250 251 static inline bool 252 xfs_getfsmap_rec_before_start( 253 struct xfs_getfsmap_info *info, 254 const struct xfs_rmap_irec *rec, 255 xfs_daddr_t rec_daddr) 256 { 257 if (info->low_daddr != XFS_BUF_DADDR_NULL) 258 return rec_daddr < info->low_daddr; 259 if (info->low.rm_blockcount) 260 return xfs_rmap_compare(rec, &info->low) < 0; 261 return false; 262 } 263 264 /* 265 * Format a reverse mapping for getfsmap, having translated rm_startblock 266 * into the appropriate daddr units. Pass in a nonzero @len_daddr if the 267 * length could be larger than rm_blockcount in struct xfs_rmap_irec. 268 */ 269 STATIC int 270 xfs_getfsmap_helper( 271 struct xfs_trans *tp, 272 struct xfs_getfsmap_info *info, 273 const struct xfs_rmap_irec *rec, 274 xfs_daddr_t rec_daddr, 275 xfs_daddr_t len_daddr) 276 { 277 struct xfs_fsmap fmr; 278 struct xfs_mount *mp = tp->t_mountp; 279 bool shared; 280 int error; 281 282 if (fatal_signal_pending(current)) 283 return -EINTR; 284 285 if (len_daddr == 0) 286 len_daddr = XFS_FSB_TO_BB(mp, rec->rm_blockcount); 287 288 /* 289 * Filter out records that start before our startpoint, if the 290 * caller requested that. 291 */ 292 if (xfs_getfsmap_rec_before_start(info, rec, rec_daddr)) { 293 rec_daddr += len_daddr; 294 if (info->next_daddr < rec_daddr) 295 info->next_daddr = rec_daddr; 296 return 0; 297 } 298 299 /* 300 * For an info->last query, we're looking for a gap between the last 301 * mapping emitted and the high key specified by userspace. If the 302 * user's query spans less than 1 fsblock, then info->high and 303 * info->low will have the same rm_startblock, which causes rec_daddr 304 * and next_daddr to be the same. Therefore, use the end_daddr that 305 * we calculated from userspace's high key to synthesize the record. 306 * Note that if the btree query found a mapping, there won't be a gap. 307 */ 308 if (info->last && info->end_daddr != XFS_BUF_DADDR_NULL) 309 rec_daddr = info->end_daddr; 310 311 /* Are we just counting mappings? */ 312 if (info->head->fmh_count == 0) { 313 if (info->head->fmh_entries == UINT_MAX) 314 return -ECANCELED; 315 316 if (rec_daddr > info->next_daddr) 317 info->head->fmh_entries++; 318 319 if (info->last) 320 return 0; 321 322 info->head->fmh_entries++; 323 324 rec_daddr += len_daddr; 325 if (info->next_daddr < rec_daddr) 326 info->next_daddr = rec_daddr; 327 return 0; 328 } 329 330 /* 331 * If the record starts past the last physical block we saw, 332 * then we've found a gap. Report the gap as being owned by 333 * whatever the caller specified is the missing owner. 334 */ 335 if (rec_daddr > info->next_daddr) { 336 if (info->head->fmh_entries >= info->head->fmh_count) 337 return -ECANCELED; 338 339 fmr.fmr_device = info->dev; 340 fmr.fmr_physical = info->next_daddr; 341 fmr.fmr_owner = info->missing_owner; 342 fmr.fmr_offset = 0; 343 fmr.fmr_length = rec_daddr - info->next_daddr; 344 fmr.fmr_flags = FMR_OF_SPECIAL_OWNER; 345 xfs_getfsmap_format(mp, &fmr, info); 346 } 347 348 if (info->last) 349 goto out; 350 351 /* Fill out the extent we found */ 352 if (info->head->fmh_entries >= info->head->fmh_count) 353 return -ECANCELED; 354 355 trace_xfs_fsmap_mapping(mp, info->dev, 356 info->pag ? info->pag->pag_agno : NULLAGNUMBER, rec); 357 358 fmr.fmr_device = info->dev; 359 fmr.fmr_physical = rec_daddr; 360 error = xfs_fsmap_owner_from_rmap(&fmr, rec); 361 if (error) 362 return error; 363 fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset); 364 fmr.fmr_length = len_daddr; 365 if (rec->rm_flags & XFS_RMAP_UNWRITTEN) 366 fmr.fmr_flags |= FMR_OF_PREALLOC; 367 if (rec->rm_flags & XFS_RMAP_ATTR_FORK) 368 fmr.fmr_flags |= FMR_OF_ATTR_FORK; 369 if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK) 370 fmr.fmr_flags |= FMR_OF_EXTENT_MAP; 371 if (fmr.fmr_flags == 0) { 372 error = xfs_getfsmap_is_shared(tp, info, rec, &shared); 373 if (error) 374 return error; 375 if (shared) 376 fmr.fmr_flags |= FMR_OF_SHARED; 377 } 378 379 xfs_getfsmap_format(mp, &fmr, info); 380 out: 381 rec_daddr += len_daddr; 382 if (info->next_daddr < rec_daddr) 383 info->next_daddr = rec_daddr; 384 return 0; 385 } 386 387 /* Transform a rmapbt irec into a fsmap */ 388 STATIC int 389 xfs_getfsmap_datadev_helper( 390 struct xfs_btree_cur *cur, 391 const struct xfs_rmap_irec *rec, 392 void *priv) 393 { 394 struct xfs_mount *mp = cur->bc_mp; 395 struct xfs_getfsmap_info *info = priv; 396 xfs_fsblock_t fsb; 397 xfs_daddr_t rec_daddr; 398 399 fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.pag->pag_agno, rec->rm_startblock); 400 rec_daddr = XFS_FSB_TO_DADDR(mp, fsb); 401 402 return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr, 0); 403 } 404 405 /* Transform a bnobt irec into a fsmap */ 406 STATIC int 407 xfs_getfsmap_datadev_bnobt_helper( 408 struct xfs_btree_cur *cur, 409 const struct xfs_alloc_rec_incore *rec, 410 void *priv) 411 { 412 struct xfs_mount *mp = cur->bc_mp; 413 struct xfs_getfsmap_info *info = priv; 414 struct xfs_rmap_irec irec; 415 xfs_daddr_t rec_daddr; 416 417 rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.pag->pag_agno, 418 rec->ar_startblock); 419 420 irec.rm_startblock = rec->ar_startblock; 421 irec.rm_blockcount = rec->ar_blockcount; 422 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 423 irec.rm_offset = 0; 424 irec.rm_flags = 0; 425 426 return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr, 0); 427 } 428 429 /* Set rmap flags based on the getfsmap flags */ 430 static void 431 xfs_getfsmap_set_irec_flags( 432 struct xfs_rmap_irec *irec, 433 const struct xfs_fsmap *fmr) 434 { 435 irec->rm_flags = 0; 436 if (fmr->fmr_flags & FMR_OF_ATTR_FORK) 437 irec->rm_flags |= XFS_RMAP_ATTR_FORK; 438 if (fmr->fmr_flags & FMR_OF_EXTENT_MAP) 439 irec->rm_flags |= XFS_RMAP_BMBT_BLOCK; 440 if (fmr->fmr_flags & FMR_OF_PREALLOC) 441 irec->rm_flags |= XFS_RMAP_UNWRITTEN; 442 } 443 444 /* Execute a getfsmap query against the log device. */ 445 STATIC int 446 xfs_getfsmap_logdev( 447 struct xfs_trans *tp, 448 const struct xfs_fsmap *keys, 449 struct xfs_getfsmap_info *info) 450 { 451 struct xfs_mount *mp = tp->t_mountp; 452 struct xfs_rmap_irec rmap; 453 xfs_daddr_t rec_daddr, len_daddr; 454 xfs_fsblock_t start_fsb, end_fsb; 455 uint64_t eofs; 456 457 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 458 if (keys[0].fmr_physical >= eofs) 459 return 0; 460 start_fsb = XFS_BB_TO_FSBT(mp, 461 keys[0].fmr_physical + keys[0].fmr_length); 462 end_fsb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical)); 463 464 /* Adjust the low key if we are continuing from where we left off. */ 465 if (keys[0].fmr_length > 0) 466 info->low_daddr = XFS_FSB_TO_BB(mp, start_fsb); 467 468 trace_xfs_fsmap_low_key_linear(mp, info->dev, start_fsb); 469 trace_xfs_fsmap_high_key_linear(mp, info->dev, end_fsb); 470 471 if (start_fsb > 0) 472 return 0; 473 474 /* Fabricate an rmap entry for the external log device. */ 475 rmap.rm_startblock = 0; 476 rmap.rm_blockcount = mp->m_sb.sb_logblocks; 477 rmap.rm_owner = XFS_RMAP_OWN_LOG; 478 rmap.rm_offset = 0; 479 rmap.rm_flags = 0; 480 481 rec_daddr = XFS_FSB_TO_BB(mp, rmap.rm_startblock); 482 len_daddr = XFS_FSB_TO_BB(mp, rmap.rm_blockcount); 483 return xfs_getfsmap_helper(tp, info, &rmap, rec_daddr, len_daddr); 484 } 485 486 #ifdef CONFIG_XFS_RT 487 /* Transform a rtbitmap "record" into a fsmap */ 488 STATIC int 489 xfs_getfsmap_rtdev_rtbitmap_helper( 490 struct xfs_mount *mp, 491 struct xfs_trans *tp, 492 const struct xfs_rtalloc_rec *rec, 493 void *priv) 494 { 495 struct xfs_getfsmap_info *info = priv; 496 struct xfs_rmap_irec irec; 497 xfs_rtblock_t rtbno; 498 xfs_daddr_t rec_daddr, len_daddr; 499 500 rtbno = xfs_rtx_to_rtb(mp, rec->ar_startext); 501 rec_daddr = XFS_FSB_TO_BB(mp, rtbno); 502 irec.rm_startblock = rtbno; 503 504 rtbno = xfs_rtx_to_rtb(mp, rec->ar_extcount); 505 len_daddr = XFS_FSB_TO_BB(mp, rtbno); 506 irec.rm_blockcount = rtbno; 507 508 irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */ 509 irec.rm_offset = 0; 510 irec.rm_flags = 0; 511 512 return xfs_getfsmap_helper(tp, info, &irec, rec_daddr, len_daddr); 513 } 514 515 /* Execute a getfsmap query against the realtime device rtbitmap. */ 516 STATIC int 517 xfs_getfsmap_rtdev_rtbitmap( 518 struct xfs_trans *tp, 519 const struct xfs_fsmap *keys, 520 struct xfs_getfsmap_info *info) 521 { 522 523 struct xfs_rtalloc_rec alow = { 0 }; 524 struct xfs_rtalloc_rec ahigh = { 0 }; 525 struct xfs_mount *mp = tp->t_mountp; 526 xfs_rtblock_t start_rtb; 527 xfs_rtblock_t end_rtb; 528 uint64_t eofs; 529 int error; 530 531 eofs = XFS_FSB_TO_BB(mp, xfs_rtx_to_rtb(mp, mp->m_sb.sb_rextents)); 532 if (keys[0].fmr_physical >= eofs) 533 return 0; 534 start_rtb = XFS_BB_TO_FSBT(mp, 535 keys[0].fmr_physical + keys[0].fmr_length); 536 end_rtb = XFS_BB_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical)); 537 538 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 539 540 /* Adjust the low key if we are continuing from where we left off. */ 541 if (keys[0].fmr_length > 0) { 542 info->low_daddr = XFS_FSB_TO_BB(mp, start_rtb); 543 if (info->low_daddr >= eofs) 544 return 0; 545 } 546 547 trace_xfs_fsmap_low_key_linear(mp, info->dev, start_rtb); 548 trace_xfs_fsmap_high_key_linear(mp, info->dev, end_rtb); 549 550 xfs_rtbitmap_lock_shared(mp, XFS_RBMLOCK_BITMAP); 551 552 /* 553 * Set up query parameters to return free rtextents covering the range 554 * we want. 555 */ 556 alow.ar_startext = xfs_rtb_to_rtx(mp, start_rtb); 557 ahigh.ar_startext = xfs_rtb_to_rtxup(mp, end_rtb); 558 error = xfs_rtalloc_query_range(mp, tp, &alow, &ahigh, 559 xfs_getfsmap_rtdev_rtbitmap_helper, info); 560 if (error) 561 goto err; 562 563 /* 564 * Report any gaps at the end of the rtbitmap by simulating a null 565 * rmap starting at the block after the end of the query range. 566 */ 567 info->last = true; 568 ahigh.ar_startext = min(mp->m_sb.sb_rextents, ahigh.ar_startext); 569 570 error = xfs_getfsmap_rtdev_rtbitmap_helper(mp, tp, &ahigh, info); 571 if (error) 572 goto err; 573 err: 574 xfs_rtbitmap_unlock_shared(mp, XFS_RBMLOCK_BITMAP); 575 return error; 576 } 577 #endif /* CONFIG_XFS_RT */ 578 579 static inline bool 580 rmap_not_shareable(struct xfs_mount *mp, const struct xfs_rmap_irec *r) 581 { 582 if (!xfs_has_reflink(mp)) 583 return true; 584 if (XFS_RMAP_NON_INODE_OWNER(r->rm_owner)) 585 return true; 586 if (r->rm_flags & (XFS_RMAP_ATTR_FORK | XFS_RMAP_BMBT_BLOCK | 587 XFS_RMAP_UNWRITTEN)) 588 return true; 589 return false; 590 } 591 592 /* Execute a getfsmap query against the regular data device. */ 593 STATIC int 594 __xfs_getfsmap_datadev( 595 struct xfs_trans *tp, 596 const struct xfs_fsmap *keys, 597 struct xfs_getfsmap_info *info, 598 int (*query_fn)(struct xfs_trans *, 599 struct xfs_getfsmap_info *, 600 struct xfs_btree_cur **, 601 void *), 602 void *priv) 603 { 604 struct xfs_mount *mp = tp->t_mountp; 605 struct xfs_perag *pag; 606 struct xfs_btree_cur *bt_cur = NULL; 607 xfs_fsblock_t start_fsb; 608 xfs_fsblock_t end_fsb; 609 xfs_agnumber_t start_ag; 610 xfs_agnumber_t end_ag; 611 uint64_t eofs; 612 int error = 0; 613 614 eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 615 if (keys[0].fmr_physical >= eofs) 616 return 0; 617 start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical); 618 end_fsb = XFS_DADDR_TO_FSB(mp, min(eofs - 1, keys[1].fmr_physical)); 619 620 /* 621 * Convert the fsmap low/high keys to AG based keys. Initialize 622 * low to the fsmap low key and max out the high key to the end 623 * of the AG. 624 */ 625 info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset); 626 error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]); 627 if (error) 628 return error; 629 info->low.rm_blockcount = XFS_BB_TO_FSBT(mp, keys[0].fmr_length); 630 xfs_getfsmap_set_irec_flags(&info->low, &keys[0]); 631 632 /* Adjust the low key if we are continuing from where we left off. */ 633 if (info->low.rm_blockcount == 0) { 634 /* No previous record from which to continue */ 635 } else if (rmap_not_shareable(mp, &info->low)) { 636 /* Last record seen was an unshareable extent */ 637 info->low.rm_owner = 0; 638 info->low.rm_offset = 0; 639 640 start_fsb += info->low.rm_blockcount; 641 if (XFS_FSB_TO_DADDR(mp, start_fsb) >= eofs) 642 return 0; 643 } else { 644 /* Last record seen was a shareable file data extent */ 645 info->low.rm_offset += info->low.rm_blockcount; 646 } 647 info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb); 648 649 info->high.rm_startblock = -1U; 650 info->high.rm_owner = ULLONG_MAX; 651 info->high.rm_offset = ULLONG_MAX; 652 info->high.rm_blockcount = 0; 653 info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS; 654 655 start_ag = XFS_FSB_TO_AGNO(mp, start_fsb); 656 end_ag = XFS_FSB_TO_AGNO(mp, end_fsb); 657 658 for_each_perag_range(mp, start_ag, end_ag, pag) { 659 /* 660 * Set the AG high key from the fsmap high key if this 661 * is the last AG that we're querying. 662 */ 663 info->pag = pag; 664 if (pag->pag_agno == end_ag) { 665 info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp, 666 end_fsb); 667 info->high.rm_offset = XFS_BB_TO_FSBT(mp, 668 keys[1].fmr_offset); 669 error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]); 670 if (error) 671 break; 672 xfs_getfsmap_set_irec_flags(&info->high, &keys[1]); 673 } 674 675 if (bt_cur) { 676 xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR); 677 bt_cur = NULL; 678 xfs_trans_brelse(tp, info->agf_bp); 679 info->agf_bp = NULL; 680 } 681 682 error = xfs_alloc_read_agf(pag, tp, 0, &info->agf_bp); 683 if (error) 684 break; 685 686 trace_xfs_fsmap_low_key(mp, info->dev, pag->pag_agno, 687 &info->low); 688 trace_xfs_fsmap_high_key(mp, info->dev, pag->pag_agno, 689 &info->high); 690 691 error = query_fn(tp, info, &bt_cur, priv); 692 if (error) 693 break; 694 695 /* 696 * Set the AG low key to the start of the AG prior to 697 * moving on to the next AG. 698 */ 699 if (pag->pag_agno == start_ag) 700 memset(&info->low, 0, sizeof(info->low)); 701 702 /* 703 * If this is the last AG, report any gap at the end of it 704 * before we drop the reference to the perag when the loop 705 * terminates. 706 */ 707 if (pag->pag_agno == end_ag) { 708 info->last = true; 709 error = query_fn(tp, info, &bt_cur, priv); 710 if (error) 711 break; 712 } 713 info->pag = NULL; 714 } 715 716 if (bt_cur) 717 xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR : 718 XFS_BTREE_NOERROR); 719 if (info->agf_bp) { 720 xfs_trans_brelse(tp, info->agf_bp); 721 info->agf_bp = NULL; 722 } 723 if (info->pag) { 724 xfs_perag_rele(info->pag); 725 info->pag = NULL; 726 } else if (pag) { 727 /* loop termination case */ 728 xfs_perag_rele(pag); 729 } 730 731 return error; 732 } 733 734 /* Actually query the rmap btree. */ 735 STATIC int 736 xfs_getfsmap_datadev_rmapbt_query( 737 struct xfs_trans *tp, 738 struct xfs_getfsmap_info *info, 739 struct xfs_btree_cur **curpp, 740 void *priv) 741 { 742 /* Report any gap at the end of the last AG. */ 743 if (info->last) 744 return xfs_getfsmap_datadev_helper(*curpp, &info->high, info); 745 746 /* Allocate cursor for this AG and query_range it. */ 747 *curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp, 748 info->pag); 749 return xfs_rmap_query_range(*curpp, &info->low, &info->high, 750 xfs_getfsmap_datadev_helper, info); 751 } 752 753 /* Execute a getfsmap query against the regular data device rmapbt. */ 754 STATIC int 755 xfs_getfsmap_datadev_rmapbt( 756 struct xfs_trans *tp, 757 const struct xfs_fsmap *keys, 758 struct xfs_getfsmap_info *info) 759 { 760 info->missing_owner = XFS_FMR_OWN_FREE; 761 return __xfs_getfsmap_datadev(tp, keys, info, 762 xfs_getfsmap_datadev_rmapbt_query, NULL); 763 } 764 765 /* Actually query the bno btree. */ 766 STATIC int 767 xfs_getfsmap_datadev_bnobt_query( 768 struct xfs_trans *tp, 769 struct xfs_getfsmap_info *info, 770 struct xfs_btree_cur **curpp, 771 void *priv) 772 { 773 struct xfs_alloc_rec_incore *key = priv; 774 775 /* Report any gap at the end of the last AG. */ 776 if (info->last) 777 return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info); 778 779 /* Allocate cursor for this AG and query_range it. */ 780 *curpp = xfs_bnobt_init_cursor(tp->t_mountp, tp, info->agf_bp, 781 info->pag); 782 key->ar_startblock = info->low.rm_startblock; 783 key[1].ar_startblock = info->high.rm_startblock; 784 return xfs_alloc_query_range(*curpp, key, &key[1], 785 xfs_getfsmap_datadev_bnobt_helper, info); 786 } 787 788 /* Execute a getfsmap query against the regular data device's bnobt. */ 789 STATIC int 790 xfs_getfsmap_datadev_bnobt( 791 struct xfs_trans *tp, 792 const struct xfs_fsmap *keys, 793 struct xfs_getfsmap_info *info) 794 { 795 struct xfs_alloc_rec_incore akeys[2]; 796 797 memset(akeys, 0, sizeof(akeys)); 798 info->missing_owner = XFS_FMR_OWN_UNKNOWN; 799 return __xfs_getfsmap_datadev(tp, keys, info, 800 xfs_getfsmap_datadev_bnobt_query, &akeys[0]); 801 } 802 803 /* Do we recognize the device? */ 804 STATIC bool 805 xfs_getfsmap_is_valid_device( 806 struct xfs_mount *mp, 807 struct xfs_fsmap *fm) 808 { 809 if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX || 810 fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev)) 811 return true; 812 if (mp->m_logdev_targp && 813 fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev)) 814 return true; 815 if (mp->m_rtdev_targp && 816 fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev)) 817 return true; 818 return false; 819 } 820 821 /* Ensure that the low key is less than the high key. */ 822 STATIC bool 823 xfs_getfsmap_check_keys( 824 struct xfs_fsmap *low_key, 825 struct xfs_fsmap *high_key) 826 { 827 if (low_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) { 828 if (low_key->fmr_offset) 829 return false; 830 } 831 if (high_key->fmr_flags != -1U && 832 (high_key->fmr_flags & (FMR_OF_SPECIAL_OWNER | 833 FMR_OF_EXTENT_MAP))) { 834 if (high_key->fmr_offset && high_key->fmr_offset != -1ULL) 835 return false; 836 } 837 if (high_key->fmr_length && high_key->fmr_length != -1ULL) 838 return false; 839 840 if (low_key->fmr_device > high_key->fmr_device) 841 return false; 842 if (low_key->fmr_device < high_key->fmr_device) 843 return true; 844 845 if (low_key->fmr_physical > high_key->fmr_physical) 846 return false; 847 if (low_key->fmr_physical < high_key->fmr_physical) 848 return true; 849 850 if (low_key->fmr_owner > high_key->fmr_owner) 851 return false; 852 if (low_key->fmr_owner < high_key->fmr_owner) 853 return true; 854 855 if (low_key->fmr_offset > high_key->fmr_offset) 856 return false; 857 if (low_key->fmr_offset < high_key->fmr_offset) 858 return true; 859 860 return false; 861 } 862 863 /* 864 * There are only two devices if we didn't configure RT devices at build time. 865 */ 866 #ifdef CONFIG_XFS_RT 867 #define XFS_GETFSMAP_DEVS 3 868 #else 869 #define XFS_GETFSMAP_DEVS 2 870 #endif /* CONFIG_XFS_RT */ 871 872 /* 873 * Get filesystem's extents as described in head, and format for output. Fills 874 * in the supplied records array until there are no more reverse mappings to 875 * return or head.fmh_entries == head.fmh_count. In the second case, this 876 * function returns -ECANCELED to indicate that more records would have been 877 * returned. 878 * 879 * Key to Confusion 880 * ---------------- 881 * There are multiple levels of keys and counters at work here: 882 * xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in; 883 * these reflect fs-wide sector addrs. 884 * dkeys -- fmh_keys used to query each device; 885 * these are fmh_keys but w/ the low key 886 * bumped up by fmr_length. 887 * xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this 888 * is how we detect gaps in the fsmap 889 records and report them. 890 * xfs_getfsmap_info.low/high -- per-AG low/high keys computed from 891 * dkeys; used to query the metadata. 892 */ 893 int 894 xfs_getfsmap( 895 struct xfs_mount *mp, 896 struct xfs_fsmap_head *head, 897 struct fsmap *fsmap_recs) 898 { 899 struct xfs_trans *tp = NULL; 900 struct xfs_fsmap dkeys[2]; /* per-dev keys */ 901 struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS]; 902 struct xfs_getfsmap_info info = { NULL }; 903 bool use_rmap; 904 int i; 905 int error = 0; 906 907 if (head->fmh_iflags & ~FMH_IF_VALID) 908 return -EINVAL; 909 if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) || 910 !xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1])) 911 return -EINVAL; 912 if (!xfs_getfsmap_check_keys(&head->fmh_keys[0], &head->fmh_keys[1])) 913 return -EINVAL; 914 915 use_rmap = xfs_has_rmapbt(mp) && 916 has_capability_noaudit(current, CAP_SYS_ADMIN); 917 head->fmh_entries = 0; 918 919 /* Set up our device handlers. */ 920 memset(handlers, 0, sizeof(handlers)); 921 handlers[0].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 922 handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev); 923 if (use_rmap) 924 handlers[0].fn = xfs_getfsmap_datadev_rmapbt; 925 else 926 handlers[0].fn = xfs_getfsmap_datadev_bnobt; 927 if (mp->m_logdev_targp != mp->m_ddev_targp) { 928 handlers[1].nr_sectors = XFS_FSB_TO_BB(mp, 929 mp->m_sb.sb_logblocks); 930 handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev); 931 handlers[1].fn = xfs_getfsmap_logdev; 932 } 933 #ifdef CONFIG_XFS_RT 934 if (mp->m_rtdev_targp) { 935 handlers[2].nr_sectors = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks); 936 handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev); 937 handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap; 938 } 939 #endif /* CONFIG_XFS_RT */ 940 941 xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev), 942 xfs_getfsmap_dev_compare); 943 944 /* 945 * To continue where we left off, we allow userspace to use the 946 * last mapping from a previous call as the low key of the next. 947 * This is identified by a non-zero length in the low key. We 948 * have to increment the low key in this scenario to ensure we 949 * don't return the same mapping again, and instead return the 950 * very next mapping. 951 * 952 * If the low key mapping refers to file data, the same physical 953 * blocks could be mapped to several other files/offsets. 954 * According to rmapbt record ordering, the minimal next 955 * possible record for the block range is the next starting 956 * offset in the same inode. Therefore, each fsmap backend bumps 957 * the file offset to continue the search appropriately. For 958 * all other low key mapping types (attr blocks, metadata), each 959 * fsmap backend bumps the physical offset as there can be no 960 * other mapping for the same physical block range. 961 */ 962 dkeys[0] = head->fmh_keys[0]; 963 memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap)); 964 965 info.next_daddr = head->fmh_keys[0].fmr_physical + 966 head->fmh_keys[0].fmr_length; 967 info.end_daddr = XFS_BUF_DADDR_NULL; 968 info.fsmap_recs = fsmap_recs; 969 info.head = head; 970 971 /* For each device we support... */ 972 for (i = 0; i < XFS_GETFSMAP_DEVS; i++) { 973 /* Is this device within the range the user asked for? */ 974 if (!handlers[i].fn) 975 continue; 976 if (head->fmh_keys[0].fmr_device > handlers[i].dev) 977 continue; 978 if (head->fmh_keys[1].fmr_device < handlers[i].dev) 979 break; 980 981 /* 982 * If this device number matches the high key, we have 983 * to pass the high key to the handler to limit the 984 * query results. If the device number exceeds the 985 * low key, zero out the low key so that we get 986 * everything from the beginning. 987 */ 988 if (handlers[i].dev == head->fmh_keys[1].fmr_device) { 989 dkeys[1] = head->fmh_keys[1]; 990 info.end_daddr = min(handlers[i].nr_sectors - 1, 991 dkeys[1].fmr_physical); 992 } 993 if (handlers[i].dev > head->fmh_keys[0].fmr_device) 994 memset(&dkeys[0], 0, sizeof(struct xfs_fsmap)); 995 996 /* 997 * Grab an empty transaction so that we can use its recursive 998 * buffer locking abilities to detect cycles in the rmapbt 999 * without deadlocking. 1000 */ 1001 error = xfs_trans_alloc_empty(mp, &tp); 1002 if (error) 1003 break; 1004 1005 info.dev = handlers[i].dev; 1006 info.last = false; 1007 info.pag = NULL; 1008 info.low_daddr = XFS_BUF_DADDR_NULL; 1009 info.low.rm_blockcount = 0; 1010 error = handlers[i].fn(tp, dkeys, &info); 1011 if (error) 1012 break; 1013 xfs_trans_cancel(tp); 1014 tp = NULL; 1015 info.next_daddr = 0; 1016 } 1017 1018 if (tp) 1019 xfs_trans_cancel(tp); 1020 head->fmh_oflags = FMH_OF_DEV_T; 1021 return error; 1022 } 1023
Linux® is a registered trademark of Linus Torvalds in the United States and other countries.
TOMOYO® is a registered trademark of NTT DATA CORPORATION.